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1.  Introduction 

 Our research program over the past ten years has focused on the use of basic science 

knowledge in commercial firms and the impact of that knowledge on firm performance.  In our 

earlier research, we have found substantial consistent evidence that top academic science, 

specifically the star scientists who make most of the defining discoveries, provides intellectual 

human capital that defines the technology of the firm—at least following scientific 

breakthroughs.  Though there are likely to be considerable spillover effects when knowledge is 

created or employed (Jaffe 1986;1989), and perhaps also an important symbolic and legitimating 

function of high quality science for commercial activity (Stephan and Everhart 1998), our 

empirical work identifies the main and robust empirical effects due to real scientific labor 

contributions of star scientists to performance of the firm. 

 To “detect” stars and quantify their labor contributions to firms, we identified 327 “star” 

bio-scientists worldwide based on their publications of genetic-sequence discovery articles up to 

early 1990 before gene-sequencing machines were in widespread use.  Stars were those 

cumulatively reporting more than 40 genetic-sequence discoveries or on 20 or more articles 

reporting any genetic-sequence discoveries in GenBank (1990).   We identified every “star” 

article on which the star, or (more frequently) a co-author, was affiliated with a firm.  The 

numbers of these articles was our measure of the depth of star involvement in the firm. 

Before turning to new results reported in this paper, a brief summary of our prior results will 

be useful for readers not already familiar with our work: 
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• Location of top, “star” scientists predicts location of firm entry into new technologies 

(both new and existing firms), shown for the U.S. and Japan in biotechnology (Zucker, 

Darby, and Brewer 1998, Darby and Zucker 2001) and replicated for the semiconductor 

industry in the U.S. (Torero, Darby, and Zucker 2001). 

• Ties that involve actual work at the science bench between star scientists (mostly 

academics) and firm scientists consistently have a significant positive effect on a wide 

range of firm performance measures in biotechnology (Zucker, Darby, and Armstrong 

1998; Zucker and Darby 2001) and in semiconductors for number and quality of patents 

(Torero 1998).  Ties to stars also shorten the time to IPO (firms are younger) and increase 

the amount of IPO proceeds (Darby, Zucker, and Welch 2001). 

• As the quality of an academic star bio-scientist increases and his/her research becomes 

more relevant to commercialization, the probability increases that the scientist conducts 

joint research or moves to a firm.  As expected scientific returns increase – measured by 

citations to other local star scientists working with firms – the probability that the next 

star will begin working with a firm also increases (Zucker, Darby, and Torero 2001).  

Quality is also positively related to working with firms in Japan, but only number of 

articles predicts significantly with this smaller sample (Zucker, Darby, and Torero 2000). 

 

Our findings on the importance of basic university science to successful 

commercialization of important scientific discoveries are confirmed in other research, especially 

the importance of intellectual human capital (Di Gregorio and Shane 2000).  Faculty are a key 

resource in creating and transferring early, discovery research via commercial entrepreneurial 

behavior (Yarkin 2000).  Jensen and Thursby (2001) confirm that active, self-interested 
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participation of discovering professors is an essential condition for successful commercial 

licensing of university inventions.  Thursby and Thursby (2000) find that the sharp increase in 

university-industry technology transfer has not resulted so much from a shift in the nature of 

faculty research as from an increased willingness of faculty and administrators to license and 

increased interest on the part of firms. 

In this paper, we continue our research program on the economic value of knowledge, 

especially tacit knowledge at the time of commercially relevant scientific breakthroughs.  We 

compare the real effects on the performance of biotech firms of two overlapping groups of 

academic scientists who collaborate with firm scientists: the stars who made significantly more 

genetic sequence discoveries, and all relevant scientists (including the bulk of the stars) 

employed at one of the top 112 U.S. research universities ranked by federal research funding.  

Our overall results again support the strong effects of academic science on the success of firms.  

Both science measures have strong positive independent effects on most performance measures.  

The patent panels show that the labor effort of the stars has a significant incremental impact on 

firm performance above and beyond the effects of all scientists from top research universities 

working with the firm.  In cross-section estimates, we find significant positive effects from either 

star or top-112 faculty linkages but efforts to enter both sets of variables in the same regressions 

are confounded by multicollinearity.  We conclude that affordable bibliometric measures are 

good but not perfect substitutes for the costly-to-construct star measures. 

The paper is organized as follows.  In Section 2 we develop our theoretical approach to: 

(a) the sources and implications of the information advantage – common to most scientific 

breakthrough knowledge – held by the discovering scientists, (b) the difficulties inherent to the 

transfer of tacit knowledge that lead to joint research, and (c) the amount of knowledge capture 
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necessary for firm to offset sunk commercial development costs.  In Section 3 we sketch the 

history of scientific development and rise of the biotech industry, focusing on the ties between 

academic science and commercial firms.  Since data are the plural of anecdote, we present 

qualitative evidence of the importance of ties to star scientists for the performance of the most 

successful firms.  In Section 4 we briefly review the variables and their sources and then present 

and discuss the empirical results.  We estimate poisson regressions (and linear-least squares for 

employment) that explain the performance of a panel of biotech firms for patents and citation-

weighted patents, and cross-sections for products in development, on the market, and 

employment.  In these regressions, we systematically test the predictive power of science (stars 

and top-112 university scientists tied to the firm via co-authoring of scientific research, as well as 

all local academic scientific publishing by stars), venture capital, and other firm characteristics 

such as use of the dominant technology (rDNA or genetic engineering).  In Section 5 we offer 

our conclusions.  Detail on the data set and supplementary analyses are compiled in a separate 

appendix which is cross-referenced below and available from the authors on request. 
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2. The Real Effects of Knowledge Capture 

 Academic to industry technology transfers may be rare, but we believe they can still 

account for the bulk of technological progress.  These are not pure “transfers,” but necessarily 

knowledge captures to the degree necessary to offset sunk development, marketing, and other 

costs invested in moving a discovery into a commercial innovation.  Many fundamental industry 

transformations or technological breakthroughs can be traced to specific advances in science.  

