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strong evidence of dependence between the unobserved severity of illness and the assignment of patients
to hospitals. Consequently a conventional probit model leads to inferences about quality markedly
different than those in this study's selection model.
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1. Introduction

This paper develops new econometric methods to estimate hospital quality and other

models with discrete dependent variables and non-random selection. Assessing the quality of

care in hospitals is an important problem for public policy and a challenge for applied

econometrics.1 Policy changes in Medicare reimbursement rates and the rise of managed care as

well as technological innovations have affected hospital incentives, and through that, hospital

quality.2 These quality changes have large welfare effects and hence the potential for large

deadweight losses.3

Hospital patient discharge databases provide several indicators plausibly associated with

hospital quality. Since they cover large numbers of patients and hospitals and are much less

expensive to obtain and access than other sources of information, they have been widely used in

comparisons of hospital quality. Mortality has been the most popular indicator of hospital quality

in the literature: it is unambiguously defined and its link with quality of care is so strong as to be

tautological.4

In this widely used framework, the conceptual experiment that reveals hospital quality is

hospital-specific mortality rates following random assignment of a population of patients to

hospitals. Patients, however, are not randomly assigned to hospitals. Patients or their physicians

are likely to choose hospitals based on factors such as location, convenience and their severity of

illness. If assignment were nonrandom, but random conditional on observed characteristics, then

conventional dichotomous outcome models could be used to infer the outcome of the conceptual

experiment from the available data. However, discharge data contain only crude summaries of

medically pertinent information and hence many aspects of the severity of illness are

unobserved. Thus, the assumption of random conditional assignment is not tenable and patients

with the same observed characteristics are not equally likely to be admitted to all hospitals. For

                                                
1 "As described by a leading study, “Quality of care is the degree to which health services for individuals and
populations increase the likelihood of desired health outcomes and are consistent with current professional
knowledge…," Lohr (1990, p. 4).
2 See Cutler (1995), Kessler and McClellan (2000), McClellan and Noguchi (1998) for studies of the effects on
medical outcomes of Medicare policy, the impact of managed care and the impacts of technological change,
respectively.
3 For instance, if changes in Medicare policies cause hospitals to reduced their pneumonia mortality rates by one
percentage point, this would translate to over 6,000 lives saved annually in the U.S.
4 Strictly speaking mortality is an indicator of hospital mediocrity; mortality is an inverse indicator of quality.
Subsequently we provide a precise definition of hospital quality in the context of the model developed in this study.
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instance, if patients with high unobserved severity of illness select high quality hospitals, then

observed mortality rates for high quality hospitals will be inconsistent and upwardly biased

measures of mortality from the conceptual experiment. This will be true even after controlling

for observed measures of severity of illness. Conventional statistical methods that ignore

unobserved severity will produce misleading inferences about hospital quality. This has led

prominent medical experts to make a pessimistic assessment of the usefulness of discharge data

in assessing hospital quality.5

Recent work by Gowrisankaran and Town (1999) developed a framework to control for

the non-random assignment of patients. This work modeled mortality as a function of indicator

variables for each hospital and patient discharge information. The authors treat mortality as

continuous and directly apply linear instrumental variables methods. The identifying assumption

is that a patient’s mortality is not affected by how far that patient’s residence is from alternative

hospitals. Combined with the demonstrable fact that patients are more likely to choose hospitals

that are closer to home, other things equal, the conventional conditions for consistency of

instrumental variables estimation in a linear model are satisfied. Conceptually, the estimator

would predict hospital A to be of higher quality than hospital B if patients residing near hospital

A have lower mortality than patients residing near hospital B, after controlling for their medical

and demographic characteristics.

The difficulty with this approach is that because the outcome variable, mortality, is

dichotomous, any internally consistent model of hospital quality and choice must be nonlinear.

This paper develops a logically coherent model designed to infer the outcome of the conceptual

experiment that randomly assigns patients to hospitals, given data that has non-random patient

assignment.6 Inference with this model is challenging because the amount of information per

observation is small.7 This paper develops an approach to inference in this model that is practical

with the large data sets required to extract signal from noise in hospital patient discharge

databases. This approach is potentially applicable to a wide range of policy evaluations of

                                                
5 Leading medical researchers, including Iezzoni et al. (1996), and government studies (US GAO (1994)) have both
argued that discharge databases are problematic, for this reason.
6 Though the methods of Gowrisankaran and Town (1999) are much simpler than the ones developed in this paper,
there is no formal statistical model that rationalizes their approach.
7 Simple measures of fit always indicate that most variation in mortality cannot be ascribed to covariates. Even if all
the difference in mortality rates were attributable to quality, the variation in these rates is small.
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economic interest where the outcome variable is dichotomous.8

The model developed here incorporates hospital choice and mortality as endogenous

variables and fixed hospital and patient characteristics as exogenous variables. Hospital choice is

described by a multinomial probit model and mortality by a binary probit model. The mortality

model includes indicator variables for each hospital to accommodate hospital specific differences

in quality as well as demographic variables and observed disease characteristics. The mortality

model is structural in the sense that it predicts outcomes given alternative assignments of patients

to hospitals including random assignment. The multinomial probit model is a reduced form

relationship that provides probabilities of hospital choice conditional on observed covariates that

are a function of demographic characteristics and distance of the hospital from the patient’s

home. The random component in the binary probit model includes unobserved severity of illness

and is permitted to be correlated with the random component in the multinomial choice model.

If, after controlling for the observed covariates in the hospital choice model, patients with high

unobserved severity of illness are more likely to be admitted to hospital A than patients with low

unobserved severity, this will imply a positive correlation between the shock in the mortality

equation and the shock in the hospital A choice equation.

We estimate this selection model using Bayesian inference from data on 74,848 Medicare

patients admitted to 114 hospital in Los Angeles County during 1989 to 1992 with a diagnosis of

pneumonia. By transforming the integration problem posed by the latent variables into a

simulation problem, our approach to inference computes estimates orders of magnitude faster

than the method of maximum likelihood. This makes inference feasible for this type of

simultaneous equations model.9 The basis for the simulation procedure is the fact that the model

is similar to the conventional linear simultaneous equation model conditional on latent variables.

