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ABSTRACT

In a recent Journal of Finance article, Kan and Zhou (1999) find that the “Stochastic discount

factor” methodology using GMM is markedly inferior to traditional maximum likelihood even in a simple

test of the static CAPM with i.i.d. normal returns. This result has gained wide attention. However, as

Jagannathan and Wang (2001) point out, this result flows from a strange assumption: Kan and Zhou allow

the ML estimate to know the mean market return ex-ante. I show how this information advantage

explains Kan and Zhou's results. In fact, when treated symmetrically, the discount factor - GMM and

traditional methodologies behave almost identically in linear i.i.d. environments.
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1 Introduction

Kan and Zhou (1999) compare the “stochastic discount factor” (SDF) methodology, using
GMM, to a “traditional” maximum likelihood estimate and test, applied to the static linear
CAPM with i.i.d. normal returns. They conclude that the SDF methodology performs
much worse than the traditional estimate and test even in this very simple environment.
They summarize their results as follows

“The accuracy of the [SDF] parameter estimation can be poor: the standard
error of the estimated risk premium is often more than 40 times greater than that
of the traditional methodologies... The SDF methodology is not very reliable in
detecting even gross misspecifications in an asset pricing model.” (p.1222)

Kan and Zhou’s result has attracted a great deal of attention, in part because it is so
unexpected. GMM is usually well-behaved in linear models with i.i.d. normal variables. It
often reduces exactly to standard procedures (for example, OLS regression) in those environ-
ments. The stochastic discount factor expression of an asset pricing model is mathematically
equivalent to its expected return - beta expression, so that part of the methodology cannot
make any difference. When paired with GMM, and using the pricing errors as moments, the
SDF/GMM methodology prescribes a cross-sectional regression (see Cochrane 1996, 2001).
The right hand variable in the cross-sectional regression is the covariance or second moment
of returns with factors, rather than the traditional betas, and the regression uses a slightly
different weighting matrix, but one would not expect these minor differences to amount to
much. True, when the factor is a return, ML prescribes a time-series rather than a cross-
sectional regression approach, gaining one degree of freedom. But we have run cross-sectional
regressions for over 30 years without any hint of gross inefficiency. In fact many authors pre-
fer robust but even more inefficient OLS cross-sectional regressions, as in the Fama-MacBeth
procedure, rather than ML’s GLS cross-sectional regressions.

Kan and Zhou’s results stem from a strange assumption, as pointed out by Jagannathan
and Wang (2001). They allow the ML procedure to know the factor risk premium — the
mean market return, in the case of the CAPM — while the GMM/SDF procedure must, as
usual, estimate it. This note explains how that assumption produces their results.

If one treats the two methods symmetrically, the GMM/SDF methodology performs al-
most identically to traditional ML-based time-series and cross-sectional regressions when
applied to standard setups, featuring linear models, and i.i.d. returns and factors. Jagan-
nathan and Wang (2001) show this right answer by analytical examination of asymptotic
distributions, and Cochrane (2001) presents a Monte Carlo analysis. Gratifyingly, all the
above suppositions turn out to be correct.

The interesting question remains to be answered: How do maximum likelihood and
SDF/GMM compare in highly challenging environments, with non-normal distributions,
time-varying betas and time-varying factor risk premia? Maximum likelihood has well-known
optimality properties when you know the exact data-generating model, but the relevant com-
parison is between maximum likelihood with the wrong model and GMM with potentially
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inefficient moments. This, interesting, comparison has not yet been investigated in an asset
pricing context.

2 Kan and Zhou’s result

Kan and Zhou run a Monte Carlo simulation of a test of the CAPM on size decile portfolios.
They express the asset pricing model in expected return - beta form E(Re) = βλ where
Re denotes a vector of N excess returns and β denotes a conformable vector of regression
coefficients of returns on the factor f . Table I collects Kan and Zhou’s reported sampling
variation in the estimated factor risk premium λ̂. As you can see, the “ML” table entries
are a factor of 40 smaller than the “SDF/GMM” entries.

Table I. Monte Carlo Standard Deviation of Estimated Risk Pre-
mium λ̂. Simulations are calibrated to the CAPM on 10 NYSE size portfolios.
T gives the sample size in months. The “ML” and “SDF” column are taken
from Kan and Zhou (1999) Table I, p.1234. The third column is calculated with
σ(f) = 1 as specified by Kan and Zhou. All table entries are multiplied by 100.

T ML SDF/GMM σ(f)/
√
T

120 0.20 10.49 9.12
360 0.11 5.53 5.27
600 0.09 4.26 4.08
720 0.08 3.86 3.72

For a test of the CAPM with i.i.d. normal returns, the true maximum likelihood estimate
of the factor risk premium is the mean of the market excess return, λ̂ = ET (R

em
t ), and its

standard error is σ(λ̂) = σ(Rem)/
√
T . (See Campbell, Lo and MacKinlay 1997 or Cochrane

2001. Throughout, I use the notation ET =
1
T

PT
t=1 to denote sample mean.) In this

traditional and simple environment, one cannot improve on the average market return as
an estimator of the factor risk premium. Additional returns in a cross-section include the
market premium plus idiosyncratic error, so they tell us nothing new about the market
premium.