While the industries experiencing technological discontinuity are a distinct minority in our 

economy, we argue that a distinct minority of firms within this distinct minority of industries 

account for a large part of the aggregate technological progress conventionally measured in 

productivity studies (Harberger 1998, Darby and Zucker 2002). 

 

Knowledge and the Market for Information 

Our argument starts from the classic Stigler (1961) observation that information is a 

valuable and costly resource and that individuals are thus motivated to adopt strategies such as 

search that weighs the expected costs and benefits of acquiring information.  For example, if 

individuals’ search involves unique goods, then costs of search are sufficiently high that 

transactions are commonly localized as a device for identifying potential buyers and sellers.  

Stigler pointed out that medieval markets were an example of actual localization; advertising is 

an example of a “virtually” localized market. 

We argue that another mechanism of “virtual” localization is a profession, or more 

commonly, a sub-specialty within a profession.1  Here, the buyers and sellers of knowledge, 

including new or “breakthrough” discoveries, are brought together in a highly balkanized market 

in which the participants share a reasonably similar endowed knowledge base that makes the new 
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knowledge potentially understandable and useable.  The size and geographic distribution of that 

knowledge base determines the extent of initial demand for the new knowledge.  For the 

purposes of our argument here, information and knowledge are equivalent. 

 

From Tacit to Codified Knowledge 

New information tends to be produced in tacit form, increasing in tacitness as a function 

of distance from prior knowledge (hence, especially breakthrough knowledge), and requires 

resources to codify.  Tacit knowledge tends to be highly personal, initially known only by one 

person (or a small team of discovering scientists) and is difficult to transfer to others (Polyani 

1962 and Schutz 1962). 

As knowledge increases in complexity, the probability increases that deviation from 

“textbook” description of action will be required (Nelson 1959 and Nelson and Winter 1982).  For 

example, internal bleeding during surgery requires decisions about whether and how to deviate 

from the textbook that cannot be fully prescribed in advance.  This kind of complexity leads to 

knowledge remaining tacit longer, perhaps remaining an “active task” that changes its nature in 

response to contingencies in contrast to an “inert task” such as a secretary typing a letter written 

by his/her boss (Scott et al. 1967). 

Knowledge becomes shared (inter-subjective) to the extent that codes or formulas are 

borrowed from pre-existing knowledge and/or are newly created.  Relevance to earlier 

knowledge allows borrowing of codes, mathematical expressions and relations, and even 

machines that “embody” those codes/math.  Such knowledge is cumulative and can be easily 

understood and transferred, relying on references to the well-understood prior scientific 

literature. 
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But new knowledge that cannot be readily grafted on to old is likely to offer more 

opportunities.  Opportunity can shift incentives – increasing them along a continuum from 

incremental change to breakthrough discoveries (Klevorick et al. 1995).  Increased incentives to 

enter arise from these greater opportunities. 

Discovering scientists become important in technology transfer when a new discovery 

has both high commercial value and a combination of scarcity and tacitness that defines natural 

excludability, the degree to which there is a barrier to the flow of the valuable knowledge from 

the discoverers to other scientists.  Tacit, complex knowledge provides partial natural protection 

of information, both separately and jointly with more formal property rights.  Those with the 

most information about breakthrough discoveries are the scientists actually making them, so 

there is initial natural scarcity.  To the extent that the knowledge is both scarce and tacit, it 

constitutes intellectual human capital retained by the discovering scientists and therefore they 

become the main resource around which firms are built or transformed (Zucker, Darby, and 

Brewer 1998, Zucker, Darby, and Armstrong 1998).  Hence, tacit knowledge can be viewed as at 

least partially rivalrous and excludable information and thus “appropriable” as long as it remains 

difficult (or impossible) to learn it. 

As tacit knowledge becomes increasingly codified—or translated into “recipe 

knowledge” as Schutz (1962) terms it – tacitness decreases and knowledge transfer is easier.  But 

significant barriers stand in the way of codification.  Relevance between old and new knowledge 

can be difficult to determine (Schutz 1970), increasing the demand for social construction of new 

codes, formulae, and machines.  The greater the discontinuity, the more difficult it is to anchor in 

prior systems of knowledge. 
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Until there is a reliable indicator of the value of the new knowledge, the size of the 

market for codification is unlikely to be large enough to cover the cost of developing the new 

codes.  Paradoxically, once the value is known: 

• If the value is low relative to alternative uses of scientific talent, then there are few 

incentives to codify it. 

• If it is high, those few scientists who hold the new knowledge will have to weigh returns 

to codification against returns to time invested in scientific research, a tradeoff that pits 

knowledge transfer against knowledge creation. 

o Hence, the average scientific discovery is never codified, and valuable discoveries 

experience a significant codification lag that tends to increase with their value. 

 

Knowledge Capture via Team Production 

Knowledge that is cumulative builds on an existing set of words and symbols, and hence 

involves less or no barrier to communication: Listening to a lecture or reading a text can suffice.  