Using Markov-chain Monte Carlo (MCMC) techniques, we iteratively simulate latent variable

values conditional on data and parameters, and parameters conditional on data and latent

variables. The second step is computationally similar to classical instrumental variables,

                                                
8 Examples include the effect of school performance based on graduation rates, of prison rehabilitation programs
based on recidivism rates, of job training programs based on the incidence of harassment complaints, and many
medical outcome evaluations.
9 Maximum likelihood evaluation for one parameter vector for one individual would require evaluating the joint
density of the mortality and hospital choice outcome for that individual. Given that we have 114 endogenous
variables and that the mortality error and hospital choice error are correlated, this would take several minutes on a
fast supercomputer. Multiplied by a data set of roughly 75,000 patients (necessary because of the small signal to
noise ratio), it would take months to evaluate the likelihood for a single parameter vector.
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differing principally in the appearance of the discrete hospital choice in the mortality probit

equation, which does not pose a problem The simulation methods simultaneously recover the

joint posterior distribution of parameters and latent variables.10 Albert and Chib (1993) used this

approach in the binary probit model and Geweke, Keane and Runkle (1997) extended them to the

multinomial probit model. The methods developed here extend this approach to a new class of

models.

We use these methods to address the motivating policy questions directly. First, to what

extent is hospital quality associated with observed characteristics of hospitals, such as size and

ownership status? Second, with what degree of confidence can it be said that one hospital is of

higher quality than another? We model hospital quality using hierarchical priors. This approach,

which combines some characteristics of classical fixed- and random-effects models, specifies the

quality of each hospital as a separate parameter, but assigns a more important role to the data in

determining whether these parameters are similar for hospitals with similar observable

characteristics, relative to a normal prior. Our approach provides an efficient method for

extracting the signal from the noise, which is particularly important given this type of data.

The remainder of the paper is organized as follows. Section 2 provides the specification

of the model and methods for inference, with some details relegated to an appendix. The

database is described in Section 3. Section 4 presents findings on hospital quality and the role of

nonrandom admission to hospitals. Section 5 concludes. Five appendices are available in the

working paper version of this paper.11 Appendix A1 details the construction of the prior,

Appendix A2 details the likelihood function and computation, Appendix A3 gives evidence on

the numerical accuracy of our Markov chain Monte Carlo (MCMC)) algorithm, Appendix A4

provides posterior rankings for the hospitals in our data set, and Appendix A5 provides

robustness results with alternative priors.

2. The Model

The central component of the model is a structural probit equation, in which the

probability of mortality is a function of the hospital to which a patient is admitted, the observed

                                                
10 Surveys that discuss convergence to the posterior include Chib and Greenberg (1996), Geweke (1997) and
Geweke (1999).
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severity of the patient’s illness, and the observed demographic characteristics of the patient. The

objective is to learn about the way the hospital to which the patient is admitted influences the

probability of mortality in this equation. A multinomial probit model of hospital admission

supplements the mortality model, to permit non-random assignment of patients to hospitals. This

section describes, in turn, the specification of the model, the prior distribution of the model

parameters, and methods to recover the posterior distribution of these parameters.

2.1 Model specification

Let 1, ,i n  index the patients in the sample, and let 1, ,j J  index hospitals in the

sample. There are two groups of exogenous variables in the model. The 1k  vector ix  consists

of individual characteristics of patient i that may affect mortality, including indicators for age,

race, sex, and disease stage, and measures of income. The 1q  vector ijz , which consists of

characteristics specific to the combination of individual i and hospital j, includes distance

between the home of patient i and hospital j and interactions of distance with observable patient

characteristics. The specifics of these variables are given in Section 3.

There are two sets of endogenous variables in the model. The mortality indicator im  is 1

if the patient dies in the hospital within ten days of admission and is 0 otherwise. The 1J

indicator vector ic  has j’th entry 1 if patient i is admitted to hospital j, and 0 otherwise.

To present the structural mortality equation, let 1, ,i i n  be independent 2N 0,

random variables conditional on the exogenous variables. The mortality probit *
im  is a latent

random variable,

(1) *
i i i im c x .

The mortality indicator 1im  if * 0im  and 0im  if * 0im . The structural

interpretation of (1) is that if patient i were randomly assigned to hospital j, then
*
i j i im x  and consequently 1i j iP m x . Note that the parameters 

and  are jointly unidentified in (1) because they can be scaled by the same arbitrary positive

                                                                                                                                                            
11 See the NBER working paper Geweke, Gowrisankaran and Town (2001).
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constant without changing the behavior of im . In the conventional probit model this problem is

avoided by setting 1 . We return to this matter in the context of the complete model below.

If ic  were in fact independent of i  – as it would be if patients were randomly assigned

to hospitals, for example – then ic  would be exogenous in (1). After resolution of the above

identification issue this model would conform with the conventional textbook specification of the

binary probit model. However, it is likely that in observed data, ic  depends in part on i : the

admission of patient i to hospital j takes into account information that is correlated with i . The

conventional probit model is then misspecified.

To develop a more plausible model of hospital choice, we assume that patients become

infected with one of the many bacterial or viral agents that can cause pneumonia and it has been

determined that they are sufficiently ill to benefit from inpatient treatment. At that point the

patient (or the patient’s agent) selects from the set of J hospitals the hospital to which the patient

will be admitted. The actual choice decision will be a complex function of many factors, such as

severity of illness, characteristics of the hospital, the patient’s primary care physician, etc. One

important observable influence on choice is distance: previous research has shown that the

farther a patient is from a hospital, the less likely is the patient to be admitted to that hospital,

other observables constant.12

To present the reduced form model of hospital choice define the J q  matrix iZ ,

1 2, , ,i i i iJZ z z z . Let the 1J  vectors ~ 0, 1, ,i N i n  be mutually independent

conditional on the exogenous variables, and let , 1, ,j j J  denote the correlation between i

and ij . Define the 1J  hospital choice latent vector multinomial probit * * *
1, ,i i iJc c c  as

(2) *
i i ic Z .

The choice indicator vector 1, ,i i iJc c c  has entry 1ijc  if * * 1, ,ij ikc c k J  and

0ijc  otherwise. As above with (1), the parameters  and  are jointly unidentified since

scaling  by any positive constant and  by the square of that constant leaves the distribution of

                                                
12 See Luft et al. (1990) and Burns and Wholey (1992).
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ic  conditional on iZ  unaffected. We return to this matter in the context of the prior distribution

in Section 2.2.

As is customary in models with J choices, it is easier to work with 1J  latent utilities,

and normalize the Jth utility to 0. Accordingly, we define the 1J q  matrix

1 2 , 1, , ,i i iJ i iJ i J iJZ z z z z z z , the 1 1J  vectors 1 , 1, ,i i iJ i J iJ  and

* * * * *
1 , 1, ,i i iJ i J iJc c c c c , and the 1 1J J  matrix var i . Note that

(3) *
i i ic Z .

If the unobserved severity of illness affects hospital choice, the mortality and choice error

terms will be correlated. Let j  denote the correlation between i  and 1, , 1ij j J . The

larger is j , the more likely is a patient with a high unobserved severity of illness ( i ) to be

admitted to hospital j. Thus we shall refer to j  as the hospital j severity correlation. The

hospital severity correlations are a useful way to characterize severity of illness by hospital since

they are independent of the scale of i  which we know from (1) is unidentified.

