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ABSTRACT

This paper studies the assignment of heterogeneous workers to heterogeneous jobs in the presence

of coordination frictions. Firms offer human-capital-contingent wages, workers observe these and apply

for a job. In a symmetric equilibrium, identical workers use identical mixed strategies in deciding where

to apply, and the randomness introduced by mixed strategies generates equilibrium unemployment and

vacancies. The equilibrium can be interpreted as the competitive equilibrium of a closely related model,

ensuring constrained efficiency. The model generates a rich interaction between the heterogeneous

workers and firms. Firms attract applications from multiple types of workers, and earn higher profits

when they hire a more productive worker. Identical workers apply for jobs with different productivity and

get higher wages when they land a more productive job. Despite this mismatch, I show that in some

special cases, the model generates assortative matching, with a positive correlation between matched

workers' and firms' productivity.
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1 Introduction

How does the labor market assign workers to jobs? Koopmans and Beckmann (1957) and

Shapley and Shubik (1972) first explored this question, proving that the core allocation

of an assignment game is equivalent to an appropriately defined competitive equilibrium.1

This model yields a number of very powerful predictions. Identical workers should earn the

same wage, even if they take different types of jobs. Identical firms should earn the same

profits, even if they hire different types of workers. If workers’ and firms’ characteristics are

complements in production, a more productive worker should always have a better job than

a less productive one (Becker 1973). Unemployment and vacant jobs cannot coexist. If there

is unemployment, only the least productive workers will be unemployed, while if there are

vacancies, only the least productive firms will fail to hire a worker.

These predictions are inconsistent with existing empirical evidence. For example, con-

sider a panel data regression of wages on an individual fixed effect, any time varying worker

characteristics, and on some measure of the quality of the worker’s job. The individual

fixed effect should soak up any observable or unobservable time-invariant individual char-

acteristics, and so the textbook assignment model predicts that the quality of the worker’s

job should not affect her wage. On the contrary, the data indicates that workers in bet-

ter quality jobs consistently earn higher wages (Krueger and Summers 1988, Gibbons and

Katz 1992, Abowd, Kramarz, and Margolis 1999). Similarly, firms’ profits appear to depend

on the quality of their employees. The other stark predictions fail as well. Although on

average more productive workers have better jobs than less productive ones, that is not true

on a case-by-case basis. Unemployment and vacancies coexist, high productivity workers are

sometimes unemployed, and high productivity jobs sometimes go unfilled.

This paper asks how large a departure one requires from the textbook assignment model

in order to explain these facts. The short answer is ‘not much’. I consider an economy

consisting of a continuum of risk-neutral workers, each characterized by one of N different

human capital levels, and a continuum of risk-neutral firms with heterogeneous levels of

physical capital described by an arbitrary distribution. Each firm has a single vacancy

to fill, and towards that end, firms simultaneously commit to wages that they will pay a

worker as a function of her human capital. Workers observe all the wage offers and each

simultaneously applies for one job. Firms that receive at least one application select one

1Sattinger (1993) and Roth and Sotomayor (1990) provide comprehensive reviews of the literature on
matching with transferable and non-transferable utility, respectively.
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worker, pay her the promised wage, and produce. Workers whose application is rejected are

unemployed and do not get paid, while jobs that fail to hire a worker remain vacant and do

not produce.

The core allocation is one equilibrium of this model. All firms offer workers the compet-

itive wage, and workers apply for different jobs, with the same assignment as in the core.

While it is consistent with the rules of the game, this equilibrium relies very heavily on

everybody knowing exactly what everyone else is doing. In particular, two workers with

the same human capital must know which of them is supposed to apply for which job. To

capture the notion that this level of coordination may be infeasible in a large economy, I

introduce a symmetry restriction on strategies: in equilibrium, identical workers must use

identical application strategies. If workers used pure strategies, a positive mass of workers

would apply for each of N different jobs, while every other job would go unfilled. This

cannot be an equilibrium, and so instead workers use mixed strategies in deciding where to

apply for a job. Workers’ independent mixing implies that some jobs attract more than one

applicant while other identical jobs attract none, generating equilibrium unemployment and

vacancies.

Montgomery (1991), Peters (1991), and Burdett, Shi, and Wright (2001) have explored a

similar environment, although all of these papers assume workers are homogeneous, thus pre-

cluding a study of the assignment issues that are central to this paper. I extend those earlier

works to an environment with heterogeneous workers and jobs and an arbitrary production

function. Section 4 focuses on how a single firm sets its wage schedule, taking as given the

actions of the other firms and the response of workers to changes in its wage schedule. I

show that the firm’s expected revenue is a concave function of the expected number of appli-

cations it receives from each type of worker, while its cost is linear in these variables. This

insight yields a useful alternative representation of the firm’s problem. The firm effectively

chooses the expected number of each type of applicant in order to maximize its expected

profits, setting the expected marginal product of an application equal to the marginal cost.

Using the solution to this alternative problem, I then back out the firm’s underlying wage

schedule. The firm offers a worker a wage equal to the output she produces in excess of the

expected output that the next best applicant would have produced. This ensures that the

firm earns higher profits when it hires a more productive worker, and so it always hires the

most productive applicant for the job.

Section 5 places the firm into an equilibrium environment. I show that there exists a

unique equilibrium that satisfies the symmetry restriction on workers’ strategies. Moreover,
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the equilibrium is constrained efficient: a social planner who wants to maximize output in

the economy but must satisfy the symmetry restriction would choose the same allocation as

the decentralized economy. This facilitates my interpretation of some of the results.

Although it is feasible for different types of workers always to apply for different jobs, this

does not happen in equilibrium. I prove that if there are at least two types of workers and the

distribution of firm characteristics has convex support, there is a positive measure of firms

that get applications from at least two types of workers. Firms gather applications from bad

workers as insurance against the event that no good workers apply for the job. Thus the

model generates equilibrium ‘mismatch’: there are workers with human capital h1 6= h2 and

jobs with physical capital k1 6= k2, and there is a positive probability that each type of firm

hires either type of worker. This makes it possible to ask whether a worker’s wage depends

only on her human capital, as in the textbook assignment model. On the contrary, I prove

that if human and physical capital are complements in production, wages are increasing in

physical capital after conditioning on human capital. This is offset by greater competition

for jobs with more physical capital, creating more unemployment risk and leaving workers

willing to apply for a range of different types of jobs. Similarly, a firm’s profit is increasing

in the human capital of its employee.

Section 6 analyzes an illustrative special case, the Cobb-Douglas production function, in

depth. A worker with human capital h is equally likely to apply for any job with physical

capital k above a threshold K(h), increasing in the worker’s human capital. This implies that

‘mismatch’ is widespread, with even the most productive firm hiring an arbitrarily unpro-

ductive worker with positive probability. Despite the mismatch, more productive workers on

average obtain more productive jobs. Similarly, on average more productive firms hire more

productive workers. Thus a weaker notion of assortative matching holds in this environment.

With this functional form, I also prove that more productive workers are unemployed less

frequently. Although firms hire more productive workers whenever possible, this result is

not immediate, since more productive workers also apply for better jobs on average. Fi-

nally, I perform two simple comparative statics exercises, showing that an increase in the

human capital distribution reduces the employment rate and expected income of a worker

conditional on her human capital, while an increase in the physical capital distribution has

the opposite effect. The tractability of the Cobb-Douglas case suggests the possibility of a

number of extensions to the model, for example to a dynamic framework, to an economy in

which workers can apply for multiple jobs within a period, or to an economy with endogenous

human and physical capital formation.
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Section 7 considers another special case, an economy with just two types of workers. I

prove that if the production function is log supermodular in human and physical capital, a

weaker version of positively assortative matching obtains. This generalizes the results from

the Cobb-Douglas case, since that production function is weakly log supermodular. Strictly

log supermodular production functions have stronger complementarity between human and

physical capital. I also prove that with an additively separable production function, which

is weakly supermodular but strictly log submodular, matching patterns are described by

a weak version of negative sorting. Unlike in a frictionless environment (Becker 1973),

supermodularity alone does not imply positively assortative matching.

Section 2 briefly describes the related literature. Section 3 lays out the model, Section 4

describes the solution to a single firm’s problem, and Section 5 imbeds the firm’s problem

in an equilibrium framework and derives a number of general results. Section 6 analyzes the

model with a Cobb-Douglas production function in detail, providing closed form solutions for

the equilibrium and showing that there is a weak version of positively assortative matching

in equilibrium. Section 7 examines assortative matching in an economy with two types of

workers. Section 8 concludes.

2 Related Literature

Montgomery (1991) and Peters (1991) explore the implications of symmetry restrictions

in wage or price posting games similar to the one analyzed here. Burdett, Shi, and Wright

(2001) refine these analyses, showing that the equilibrium of an economy with a finite number

of buyers and sellers converges to the equilibrium of an economy with infinitely many buyers

and sellers. They also extend the earlier papers by allowing firms to create more than one

vacancy, a possibility that I do not admit.

Three recent papers have extended the wage posting framework to environments with

heterogeneous workers and jobs. Coles and Eeckhout (2000) look at an economy with two

heterogeneous workers and two heterogeneous jobs, and with complements in production.

One of their main results is that the anonymity restriction has no bite in this environment.

There is a sense in which this finding is not very surprising, since anonymity only imposes

that identical workers must be treated identically, an empty restriction when there are no

identical workers. Still, the basic message of Coles and Eeckhout (2000) carries over to my

economy: there must be identical workers in order to generate coordination frictions and

mismatch. This raises an important question: do identical workers really exist? Even if
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no two workers are truly identical, it seems reasonable to assume that the millionth most

productive worker in the United States economy does not know that she is exactly the

millionth most productive worker, and similarly she does not know which is the millionth

most productive job. This informational problem will also hinder the coordination of workers’

application strategies, raising very similar issues to the ones in this paper.