But tacit knowledge often requires that one of those already holding that knowledge work with 

the novices to teach them in a hands-on process.  For example, 81% of the new authors enter 

GenBank by writing with old authors, and new authors write exclusively with new authors a 

significant 36 percent less than “old,” experienced authors write exclusively with other “old” 

authors after excluding all sole authored papers (Zucker, Darby and Torero 2001).  Transfer may 

be very effective – there are well-documented effects of cumulative experience on performance 

improvement (Pisano et. al 2001) – but it is slow and requires the active participation of the 

holder of the tacit knowledge.  
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Discovering scientists are   typically willing to transfer knowledge primarily in the 

context of their on-going laboratory work.  At the extreme, when tacitness is high, it is their 

collaborators on their research team who are the recipients of this knowledge; others are 

excluded through lack of access.  Thus, the initial cost of entry is high.  But entry cost tends to 

decline over time, and the probability of an error in the initial discovery also declines as others 

replicate it, thus reducing risk to the new entering scientist.2 

This restricted process of transfer will more often than “normal science” lead to sufficient 

knowledge capture to justify the cost of commercial development by a firm.  Knowledge capture 

explains why tacit knowledge tends to be highly localized: it will be concentrated geographically 

around where the discoveries are made (or where the discoverers move).  As shown in Figure 1, 

there is considerable concentration of patented inventions, as well as human therapies and 

vaccines in development and on the market.  Just two states, California and Massachusetts with 

14% of the U.S. population, have a disproportionate share especially of U.S. products in 

development (49%) and on the market (58%).  Patenting is somewhat less concentrated; since 

patenting is both an input and an output of the innovation process, this may suggest a lessening 

of geographic concentration, perhaps as the discoveries mature and are codified.  Generally 

patents provide a useful incentive to the codification of knowledge, but in the case of patented 

cell lines a novel technique – deposit in an approved depositary to be publicly available upon 

patent expiration – acknowledged the difficulty in codifying exactly how the new organisms 

could be created. 

Understanding the role of scientific teams in tacit knowledge transfer extends the 

arguments for team production:  (a) Team organization makes routine the transfer of tacit 

knowledge from the discoverer to other team members, and if team members cross 
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organizational boundaries then tacit knowledge is efficiently transferred – in the present case, 

most interestingly from university discovering scientists to firm scientists (Zucker, Darby and 

Armstrong 1998).  (b) Through team organization, more productive cooperation is often 

achieved via specialization than possible through the linking of individual efforts across 

impersonal markets (Demsetz 1995: p. 17). 

 The greater the labor effort of the discovering university scientist(s) with teams 

containing firm scientists, the greater the amount of tacit knowledge transfer.  In bench level 

collaboration, you can actually see how the science is done.  As tacit knowledge transfer 

increases from the discovering scientists, the success of the firm also increases.  Thus, managers 

of high tech firms have incentives to hire the top-discovering scientists if their discoveries have 

commercial value.  Discovering scientists also have incentives to found a new firm.  In sharp 

contrast, in industries where “normal science” reigns, hiring of below average, acceptably 

competent scientists at a low wage is the typical practice (Kornhauser 1962).  Obviously, each 

can be a market-value-maximizing strategy for the firms facing different knowledge frontiers. 
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3.  Scientists’ Leadership and Industry Success: Commercializing Knowledge 

Biotechnology is a preeminent example of an industry undergoing very rapid growth 

associated with radical technological change initiated in academe and based on basic science 

breakthroughs.  The key attributes can be summarized concisely: 

• Breakthrough discovery: Professors Stanley Cohen (Stanford) and Herbert Boyer 

(University of California-San Francisco) reported the basic technique for 

recombinant DNA, also known as rDNA, genetic engineering, or gene splicing 

(Cohen, Chang, Boyer, and Helling 1973). 

• University scientists:  We identified star bio-scientists based on genetic sequence 

discoveries reported in GenBank (1990), an on-line reference file, and in this 

paper introduce bio-scientists identified in ISI’s electronic file of research articles 

written by at least one author located at one of the top-112 U.S. research 

universities.3   Star articles are (nearly) a subset of top-112 articles (U.S. stars not 

in a top-112 university and conference papers – less than 1% of the total star 

articles – are not included in the ISI article files.) 

•  Links/collaborations with firms: Articles that are co-authored by firm employees 

and top scientists, including “stars” and the top-112 university scientists indicate 

the intensity of involvement with the firm’s research effort.4  Most of these 

scientists “wear two hats,” one as professor at a university and one as a leader or 

lab head at a firm; confirmed through interviews at universities and firms on both 

coasts. 
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Firm Success and Knowledge Capture 

The degree to which an open scientific literature can produce such strong apparent 

“knowledge capture” effects on firm success rests on: (a) Characteristics of tacit, complex 

knowledge that lead to natural excludability; and (b) Selection by firms of discoveries for which 

the degree of knowledge capture is likely to offset sunk costs incurred in making the scientific 

discovery a commercial innovation. 

 To provide some intuition for our regression results, we first briefly review examples of 

the prominent positions that top academic scientists are given in the most successful biotech 

firms, identify their co-publishing with the firm, and finally explore the impact that top 

scientists’ co-publications with firm scientists have on success. 

 

Top 10 Biotech Firms 

Individual scientists are often highlighted in an IPO prospectus.5  These scientists 

typically achieved prominence in both their university and private sector appointments.  

Examples of distinguished academics from the top-112 universities6 that were appointed to 

corporate officer positions in one of the top 10 biotechnology firms (as of 1994) include:  (a) 

Herbert Boyer to the position of Vice President and Director of Genentech Inc;7 (b) Edward 

Penhoet, former faculty member of the Biochemistry Department at UC-Berkeley and co-

founder of Chiron, to the position of President, CEO, and Director of Chiron; (c) Walter Gilbert, 

the American Cancer Society Professor of Molecular Biology at Harvard University and 1980 

Noble prize winner, to several of Biogen’s boards, with Phillip Sharp, Professor of Biology at 

MIT, and Daniel Wang, Professor of Chemical and Biochemical Engineering at MIT, on its 

Scientific Board; (d) Two founders of Genetics Institute were university faculty, who also were 
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executive officers and directors of the company, as well as members of its Scientific Advisory 

Board; and (e) Amgen included on its Scientific Board prominent university professors from 

UCLA, CalTech, and Stanford, all members of the National Academy of Sciences. 