Now, we can write the variance of the joint error terms as:

(4)
2

var ,i i

where  is a 1 1J  vector with 1 2
j j jj .

To permit unobserved severity of illness to affect hospital choice in any way consistent

with the model, the only restriction we place on  is that var ,i i  be positive definite. Since

this implies complicated restrictions on , a more graceful treatment is to work with the

population regression of the shock i  in (1) on the shock vector i  in (3),

(5) ; cov , 0i i i i i .

In this regression  is a 1 1J  parameter vector and the scale of i  is normalized by

var 1i . This specification simultaneously resolves the identification problem due to the

scaling in (1) and incorporates all permissible values of  in (4).
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 With this reparametrization, the variance of the shock in the mortality probit equation is
2 1 , and the correlation between  and i ij  is

(6)
1 21

1
1J

j k kj jjk
.

In the hypothetical experiment in which patient i is admitted to hospital j by means of a

random assignment ic , P 1i im x  1 21i ic x . We shall refer to

(7) 1 21j jq ,

as the hospital j quality probit. Differences in these probits across hospitals may be used to

address quality comparisons for individual hospitals. In the conventional probit model with

normalization 1 , the hospital j quality probit is *
j jq . To compare groups of hospitals,

define G j jj G
q q , where G is the group of interest and the weight j  is proportional to the

number of patients admitted to hospital j; define G  and *
Gq  analogously.

2.2 Prior distributions

The number of free parameters in  is 1 2 1J J , that is, 6,441 in our sample with

J=114 hospitals. We make one major simplification, that JI , so that after differencing,

1 1 1J J JI e e , where ne  denotes an 1n  vector of units.  We introduce some evidence on the

plausibility of this assumption in Section 4.4.  Estimating these parameters would increase the

computation time by orders of magnitude and also complicate our MCMC simulation

algorithm.13

We choose independent prior distributions for the parameter vectors, , , and  so as

to include all reasonable parameter values well within their support. We discuss specific aspects

of these priors here.14

First, we utilize a variance component structure and a hierarchical prior to specify that

hospital qualities are similar ex ante while allowing the data to determine the degree of similarity

ex post.  Each hospital, i, is in one of four ownership categories, j, and one of for size categories,

                                                
13 Keane (1992) shows that  is the source of irregularity in the multinomial probit likelihood function.
14 Appendix A1 of the Working Paper version of this paper (Geweke, Gowrisankaran and Town (2001)) contains
detailed descriptions of all the priors.
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k, detailed in Section 3.2. If hospital i  is of ownership category j and size category k, then

decompose 1i j k ip s u . The prior distributions of the components

1 1 4, , , ,p p 1 4, ,s s  and 1 114, ,u u  are jointly Gaussian, mean zero, and mutually

independent. The common term 1  has standard deviation 3 (essentially a flat prior). The other

components have variances 2
p , 2

s  and 2
u , respectively, grouped together in the vector

2 2 2, ,p s u . Given , the prior specifies that hospital quality is more strongly correlated

between hospitals that share the same size or ownership specification.  However, we employ a

hierarchical prior distribution with the variance terms having independent prior distributions
2 21.25 ~ 5 , ,j j p s u  in the standard probit model.15

Second, since ij ij iJ , an iid prior on  implies a prior on  that is not

exchangeable with respect to the Jth hospital, which is undesirable since the numbering of

hospitals is arbitrary. We use the prior 2 1~ 0,N  with 0.196 , which implies an

exchangeable and diffuse prior for .16

Third, the priors for the selection model need to be carefully scaled relative to the

conventional probit model to account for the different values of  across the models. From (5),
2 1  in the selection model, but 1  in the probit model. Since  2 1~ 0,N  it

follows that 2 21 ~ 1 1J  and 2E 1 1 1J . Thus, in the hierarchical

hospital quality prior in the selection model, 2 2 21.25 1 1 ~ 5jJ . Similarly, we

scale the selection model prior standard deviations for 1  and  by 
1 22 1 1J  relative to

the probit model.

The choice of the prior distributions of  and  is relatively straightforward.  As with 

and  the governing principle is that reasonable values be well within the support of the prior

distribution, and care must be taken to maintain the same scale in the probit and selection

models.  With respect to the last consideration note in particular that the impact of covariates in

                                                
15 The centered 99% prior credible interval for each 2

j  is (.22, 1.7). Robustness of our results with respect to
variation in these and other priors is summarized in Section 4.4 and detailed in Appendix A5.
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the selection model, corresponding to  in the probit model is 1 21  in the selection

model by means of the same reasoning leading to (7).

2.3 Inference

The observed data are , , , , 1, ,i i i ix Z c m i n , which can be abbreviated as y. The

model contains latent variables * *, , 1, ,i im c i n , which can be abbreviated *y . The parameter

vectors are , ,  and , which can be collected in the vector . The model specified in

Section 2.1 provides *p ,y y  and the prior distributions in Section 2.2 provide p . Explicit

expressions for these densities are given in Appendix A2. From Bayes rule, the distribution of

the unobservables *  and y  conditional on the data and model specification is

(8) * * *p , p p , p p p ,y y y y y y y .

The objective is to obtain the posterior distribution of functions such as the hospital

quality probits jq , and j iq x , the probability of mortality under random hospital

admission of a patient with observed characteristics ix  to hospital j. This objective requires

integrating a highly nonlinear function over millions of dimensions, most of which correspond to

latent variables. This cannot be accomplished analytically.

The parameter vector and latent variables can be partitioned into groups, such that the

posterior distribution of any one group conditional on all the others is of a single, easily

recognized form that is easy to simulate. Details of the partition are given in Appendix A2. The

problem is then well suited to attack by execution of a Gibbs sampling algorithm (Gelfand and

Smith, 1990; Geweke, 1999). In this approach, each group of parameters and latent variables is

simulated conditional on all the others. Following each pass through the entire vector of latent

variables and parameters, all parameter values are recorded in a file.

As detailed in Appendix A2, the Gibbs sampling algorithm is ergodic and its unique

limiting distribution is the posterior distribution. Therefore, dependent draws from the posterior

distribution of any function of the parameters g  can be made by computing the value of g

                                                                                                                                                            
16 Appendix A1 documents further details of this prior distribution including the reasoning leading to the choice

0.196 .