Shi (2001a) looks at a similar economy to the one in this paper, but implicitly assumes

that before search begins, each firm must commit to hire a particular type of worker. Thus

firms cannot use applications from bad workers as insurance against not getting an applica-

tion from a good worker. Although it is still possible that identical firms choose to gather

applications from different types of workers, Shi proves that this does not happen in equi-

librium. My analysis gives firms the option of committing to hire only one type of worker,

for example by offering other types a zero wage, but I prove that in general they choose not

to exercise that option. Since in equilibrium firms attract applications from different types

of workers, my model generates endogenous mismatch, differential unemployment rates for

different workers applying for the same type of job, and a correlation between firm profits

and worker productivity after controlling for firm characteristics. None of those results make

sense in Shi’s equilibrium.

Shi (2001b) does not impose the commitment restriction, making the model fairly similar

to the one in this paper. The main technical difference between that paper and this one is

that Shi analyzes a model with two types of workers and firms and a Leontief production

function, while I consider an arbitrary number of worker types, a continuum of firms, and

a much broader class of production functions. Some of Shi’s results are similar to those

in this paper. For example, under some parameter restrictions, there is mismatch, with

less skilled workers applying for both types of jobs with positive probability. In addition,

Shi endogenizes firms’ entry decisions and considers a number of comparative statics results

related to skill-biased technical change that go beyond the scope of this paper. But, Shi does

not establish many of the Propositions in Section 5, even within his environment; he does

not provide the strong characterization of the equilibrium with a Cobb-Douglas production

function in Section 6, since he restricts attention to a Leontief technology; and likewise his

characterization of the equilibrium with two types of workers is a special case of my analysis

in Section 7.

This paper is also related to random search models with heterogeneous agents (Sattinger

1995, Lu and McAfee 1996, Burdett and Coles 1999, Shimer and Smith 2000). These papers

assume workers have no information about jobs and so must randomly look for them. There
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are several advantages to the present model over the random search framework. First,

in the random search framework, wage setting is determined outside the model, typically

through a Nash bargaining solution. Equilibrium matching patterns depend on the exact

specification of the bargaining game, for example the threat points while bargaining. There

is no theoretical reason to prefer one specification of the bargaining game over another.

Second, the random search framework assumes there is mismatch. With a continuum of job

productivity levels, it would take infinitely long for a worker to find a particular type of job,

and so necessarily optimizing agents must compromise on their matching pattern. That is

not the case in this paper. Indeed, with a Leontief production function, where output is the

minimum of the job’s physical capital and the worker’s human capital, and with identical

distributions of workers and jobs in the economy, a worker with human capital h applies

only for jobs with physical capital k = h, so there is no mismatch. With other production

functions, mismatch is a consequence of workers’ decision to look for a range of possible jobs,

something they could choose not to do.

Third, in the random search model, low productivity workers impose a congestion exter-

nality on the search process, making it harder for jobs to meet high productivity workers.

This generates inefficiencies in a decentralized search equilibrium (Shimer and Smith 2001a)

and may imply that limit cycles, in which some types of matches are repeatedly created and

then destroyed, are more efficient than steady state equilibria (Shimer and Smith 2001b). In

the assignment model with coordination frictions, jobs can (and do) choose not to hire bad

workers when good ones are available, eliminating the congestion externality. The decen-

tralized equilibrium is unique and efficient, and even in dynamic extensions to the model,

there is nothing to be gained by pursuing nonstationary policies. Finally, the random search

framework is not very tractable, while this paper demonstrates the possibility of performing

some simple cross-sectional comparisons and comparative statics in the assignment model

with coordination frictions. At a minimum, the assignment model with coordination frictions

provides a useful alternative representation of the job search process.

3 Model

3.1 Participants

There are two types of risk-neutral agents in the market, workers and firms. There is a

measure 1 of workers distinguished by N different human capital levels 0 ≤ h1 < · · · < hN ≤

6



h̄. Let ψn denote the measure of type hn workers in the economy. There is also a measure θ of

firms, each of which is trying to fill a single job. Firms’ physical capital k is distributed with

a generalized probability distribution Φ on a subset of [0, k̄]. Let j, distributed uniformly

on [0, θ], uniquely identify an individual firm and kj denote its physical capital level. Where

there is no ambiguity, I sometimes refer to h and k as the worker’s and firm’s productivity

or type.

3.2 Production

Workers and firms can match in pairs. Define f : [0, h̄] × [0, k̄] 7→ R+, the output that a

worker with h units of human capital and a job with k units of physical capital produce as a

function of their types, f(h, k). An unmatched agent produces nothing. More generally, one

can view f(h, k) as the output produced by a type h worker and type k firm in excess of what

they would get while single. For this reason, I assume throughout that f is nonnegative.

I also impose that it is increasing in each argument, and hence strictly positive for k > 0.

I sometimes focus on the case where it is strictly supermodular, that is, for all h < h′

and k < k′, f(h, k) + f(h′, k′) > f(h, k′) + f(h′, k), or weakly log supermodular, that is,

f(h, k)f(h′, k′) ≥ f(h, k′)f(h′, k). Finally, it will be notationally convenient to introduce a

dummy type h0 with f(h0, k) = 0 for all k; this represents what the job produces if it fails

to hire any worker.

3.3 Strategies and Equilibrium Concept

I represent the assignment problem as a three stage game. In the first stage, each firm j

commits to a wage that it will pay a worker if it hires her as a function of her human capital,

w(hn, j). In the second stage, each worker observes all the wage offers and applies for one

job, in general using a mixed strategy. In the third stage, firms that receive at least one

application hire the most profitable applicant, pay the promised wage, and produce.

In principle, the most productive applicant need not be the most profitable one, the

one with the largest difference between output f(hn, kj) and the promised wage w(hn, j).

I introduce a ranking function R to summarize how firm j chooses between competing

applicants, essentially a notion of strict preference. Thus R(hn, hm, j) = 1 indicates that firm

j always hires a type hn applicant in preference to a type hm applicant. As is standard with

strict preferences, I assume R is asymmetric, so R(hn, hm, j) = 1 implies R(hm, hn, j) = 0.

Conversely, I assume that if m 6= n, R(hn, hm, j) = 0 implies R(hm, hn, j) = 1. I also
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assume that R is transitive, so that if R(hn, hm, j) = R(hm, hl, j) = 1, R(hn, hl, j) = 1 as

well. Finally, R encompasses the notion that firms strictly prefer to hire more profitable

applicants, so that if f(hn, kj) − w(hn, j) > f(hm, kj) − w(hm, j), R(hn, hm, j) = 1. Note

that if hm and hn yield the same profit to firm j, I assume j still strictly ranks the applicants,

although any ranking is permissible. This affords a significant simplification of the notation

at little loss of generality. In particular, it is possible to prove that j would never be able to

increase its profits through some randomization strategy.

This game exhibits infinitely many equilibria, including the frictionless assignment.2 All

jobs offer all workers their wage in the competitive equilibrium, and each worker looks for

a different job, with the same assignment as in the decentralized equilibrium. This type

of equilibrium is unappealing, since it requires that identical workers know exactly how to

sort themselves across jobs. I preclude this possibility by focusing on symmetric subgame

perfect equilibria: firms’ wage offers and ranking rules depend only on the workers’ human

capital, and in every subgame, workers with the same level of human capital use the same

payoff-maximizing application strategies. Since the frictionless assignment requires that

identical workers apply for different jobs, it is ruled out by the symmetry restriction. There

is experimental evidence supporting the symmetry assumption in markets with a small finite

number of traders (Ochs 1990), and it seems even more plausible in large labor markets.

3.4 Coordination Friction

The restriction to symmetric equilibria introduces a coordination friction into the model

(Montgomery 1991, Peters 1991, Burdett, Shi, and Wright 2001). Suppose that x workers

each apply to a job with independent probability q/x. The job expects to get q applications,

and the probability it gets exactly z ∈ {0, 1, 2, . . . , x} applications is given by a binominal

distribution x!
(x−z)!z!

(
q
x

)z (
1− q

x

)x−z
. For large x, this is well-approximated by a Poisson

distribution, i.e. the probability the job gets exactly z ∈ {0, 1, 2, . . .} applications is qze−q

z!
.

Moreover, this result does not depend on the assumption that all the applicants apply for

the job with the same probability. This means that there are two ways for a job to be sure

to get an applicant: either infinitely many workers must apply for the job with positive

probability, so the expected number of applicants is infinite; or some type hn worker must

apply for the job with probability 1. But the symmetry restriction implies that if one type

hn worker applies for the job with probability 1, then so must all the others. Either way, the

2For details in a related model, see Burdett, Shi, and Wright (2001).
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expected number of applicants must be infinite, which is generally not optimal, since only

one applicant can get the job.

Let q(hn, j) denote the expected number of type hn workers applying to job j, hereafter

referred to as job j’s queue length. This will be a key variable in the analysis of equilibrium.

With a finite queue length q(hn, j), n = 1, . . . , N , a job with k units of physical capital is filled

by a type hn worker with probability e−
∑N

m=1 R(hm,hn,j)q(hm,j)(1−e−q(hn,j)), the product of the

probability that the firm does not receive an application from a higher ranked worker and the

probability that it receives at least one application from a type hn worker. Conversely, if a

type hn worker applies for job j, she is hired with probability e−
∑N

m=1 R(hm,hn,j)q(hm,j) 1−e−q(hn,j)

q(hn,j)
,

the ratio of the probability that the job hires a type hn worker and the expected number of

type hn applicants.3

4 A Single Firm’s Behavior

The first and lengthiest step in analyzing the equilibrium of this economy is a partial equi-

librium analysis of a single firm’s behavior. Firm j sets a wage w(hn, j) for each type of

worker hn, taking as given the wages set by the other firms. The promised wages determine

the queue of workers {q(hn, j)} through their application decisions. A firm that offers higher

wages will obtain longer queues, since workers will accept lower employment probabilities in

return. In what follows, I show that one can think of the firm choosing queues directly, and

then back out the implied choice of wages.