Kan and Zhou renormalize the model so that the factor f has a standard deviation of
one, implicitly using a leveraged market portfolio as the factor. This is unusual, but not
incorrect, since any mean-variance efficient portfolio can serve as reference return. The last
column of Table I contains a calculation of σ(f)/

√
T , which is 1/

√
T given Kan and Zhou’s

normalization. Now, comparing the rows, you see that Kan and Zhou’s SDF/GMM simula-
tion almost exactly recovers the traditional standard error σ/

√
T . It is slightly inefficient in

small samples, but not disastrously so. This is what we expect. GMM in linear models with
i.i.d. normal errors is usually well behaved.
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The surprise from Table I is that the “traditional” ML estimates seem to improve on
σ/
√
T by a factor of 40. Kan and Zhou don’t find poor performance of GMM, they find

astoundingly good performance of their “traditional” estimator. How can you beat maximum
likelihood by a factor of 40? Obviously, you can’t. There must be something unusual in the
calculation of the traditional estimates. Jagannathan and Wang (2001) found the unusual
assumption: Kan and Zhou assume that they know the mean of the factor. (“E[ft|Φt−1] = 0”
on top of p.1223.) Giving the traditional estimate this false information advantage accounts
for Kan and Zhou’s results.

3 Effects of assuming that you know the factor mean

To see what happens if you assume that you know the mean of the factor, I trace what it
does to estimation and testing strategies.

Case 1. Factor is a return. When the factor is a return, as for the CAPM, the asset
pricing model says that the mean of the factor is the same as the factor risk premium.

λ = E(f). (1)

Again, if you don’t know E(f), the maximum likelihood estimate of the factor risk premium
is the sample mean of the factor. If you know the mean of the factor — if we make E(f) a
known quantity rather than a parameter to be estimated in maximum likelihood — then we
know the factor risk premium λ, and its sampling variation is zero:

λ̂ = λ = E(f); σ(λ̂) = 0.

This case shows most dramatically how assuming that you know the mean of the factor
lowers the sampling variation of the estimated factor risk premium. It leaves a puzzle,
though: how did Kan and Zhou get any sampling variation at all for the “ML” estimate in
Table I? The answer is that they also ignored the restriction of the CAPM that the factor
is a return.

Case 2. Factor is not a return. When the factor is not a return, restriction (1) does
not hold, and the mean of the factor is no longer equal to the factor risk premium. In this
case, standard ML (you don’t know the factor mean) specifies a cross-sectional regression:
run sample mean returns on the betas, and the estimated slope is the factor risk premium.

I offer three ways to see how adding the false assumption that we know the factor mean
generates estimates with very small but non-zero sampling variation in this case. They
increase in generality, but also in algebraic complexity, so they decrease in transparency.

Start with the standard time-series regression specification

Ret = a+ βft + εt; εt i.i.d., E(εtε
0
t) = Σ. (2)

The asset pricing model E(Re) = βλ implies a restriction on the intercepts a of this regres-
sion. We can impose this restriction by writing the time-series regression (2) as

Ret = βλ+ β [ft −E(f)] + εt. (3)
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Taking the sample average of (3), we obtain

ET (R
e
t ) = βλ+ β [ET (ft)−E(f)] +ET (εt) . (4)

This is the starting point for all our λ estimates.

a) A simple example shows the point most clearly. Suppose there is one asset, and its
beta is one. If we do not know the mean of the factor E(f), we will estimate it by its sample
mean, so the second term on the right hand side of (4) is zero. Then, our estimate of λ will
be

λ̂don’t know = ET (R
e).

The standard error of this estimate is

σ2(λ̂don’t know) =
σ2(Re)

T
=

σ2(f) + σ2(ε)

T
(5)

If we know the true mean of the factor E(f), we will use the known value rather than
estimate it as a parameter. Now, we estimate the factor risk premium from (4) by

λ̂know = ET (R
e
t )− [ET (ft)− E(f)] .

Substituting for Ret from (4),
λ̂know = ET (ε) +E(f)

so

σ2(λ̂know) =
σ2(ε)

T
(6)

Now, compare (5) with (6). If you know the mean of the factor, the standard deviation of
the factor risk premium is driven by the residual variance. If you don’t know the mean of the
factor, the standard deviation of the factor risk premium is driven by the return variance,
the residual variance plus the factor variance.

To compare the two standard errors, we can write

σ2(λ̂know)

σ2(λ̂don’t know)
=

σ2(ε)

σ2(f) + σ2(ε)
= 1−R2 (7)

where R2 is the R2 of the time-series regression (3) for the single asset under consideration.
The R2 of size portfolios on the market is quite high. For example, the CRSP large portfolio
has market model regression R2 = 0.984 in the full 1926-1998 sample. Therefore, we expect
that σ2(λ̂know) is much less than σ2(λ̂don’t know), but not zero.

b) Many returns. The same point applies to the case with many returns, requiring only
a little more algebra.