11

corresponding to the recorded parameter values, after discarding initial iterations of the Gibbs

sampling algorithm to allow for convergence. We used parallel computing methods and a

supercomputer, exploiting the fact that in each iteration of the Gibbs sampling algorithm the

latent variables * *, , 1, ,i im c i n  are conditionally independent across individuals. The

iterations themselves are executed serially. The results reported in Section 4 are based on every

10th draw from 19,000 successive iterations (a total of 1900 draws), after discarding 1,000 burn-

in iterations based on convergence diagnostics. For comparison purposes, we apply the same

procedures to a conventional probit model for mortality, using the Gibbs sampling algorithm

described in Albert and Chib (1993). Appendix A3 provides details on the numerical accuracy of

our Gibbs sampling algorithm.

3. The Data

The primary source of data for this study is the Version B Discharge Data from the State

of California Office of Statewide Health Planning and Development. These data provide records

for all patients discharged from any California acute-care hospital during the years 1989 through

1992. We confine our attention to patients who were over 65 at the time of admission. During

this time period, the vast majority of patients over 65  were covered by traditional Medicare fee-

for-service insurance, which has standardized hospitalization benefits. We confine our attention

to Los Angeles County. A large metropolitan area is best suited to our purposes, because it has a

large base of patients and contains multiple hospitals in every size and ownership class. We limit

our study to a single disease, because there is evidence that the relation between mortality and

covariates is disease specific.17 We choose pneumonia in particular for three reasons. First, it is a

common disease18 that provides the large sample needed to draw inferences about hospital

quality. Second, in-hospital death is a relatively frequent outcome for pneumonia patients, which

makes it a relevant disease to examine through the medium of hospital discharge records. Third,

                                                
17 See Wray et al. (1997)
18 Pneumonia and influenza alone constitute the sixth leading cause of death in the US, and the fourth leading cause
of death for those over 65 (National Center for Health Statistics, 1996). Pneumonia is also the leading cause of death
among patients with nosocomial (hospital acquired) infections (Pennington, 1994).
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there is independent evidence that an appropriately adjusted in-hospital mortality rate for

pneumonia is correlated with the quality of in-hospital care.19

The secondary source of data is the Annual Survey of Hospitals Database published by

the American Hospital Association (AHA). Among other information, the AHA data contain the

addresses, ownership status, and size of each hospital in our sample.

3.1 Sample construction

The sample was selected through a process of eliminating patients from the 1989-1992

Version B Discharge Data. The first qualification for selection is that the patient live in a Los

Angeles County zip code, be admitted to a Los Angeles County hospital and be over 65 at the

time of admission.

The second qualification is that one of the five ICD-9-CM disease codes specified in the

discharge data be 48.1, 48.2, 48.5, 48.6, or 48.38, as suggested by Iezzoni et al. (1996) to define

pneumonia.

The third qualification is that the source of admission must be either routine, or from the

emergency room. This eliminates patients transferred into the hospital from another medical

facility, or admitted from an intermediate care or skilled nursing facility. To the extent that

placement in these facilities is correlated with unobserved disease severity, and to the extent that

such facilities may be systematically located near higher quality hospitals, the key assumption

that distance from the hospital is exogenous in our model would be violated. This step eliminates

approximately 23 percent of the patients from the sample.

The fourth qualification is that the patient be admitted to a hospital with at least 80

admissions for pneumonia in our data set. This screen reduces J and thereby computation time.

Its potential to introduce sample selection bias is limited by the fact that it eliminates fewer than

one per cent of the patients.

3.2 Variable construction

The covariate vector ix  in the mortality probit equations contains an indicator for each

year, demographic variables and indicators of disease severity. Most of the demographic

variables are constructed from the discharge records. These are four age indicators (70-74, 75-79,

                                                
19 See Keeler et al. (1990) and McGarvey and Harper (1993).
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80-84, and 85 or older), an indicator for female, and indicators for black, Hispanic, Native

American and Asian respectively. The discharge records contain no information on

socioeconomic status. As a proxy for the patient’s household income, we use the mean 1990

census household income for households with the same zip code, race, and age class as the

patient.20

Indicators of disease severity in ix  are constructed from the admission disease staging

information contained in the discharge records. Disease staging has been shown to be as good as

some risk adjustment data based on chart review of medical records.21 Since some of the 13

stages have very few patients, we aggregated stages into five groups: stage 1.1, stages 1.3

through 2.3, stages 3.1 through 3.6, stage 3.7, and stage 3.8. Indicator variables for all but stage

1.1 are included in ix .

The indicator for mortality, im , is set to 1 if the patient died in the hospital within ten

days of admission; otherwise 0im . The horizon for mortality is limited to ten days, because

beyond this point hospitals sometimes transfer terminally ill patients to other facilities, and this

decision appears to vary considerably by hospital. To control for differential patient transfer,

Gowrisankaran and Town (1999) used a hazard model as an alternative to the 10-day inpatient

mortality, but found little difference between the two specifications. In two separate studies of

heart disease patients, McClellan, McNeil and Newhouse (1994) and McClellan and Staiger

(1999b), find that there is a very strong correlation between 7-day mortality and 30-day mortality

rates across hospitals.22

Table 1 provides a summary of the distribution of demographic characteristics and

disease severity in the sample, together with mortality rates. Within each age group the

composition of the sample by race and sex closely reflects the demographics of Los Angeles

County. Older individuals enter the sample in greater proportion to their numbers in the

population than do younger ones. Within each age group three-quarters of the sample is

                                                
20 The census provides only two relevant age categories, 65 - 74 and 75+, instead of four. Thus, we aggregated the
discharge data age categories to this level. Additionally, the census provides income only within cells. To find the
mean income, we took the mean value for each cell as the income for each household in that cell. For the highest
cell, $100,000 or more, we assumed a mean income of $140,000. Income is measured in units of $100,000 and
income squared in units of billions of dollars squared.
21 See Thomas and Ashcroft (1991). Iezzoni et al. (1996) showed excellent agreement of disease stage with the
ratings of other systems.
22 As caveats, note that heart disease is very different from pneumonia and that these studies examine mortality, not
inpatient mortality.
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classified in the least severe disease stage. Mortality rates increase gradually with age, increase

sharply with disease stage, are a little higher for men than for women, and are lower for Asians

and Hispanics than for whites or blacks.

The covariate matrix iZ  contains variables specific to the combination of patient i and

each hospital. The additional information in iZ  not contained in ix  is the distance of the patient’s

home from each hospital. The discharge data include patient zip codes and the AHA data include

hospital zip codes. The Census TIGER database provides the latitude and longitude of the

centroid of each zip code. Given these, standard great circle trigonometric formulas provide the

distance between each patient home and hospital.23  The five variables in iZ  are distance (in

hundreds of kilometers); distance-squared; the product of distance and an age indicator (1 for 65-

69, 2 for 70-74, 3 for 75-79, 4 for 80-84, 5 for 85+); the product of distance and disease stage

(1.1, …, 3.8); and the product of distance and income (in units of $100,000).