4.1 Profit Function

Firm j maximizes its expected profit, the product of the probability it hires a type hn

worker, e−
∑N

m=1 R(hm,hn,j)q(hm,j)
(
1 − e−q(hn,j)

)
, and the resulting revenue in the event it does

3More formally, the probability that exactly z other type hn workers and no better workers apply for
the job is e−

∑N
m=1 R(hm,hn,j)q(hm,j) q(hn,j)ze−q(hn,j)

z! , in which case the worker is hired with probability 1
z+1 .

Summing over z = 0, 1, . . . yields a hiring probability of

e−
∑N

m=1 R(hm,hn,j)q(hm,j)
∞∑

z=0

q(hn, j)ze−q(hn,j)

(z + 1)!
= e−

∑N
m=1 R(hm,hn,j)q(hm,j)

∑∞
z=1

q(hn,j)ze−q(hn,j)

z!

q(hn, j)

= e−
∑N

m=1 R(hm,hn,j)q(hm,j) 1− e−q(hn,j)

q(hn, j)
.
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so, f(hn, kj)− w(hn, j), summed across worker types:

N∑
n=1

e−
∑N

m=1 R(hm,hn,j)q(hm,j)
(
1− e−q(hn,j)

)
(f(hn, kj)− w(hn, j)). (1)

The firm sets wages recognizing that these will determine the expected queue of workers. To

understand the precise relationship between these variables, I turn to workers’ payoffs.

4.2 Utility Function

The expected utility of a type hn worker, v(hn), is equal to the highest utility she can get

by applying for some job j, the product of the promised wage w(hn, j) and the probability

she is hired conditional on applying for the job e−
∑N

m=1 R(hm,hn,j)q(hm,j) 1−e−q(hn,j)

q(hn,j)
. Optimizing

behavior by type hn workers implies that they only apply for job j, q(hn, j) > 0, if it offers

them the highest possible utility,

v(hn) = e−
∑N

m=1 R(hm,hn,j)q(hm,j) 1− e−q(hn,j)

q(hn, j)
w(hn, j).

If the right hand side is smaller than the left hand side, type hn workers would rather apply

for a different job, and so q(hn, j) = 0. If it is larger, q(hn, j) will increase until the expected

payoff of applying for the job is pushed down to v(hn). Thus worker optimization implies

q(hn, j)v(hn) = e−
∑N

m=1 R(hm,hn,j)q(hm,j)
(
1− e−q(hn,j)

)
w(hn, j) (2)

for all q(hn, j) ≥ 0. A single firm takes workers’ utility v(hn) as given, so it views equation (2)

for each n = 1, . . . , N as summarizing the wage-queue tradeoff.

4.3 Eliminate Wages

The firm maximizes profits (1) taking the wage-queue tradeoff (2) as given for each type

of worker hn. It is easiest to solve this problem by substituting the N constraints into the

objective function. The firm simply chooses nonnegative queue lengths q(hn, k) to maximize

N∑
n=1

(
e−

∑N
m=1 R(hm,hn,j)q(hm,j)

(
1− e−q(hn,j)

)
f(hn, kj)− q(hn, j)v(hn)

)
. (3)
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The first term in the sum is the probability that the firm hires a type hn worker to fill the

job times the resulting revenue, while the second term is the expected cost of attracting

an applicant queue of q(hn, k) type hn workers. Viewed this way, the job has a particular

production function translating expected applications into expected revenue, and the firm

faces a competitive market for applicants with v(hn) representing the linear cost of type hn

applications. This is very nearly a textbook profit maximization problem.

4.4 Ranking, Part I

The only odd feature of firm j’s profit function (3) is the ranking function R. Although this

must be consistent with hiring the most profitable applicant whenever a choice is available,

it will simplify the analysis if I temporarily ignore that constraint. Instead, at this point I

simply ask what ranking function maximizes profits as written in equation (3). It is easy to

confirm algebraically that revenue maximization dictates that firms always hire the most pro-

ductive applicant.4 Intuitively, the ranking function affects the expected revenue generated

by queue lengths {q(hn, j)}. Revenue maximization dictates making the most productive use

of a given pool of applicants by always hiring the most productive one. However, the rank-

ing function does not affect the expected cost of attaining those queues,
∑N

n=1 q(hn, j)v(hn),

since lower ranked workers must be compensated for a low hiring probability with higher

wages when they are hired. The expected cost of a type hn applicant is v(hn), regardless of

the hiring probability.

With this motivation, I will temporarily assume that firms hire the most productive

applicant, R(hm, hn, j) = 1 if and only if m > n. I return to this issue in Section 4.9,

confirming that optimizing firms set wages consistent with this ranking rule.

4Suppose there is an hn > hm with R(hn, hl, j) = R(hm, hl, j) for all l /∈ {n, m}, and R(hn, hm, j) = 0.
Switching to R(hn, hm, j) = 1 without changing anything else raises profits by

e−
∑

l/∈{m,n} R(hl,hn,j)q(hl,j)
(
1− e−q(hm,j)

)(
1− e−q(hn,j)

)
(f(hn, kj)− f(hm, kj)),

which is positive since f(hn, kj) > f(hm, kj). Thus consecutively ranked types must be ordered according
to productivity, and so by extension must everyone else.
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4.5 Existence of a Solution to the Firm’s Problem

With R(hm, hn, j) = 1 if and only if m > n, the profit function (3) simplifies to

π(q(h1, j), . . . , q(hN , j), kj) =
N∑

n=1

(
e−Q(hn,j)

(
1− e−q(hn,j)

)
f(hn, kj)− q(hn, j)v(hn)

)
(4)

where Q(hn, j) ≡
∑N

m=n+1 q(hm, j) =
∑N

m=1R(hm, hn, j)q(hm, j) is the expected queue of

more productive workers applying for the job. Assuming v(hn) > 0 for all n, Weierstrass’s

theorem ensures the existence of a solution to the firm’s problem. Obviously the firm must

choose q(hn, j) ≥ 0. If I also introduce an additional constraint q(hn, j) ≤ f(hn,kj)

v(hn)
for

all n, then the firm maximizes a continuous function on a compact set, and a solution

to the maximization problem exists. But this last artificial constraint is innocuous. The

terms m = n + 1, . . . , N in the profit function (4) are unaffected by q(hn, j), while terms

m = 1, . . . , n − 1 are decreasing in q(hn, j). Only term m = n is possibly increasing in

q(hn, j). It is equal to zero if q(hm, j) = 0, and is negative for all q(hn, j) ≥ f(hn,kj)

v(hn)
. A

profit maximizing choice of q(hn, j) cannot exceed this bound. The artificial constraint is

therefore not binding, and the existence result carries over to a firm that is allowed to choose

q(hn, j) larger than
f(hn,kj)

v(hn)
. On the other hand, if v(hn) ≤ 0, there is no solution to the firm’s

problem, since it would desire an arbitrarily long queue of these workers. In the remainder of

this section, I restrict attention to v(hn) > 0, and in Section 5 confirm that any equilibrium

has this property.

4.6 Uniqueness of the Solution to the Firm’s Problem

To prove uniqueness of the solution, I show that the firm’s profit function (4) is globally

concave in q. The first derivative with respect to q(hn, j) can be expressed as

∂π(q(h1, j), . . . , q(hN , j), kj)

∂q(hn, j)
=

n∑
l=1

e−Q(hl−1,j)
(
f(hl, kj)− f(hl−1, kj)

)
− v(hn), (5)

and so the second derivative with respect to q(hm, j) and q(hn, j) is

∂2π(q(h1, j), . . . , q(hN , j), kj)

∂q(hn, j)∂q(hm, j)
= −

min〈m,n〉∑
l=1

e−Q(hl−1,j)
(
f(hl, kj)− f(hl−1, kj)

)
.
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In particular, the Hessian matrix of the profit function can be expressed as the sum of N

symmetric N ×N matrices, where matrix l ∈ {1, . . . , N} has a zero entry in element {m,n}
if min〈m,n〉 < l and otherwise has an entry of −e−Q(hl−1,j)

(
f(hl, kj) − f(hl−1, kj)

)
< 0.

Pre- and post- multiplying each of these matrices by a non-zero vector (v1, . . . , vN) yields

a nonpositive number, and a strictly negative number for matrix 1. Summing across these

quadratic forms thus gives a negative number,

−
N∑

l=1

(
e−Q(hl−1,j)

(
f(hl, kj)− f(hl−1, kj)

) (∑N
z=l vz

)2
)
,

proving the Hessian is negative definite and the profit function is globally concave in q.

Uniqueness ensures that any two firms with the same level of physical capital will choose

the same queue lengths. With a slight abuse of notation, let q(hn, k) denote the expected

number of type hn applicants for any job with k units of physical capital, and Q(hn, k) denote

the expected queue of more productive applicants.

4.7 First Order Conditions

Since the firm’s profit maximization problem is globally concave, the standard first order

condition is therefore both necessary and sufficient for profit maximization. The condition

states that the derivative of the profit function with respect to q(hn, j), given in expres-

sion (5), must equal zero when q(hn, j) is in the interior of the constraint set, but can be

strictly negative at the boundary of the set:

v(hn) ≥
n∑

m=1

e−Q(hm−1,k)
(
f(hm, k)− f(hm−1, k)

)
(6)

and q(hn, k) ≥ 0 with complementary slackness.

A firm with k units of physical capital attracts applications from type hn workers up to

the point where the expected marginal cost of an application v(hn) is equal to the expected

marginal revenue generated by the application, given by the right hand side of the inequality.

If n = 1, condition (6) states that the marginal revenue is equal to the product of the

probability that the firm receives no applications, e−Q(h0,k), and the revenue produced by

a type h1 worker f(h1, k) (since f(h0, k) ≡ 0 by construction). More generally, marginal

revenue is determined by the increment in production compared to what the firm could have

13



produced by hiring a less productive applicant. For example, if n = 2, marginal revenue is

equal to the product of the probability the firm does not get an application from a type h2 or

better worker, e−Q(h1,k), times the output produced by a type h2 worker in excess of what a

type h1 worker would produce, f(h2, k)−f(h1, k); plus the probability that the firm does not

get any applications, e−Q(h0,k), times the output produced by a type h1 worker f(h1, k). Put

differently, expected marginal revenue is equal to the probability the firm hires the worker

times the output the worker produces if hired, minus the output that the firm can expect to

get from the next best applicant, whose quality and presence is a random variable.