Table 1 shows that 40 percent of these top-10 biotech companies reported at least one star 

on their team when going public, while 70 percent had linked articles (star co-publishing with at 

least one firm employee).  Not surprisingly, because of the much broader coverage of both 

scientists and universities, these top-10 biotech companies reported a higher percentage of top-

112 university scientists: 80 percent reported at least one top-112 scientist on their team when 

going public, and 90 percent had core collaborations with one or more of these scientists.  The 

advantage of the publishing measure is that it weights the amount of involvement of the scientist:  

for example, Centocor had only 1/20 as many core collaborative research articles as Genentech. 

IPOs listed many former or current university professors as company founders, officers, 

directors or key members of scientific advisory boards (see Appendix Table A1).  Almost every 

scientist holding a top management position had done so since the company’s founding.  These 

scientists were not brought in as part of the preparation for the IPO to merely “signal” the firm’s 

success, contrary to a suggestion in Stephan and Everhart (1998). 

 

Is Success in the Stars? 

Certainly, scientists in high-ranking positions in these now public firms provide scientific 

control and are important for firm success.  However, the majority of firms in our sample do not 

go public before the end of our time period.  In any case, we are interested in the actual work that 

top scientists do that is joint with the firm.  We measure this joint work by the cumulative 

number of collaborative articles. 
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Using the total number of joint articles, drawing on both of our science measures, we can 

take a preliminary look at our findings by graphing the mean values of the cumulative number of 

tied articles: for the stars, articles that involve a star scientist and a firm scientist (where the star 

can also be an employee of the firm) and for scientists at the top-112 universities, articles that 

involve joint work by at least one university and one firm scientist.  These values are shown in 

Figure 2a.  The differences are particularly striking at the 10+ article level.  The mean success by 

tied star articles is consistently and markedly higher than for top-112 university scientists across 

our major success measures: patents, products in development, and products on the market.). 

Figure 2b presents the comparable data on venture capital funding (data from Venture 

Economics). The amount of venture capital funding is less consistent in its effects compared to 

tied/linked science results.  While increasing cumulative amount of venture financing generally 

increases both patents and products in development, the magnitude of differences is small 

relative to the tied/linked science effects shown in Figure 2a. 

 

Concentration of Success 

Darby and Zucker (2002) argue that much if not most of technological progress is 

accounted for by a relatively few firms operating in a relatively few industries undergoing rapid 

change.  We will just touch on examples of concentration here: 

• Industry Success Concentration: Top-decile biotech firms account for accounted 

for 64 percent of the total number of human therapies and vaccines in 

development (485 as of 1991), 43 percent of all patents, and dominated human 

therapies and vaccines on the market (82 percent).  See Appendix Figure A1. 
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• Geographic Concentration: 64 percent of the total products in development are 

concentrated in the top 5 states (Appendix Table A2); 58 percent of the total 

products on the market are concentrated in those same 5 states (Appendix Table 

A3). 
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4.  Empirical Results 

 

The Data 

The Zucker-Darby star-scientists/articles database has been a powerful tool for exploring 

the co-evolution of life sciences and biotechnology.  However, that methodology involves an 

expenditure of resources justifiable only for pioneering academic efforts or sophisticated 

financial institutions.  As the ISI databases are increasingly available, the extent to which 

electronic bibliometry can substitute for hand coding and specialized technical knowledge is a 

question of practical importance to both academic researchers and industry practitioners. 

Here we use the basic tool of co-publishing between academic and firm scientists as a 

detector of joint research and (often two-way) university-industry technology transfer.  The 

Institute of Scientific Information (ISI, 2000) U.S. University Science Indicators database on 

CD-ROM has extensive information on all the scientific articles with at least one author at any of 

the top-112 U.S. research universities. 

Table 2 defines all the variables used in the empirical estimates and provides summary 

sample statistics for each.  As in Zucker, Darby, and Armstrong (1998), we classify each article 

in GenBank of which a star scientist is an author relative to each firm as affiliated with the firm, 

as linked to the firm if the star is unaffiliated but writing with the firm’s employees, and 

otherwise as untied to the firm.  Aggregating over all stars and time for each firm gives the first 

six variables in Table 2.  The “local” in local untied articles refers to articles by stars affiliated 

with universities or research institutes in the firm’s functional economic area (metro area plus 

exurbs as defined by the U.S. Bureau of Economic Analysis). 
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We attempted to find all articles written by any employee of each of our biotech firms in 

the ISI (2000) database; these article also must have at least one top-112 university author to be 

included.  Among these joint articles, we focus on the “core collaborations” in the four central 

biotech fields catalogued by ISI:  biochemistry and biophysics; cell and developmental biology; 

molecular biology & genetics; and microbiology.  To control for variation in quality of the 

collaborators, we also collected the number of citations in ISI-indexed journals in the current 

plus next four years for each article. 

The firm characteristics and the last five dependent variables were mostly collected from 

paper directories and industry studies used by industry participants when looking for suppliers 

and customers.  This methodology is tedious but is one of the few available for analysis of large 

numbers of privately (as well as publicly) held firms.  As described in other papers referenced in 

Table 2, considerable effort was expended in ensuring that uniform coding procedures were 

applied to obtain quantitative variables from text records. 