The prior distribution and subsequent analyses require the size and ownership status of

each hospital. This information was obtained from the AHA survey, and is summarized in Table

2. We specified private teaching, public (operated by Los Angeles county) other not-for-profit

and for-profit hospitals as four mutually exclusive ownership categories.

While mortality rates differ slightly by ownership category none of the differences are

significant at conventional levels. The same is true by size category. Contrasts in mortality rates

are stronger between cross-classified cells in Table 2. For example, the mean of the cells private,

not-for-profit with 151-200 beds (11.11%) and private, for-profit with 201-300 beds (10.54%)

are significantly greater than the overall mean at the 5% level.

4. Findings

The model set forth in Section 2 applied to the data described in Section 3 yields

evidence on systematic differences in quality across hospitals, provides insight into the

interaction between hospital choice and hospital quality, and suggests quality orderings among

hospitals. This section summarizes these findings.
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4.1 Patient mortality and hospital choice

Table 3 presents the posterior means and standard deviations of some parameters and

functions of parameters in the selection and standard probit models. Table 3 details Gq , G ,

1 21  and 2 1  for the selection model and , *
Gq  and 2  for the probit

model.24

The mortality equation has three groups of covariates: demographics, disease severity,

and hospital indicators. In the case of the demographic and disease severity covariates,

coefficient posterior means in the selection and probit models are similar to each other, and

closely reflect the mortality rates presented in Table 1. Posterior standard deviations indicate

substantial information about differences in mortality probabilities across demographic group.

In the case of the hospital quality probits, there are greater and more interesting

differences between the selection model, the probit model, and the raw data. Both the probit

model and the raw data (Table 2) do not draw any sharp distinctions in hospital quality by size or

ownership class. However, the selection model finds sharp distinctions by size. This suggests

that controls for both observed and unobserved severity of illness are important.

The posterior means of the hyperparameters 2
j  carry forward the substantial uncertainty

about hospital qualities in the prior distribution, combined with the information in the data.  The

prior mean of each 2
j  is 0.41.  In the case of the four ownership components jp  and size

components ks  the data combine with the prior to lower the posterior mean to 0.21.  In the case

of the 114 individual hospital components iu  the data provide more information about the

common variance and lower the posterior mean to 0.037.25

Posterior means and standard deviations of the choice covariate coefficient vector 

show that, as expected, distance is an important factor in describing the hospital of admission.

                                                                                                                                                            
23 For zip codes that contain more than one hospital, we used address-level latitude and longitude data from the
Census TIGER database, which stores the geographic location of every block corner and will interpolate from that to
find the latitude and longitude of any address.
24 The normalization of   and 2 facilitates comparison between the two models.
25 The mean of an inverted gamma distribution for 2  of the form 2 2 2~s  is 2 2E 2s .  If the

prior were conjugate then the posterior mean of each 2
j  would be 21.25 3d n , where 2d  is the sum of

squares due to jp , ks  or iu  and 4n  in the first two cases and 114n  in the last.  The lower bound on the

posterior mean would then be 1.25 3n , or 0.18 in the first two cases and 0.011 in the last case.
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The posterior mean of –13.65 implies that a hospital that is 20 kilometers farther from a patient’s

home than another has a normalized probit that is 13.65 0.2 2 2  units lower. The quadratic

term in the equation is highly significant, but since distances are at most 100 kilometers within

Los Angeles County, its substantive effect is not great. Interactions of distance with age and

severity both have negative coefficients with posterior standard deviations small relative to their

posterior means. Given that age class varies between 1 and 5 and observed severity varies

between 1.1 and 3.8, the posterior mean of the distance coefficient varies between –14.44 and –

17.08, with distance decreasing in age and observed severity of illness. The reason for this is

likely due to the increased cost and difficulty of transport for severely ill patients. Patients in zip

codes with higher average income are more likely to be admitted to nearby hospitals.

Table 4 provides explicit posterior probabilities for hospital group quality comparisons

using the selection model and also lists the mean and standard deviation of the posterior

probability of mortality at each type of hospital given a 10% mortality (roughly the sample

mean) at other types. There are sharp differences based on hospital size (Panel A). The posterior

probability that the group hospital quality probit for the largest-hospital group exceeds that of the

smallest-hospital group is 0.71, and the posterior probability that it is greater than that of the

other two size groups exceeds 0.95. The posterior probability that the smallest-hospital group

quality probit exceeds that of the second-smallest group similarly exceeds 0.95. This is reflected

in a mortality rate of 11.7% for the 150-200 bed category given a mortality rate of 10% for the

smallest size of hospital.

These findings are in rough agreement with the literature. A study by Keeler et al. (1992),

which examined the relationship between hospital quality and size using a very detailed and

expensive data set that included pneumonia patients along with patients with other, more

complex diagnoses, found that hospital quality increases with bed size. However, in their study

they did not allow for a nonlinear relationship between hospital size and morality rates, thus they

could not uncover the U-shaped relationship between hospital quality and size that we do.

Successful pneumonia treatments are linked to identifying the pathogen responsible for the

infection and administering the appropriate antibacterial agent early in the progression of the

disease, and subsequently monitoring and adjusting the dosage of the drug (Rello and Valles

(1998), Pennington (1994), McGarvey and Harper (1993)). There is evidence that smaller

hospitals may be better at the timely administration of antibiotics (Fine et al. (1998)) which may



17

explain why we observe that they have better outcomes. Furthermore, since small hospitals are

likely to treat a disproportionate number of pneumonia patients relative to more technically

challenging illnesses26 they may also develop expertise in this disease. That, in turn, may

overcome advantages that medium-sized hospitals may have in other dimensions, such as

laboratory facilities.

There are less sharp differences in the selection model based on ownership (Panel B).

Overall, private teaching hospitals have the highest quality, public hospital have the lowest

quality, and other hospitals are in the middle. However, from the posterior standard deviations of

the mortality rates it is evident that there are no definitive comparisons among ownership

categories.

There is debate in health policy circles regarding the role that for-profit hospitals should

play in the U.S. health system (Gray (1991), Sloan (2000)). Some have argued that private, not-

for-profit hospitals may better serve the public interest because they are more likely to provide

better care. Our results indicate that for the treatment of pneumonia in older patients and the

hospitals in our sample, there is no evidence of this. Keeler et al. (1992) also found public

hospitals in large cities to be of lower quality, while the difference in quality between for-profit

and not-for-profit hospitals is less pronounced. McClellan and Staiger (1999a) conclude that the

quality difference in for-profit and not-for-profit hospitals is small and if anything for-profits

likely provide better care in the treatment of heart attacks. Private teaching hospitals, which are

generally viewed as providing superior care (Keeler et al. (1992)), do appear to offer

significantly higher quality according to the selection model.