4.8 Wages

I now step back and use the first order condition for the choice of queues to back out the

firm’s wage offers. When q(hn, k) > 0, substitute condition (6) into equation (2) to get

w(hn, k) =
q(hn, k)e

−q(hn,k)

1− e−q(hn,k)

n∑
m=1

e−(Q(hm−1,k)−Q(hn−1,k))
(
f(hm, k)− f(hm−1, k)

)
(7)

where with another slight abuse of notation, w(hn, k) denotes the wage offered to type hn

workers by any firm with k units of physical capital. If q(hn, k) = 0, a firm with k units of

physical capital can offer this wage without attracting applicants from type hn workers, but

the model does not pin down the wage uniquely. For example, a zero wage offer would do

the same trick.

The first term in the wage offer represents the probability that the job receives exactly

one type hn application conditional on receiving at least one such application, the ratio of the

probability of receiving exactly one type hn application, q(hn, k)e
−q(hn,k), to the probability

of receiving at least one type hn application, 1 − e−q(hn,k). If the job receives an identical

application, then the marginal product of the application from the type hn worker is zero.

Otherwise, the marginal product is the probability that the next best application is a type

hj < hn application, multiplied by the difference in productivity between those workers. This

is given by the sum in (7). In words, a worker gets a wage equal to the output she produces

in excess of the expected amount that the next best applicant would have produced. This

is exactly what the firm would pay to guarantee receiving an application from the worker,

reflecting the competitive nature of the decentralized equilibrium.5

5It is also equal to the expected wage that the worker would earn if the firm used a sealed-bid second-
price auction to sell the job to one of the applicants (Julien, Kennes, and King 2000, Shimer 1999). This
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The wage does not depend on the expected number of applications from, or the pro-

ductivity of, workers with more human capital. This is because a type hn worker is only

hired, and the wage w(hn, k) is only paid, when no worker hm, m > n, applies for the job.

In this event, those issues are immaterial. This highlights an interesting dichotomy in the

assignment model with coordination frictions: unemployment is determined by competition

from more productive workers, while wages are pinned down by expected competition from

less productive workers.

4.9 Ranking, Part II

I can now confirm that firms want to hire the most productive job applicant, f(hn, k) −
w(hn, k) > f(hm, k) − w(hm, k) whenever n > m. The intuition for this result is quite

simple: ex ante, a firm earns higher profits when it hires a more productive worker, and so

it would like to rank more productive workers ahead of less productive ones. By doing so,

workers anticipate that the firm will hire more productive workers more frequently, and so

such workers will still apply for the job at a relatively low wage. Ex post, the low wage

reaffirms the firm’s preference for hiring more productive workers.

Lemma 1. f(hn, k) − w(hn, k) > f(hm, k) − w(hm, k) whenever n > m and q(hn, k) and

q(hm, k) are positive, so firms always hire the most productive job applicant.

Proof. Take any hm > hb with q(hn, k) > 0, q(hm, k) > 0 and q(hz, k) = 0 for all hn <

hz < hm. q(hn,k)

1−e−q(hn,k) > 1, since this is the inverse of the probability that a type hn worker is

hired when she applies for a job with no more productive job applicants. Thus equation (7)

implies

w(hn, k) > e−q(hn,k)

n∑
l=1

e−(Q(hl−1,k)−Q(hn−1,k))
(
f(hl, k)− f(hl−1, k)

)
=

n∑
l=1

e−(Q(hl−1,k)−Q(hn,k))
(
f(hl, k)− f(hl−1, k)

)
Similarly, q(hm, k) > 0 implies q(hm,k)e−q(hm,k)

1−e−q(hm,k) < 1, since this is the probability that the job

receives no identical applications conditional on hiring a type hm worker. Thus equation (7)

suggests that existing results on the equivalence between auctions and ex ante wage commitments (e.g.
Kultti 1999, Julien, Kennes, and King 2001) should extend to environments with heterogeneous workers and
firms.
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implies

w(hm, k) <
m∑

l=1

e−(Q(hl−1,k)−Q(hm−1,k))
(
f(hl, k)− f(hl−1, k)

)
Subtracting the first inequality from the second gives

w(hm, k)− w(hn, k) <
m∑

l=n+1

e−(Q(hl−1,k)−Q(hm−1,k))
(
f(hl, k)− f(hl−1, k)

)
+
(
eQ(hm−1,k) − eQ(hn,k)

) n∑
l=1

e−Q(hl−1,k)
(
f(hl, k)− f(hl−1, k)

)
Further simplify this using the assumption that q(hz, k) = 0 for all hn < hz < hm, or

equivalently Q(hz, k) = Q(hn, k) for all hn ≤ hz < hm. All the exponents in the first sum

are zero, while the second line is zero since Q(hn, k) = Q(hm−1, k):

w(hm, k)− w(hn, k) <
m∑

l=n+1

(
f(hl, k)− f(hl−1, k)

)
= f(hm, k)− f(hn, k),

as desired. Extends this using transitivity to arbitrary positive q(hm, k) and q(hn, k).

4.10 Summary of a Single Firm’s Behavior

The following proposition summarizes these results:

Proposition 1. A firm with k units of physical capital takes the vector of worker’s utility

{v(hn)} as given and chooses the vector of queue lengths {q(hn, k)} ≥ 0 to maximize prof-

its (4). Queue lengths satisfy the complementary slackness condition (6) and are uniquely

defined if {v(hn)} is strictly positive. The firm obtains this queue by offering a wage sched-

ule (7). The firm always hires the most productive applicant for the job.

5 Equilibrium

Section 4 looked at a single firm’s profit maximization problem, taking the vector of worker’s

utility {v(hn)} as given. When the economy is in equilibrium, however, {v(hn)} is determined

endogenously. The notion of labor market equilibrium is standard. For any ‘prices’ {v(hn)},
calculate the demand for each type of labor by each type of firm, {q(hn, k)}, uniquely defined

by the complementary slackness condition (6). Sum across firms to get the total demand for
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type hn labor, θ
∫ k̄

0
q(hn, k)dΦ(k). The labor market is in equilibrium if the demand for each

type of labor is equal to the inelastic supply of that type of labor ψn:

ψn = θ

∫ k̄

0

q(hn, k)dΦ(k), (8)

where q(hn, k) is consistent with the first order condition (6).

5.1 Existence

The first step in establishing the existence of an equilibrium is proving that v(hi) is bounded

above zero. Fix any capital stock k > 0 with Φ(k) < 1. Then sum the resource constraint (8)

across the N types of workers to get

1 ≥ θ

∫ k̄

k

Q(h0, k)dΦ(k),

and so in particular there must be some k ∈ [k, k̄] with Q(h0, k) ≤ 1
θ(1−Φ(k))

. Also, condi-

tion (6) implies that for all hn,

v(hn) ≥ e−Q(h0,k)f(hn, k) ≥ e−1/θ(1−Φ(k))f(hn, k) ≡ v(hn),

where the second inequality uses Q(h0, k) ≤ 1
θ(1−Φ(k))

and f(hn, k) ≥ f(hn, k). This provides

a strictly positive lower bound on the equilibrium value v(hn). It is also possible to find an

upper bound on the equilibrium value of v(hn). If v(hn) ≥ f(hn, k̄), condition (6) implies

q(hn, k) = 0 for all k ∈ [0, k̄], inconsistent with equilibrium.

Next, for any positive value of the vector {v(hn)}, let {q(hn, k)} denote the profit maxi-

mizing queue lengths of each firm k, uniquely defined by Proposition 1. Using these, define

the excess demand for type hn workers by Xn ≡ θ
∫ k̄

0
q(hn, k)dΦ(k) − ψn. Now consider

the operator Tn that updates v(hn) to v(hn) + Xn, truncated at [v(hn), f(hn, k̄)]. That

is, if v(hn) + Xn > f(hn, k̄), the new value of v(hn) is f(hn, k̄). If v(hn) + Xn < v(hn),

the new value of v(hn) is v(hn). Otherwise the new value is v(hn) + Xn. Let T ≡
T1 × · · · × TN denote the associated composite mapping. T is continuous since {q(hn, k)}
is continuous in {v(hn)} by Berge’s (1963) Theorem of the Maximum. Moreover, T maps

[v(h1), f(h1, k̄)] × [v(hN), f(hN , k̄)] into itself by construction. Brouwer’s theorem therefore

ensures that the mapping has a fixed point.
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All that remains is to prove that a fixed point is an equilibrium price vector. First suppose

there is a fixed point with v(hn) = f(hn, k̄) for some hn. This implies q(hn, k) = 0 for all k,

so Xn = −ψn. The updating rule then yields a new value of v(hn) < f(hn, k̄), contradicting

the assumption that this is a fixed point. Alternatively, suppose there is a fixed point with

v(hn) = v(hn) for some hn. By construction, at this low value of v(hn), there must be excess

demand for some type of worker, say hm ≥ hn with Xm > 0. The only way that the updating

rule would not increase v(hm) is if it is already equal to f(hm, k̄), a possibility already ruled

out. This means that at any fixed point, v(hn) ∈ (v(hn), f(hn, k̄)) for all hn. Such interior

values are fixed points only if there is no excess demand, Xn = 0, completing the proof.