The primary exception was the venture funding data obtained by licensing the Venture 

Economics database and deflating dollar amounts by the GDP deflator.  We also had the list of 

licensees of the UC-Stanford Cohen-Boyer patent as an alternate indicator of the use of 

recombinant DNA technology.  We bought our list of biotech patents from CHI Research, Inc., 

in 1997.  We ensured that the CHI list included all those on U.S. Department of Commerce, 

Patent and Trademark Office (1993) and appropriate others.  Counts of citations to date by other 

patents were included. 
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The Estimates 

In a technology-intensive industry like biotechnology, patents are a crucial measure of 

success. Patents serve as a measure of output from a firm’s “knowledge production function” 

(Griliches 1990). The patent permits knowledge capture by establishing ownership rights to the 

invention’s commercial rewards until the patent expiration date and even beyond expiration to 

the extent the firm establishes brand recognition.  Patenting success also impacts the firm’s 

ability to raise public equity capital.8  Because patent acquisition is key to both financial and 

non-financial measures of success and citations data are available with which to quality-adjust a 

firm’s patents, the patenting success models are a key testing ground for the electronic version of 

our star methodology. 

Table 3 reports standard poisson regression estimates for panel data on U.S. patenting by 

U.S. biotech firms.  The standard errors are corrected using the procedure of Wooldridge 

(1991).9  Models a and e in Table 3 indicate that simple firm characteristics available for both 

private and public firms do a good job of explaining patenting.  Entrants are generally at a 

disadvantage, experience helps, and use of the dominant technology (recombinant DNA or 

genetic engineering) is a positive factor for both quantity and quality of patenting.  As always 

with forward-looking financial variables, the positive effect of the cumulative amount of venture 

capital investment may confound real R&D productivity of the investments with forecasting the 

effects of other, omitted variables. 

Firms which have many articles with star scientists also tend to have many articles with 

top-112 university faculty – indeed nearly all the linked star articles are also included in the top-

112 core collaborations count of joint faculty-firm articles.  If one adds either the star variables 

used in Zucker, Darby, and Armstrong (1998) or core collaborations and their mean citations (a 
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quality measure) as in models b and c or f and g, we see that either set of indicators improves the 

explanatory power of the models.  In the current case of patents and patent citations, the fit is a 

little better with the new variables than with the star based variables, but we will see below that 

just the opposite is true for all products and for human therapeutics and vaccines on the market.  

The failure of local untied star articles to enter significantly positively reaffirms our (1998) result 

that localized knowledge impacts of universities on industry are associated with market 

transactions rather than uncompensated spillovers from the ivory tower.  The coefficients on 

cumulative venture capital investment are only mildly reduced by inclusion of either (or both) of 

the star or top-112 based measures of the firm’s science base.  This suggests that venture 

capitalists in the 1980s were not much discriminating among biotech firms on the basis of 

scientific depth, so that we obtain independent effects on research productivity of both 

intellectual and financial capital.  The significance of the knowable science-base information 

implies that the capital markets were not fully incorporating it in allocating capital. 

Models d and h in Table 3 experiment with adding both sets of science indicators at once.  

Since linked star articles are generally included in the top-112 core collaboration counts, the 

coefficient on linked articles measures the additional impact of stars on firm research output over 

and above that of the “average” joint authorship with a professor from a top-112 university.  The 

coefficients for all core collaborations and their mean citations as well as this additional star 

impact are positive and significant for patents and patent citations.  The negative coefficient on 

affiliated star scientists in these full regressions appears to reflect the special circumstances of 

one or two firms which have the bulk of affiliated articles. 

Unfortunately, the smaller samples for the cross section results in Tables 4, 5, and 6 – 

comparable patent cross-sections are in the appendix available on request – seem more 
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confounded by the near multicollinearity of the science variables observed cumulatively up to 

1990:  For the full models d and h, where both the star and top-112 article faculty-firm 

coefficients are significant they have opposite signs.  We would prefer panel estimates for 

products in development and on the market and employment also, but each observation is very 

costly to obtain from old paper directories for these predominantly private start-up firms.  As 

with the patent panels, we get generally significantly positive coefficients for linked and 

affiliated star articles (models b and f in Tables 4, 5, 6) or for top-112 core collaboration articles 

and their mean citations.  Employment is the one dependent variable without many zeroes; so in 

Table 6 we estimate the log of 1994 employment in accord with Gibrat’s Law (Sutton, 1997). 

In summary, the empirical work strongly supports the central message that university-

firm technology transfer for breakthrough discoveries generally involves detectable joint 

research between top professors and firms which they own or are compensated by.  We have 

shown that our electronic bibliometry provides good but imperfect substitutes for the more costly 

to obtain and difficult to operationalize star measures.  In particular, in large samples where we 

can obtain separable impacts, star linkages appear to have a significantly larger effect on firm 

research productivity than the average article written jointly by top research university professors 

and firm employees. 
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5.  Conclusions 

 Breakthrough discoveries in gene splicing set off a revolution in bioscience and created 

the biotechnology industry.  These discoveries set the stage, then, for increased opportunity and 

increased incentives to enter.  But significant natural barriers to the communication of new 

knowledge often exist.  New knowledge tends to be developed in tacit form and requires 

resources to codify. New codes and formula to describe discoveries develop slowly—with 

insufficient incentives if value is low and too many competing opportunities if the value is high. 

Hence new knowledge tends to remain uncodified, difficult to obtain except through hands-on 

learning at the lab bench, and hence naturally excludable and appropriable.  Our basic argument 

is that knowledge close to breakthrough discoveries needs to be transformed into words, codes 

and/or formula before it can be easily transferred. 