4.2 Selection and selection bias

We present some statistics on the relationship between the posterior means of qj , qj
*  and

j  across the 114 hospitals in Table 5. These statistics allow us to uncover the importance of

selection and the relationship between selection and quality.

                                                
26 Performing a simple multinomial logit regression of Southern California patients, we found that pneumonia
patients were more likely to be admitted to smaller hospitals than were hospital patients generally. In contrast, acute
myocardial infarction (heart attack) patients were more likely to be admitted to larger hospitals than the average
hospital patient. Unlike pneumonia treatments, acute myocardial infarction treatments often include high-technology
surgery such as cardiac catheterization, angioplasty or bypass.
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We start by analyzing the quantitative importance of selection in influencing patient

mortality. In the simple probit model, the variance in unobserved disease severity i  is

normalized to be 1. From the posterior means of the coefficients on observed disease severity in

the model (Table 3) and the distribution of observed patient characteristics in the population

(Table 1), one may approximate the variance in the contribution of observed demographics and

disease severity to the mortality probit: it is about 0.45. The variance in the mortality probit due

to variation in hospital quality is about 0.013 (Table 5 Panel A), much smaller than the variance

due to unobserved severity of illness, which is normalized to 1. This decomposition of variance

is about the same in the selection model – variation in hospital quality is slightly higher (Table 5)

but it is still quite small relative to disease severity.

In the selection model the variation in unobserved disease severity is decomposed into a

component that is independent of the hospital assignment process ( i  from (5)) with variance 1,

and a component that is a function of the hospital assignment probits, i  (also from (5)). The

variance of the latter term, , has a posterior mean of 8.7, which is much larger than the

independent component. This constitutes strong evidence against random assignment of patients,

and suggests that the simple probit model provides misleading inferences about hospital quality.

Since patient selection is important, we are interested in understanding the relationship

between selection and quality. Table 5 Panel A reveals a positive relationship between the

posterior means of qj  and j : the correlation between posterior means is 0.517 (Panel A) and a

simple least squares regression of the posterior means of the j  on the posterior means of the qj

shows a slope coefficient of 0.183 that is significantly positive (t of over 6).27 Thus, hospitals

with higher quality (higher jq ) have a greater propensity to be selected by patients with greater

unobserved disease severity (higher j ). This is also reflected in Table 3, which shows similar

patterns of Gq  and G  across types of hospitals.

In any selection model, conditional on observed characteristics (including observed

severity), the observed mortality rate for each hospital will be decomposed into a hospital quality

                                                
27 Since results in Table 5 are based on posterior means, they do not take into account dispersion in the posterior. To
account for this dispersion, one can examine the sample relation between q j , *

jq  and j  as a function of the
parameters, and consider the posterior uncertainty associated with this relationship. This would yield values of Table
5 for each draw from the posterior simulator. One can then compute the mean value across the draws. This method
yields similar results.
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component and an unobserved severity component. Panel C of Table 5 shows that in this

relationship hospital quality qj
*  in the probit model is well described as a linear function of

hospital quality qj  and severity correlation j  in the selection model. From the regression

relation reported in panel C of Table 5, it is clear that variation in hospital severity correlation

substantially drives variation in inferred hospital quality qj
*  in the probit model. From the

regressions in panels B and C, one can infer the slope coefficient of .712 =.905 1.553 .124

in panel D. Thus, variation in hospital severity correlation accounts for a substantial portion of

the variation in hospital mortality rates in the selection model, whereas in the simple probit

model this variation must be attributed to quality differences.

4.3 Ordering by quality

The model and approach to inference described in Section 2 provide the complete

posterior distribution of all the parameters in the model, and any functions of these parameters.

In particular, corresponding to the parameter values in any iteration of the Gibbs sampling

algorithm, it is a simple matter to compute the corresponding hospital quality probits qj . The

1900 draws used to obtain the posterior moments reported in this section therefore also provide

1900 draws from the joint distribution of the hospital quality probits qj . Pairwise comparisons

between hospitals are then straightforward. For example, for two hospitals j and k, the numerical

approximation to the posterior probability that qj qk  is the fraction of iterations in which

qj qk , and the joint distribution of qj  and qk  could easily be plotted.

Comparing all 114 hospitals simultaneously is more challenging. A formal approach to

ordering hospitals by quality would begin with a loss function for orderings. Suppose the 114-

element vector of quality ranks is r, and the estimated quality rank vector is ˆ r . If the loss

function is ˆ r r A r ˆ r , where A is a positive definite matrix, then ˆ r  should be the posterior

mean of r.28 This estimate may, in turn, be approximated numerically by sorting hospital

qualities qj  in each iteration of the Gibbs sampler, finding the corresponding rank for each

hospital, and then averaging the ranks across all iterations. The resulting estimated ranks ˆ r j  are

                                                
28 See, for example, Bernardo and Smith (1994, Section 5.1.5), for this standard result, as well as the one on medians
used in the next paragraph.
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generally not integers. If the loss function were aj ˆ r j rjj 1

117
, where all aj 0, then ˆ r j  should

be the median of the posterior distribution of rj , which in turn is an integer (with probability

one).

Appendix A4 provides rankings based on both loss functions. The choice of loss function

turns out not to have a large effect on the orderings of relative quality.  The rankings produced

by these alternative loss functions are similar.  The posterior distributions of r and of the hospital

qualities convey the uncertainty associated with the rankings.  For most pairwise combinations of

hospitals in the top and bottom quartiles, the posterior that the quality of the former exceeds the

latter is rarely less than 0.8 and exceeds 0.9 more often than not.  An approximate rule of thumb

for the accuracy of rankings is that if a hospital is ranked at quantile x then the posterior

probability that its true rank is above the median is also x.  Appendix A4 provides all the

rankings and several aspects of their joint posterior distribution.

4.4  Specification and robustness

A key assumption in the selection model is that the distances between the patients’ homes

and the 114 hospitals in the sample constitute variables that may be used to control for the non-

random assignment patients to hospitals. Because of the nonlinear relationship between the

endogenous variables (hospital choice) in the mortality equation and the instruments, this

relationship was modeled explicitly. Table 3 reveals an indisputably strong link between the

measures in Z and the choice of hospital. For instance, distance and its square explain about 30%

of the variance of the probits. The findings are in accord with the literature.29

The further assumption that distances from hospitals to patients are uncorrelated with

unobserved disease severity cannot be examined so directly. One plausible alternative is that

there remain geographic variations in unobserved disease severity after accounting for the

observed covariates listed in the first two panels of Table 3. We examined this possibility from

three angles. First, in a conventional probit model for mortality using the observed covariates,

hospital choice dummies and patient zip code dummies, the zip code dummies are insignificant.