5.2 Uniqueness and Efficiency

Rather than prove uniqueness of the decentralized equilibrium directly, it is easier to analyze

a related centralized problem. Consider a hypothetical social planner who selects q(hn, k) ≥ 0

for all firms k given the resource constraint (8). Assume the social planner is constrained by

the same symmetry restriction as the decentralized economy, and so cannot direct identical

workers towards different firms. This policy then yields output

∫ k̄

0

N∑
n=1

(
e−Q(hn,k)(1− e−q(hn,k))f(hn, k)

)
dΦ(k). (9)

Express the planner’s output maximization problem as a Lagrangian with multiplier v(hn)
θ

on the resource constraint (8):

∫ k̄

0

N∑
n=1

(
e−Q(hn,k)(1− e−q(hn,k))f(hn, k) +

(
ψn

θ
− q(hn, k)

)
v(hn)

)
dΦ(k).

Although here v(hn) represents a shadow wage, a comparison with (4) establishes that the

social planner effectively maximizes the sum of firms’ profits with a given shadow wage

v(hn). The Kuhn-Tucker theorem then ensures that any decentralized equilibrium solves the

planner’s problem, maximizing output. Finally, the proof that the firm’s profit function is

concave in q carries over to the centralized problem as well. There is at most one solution

to the planner’s problem,6 hence a unique decentralized equilibrium. In summary:

6A technical caveat is in order here. The social planner can behave suboptimally on a set of measure zero
k without lowering output, yielding a trivial multiplicity of solutions to the planner’s problem. Nevertheless,
v(hn) is pinned down uniquely by the social planner’s problem.
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Proposition 2. There exists a unique decentralized equilibrium in this economy. The equi-

librium maximizes the value of output subject to the coordination friction.

This result contrasts sharply with results in random search models with heterogeneous agents.

Sattinger (1995) and Burdett and Coles (1997) establish the existence of multiple equilibria.

Shimer and Smith (2001a) show that none of the equilibria decentralize the social optimum,

with some agents too willing to accept matches and others too reluctant. Acemoglu (1996)

and Davis (2001) focus on another inefficiency: workers and firms generally underinvest in

human and physical capital in random search environments.

5.3 Mismatch

Workers can segregate themselves, for example with more productive workers always applying

for more productive jobs, but in equilibrium they choose not to do so. As long as there are

at least two types of workers, it is possible to find an interval of physical capital levels

that receive applications from both types of workers. If the physical capital distribution

has convex support, this interval will include a positive measure of firms. And within that

group of firms, in any realization of the mixed strategies, it is possible to find both a more

productive firm that hires a less productive worker and a more productive firm that hires a

more productive worker, relative to the two less productive firms. I refer to this phenomenon

as mismatch, since any physical capital to human capital matching pattern is possible.

Proposition 3. Assume N ≥ 2 and the support of the physical capital distribution is convex.

A positive measure of jobs receive applications from at least two types of workers, generating

mismatch.

Proof. First, suppose a type k job optimally receives no applications, q(h, k) = 0 for all h.

Condition (6) simplifies to v(hn) ≥ f(hn, k), so the cost of an application from a type hn

worker is higher than the amount she produces, even if she is hired with probability one

whenever she applies for the job. Monotonicity of f ensures that this must also be true

for all less productive jobs k′ < k. In other words, there is a threshold k < k̄ such that

workers only apply for jobs above the threshold, and all jobs above the threshold receive

some applications.

Next, if all jobs only received applications from one type of worker, it is possible to

partition the jobs k ≥ k into those jobs that receive applications from type hn workers,

n = 1, . . . , N . By definition, the partition consists of nonintersecting sets, each with positive
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measure and with union [k, k̄]. Not all of these sets can be closed, so there must be points

k ∈ (k, k̄) such that k is in one element of the partitions, say the set of jobs that receive

applications from type h workers, but is a limit point of another set. In other words, it

is possible to find a sequence {kz} converging to k, with q(h, kz) = 0, but q(h, k) > 0, so

q(h, ·) is discountinuous at k. However, Berge’s (1963) Theorem of the Maximum implies

q(h, ·) is continuous in k, since the profit maximization problem is continuous in k and has

exactly one solution. This is a contradiction, which implies that there are some jobs that

receive applications from two types of workers, q(hm, k) > 0 and q(hn, k) > 0 for m 6= n.

Continuity of q ensures these inequalities hold for nearby k. If the support of the physical

capital distribution is convex, this region must include a positive measure of jobs k.

This Proposition depends on the assumption that the production function is strictly

increasing.7 Consider the Leontief production function f(h, k) = min〈h, k〉. Assume that the

human capital and physical capital distributions are identical, although the firm-worker ratio

θ need not be equal to one. I claim that in equilibrium, queue lengths satisfy q(hn, hn) = θ−1

and q(hn, k) = 0 otherwise, while v(hn) = e−1/θhn. It is easy to verify that this satisfies

the resource constraint (8). Also, since Q(hn−1, k) = θ−1 if k ≥ hn and zero otherwise,

condition (6) reduces to e−1/θhn ≥ e−1/θ min〈hn, k〉 for k = h1, . . . hN . This is always satisfied,

and it holds as an equality for k ≥ hn, and in particular whenever q(hn, k) > 0. Now

consider the limit as the number of human capital levels goes to infinity, and the human and

physical capital distributions converge to any atomless limit Φ. The basic characterization

of equilibrium holds in this limiting economy as well, and in particular, no firm receives

applications from more than one type of worker.

5.4 Empirical Predictions

According to the textbook assignment model (Sattinger 1993), a worker’s wage should be

determined by her characteristics, not by her job. However, econometricians usually find

that in a regression of wages on a worker’s characteristics, much of the residual can be

explained through the characteristics of her job (Krueger and Summers 1988, Groshen 1991,

Gibbons and Katz 1992, Abowd, Kramarz, and Margolis 1999). One possible explanation is

unobserved worker heterogeneity (Murphy and Topel 1987). Since more productive workers

7If output were not strictly increasing, aggregate output would not be a strictly concave function of the
queues, and so the social optimum need not be uniquely defined. It follows that multiple equilibria can exist.
The Theorem of the Maximum still applies, but it only tells us that the set of profit maximizing queues is
upper hemicontinuous in k. This eliminates a crucial piece used in the proof of Proposition 3.
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get better jobs, the job reveals something about the worker’s productivity that is observable

to firms but unobservable to the econometrician. But that does not seem to be the whole

story. For example, Krueger and Summers (1988) and Gibbons and Katz (1992) find that

workers who move from a high to a low wage firm lose approximately the wage differential

between the two firms. Another explanation is that workers in some industries receive a

compensating differential. Again, this explanation appears to be incomplete, since Krueger

and Summers (1988) find that industry fixed effects have little explanatory power. Most

wage dispersion appears to be at the level of individual firms.

This paper provides a concise explanation that is consistent with this evidence. A single

type of worker typically opts to search over a range of different types of jobs. A worker who

earns a high wage relative to her characteristics opted to seek a high wage, high productivity

job, and was lucky enough to find one. The presence of firm effects in a wage regression is

thus a classic sample selection problem: the econometrician does not observe the workers

who seek but fail to find high wage jobs.

The key to this explanation is that more productive jobs pay higher wages. This is true if

the production function is supermodular: for all h2 > h1 and k2 > k1, f(h2, k2)+f(h1, k1) >

f(h2, k1)+f(h1, k2). Of course, supermodularity is also implicitly assumed in the unobserved

heterogeneity explanation, since this restriction ensures that more productive workers are

assigned to better jobs in a frictionless environment.

Proposition 4. Assume f is strictly supermodular. Then Q(h, k) is strictly increasing in

k whenever it is positive and w(h, k) is increasing in k whenever q(h, k) is positive. Thus

there is a positive correlation between a worker’s wage w(h, k) and the quality of her job k

after conditioning on worker characteristics h.

Proof. The bulk of the proof consists of showing that Q is increasing in k. Recall that

Q(hN , k) = 0 by construction. Now, to find a contradiction, suppose there exists an n < N

and a k < k′ with Q(hn, k) > 0 and Q(hn, k) ≥ Q(hn, k
′). Since Q(hn, k) > 0, it is possible

to find an n′ ≥ n+1 with Q(hn, k) = Q(hn′−1, k) > Q(hn′ , k), i.e. the least productive worker

who is more productive than hn and whom k attracts with positive probability. Since Q is

nonincreasing in h, Q(hn, k
′) ≥ Q(hn′−1, k

′), and so by transitivity, Q(hn′−1, k) ≥ Q(hn′−1, k
′)

as well.

Since k attracts hn′ but k′ does not necessarily do so, (6) binds in the first case but not
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necessarily in the second:

n′∑
m=1

e−Q(hm−1,k)
(
f(hm, k)− f(hm−1, k)

)
≥

n′∑
m=1

e−Q(hm−1,k′)
(
f(hm, k

′)− f(hm−1, k
′)
)

(10)

Strict supermodularity implies f(hm, k)−f(hm−1, k) < f(hm, k
′)−f(hm−1, k

′) for all m since

k < k′, and so (10) implies
∑n′

m=1 e
−Q(hm−1,k) >

∑n′

m=1 e
−Q(hm−1,k′). This precludes the pos-

sibility of Q(hm−1, k) ≥ Q(hm−1, k
′) for all m = 1, · · · , n′. Pick the largest n′′ ∈ {1, . . . , n′}

with Q(hn′′−1, k) < Q(hn′′−1, k
′). Since by construction Q(hn′−1, k) ≥ Q(hn′−1, k

′), in fact

n′′ ∈ {1, . . . , n′ − 1}. Note that if n′ = 1, there is no such n′′, finishing the proof.