If we do not know the mean of the factor, ML will estimate it as the sample mean, again
setting the second term on the right hand side of (4) to zero, and leaving us with

ET (R
e
t ) = βλ+ET (εt) . (8)
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ML now estimates λ with a cross sectional regression. Σ/T is the covariance matrix of the
error term in (8), so we get a GLS cross-sectional regression,

λ̂don’t know = (β
0Σ−1β)−1β0Σ−1ET (Re)

We can find the sampling variation of λ̂don’t know with known betas using the standard
regression derivation. Substituting for ET (R

e) from (8),

λ̂don’t know = λ+ (β0Σ−1β)−1β0Σ−1 (β [ET (ft)−E(f)] +ET (εt)) .

Thus,

σ2(λ̂don’t know) =
1

T

h
σ2(f) + (β0Σ−1β)−1

i
(9)

a natural analogue to (5).

Once you decide to use this cross-sectional regression, neither the estimate or standard
error contain E(f). Therefore, they are unaffected by the assumption that you know the
mean of the factor. The GMM/SDF estimate is also a cross-sectional regression, which is
why it is unaffected by Kan and Zhou’s assumption that they know the mean of the factor.

If we do know the mean of the factor, ML will again use that knowledge rather than
estimate a known quantity, and will prescribe a different regression. Rewrite (4) as

ET (R
e
t )− β [ET (ft)−E(f)] = βλ+ET (εt) .

The cross-sectional regression will therefore be

λ̂know = (β
0Σ−1β)−1β0Σ−1 {ET (Re)− β [ET (ft)−E(f)]}

Again, we find the sampling variance of λ̂know by substituting for ET (R
e) from (4)

λ̂know = λ+ (β0Σ−1β)−1β0Σ−1ET (εt)

σ2
³
λ̂know

´
=
1

T
(β0Σ−1β)−1 (10)

a natural analogue to (6).

The ratio of the do and don’t variance is

σ2
³
λ̂know

´
σ2(λ̂don’t know)

=
(β0Σ−1β)−1

σ2(f) + (β0Σ−1β)−1
= 1−R2max,

a natural analogue to (7). R2max is the time-series regressionR
2 of the portfolio (β0Σ−1β)−1β0Σ−1Re.

This portfolio has maximum R2 in time-series regressions of all portfolios of the original
test assets Re. The 10 size portfolios very nearly span the value-weighted market return.
Hence, the maximum-R2 portfolio has an R2 very near one, and we expect σ2

³
λ̂know

´
<<

σ2(λ̂don’t know).

5



c) Corrections for estimated betas. Formulas (9) and (10) treat betas as fixed. Shanken
(1992) derives the correct asymptotic distribution of factor risk premia estimated from cross-
sectional regressions, including the fact that betas are estimated, and Campbell Lo and
MacKinlay (1997) and Cochrane (2001) present textbook treatments. The answer is

σ2(λ̂don’t know) =
1

T

"
(β0Σ1β)−1

Ã
1 +

λ2

σ2(f)

!
+ σ2(f)

#
. (11)

This differs from (9) by presence of the term λ2

σ2(f)
. In monthly data, this term is typically

small. For the CAPM, this term is the squared market Sharpe ratio, about 0.52/12 = 0.02.

The correct asymptotic distribution for λ̂ know is
1

σ2(λ̂know) =
1

T
(β0Σ−1β)−1

Ã
1 +

λ2

σ2(f)

!
.

Again you see the same small correction, and the crucial difference that σ2(f) is missing
from the σ2(λ̂know).

1To derive this expression, just follow any standard derivation of (11) with ET (R
e
t )− β [ET (ft)−E(f)]

in place of ET (R
e
t ). The algebra is straightforward, tedious, and available at

http://gsbwww.uchicago.edu/fac/john.cochrane/research/Papers/

6



4 References

Campbell, John Y., Andrew W. Lo and A. Craig MacKinlay 1997, The Econometrics of
Financial Markets Princeton NJ: Princeton University Press.

Cochrane, John H., 1996, “A Cross-Sectional Test of an Investment-Based Asset Pricing
Model” Journal of Political Economy 104, 572-621.

Cochrane, John H., 2001, Asset Pricing, Princeton NJ: Princeton University Press.

Jagannathan, Ravi, and Zhenyu Wang, 2001, “Empirical Evaluation of Asset Pricing Mod-
els: A Comparison of the SDF and Beta Methods” NBER Working Paper 8098.

Kan, Raymond and Guofu Zhou, 1999, “A Critique of Stochastic Discount Factor Method-
ology,” Journal of Finance LIV, 1221-1248.

Shanken, Jay, 1992, “On the Estimation of Beta-Pricing Models,” Review of Financial
Studies 5, 1-33

7