Second, the same is true if dummies for nearest hospital replace zip code dummies. In both

equations, the coefficients on the hospital choice dummies are jointly significant in the presence

of the zip code dummies. Finally, we conducted a more direct examination by retrieving the
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unobserved disease severity component from the mortality probit equation in each iteration of

the MCMC algorithm. In the regression of this component on zip code dummies and the other

regressors, the dummies were jointly insignificant in every iteration. All these findings are

consistent with the absence of any unobserved geographic component of disease severity.

Given the large number of endogenous variables in the selection model, quite a few

assumptions about functional form were required. The dimensionality of the problem is perhaps

most evident in the 6,440 potentially independent free parameters in , the prior variance matrix

in the multinomial hospital assignment model. The selection model takes the extreme step of

assuming that shocks to the probits in this model are iid normal before differencing (Section 2.2).

If this assumption is reasonable, then the 113 1 vectors of posterior shocks 1, ,i i n ,

which may be retrieved in each iteration of the MCMC algorithm, should be consistent with the

specification 1 1 1J J JI e e . If it is not – for example, if patients with certain characteristics

all choose from one small group of hospitals – then this will be evidenced by a constructed

covariance matrix 1

1
1 n

i ii
nS  being substantially different from . A

conventional goodness of fit test, carried out at the 5% level, rejects the null hypothesis in

slightly over half the iterations of the MCMC algorithm. We conclude that there may well be

misspecification of the covariance structure in the multinomial hospital assignment covariance

matrix, but it is probably not severe. Due to the large number of parameters in , information

about the covariance structure beyond the data would be required to deal constructively with this

potential misspecification.

The sensitivity of findings to the specification of the prior distribution can be examined in

a number of ways. To convey the nature of the sensitivity we set up three further variants of the

selection model. Variant A effectively eliminates the instruments from the entire model, by

scaling the prior standard deviations of the coefficient vector  in the multinomial hospital

assignment model by the factor 610 . This variant leaves only the functional form to identify the

hospital-specific parameters in the mortality equation. Variant B scales the prior standard

deviations of  in the original selection model downward by a factor of 5 and 2  downward by

a factor of 25. Variant C is like Variant B except that prior standard deviations are increased by a

                                                                                                                                                            
29 See Luft et al. (1990) and Gowrisankaran and Town (1999).
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factor of 5 relative to the base model. Thus, variants B and C provide alternative priors that are

plausible from the perspective of the subjective prior in the base selection model.

Appendix A5 provides a detailed set of results for each of these prior distributions. As

one might expect, coefficients on covariates in the mortality probit equation show very little

sensitivity to the choice from among the four prior distributions. The same is true in the hospital

choice multinomial probit model, with the obvious exception of prior A. The findings about

hospital mortality (Section 4.1) are the same in variants B and C as in the base selection model:

quality is a “U” shaped function of size; private teaching hospitals have the highest and public

hospitals the lowest quality with differences in this dimension remaining small. By contrast

variant A shows little effect of size, or ownership, and the point estimates display neither the “U”

shape for size nor the ownership ranking of the base model.  The correlations between hospital

quality posterior means in the base selection model and variants B and C are both 0.80.  By

contrast, the correlation between hospital quality posterior means in the base selection model and

variant A is only 0.34.  We conclude that reasonable variants on the prior produce distinct but

insubstantial differences, whereas elimination of the instruments from the model has strong and

substantial effects.

5. Conclusion

This study has extended existing econometric methods in order to measure hospital

quality using the experience of patients admitted to hospitals in nonrandom fashion. Using

discharge records for almost 75,000 older pneumonia patients from 114 hospitals in Los Angeles

County, we find evidence of differences in quality between hospitals of different size and

ownership classifications. The smallest and largest hospitals exhibit higher quality than other

hospitals. We also detect substantial differences in quality for a sizable minority of individual

hospitals.

As an important by-product, our methods produce information about the hospital

admissions process. Patients with greater unobserved severity of illness tend, overall, to be

admitted to hospitals of higher quality. Consequently more conventional methods that ignore

nonrandom admission, when applied to this data set, tend to lower the inferred quality of good

hospitals and raise that of poor ones, relative to our findings. We find that variation across
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individual hospitals in the unobserved severity of illness is at least as great as variation in

quality, and that this variation accounts for most of the large discrepancy between inference

about hospital quality in our model and with more conventional methods.

The procedures used here are at the current frontier of intensive computational methods

in econometrics. A supercomputer and several days of computing were required to obtain the

results reported here. Recent and imminent innovations in numerical methods and computing

technology should sharply reduce the real costs of these procedures in the near term. Given the

policy importance of assessing quality of care in hospitals, we believe there is a significant return

to further investment in these methods and their application to similar questions in health policy

and related fields.
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Table 1
Frequency and mortality rates by age, disease stage, racial and sex categories

Age CategoriesSeverity and
Demographic

Categories
65-69
years

70-74
years

75-79
years

80-84
years

Over 84
years

Row
Totals

Disease
Stage 1.1

8,409
5.01

10,254
5.09

11,524
5.83

11,168
5.82

14,864
10.18

56,217
6.94

Disease
Stage 1.3-

2.3

846
5.91

1,021
5.97

1,017
6.88

912
10.09

1,069
10.20

4,865
7.85

Disease
Stage 3.1-

3.6

670
12.69

769
12.87

1,018
14.83

973
16.07

1,478
21.99

4,908
16.70

Disease
Stage 3.7

1,350
15.33

1,598
14.77

1,707
16.81

1,381
22.13

1,664
28.18

7,700
19.56

D
is

ea
se

 S
ta

ge

Disease
Stage 3.8

156
45.51

228
42.10

218
44.03

239
56.49

317
53.94

1,158
49.14

White 7,100
7.20

9,301
7.68

10,796
8.75

10,542
10.44

14,256
13.89

51,995
10.10

Black 1,498
9.74

1,405
8.61

1,295
7.80

1,207
10.60

1,433
13.32

6,919
10.04

Hispanic 2,013
6.31

2,032
5.41

1,941
6.85

1,978
7.79

2,709
11.04

10,830
7.70

Asian 794
6.17

1,106
6.06

1,129
6.38

930
8.27

971
11.33

4,990
7.59

R
ac

e

Native
American

24
4.17

26
7.69

25
8.00

16
37.50

23
26.09

114
14.91

Female 5,335
6.61

7,010
6.22

8,116
7.34

7,955
9.25

12,092
13.24

40,899
9.14

Se
x

Male 5,703
8.12

6,860
8.42

7,368
9.23

6,718
10.87

7,300
13.51

33,949
10.12

Column Totals 11,429
7.30

13,387
7.31

15,484
8.24

14,673
9.99

19,392
13.34

74,848
9.59

The first number in each cell is the cell frequency, and the second number is the mortality rate in
that cell.
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Table 2
Hospital frequency, patients treated, and mortality by hospital classification