Once again, monotonicity of Q ensures that Q(hn′′ , k) ≤ Q(hn′′−1, k), and since by con-

structionQ(hn′′ , k
′) ≤ Q(hn′′ , k), transitivity impliesQ(hn′′ , k

′) < Q(hn′′−1, k
′) ≡ Q(hn′′ , k

′)+

q(hn′′ , k
′), i.e. q(hn′′ , k

′) > 0, so k′ attracts applications from type hn′′ workers. Again appeal

to (6), now binding for k′ but not necessarily for k:

n′′∑
m=1

e−Q(hm−1,k)
(
f(hm, k)− f(hm−1, k)

)
≤

n′′∑
m=1

e−Q(hm−1,k′)
(
f(hm, k

′)− f(hm−1, k
′)
)

Now subtract this from (10), noting that n′′ < n′ to get

n′∑
m=n′′+1

e−Q(hm−1,k)
(
f(hm, k)− f(hm−1, k)

)
≥

n′∑
m=n′′+1

e−Q(hm−1,k′)
(
f(hm, k

′)− f(hm−1, k
′)
)

However, by construction Q(hm−1, k) ≥ Q(hm−1, k
′) and so e−Q(hm−1,k) ≤ e−Q(hm−1,k′) for m ∈

{n′′+1, . . . n′}, while supermodularity implies f(hm, k)−f(hm−1, k) < f(hm, k
′)−f(hm−1, k

′)

for these m as well. This clearly contradicts the final inequality, proving that Q(hn, k) is

increasing in k when it is positive.

To prove w(hn, k) is also increasing in k, recall that the probability hn is hired by k when

she applies for the job is

e−Q(hn,k) 1− e−q(hn,k)

q(hn, k)
=
e−Q(hn,k) − e−Q(hn−1,k)

Q(hn−1, k)−Q(hn, k)
,

where the second expression uses q(hn, k) = Q(hn−1, k)−Q(hn, k) to obtain a more convenient

expression. Simple differentiation shows that the hiring probability is decreasing both in

Q(hn, k) and in Q(hn−1, k), and thus decreasing in k. Since hn is less likely to get hired
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in jobs with higher k, equation (2) implies that she must be compensated with a higher

wage.

An additional implication of Proposition 4 is that more productive firms attract more

applicants, Q(h0, k) is increasing in k. This is consistent with the observation by Holzer,

Katz, and Krueger (1991) that high wage firms attract significantly more applicants.

It is not necessarily true that more productive workers get higher wages at a given job,

w(h, k) need not be increasing in h. A slightly less productive worker may be much less likely

to be hired, in which case firms may compensate her with a much higher wage. In Section 6, I

construct an example in which wages depend on physical capital k but not on human capital

h. By perturbing the example, one can therefore get either correlation between wages and

human capital after conditioning on physical capital.

A related implication of the model is that after conditioning on firm characteristics,

establishments that hire workers with better observable characteristics should earn higher

profits. This follows trivially from Lemma 1, and requires only monotonicity of the produc-

tion function. I restate the result for expositional purposes:

Proposition 5. f(h, k)−w(h, k) is increasing in h whenever q(h, k) is positive. Thus there

is a positive correlation between a firm’s profit f(h, k)−w(h, k) and the quality of its employee

h after conditioning on firm characteristics k.

The correlation between a firm’s profit f(h, k)−w(h, k) and the quality of its worker h after

conditioning on firm’s characteristic k reflects that some firms potentially get applications

from multiple types of workers, and that some of these firms are luckier than others, hiring

workers with more human capital and earning higher profits. There is less evidence in sup-

port of this Proposition, since an empirical investigation must utilize a matched worker-firm

data set to measure both firm profits and worker characteristics. To my knowledge, the only

direct test of this hypothesis is contained in recent work by Abowd, Kramarz, and Margo-

lis (1999) using French data. Table X on page 298 shows that a firm’s profits, measured

as the ratio of operating income divided by capital stock, is increasing in its workers’ ob-

servable characteristics (‘Average Predicted Effect of x Variables (xβ)’). Moreover, Abowd,

Kramarz, and Margolis follow workers over time, and so include individual fixed effects in

their regression to control for unobserved heterogeneity. They find that workers’ unobserved

characteristics have a small and statistically insignificant effect on firm profits. An impor-

tant caveats in interpreting these results is that my model does not capture the institutional
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structure of the French labor market, e.g. high minimum wage levels and centralized bar-

gaining. Nonetheless, existing empirical evidence on the correlation between firm profits and

worker characteristics is consistent with the model.

A random search model with heterogeneous agents also delivers within group wage and

profit inequality, since some agents are luckier than others. However, neither Proposition 4

nor Proposition 5 holds in such a model, at least if wages are determined by Nash bargaining.

Shimer and Smith (2000) show that with a Constant Elasticity of Substitution production

function with elasticity of substitution less than or equal to 1, the surplus that a worker

gets is a continuous single-peaked function of the characteristics of the job, increasing in k

at low values but typically obtaining an interior maximum and then decreasing for higher

values of k. Thus there is no reason to expect any particular correlation between wages and

physical capital after conditioning on human capital. The same is true for firms: profits are

decreasing in the worker’s human capital for high values of h because the negotiated wage

is very high, and so there is no obvious correlation between profits and human capital after

conditioning on physical capital. Any empirical evidence in support of these Propositions

favors the assignment model with search frictions in preference to the random search model.

6 Cobb-Douglas Production Function

In this section, I analyze a special case in considerable detail, providing closed-form solutions

that help to make the analysis more concrete. I assume that the production function is Cobb-

Douglas, f(h, k) = Ahαkβ, with positive parameters A, α, and β, and that the distribution

of physical capital is Φ(k) = kγ on [0, 1] for some γ > 0. Imposing restrictions on α+ β, e.g.

constant returns to scale, is unnecessary.

6.1 Equilibrium

Begin by defining K(h) as the solution to

K(h)γ − logK(h)γ ≡ 1 +
γ

βθ
(1−Ψ(h)), (11)

0 < K(h) < 1, where Ψ(hn) ≡
∑n−1

m=1 ψm denotes the fraction of the labor force with lower

productivity than hn, a cumulative distribution function. K(h) is increasing in Ψ(h), and

so this forms an increasing sequence of numbers, 0 < K(h1) < · · ·K(hN) < 1. Then I claim

24



that in equilibrium, type hn workers have value v(hn) = A
∑n

m=1

(
hα

m − hα
m−1

)
K(hm)β, and

queue lengths are given by

q(hn, k) =


0

β log k
K(hn)

β log K(hn+1)
K(hn)

if

k ∈ [0, K(hn)]

k ∈ (K(hn), K(hn+1)]

k ∈ (K(hn+1), 1]

,

so Q(hn−1, k) = β log k
K(hn)

for k ∈ [K(hn), 1] and zero otherwise. In other words, type hn

workers apply for all jobs above the threshold K(hn). They are equally likely to apply for all

jobs above the next threshold K(hn+1), and somewhat less likely to apply for jobs between

K(hn) and K(hn+1).

It is easy to verify that the resource constraint (8) is satisfied with these queue lengths

by substitution:

ψn = βθ

(∫ K(hn+1)

K(hn)

log

(
k

K(hn)

)
γkγ−1dk +

(
1−K(hn+1)

γ
)
log

K(hn+1)

K(hn)

)
=
βθ

γ

(
K(hn)γ − logK(hn)γ −K(hn+1)

γ + logK(hn+1)
γ
)

= Ψ(hn+1)−Ψ(hn)

where the third expression is derived from the second by integration and the fourth from

the third by substituting for K(hn)γ − logK(hn)γ and K(hn+1)
γ − logK(hn+1)

γ using the

definition (11). Condition (6) can also be verified by substitution:

A
n∑

m=1

(
hα

m − hα
m−1

)
K(hm)β ≥ A

n∑
m=1

(
hα

m − hα
m−1

)
min

〈
K(hm), k

〉β
which holds as an equality if and only if k ≥ K(hn). This confirms that the prescribed queue

and worker’s value form an equilibrium, and Proposition 2 ensures uniqueness.

Curiously, workers’ application decisions depend only on their percentile in the human

capital distribution, not on the level of their human capital. It makes sense that doubling

each worker’s human capital should not affect application decisions, since that simply raises

output by a factor of 2α, but it is more surprising that nonlinear convolutions of the human

capital distribution also do not affect applications.

No worker applies for a job below the least productive worker h1’s threshold K(h1) > 0,

the solution to K(h1)
γ − logK(h1)

γ ≡ 1 + γ
βθ

. This means that for any distribution of

human capital, a positive measure of jobs with physical capital 0 < k < K(h1) never get
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any applications. These jobs do not congest the labor market, and the equilibrium would

be unchanged if they did not exist. Nonetheless, their presence is interesting. The jobs

remain vacant with probability one, yet they coexist with unemployment. Any worker could

guarantee herself a job by applying to one of them, but in equilibrium this is not worthwhile.

The worker would rather risk unemployment to get a higher wage at a higher productivity job.

The existence of this fringe of available vacancies suggests a formal definition of voluntary

unemployment as workers who can get jobs with probability one but choose to enter lengthy

job queues instead. Of course, voluntary unemployment, like all unemployment in this model,

is efficient in the sense that it maximizes aggregate output.

6.2 Continuous-Type Limit

It is easier to characterize the equilibrium if there is a large number of worker types, approx-

imated through a continuous density. Let Ψ(h) denote an atomless cumulative distribution

function, and define K(h) as in (11). Take an arbitrary sequence of models with a discrete

worker distribution converging to the atomless distribution Ψ(h). Then it is readily veri-

fied that in the continuous-type limit, the density of type h applications to type k firms,

q̃(h, k) ≡ −∂Q(h,k)
∂h

, satisfies

q̃(h, k) =

{
0

βK′(h)
K(h)

if
k ∈ [0, K(h))

k ∈ [K(h), 1]
. (12)

Also, Q(h, k) = β log k
K(h)

if k > K(h) and Q(h, k) = 0 otherwise. Thus type h workers are

equally likely to apply for any job above their threshold K(h), using a uniform distribution

in deciding where to apply.

In the limiting economy, the expected income of a type h worker converges to

v(h) = Aα

∫ h

h

iα−1K(i)βdi+ Ahα−1K(h)β

where h is the lower bound on the human capital distribution. In particular, v′(h) =

Aαhα−1K(h)β, a standard pricing equation in frictionless assignment models (Sattinger

1993), setting the marginal cost of a type h worker equal to the marginal product of the

worker in a job with physical capital K(h). In a standard frictionless assignment model,

K(h) would be the one type of job that h is assigned to in equilibrium. With coordination

frictions, it is the worst type of job that h applies for, or equivalently the job that she is sure
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to get.