 Difficulties inherent to the transfer of tacit knowledge lead to joint research:  Team 

production allows more knowledge capture of tacit, complex discoveries by firm scientists. A 

robust detector of tacit knowledge capture by the firm (and strong predictor of firm success) is 

the number of research articles written jointly by scientists working at a firm and the discovering, 

“star” scientists, nearly all working at top universities.  For firms to commercialize new 

discoveries, there must be sufficient knowledge capture by the firm to offset sunk commercial 

development costs. 

 We find the results reported in Zucker, Darby and Armstrong (1998) to be replicated to a 

major extent in the whole U.S.  The principle finding in our earlier paper, covering only 

California firms, was that research collaborations between firm scientists and university star 

scientists (the ties) had a robust significant positive effect on firm performance.  The local pool 

of bioscience knowledge generated by nearby but non-collaborating scientists had no positive 
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effect, providing further evidence for embodied technology transfer through markets rather than 

“knowledge spillovers.”  But this paper is not simply a replication and scale-up. 

 In this paper we add a generalized form of our star measure: the collaborative research 

articles between firm scientists and top U.S. university scientists.  In panel analyses, firms whose 

scientists collaborate with stars and/or top 112 U.S. university scientists have more patents and 

more highly cited patents.  Further, star articles have an incremental positive effect above top-

112 university scientists’ articles on the number and quality of patents. Our cross-sectional 

analyses of products and employment show a generally similar pattern of positive effects on 

firms’ success of collaborations with stars or top university scientists, but the incremental effects 

are less systematic.  This non-robustness appears to be due to multicollinearity. As predicted, 

untied star articles are either non-significant or oscillate between significant positive and 

negative effects. Venture capital funding amounts were always significant, and usually positive. 

 The overall importance of ties, compared to lack of significance or instability of untied 

star effects, suggests that working jointly at the lab bench is a crucial transfer mechanism when 

knowledge has an important or large tacit component.  Further, our findings suggest that, as we 

predicted, tacit knowledge is embodied in individual, discovering scientists.  Telephone 

interviews conducted by Jeff Armstrong of university star scientists revealed their relationships 

with firms were governed by tight contractual arrangements, academic scientists typically being 

“vertically integrated” into the firm in the sense of receiving equity compensation and being 

bound by exclusivity agreements.  This evidence that star scientists were either fully employed 

by firms or were governed in their relationships with firms by explicit contracts supported our 

conclusion that firm success was not the result of a general knowledge “spillover” from 

universities to firms but due to star scientists taking charge of their discoveries. 
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Footnotes 
 
 
1 Most commonly, there are multiple virtually localized markets organized around competing 

perspectives or models employed within the sub-specialty.  There is also geographic localization 

within the professions, with advantages to universities or cities with a “critical mass” of 

scientists who can interact.  Thus, UCSF with its critical mass of molecular biologists and related 

sciences, and nearby strong universities, was “ripe” for a breakthrough. 

2 Note that when multiple teams are racing for a “ripe” discovery and publish their results almost 

simultaneously, we have much more rapid confirmation/validation of the discovery which 

promotes faster learning by others.  Gina Durante, graduate student at the Anderson School at 

UCLA, suggested this point. 

3 The top 112 universities are defined in terms of rank order on Federal research funding 

received.  The top 112 are defined by the Institute for Scientific Information and the data were 

purchased from them. 

4 In 1994, Jeff Armstrong conducted a telephone survey of randomly selected linked stars in 

California and found that most possess a significant equity or founding interest in the firm. 

5 The prospectuses were obtained from Thomson Financial Services.  The ten companies in the 

table were the top biotechnology firms in 1994 as reported by Lee and Burrill (1995, p.16). 

6 Due to human subjects’ restrictions, we cannot reveal the identity of the star scientists.  The 

following scientists may or may not be included in our list of U.S. stars. 

7 It is interesting that Genentech—with the largest number of star scientists of any firm—

appeared to avoid mentioning stars on its prospectus resume unless the star had a formal 

corporate position.  The one leading scientist who was listed on the prospectus was Dr. Boyer, 
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who made it a policy never to publish a genetic-sequence discovery article as or with a 

Genentech employee. 

8 See Darby, Zucker and Welch (2001). 

9 The significance of key variables in these regressions is generally not sensitive to the 

Wooldridge correction, but to achieve an estimate of the variance-covariance matrix that is not 

restricted by first-moment parameter estimates, we apply the Wooldrige method as we did in the 

California study.  An alternative would be to implement a binomial specification, but as 

explained in Wooldridge (1991), this procedure may bias both first and second moment 

estimates, whereas the Poisson process potentially biases only the second moment parameters. 
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Table 1 The Ten Most Highly Valued Biotechnology Firms in 1994: Leading 
Academic Scientists Appear on Their IPO Prospectus and as Joint Authors 

 
 
Companya 
 

 
IPO Date 

 
Star Scientists 

 
Top-112 University Professors 

   
Listed on the 
Prospectusb 

 
Linked 
Articles 

 
Listed on the 
Prospectusb 

 
Core 

Collaborations 

 
 
Genentech, Inc. 
 

 
  October 1980 

  
✔ 

 
✔ 

 
✔ 

 
Centocor, Inc. 
 

 
  June 1982 

 
✔ 

 
✔ 

 
✔ 

 
✔ 

 
Chiron Corporation 
 

 
  August 1983 

 
✔ 

 
✔ 

 
✔ 

 
✔ 

 
Biogen N.V. 
 

 
  March 1983 

 
✔ 

 
✔ 

 
✔ 

 
✔ 

 
Amgen, Inc. 
 