The wage equation (7) also simplifies in the limiting economy, since there is no chance

that a firm receives multiple applications from the same type of worker. Any firm with

k ≥ K(h) units of physical capital offers worker h a wage

w(h, k) = A

(
k

K(h)

)β (
α

∫ h

h

iα−1K(i)βdi+ hαK(h)β

)
. (13)

Because the characterization of the limiting economy is somewhat simpler than the charac-

terization of the economy with a discrete number of worker types, in what follows I focus on

the limiting economy. All the results also carry over to the discrete-type economy.

6.3 Wages and Human Capital

Proposition 4 proves that a worker’s wage is increasing in the physical capital of her job as

long as the production function is supermodular. It need not be the case, however, that a

firm’s wage offer is increasing in the human capital of its worker, as the following example

illustrates: f(h, k) = Ahk; φ(k) = 1 on [0, 1] (so α = β = γ = 1); Ψ(h) = 1 + e(h− 1)− eh−1

on [1, 2]; and θ = e. Then (11) implies K(h) = eh−2 ∈ [e−1, 1], while substituting into

equation (12) implies q̃(h, k) = 1 if k > K(h) and is zero otherwise. Substituting these results

into equation (13) yields a simple formula for firms’ wage offers, w(h, k) = Ak, independent

of the worker’s human capital. By perturbing the example, it is easy to construct examples

in which the wage is either increasing or decreasing in h.

This example provides one possible explanation for why many firms’ wage offers are

not very sensitive to the human capital of their employees. High productivity applicants

are compensated primarily through an increased hiring probability rather than through the

wage. Of course, the example is not generic, and so one would be very surprised if the optimal

wage offer were completely independent of human capital. But the example illustrates that

even in generic environments, firms may not lose much by offering a single wage. It is easy to

imagine the lost profits being made up by not having to verify the worker’s human capital.

6.4 Employment Rates

More productive workers are employed more often. The finding might not seem surprising,

since they are at the front of job queues, but there is an effect working in the opposite

direction. Less productive workers apply for some jobs that more productive ones pass over.
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To prove this result, I calculate the employment rate directly. A type h worker is equally

likely to apply for any job above her threshold k > K(h), facing an employment rate of

e−Q(h,k) = (K(h)/k)β in such a job. This implies that on average she is employed with

probability emp(h), given by

emp(h) =

∫ 1

K(h)
(K(h)/k)βγkγ−1dk

1−K(h)γ
=

γ(K(h)β −K(h)γ)

(γ − β)(1−K(h)γ)

or −K(h)β log K(h)β

1−K(h)
if γ = β. This is increasing in K(h), hence increasing in h. For the

highest type, K(h) = emp(h) = 1, so she is always employed. Such a worker never finds

herself behind another on a job queue. On the other hand, the unemployment rate of the

least productive worker may be very high. In the example from the previous section with

α = β = γ = 1, Ψ(h) = 1 + e(h − 1) − eh−1 on [1, 2], and θ = e, emp(h) = 2−h
e2−h−1

, so

emp(0) ≈ 0.58. That is, the least productive worker is unemployed approximately 42%

of the time.8 By applying for a job at or below her threshold K(0) = e−1, she would be

guaranteed employment, and would be able to produce a positive amount of output.

6.5 Weak Assortative Matching

Consider an econometrician who has access to a data set containing a matched sample of

workers and jobs. An observation consists of the human capital of an employed worker h,

drawn randomly from the employed population, and the physical capital of her job k. Ac-

cording to the frictionless assignment model, if the production function is supermodular, the

nth most productive worker in the data set should be employed in the nth most productive

job. In other words, the rank correlation coefficient should be equal to one. This result does

not generalize to the assignment model with coordination frictions since there is mismatch.

Nevertheless, I show in this section that with a Cobb-Douglas matching function, more pro-

ductive workers generally obtain more productive jobs and more productive firms generally

hire more productive workers. In particular,the rank correlation coefficient is positive, a

notion that I call ‘weak assortative matching’.

A type h worker is equally likely to apply for any job above her threshold K(h), but,

conditional on applying for it, she obtains a type k ≥ K(h) job with probability e−Q(h,k) =

(K(h)/k)β, decreasing in k. This means that the physical capital of worker h’s employer

8Since this is a one-shot game, unemployment rates are very high. With additional employment oppor-
tunities in future periods, the rates would naturally come down.

28



is a random variable with cumulative distribution kγ−β−K(h)γ−β

1−K(h)γ−β for k > K(h), and limit

1 − log k
log K(h)

when γ = β. The distribution of jobs for more productive workers first order

stochastically dominates the distribution for less productive workers.

A similar argument establishes that the distribution of worker characteristics at a firm

with k units of physical capital and an employee is a random variable with distribution
K(h)β−K(0)β

kβ−K(0)β . This is decreasing in k, so more productive firms hire more productive workers

in the sense of first order stochastic dominance.

In principle, it is possible to test for first order stochastic dominance using nonparameteric

techniques in a sufficiently large data set. In practice, however, the data demands may be

unrealistic. Thus it is useful to understand some weaker and more easily testable implications

of the assignment model with coordination frictions. First order stochastic dominance implies

that the observed mean level of physical capital conditional on a worker’s human capital,

E(k|h), should be increasing in the worker’s human capital. Likewise, the expected rank

order of the job’s physical capital within the data set of filled jobs, Φ̃(k), should be increasing

in the rank order of the worker’s human capital, Ψ̃(h). Conversely, E(h|k) and E(Ψ̃(h)|Φ̃(k))

should be increasing in k and Φ̃(k), respectively.

A much weaker prediction is that the correlation and the rank correlation between

matched human and physical capital should be positive. To see this, consider the following

string of equalities:

cov(h, k) = E
(
(h− E(h))(k − E(k))

)
= E

(
(h− E(h))(E(k|h)− E(k))

)
= E

(
(h− h0)(E(k|h)− E(k))

)
> 0

where h0 is defined by E(k|h0) ≡ E(k). The first equality uses the definition of covariance,

the second uses the law of iterated expectations, E(hE(k|h)) = E(hk), and the third uses

the fact that both E(h) and h0 are numbers, and so the product of either constant with

E(E(k|h)−E(k)) is zero. The inequality then follows immediately from the definition of h0

and the assumed monotonicity of E(k|h). For h > h0, E(k|h) > E(k), and so the product

inside the inequality is positive. It is also positive for h < h0, since then E(k|h) < E(k).

Finally, correlation and covariance always share the same sign, since their ratio is the product

of the standard deviations of h and k. A similar proof works for rank correlations.

Finally, but more hypothetically, suppose an econometrician had access to a data set

consisting of an unemployed worker’s human capital and the physical capital of a job that

she applies for. The model also yields first order stochastic dominance relationships for this
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type of data. More productive workers apply for more productive jobs, and more productive

firms get applications from more productive workers. Hence weak assortative matching

carries over to such a data set.

6.6 Comparative Statics

The model is sufficiently tractable so as to be amenable to comparative statics. Consider an

increase in workers’ human capital, represented by an decrease in Ψ(h) for all h. This reduces

the threshold K(h) for all h, so a worker whose human capital is unchanged applies for less

productive jobs on average, is unemployed more frequently, and earns a lower expected

income v(h).

Of course, the increase in skills is likely to induce a shift in firm’s physical capital in the

long run, and so it is natural to also consider the effect of an increase in γ.9 This raises

K(h) for all h, so workers seek jobs with more physical capital, as one might expect. Since

the expected income of a type h worker is K(h), it follows that expected income rises as

well. Finally, K(h)γ, the percentile of a type h worker’s minimally acceptable job, falls. This

means there is less competition for the top jobs, reducing the unemployment rate. In other

words, the endogenous response of the physical capital distribution to an increase in workers’

human capital is likely to offset much of the effects discussed in the previous paragraph

7 Two Types of Workers

This section focuses on generalizing the assortative matching results to other production

functions. Unfortunately, I am unable to provide a useful characterization of matching pat-

terns with arbitrary production functions and an arbitrary number of worker types. I instead

assume that there are only two types of workers, N = 2. I show that whether matching is

assortative depends on whether the production function f(h, k) is log supermodular.10

9Studying the equilibrium response of firms’ investment to shifts in the human capital distribution goes
beyond the scope of this model. See Shi (2001b) for a related model with endogenous physical capital choice.

10Together with the standard assumptions that f is nonnegative and increasing, log supermodularity
implies supermodularity. For example, within the class of Constant Elasticity of Substitution production
functions, log supermodularity imposes that the elasticity of substitution between human and physical capital
is less than unity, its value in the Cobb-Douglas case.
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7.1 Log-Supermodular Production Function

Assume that the production function is log supermodular. Rather than providing a closed

form solution, I focus on how equilibrium queue lengths depend on the endogenous price of

applications v(h1) and v(h2). My analysis imposes only a very weak equilibrium condition

on the model, that some type of firm k must be willing to hire type h1 workers. Define three

physical capital levels ka by v(h1) ≡ f(h1, k
a); kb by v(h2) − v(h1) ≡ f(h2, k

b) − f(h1, k
b);

and kc by v(h2)
v(h1)

≡ f(h2,kc)
f(h1,kc)

. Note that the right hand side of each definition is increasing in

k since f is monotonic, supermodular, and log supermodular. Thus there is at most one

solution to each equation. For now assume that a solution exists to each equation. Then I

claim that in equilibrium ka < kb < kc, and queue lengths are given by

q(h1, k) =



0

log f(h1, k)− log v(h1)

log
f(h1, k)

f(h2, k)− f(h1, k)
− log

v(h1)

v(h2)− v(h1)

0

if

k ≤ ka

k ∈ (ka, kb]

k ∈ (kb, kc)

k ≥ kc

(14)

and

q(h2, k) =


0 k ≤ kb

log(f(h2, k)− f(h1, k))− log(v(h2)− v(h1)) if k ∈ (kb, kc]

log f(h2, k)− log v(h2) k > kc

(15)

I prove this result in steps. First, observe that ka R kb ⇐⇒ kb R kc: ka > kb implies

v(h1) > f(h1, k
b) since f is increasing. Divide v(h2) − v(h1) = f(h2, k

b) − f(h1, k
b) by this

inequality to get v(h2)
v(h1)

< f(h2,kb)
f(h1,kb)

. Log supermodularity of f implies f(h2,k)
f(h1,k)

is increasing in k,

and hence that kb > kc. The proofs with ka = kb and ka < kb are identical.

I next prove that ka < kb < kc in any equilibrium. There must be some k with q(h1, k) >

0. If also q(h2, k) > 0, (6) implies

v(h1) = e−(q(h1,k)+q(h2,k))f(h1, k) and v(h2) = e−q(h2,k)(f(h2, k)− f(h1, k)) + v(h1).

Since e−q(h1,k) < 1, the first equality implies v(h1) < e−q(h2,k)f(h1, k). Use the second

equality to reduce this to v(h2)
v(h1)

> f(h2,k)
f(h1,k)

or k < kc. Also, since e−q(h2,k) < 1, the second

equality implies v(h2) − v(h1) < f(h2, k) − f(h1, k) or k > kb. That is, if q(h1, k) > 0 and
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q(h2, k) > 0, ka < kb < k < kc. Alternatively, if q(h2, k) = 0, (6) implies

v(h1) = e−q(h1,k)f(h1, k) and v(h2) ≥ f(h2, k)− f(h1, k) + v(h1).

Since e−q(h1,k) < 1, the equality implies v(h1) < f(h1, k) or k > ka. The inequality directly

implies k ≤ kb. That is, if q(h1, k) > 0 and q(h2, k) = 0, ka < k ≤ kb < kc. Either way,

ka < kb < kc.

Next consider what happens if q(h1, k) = 0. If q(h2, k) > 0, (6) implies

v(h1) ≥ e−q(h2,k)f(h1, k) and v(h2) = e−q(h2,k)f(h2, k).

Substituting the equality into the inequality yields v(h2)
v(h1)

≤ f(h2,k)
f(h1,k)

, so k ≥ kc in this case. On

the other hand, if q(h2, k) = 0, (6) implies

v(h1) ≥ f(h1, k) and v(h2) ≥ f(h2, k).

The first inequality implies k ≤ ka.

Finally, I can use these same results to solve explicitly for q(h1, k) and q(h2, k). For

example, suppose q(h1, k) > 0 and q(h2, k) = 0 so ka < k ≤ kb. Then solve v(h1) =

e−q(h1,k)f(h1, k) for q(h1, k) to get the expression in the statement of the proof. The other

cases are identical.

If one or more of the points ka, kb, or kc is not defined, the appropriate region of the

parameter space disappears. Consider the Constant Elasticity of Substitution production

function f(h, k) =
(
αhρ + (1− α)kρ

)1/ρ
with elasticity of substitution 1

1−ρ
less than one, or

equivalently ρ < 0. For all k ≥ 0 and h1 < h2, it is easy to show that f(h2,k)
f(h1,k)

< h2

h1
. This means

that if v(h2)
v(h1)

> h2

h1
, there is no value of k such that q(h2, k) > 0 and q(h1, k) = 0. Effectively,

kc = ∞, so q(h1, k) > 0 for all k > ka. The same result carries over to the Cobb-Douglas

case, and so in fact the analysis in this section requires only weak log supermodularity of

the production function.11

Using the expressions for q(h1, k) and q(h2, k) in equations (14) and (15), it is easy

to prove that assortative matching carries over to this environment, with more productive

11There are also values of v(hi) such that v(h2)− v(h1) > f(h2, k)− f(h1, k) for all k, since the latter is
bound above by α1/ρ(h2 − h1). This would appear to imply kb = ∞ as well, but that is not quite correct.
For a type k firm to hire a type h2 worker, it must be the case that v(h2)− v(h1) < f(h2, k)− f(h1, k), and
so a global failure of this inequality is inconsistent with any firm hiring a type h2 worker, hence inconsistent
with equilibrium.
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workers generally obtaining more productive jobs. The distributions of a type h1 and a type

h2 worker’s job is ∫ k

0
e−q(h2,l)

(
1− e−q(h1,l)

)
dΦ(l)∫ k̄

0
e−q(h2,l)

(
1− e−q(h1,l)

)
dΦ(l)

≥
∫ k

0

(
1− e−q(h2,l)

)
dΦ(l)∫ k̄

0

(
1− e−q(h2,l)

)
dΦ(l)

,

respectively. The numerator on the left hand side integrates the probability that a type

l firm hires a type h1 worker, e−q(h2,l)
(
1 − e−q(h1,l)

)
, multiplied by the density of type l

firms, over all firm types below k. This is converted to a distribution by an appropriate

denominator. The right hand side performs a similar calculation for the type h2 firms. To

see why the inequality holds, observe that the integrand in the numerator of the left hand

side is increasing for l ∈ (ka, kb), since q(h1, l) is increasing and q(h2, l) = 0; it is decreasing

for l ∈ (kb, kc), since q(h1, l) is decreasing and q(h2, l) is increasing; and otherwise it is equal

to zero. The integrand in the numerator of the right hand side is increasing for l > kb and

is otherwise equal to zero. This yields a single crossing property of the densities, which in

turn ensures first order stochastic dominance of the distributions. Similarly, more productive

firms are relatively more likely to hire a type h2 worker than a type h1 worker.

7.2 Additively Separable Production Function

The assumption that the production function is log supermodular is crucial to this assor-

tative matching result. Suppose f(h, k) = αh + βk, the limit of Constant Elasticity of

Substitution production functions as the elasticity of substitution goes to infinity, and a log

submodular production function. The characterization of equilibrium qualitatively changes.

Define physical capital levels ka by v(h2) ≡ αh2 + βka and kb by v(h2)
v(h1)

≡ αh2+βkb

αh1+βkb . Then in

equilibrium,

q(h1, k) =

 0

log
αh1 + βk

α(h2 − h1)
− log

v(h1)

v(h2)− v(h1)

if
k ≤ kb

k > kb

and

q(h2, k) =


0 k ≤ ka

log(αh2 + βk)− log v(h2) if k ∈ (ka, kb]

log(α(h2 − h1))− log(v(h2)− v(h1)) k > kb
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Curiously, there is no region of the parameter space with q(h1, k) > 0 and q(h2, k) = 0. To

see why, note first that Proposition 3 ensures that there must be mismatch, some k with

both q(h1, k) > 0 and q(h2, k) > 0. For such a k, condition (6) implies v(h2) − v(h1) =

e−q(h2,k)α(h2 − h1). This provides a restriction

v(h2)− v(h1) < α(h2 − h1) (16)

that is independent of k, and so must be satisfied in any equilibrium. But now note that if

ever q(h1, k) > 0 and q(h2, k) = 0, (6) implies v(h2)−v(h1) ≥ α(h2−h1), which is impossible.

The restriction (16) also implies that kb > ka. Otherwise, if kb ≤ ka, v(h2)
v(h1)

≥ αh2+βka

αh1+βka ,

since the right hand side is decreasing in k. Combining this with v(h2) ≡ αh2 + βka yields

v(h2)−v(h1) ≥ α(h2−h1), a contradiction. The remainder of the proof follows the structure

of the argument for the log supermodular case, and so is omitted.

Low productivity workers only apply to high productivity firms, k > k̄, and with queue

lengths increasing in the firms’ productivity. High productivity workers also apply for lower

productivity firms, with an increasing queue length for k ∈ (k, k̄), and thereafter a constant

queue length. This reverses the structure of applications in the log supermodular case. On

average, more productive firms hire less productive workers, negatively assortative matching.

The intuition for this result follows from thinking about the output-maximizing assign-

ment of workers to jobs, which is the same as the equilibrium assignment (Proposition 2).

High productivity workers should be spread across as many jobs as possible, so as to ensure

that they are employed. However, there is no sense in sending a low productivity worker to

a low productivity job, since little output is gained. Rather, low productivity workers should

queue at high productivity jobs, making sure that these firms hire someone. This carries over

to nearby supermodular but log submodular production functions, e.g. Constant Elasticity

of Substitution functions with a high elasticity of substitution between human and physical

capital.

8 Conclusion

The assignment model with coordination frictions explains a rich set of interactions between

heterogeneous workers and firms. It is also tractable, particularly in some special cases,

such as the Cobb-Douglas. It should therefore lend itself to a number of extensions. In

concluding, I will mention only three.
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First, as noted in the comparative statics exercises with the Cobb-Douglas production

function, there are some questions that are most naturally asked in a model with endogenous

physical capital investments. The close link between the equilibrium of this model and the

competitive equilibrium of the market for job applicants, as well as earlier work by Acemoglu

and Shimer (1999) and Shi (2001a), suggest that some of the results, for example efficiency

of the decentralized equilibrium, are robust to this extension.

Second, I have assumed that workers can only apply for one job. There are conceptual

difficulties in allowing workers to apply for multiple jobs simultaneously: can firms make

‘second-round’ offers in the event their first offer is turned down? Albrecht, Gautier, and

Vroman (2001) analyze a version of this model with homogeneous workers and firms, showing

that the basic properties of the model carry over to an environment with second round offers.

Third, the model should be extended to a dynamic framework if it is to be taken quan-

titatively seriously. The extension should also have some qualitative effects on the results.

For example, I showed that with a Cobb-Douglas production function, the most productive

firms attract applications from all workers. In a dynamic model, these firms would refuse

to hire very unproductive workers, and so low productivity workers would not apply for the

job. This would likely strengthen the assortative matching results discussed in Sections 6

and 7.
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