 
  June 1983 

 
✔ 

 
✔ 

 
✔ 

 
✔ 

 
Immunex Corp. 
 

 
  July 1983 

 
 

 
✔ 

 
✔ 

 
✔ 

 
ALZA Corp.c 
 

 
  December 1985 

 
 

  
 

 
 

 
Genzyme Corp.d 
 

 
  June 1986 

 
 

  
✔ 

 
✔ 

 
Genetics Institute, 
Inc. 

 
  May 1986 

 
 

 
✔ 

 
✔ 

 
✔ 

 
IDEXX Laboratories, 
Inc. 

 
  June 1991 

 
 

  
 

 
✔ 

 
Notes: 
aTop 10  biotechnology firms in terms of market value as identified in Lee and Burrill’s (1995) ninth annual industry 
report for Ernst & Young. 
bListed on the IPO prospectus as an executive, director, or member of the company’s scientific advisory board. 
cALZA Corp. was founded in 1968 before genetic engineering and has successfully pursued a specialized niche 
R&D strategy by concentrating on developing sophisticated drug delivery systems rather than drug discovery. 
dGenzyme Corp. had an extensive long-term contractual relationship with BioInformation Associates (BIA).  BIA 
was owned by a group of eight academic scientists: George Whitesides at Harvard and seven MIT professors: 
Charles Cooney (also appointed as a Genzyme Director), Harvey Lodish, Chokyun Rha, William Roush, Anthony 
Sinskey, Graham Walker, and Christopher Walsh. 
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Table 2 Definitions and Sample Statistics for Variables 
 
Variables Definitions Mean S.D. Min Max N 
Independent Variables       
Cumulative Star Authorships 
of: 

Articles to date written by a star scientist:      

Local untied articles   not firm-affiliated/not linked to this firm 120.0 125.3 0 387 3152 
Affiliated articles   affiliated with this firm 0.40 6.25 0 139 3152 
All linked articles   not firm-affiliated/with this firm’s emp. 0.19 1.39 0 20 3152 

Star Authorships of: Articles to 1990 written by star scientist:      
Local untied articles   not firm-affiliated/not linked to this firm 164.5 149.5 0 382 342 
Affiliated articles   affiliated with this firm 0.50 7.596 0 139 342 
All linked articles   not firm-affiliated/with this firm’s emp. 0.281 1.732 0 20 342 

Cumulative Top-112 
University Authorships: 

For articles to date with any author(s) at 
an ISI-defined top-112 university: 

     

All core collaborations   number with this firm’s employee(s) 1.57 10.36 0 271 3152 
Citations to articles   mean citations in 5 years to above 5.45 18.24 0 254 3152 

Top-112 University 
Authorships: 

For articles through 1990 with any au-
thor(s) at an ISI-defined top-112 univ.: 

     

All core collaborations   number with any this firm’s employees 5.918 26.27 0 337 342 
Citations to articles   mean citations in 5 years to above 10.23 24.87 0 225 342 

Firm Characteristics:       
NBF indicator 1 if entrant firm; otherwise 0 0.746 0.436 0 1 342 
Years in biotech Year + 1 - year firm began using biotech 7.216 3.117 1 14 342 
Recombinant DNA indicator 1 if firm uses recomb. DNA; otherwise 0 0.479 0.500 0 1 342 
Cumulative venture capital 
funding 

Amount of venture capital received by 
this firm to date in 100,000s of 1984 $s 

24.26 65.65 0 899.5 3152 

Cumulative venture capital 
funding as of 1990 

Amount of venture capital received by 
this firm to 1990 in 100,000s of 1984 $s 

42.92 94.49 0 899.5 342 

Dependent Variables       
Cumulative patents granted Number of biotech patents applied for to 

date and assigned at issue to this firm 
0.97 4.56 0 96 3152 

Cumulative patents granted 
as of 1991 

No. of biotech patents applied for by end 
of 1991 and assigned at issue to this firm 

2.652 9.337 0 120 342 

Cumulative citation-weighted 
patents granted 

Number of citations received up to year 
1997 to biotech patents applied for to date 
and assigned at issue to this firm 

8.881 41.69 0 820 3152 

Cumulative citation-weighted 
patents granted as of 1991 

No. of citations received up to year 1997 
to biotech patents applied for through 
1991 and assigned at issue to this firm 

19.68 70.63 0 820 342 

Total products in 
development 

Count of Total Products in Development 
in 1990 Bioscan 

1.895 3.231 0 22 342 

Total human therapies and 
vaccines in development 

Count of Human Therapies & Vaccines in 
Development in 1990 Bioscan 

1.418 3.031 0 22 342 

Total products on the market Count of Total Products on the Market in 
1990 Bioscan 

3.781 5.326 0 37 342 

Total human therapies and 
vaccines on the market 

Count of Human Therapies & Vaccines 
on the Market in 1990 Bioscan 

0.547 1.591 0 13 342 

Total employees as of 1994 Employment reported in 1994 Bioscan 926.2 7983 1 110,400 233 
 

Panel variables (N = 3152) have observations by firm and year; others are observed only once per firm. 
Detailed definitions and sources in text and data appendices in NBER Working Papers 4653, 4949, and 6360 (draft 
versions of Zucker, Darby, and Brewer 1998, Zucker, Darby, and Armstrong 1998, and Zucker and Darby 2001). 
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Table 6 OLS Estimates for 1994 Employment for All Reporting U.S. Firms 
Dependent Variable: Natural Logarithm of Total Employees as of 1994 

 
Explanatory Variables 
(down) 

 
Model a 

 
Model b 

 
Model c 

 
Model d 

Constant 4.416*** 
(0.3379) 

4.3516*** 
(0.3449) 

4.6815*** 
(0.3338) 

4.5195*** 
(0.3454) 

 
Star Authorships of: 

    

Local untied articles 
 

 0.0015* 
(0.0007) 

 0.0014* 
(0.0007) 

Affiliated articles 
 

 0.0074 
(0.0118) 

 -0.0236 
(0.0191) 

All linked articles 
 

 0.1201* 
(0.0543) 

 -0.0148 
(0.0734) 

Top-112 university 
authorships: 

    

All Core Collaborations   0.0179* 
(0.0070) 

0.0315* 
(0.0156) 

Citations to articles   0.0116* 
(0.0053) 

0.0081 
(0.0056) 

Firm characteristics:     
NBF indicator 
 

-1.2023*** 
(0.2477) 

-1.1656*** 
(0.2424) 

-1.1666*** 
(0.2394) 

-1.1879*** 
(0.2399) 

Years in biotech 
 

0.0199 
(0.0317) 

-0.0040 
(0.0317) 

-0.0238 
(0.0322) 

-0.0256 
(0.0321) 

Recombinant DNA indicator 
 

0.7636*** 
(0.0439) 

0.6452** 
(0.1987) 

0.5631** 
(0.1994) 

0.5453** 
(0.1988) 

Cumulative venture capital 
funding as of 1990 

0.0062*** 
(0.0012) 

0.0058*** 
(0.0011) 

0.0053*** 
(0.0011) 

0.0052*** 
(0.0011) 

Standard Error of Estimate 1.473 1.433 1.421 1.412 
R2 (adjusted) 0.208 0.250 0.263 0.272 
Sample size 233 233 233 233 

 
Notes: Sample size was reduced because of non-reporting for 109 firms. 
  Standard errors (in parentheses). 
  Significance Levels:  * # 0.05, ** # 0.01, *** # 0.001 
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Figure 2a        Biotech Firms Are More Successful if Tied to Star Scientists
or if Linked to Top-Research-University Faculty
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Figure 2b   Biotech Firms Are More Successful if 
     Funded by Venture Capitalists
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Appendix Appendix Appendix Appendix –––– Supplementary Analyses Supplementary Analyses Supplementary Analyses Supplementary Analyses    

 
The tables and figure in this appendix provide supplementary analyses to those in the main text 

and some additional detail on data used in the empirical analysis.  The depth of involvement of top 

academic scientists in the best biotech firms indicated in Table 1 is corroborated in Appendix Tables A1.  

Appendix Tables A2 and A3 provide totals by states of the firms in the sample and the 1991 counts of total 

products, human therapeutics, vaccines, diagnostics, and agricultural products in development and on the 

market, respectively.  Figure A1 shows how concentrated research activity is in the top decile biotech 

firms. 

Appendix Table A4 lists exactly which universities make the ISI’s top-112 list based on amount of 

federal research funding received. 

Appendix Table A5 reports the results of running the patent analysis as a cross-section without 

exploiting the timing aspect of the data.  The ability to have both star and top-112 science base indicators 

in the regression simultaneously appears to be a feature of the fuller analysis and not of the patents per 

se. 
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Appendix Table A1 Leading Academic Scientists Held Key Positions in the Top-10 
Biotechnology Firms in 1994 

 
 
 
Position 

 
Number of Tied 
 Star Scientistsa 

 
Number of Top-Ten 
University Scientistsb 

 
Founder/co-founder 
 

 
1 

 
6 

 
President and CEO 
 

 
0 

 
2 

 
Vice-President 
 

 
0 

 
6 

 
Directorc 
 

 
2 

 
12 

 
Scientific Advisory Board Memberd 
 

 
2 

 
24 

 
Notes: 
 

a Equals the number of tied star scientists holding the position indicated by the row label.  The column total may 
exceed the number of scientists since scientists could hold multiple positions within the firm.   

b Equals the number of top-112 university scientists holding the position indicated by the row label.  The column 
total may exceed the number of scientists since scientists could hold multiple positions within the firm.  

c One tied star scientist was listed as the Board Chair and another was listed as Board Secretary. 
d One of the top-112 university scientists was listed as the Scientific Advisory Board Chair.  
 



 

39 

 
Appendix Table A2  Products in Development by State as of 1991:  Total Products, 

Human Therapeutics, Vaccines, Diagnostics and Agricultural 
 

State 
Total 

Products 
Thera- 
peutics Vaccines Diagnostics Agriculture 

Firms in 
Sample 

 
California 

Massachusetts 

Maryland 

New Jersey 

New York 

Others 

 
175 

101 

18 

73 

46 

235 

 
136 

81 

9 

57 

28 

133 

    
12 

6 

0 

1 

3 

19 

    
14 

4 

5 

6 

12 

42 

      
4 

6 

3 

0 

1 

7 

      
96 

39 

16 

27 

24 

140 

Total  648 444 41 83 21 342 

 
Source: Bioscan. 

 
 

 

 

Appendix Table A3 Products on the Market by Key State as of 1991:  Total Products, 
Human Therapeutics, Vaccines, Diagnostics and Agricultural 

 

State 
Total 

Products 
Thera- 
peutics Vaccines Diagnostics Agriculture 

Firms in 
Sample 

 
California 

Massachusetts 

Maryland 

New Jersey 

New York 

Others 

 
381 

148 

56 

60 

104 

235 

 
73 

33 

6 

14 

16 

37 

 
1 

1 

0 

0 

0 

6 

 
119 

73 

17 

11 

59 

122 

 
19 

6 

1 

1 

0 

24 

 
96 

39 

16 

27 

24 

140 

Total 1,296 179 8 401 51 342 
 
Source: Bioscan. 
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