150 Beds or
Less

151-200
Beds

201-300
Beds

Over 300
Beds Row Totals

Private, Not-
for-Profit

9
4,741
9.17

4
2,369
11.11

18
15,526
9.42

19
21,545
9.71

50
44,181
9.62

Private, For-
profit

32
9,792
9.24

15
6,627
9.57

7
4,412
10.54

1
973

10.48

55
21,804
9.66

Private
Teaching 0 0 0

5
6,802
9.17

5
6,802
9.17

Public 0 0
1

232
8.62

3
1,829
9.57

4
2,061
9.46

Column
Totals

41
14,533
9.22

19
8,996
9.97

26
20,170
9.65

28
31,149
9.61

114
74,848
9.59

The first number in each cell is the number of hospitals in that category, the second number is
the total number of pneumonia patients discharged from hospitals in that cell, and the third
number is the mortality rate (patient weighted) for patients who were discharged from hospitals
in that cell.
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Table 3
Posterior means and standard deviations

Coefficient Selection model Probit model
1 21

Age 70-74 -0.009 (0.024) -0.008 (0.025)
Age 75-79 0.065 (0.023) 0.068 (0.025)
Age 80-84 0.184 (0.023) 0.187 (0.024)
Age > 84 0.369 (0.022) 0.374 (0.023)
Female -0.087 (0.013) -0.087 (0.013)
Black -0.020 (0.028) -0.025 (0.028)

Hispanic -0.12 (0.022) -0.126 (0.023)
Native 0.152 (0.13) 0.168 (0.134)
Asian -0.091 (0.030) -0.091 (0.031)

Income 0.223 (0.207) 0.253 (0.201)D
em

og
ra

ph
ic

 c
ov

ar
ia

te
s

Income^2 -0.028 (0.024) -0.030 (0.024)
1 21

Emergency admit 0.180 (0.015) 0.181 (0.016)
Disease stages 1.3-2.3 0.089 (0.028) 0.089 (0.028)
Disease stages 3.1-3.6 0.493 (0.023) 0.496 (0.023)

Disease stage 3.7 0.635 (0.019) 0.640 (0.018)

D
is

ea
se

 se
ve

rit
y

co
va

ria
te

s

Disease stage 3.8 1.396 (0.038) 1.412 (0.037)

Gq G
*
Gq

150 beds or less 0.018 (0.021) 0.001 (0.022) 0.007 (0.012)
151 to 200 beds -0.069 (0.032) -0.017 (0.024) -0.032 (0.018)
201 to 300 beds -0.023 (0.027) -0.010 (0.032) -0.003 (0.013)
Over 300 beds 0.039 (0.019) 0.022 (0.023) 0.004 (0.012)

Private, not for profit 0.0055 (0.018) 0.003 (0.026) -0.001 (0.009)
Private, for profit 0.0074 (0.015) 0.008 (0.024) -0.008 (0.009)
Private Teaching 0.019 (0.041) 0.006 (0.023) 0.021 (0.023)H

os
pi

ta
l g

ro
up

 q
ua

lit
y

pr
ob

its
 a

nd
 se

ve
rit

y
co

rr
el

at
io

ns

Public -0.072 (0.089) -0.017 (0.038) -0.017 (0.041)
2 1 2

Size 0.20 (0.14) 0.21 (0.15)
Ownership 0.20 (0.14) 0.21 (0.15)V

ar
ia

nc
e

of
 q

ua
lit

y

Individual Hospital 0.037 (0.0062) 0.030 (0.0048)

Distance -13.65 (0.147) --
Distance 2 12.43 (0.080) --

Distance Age -0.45 (0.025) --
Distance Severity -0.31 (0.034) --

H
os

pi
ta

l c
ho

ic
e

co
va

ria
te

s

510 Distance
Income

-0.974 (0.258) --

Specifications also include indicators for each year.
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Table 4
Posterior probability comparisons of group hospital quality probits, selection model

A. Hospitals grouped by size

 150 beds 151-200 beds 201-300 beds > 300 beds

 150 beds --
0.10 (--)

1%
0.086 (0.007)

16%
0.089 (0.007)

71%
0.104 (0.006)

151-200 beds 99%
0.117 (0.009)

--
0.10 (--)

82%
0.109 (0.009)

100%
0.121 (0.007)

201-300 beds 84%
0.108 (0.007)

18%
0.093 (0.008)

--
0.10 (--)

98%
0.112 (0.006)

> 300 beds 29%
0.097 (0.006)

0%
0.083 (0.006)

2%
0.090 (0.005)

--
0.10 (--)

B. Hospitals grouped by ownership classification

Private
not-for-profit

Private
for-profit

Private
teaching Public

Private
not-for-profit

--
0.10 (--)

54%
0.101 (0.005)

60%
0.103 (0.008)

23%
0.088 (0.015)

Private
for-profit

46%
0.10 (0.005)

--
0.10 (--)

56%
0.103 (0.009)

20%
0.088 (0.014)

Private
teaching

40%
0.098 (0.008)

44%
0.099 (0.009)

--
0.10 (--)

22%
0.087 (0.017)

Public 77%
0.116 (0.019)

80%
0.116 (0.018)

78%
0.118 (0.022)

--
0.10 (--)

The first number in each cell is the posterior probability that the group quality probit Gq  in the
column category exceeds Gq  in the row category, and the second number is the posterior mean
probability of mortality in the row category given a 10% probability of mortality in the column
category, with the posterior standard deviation of this statistic in parentheses.
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Table 5
Relations between hospital quality probits and severity correlations in the sample

A. Variances and correlations of posterior means of jq , *
jq , and j

jq .0148 .766 .324
*
jq .0105 .0128 -.325

j .0018 -.0017 .0022

(Covariances shown below main diagonal; correlations shown above the main diagonal)

B. OLS regression of j  (posterior means) on jq  (posterior means)

j  = .124 jq ; 2R .105, s = .044
(.034)

C. OLS regression of *
jq  (posterior means) on jq  and j  (posterior means)

*
jq  = .905 jq  - 1.553 j  ; 2R .954, s = .022

 (.020)  (.052)

D. OLS regression of *
jq  (posterior means) on jq  (posterior means)

*
jq  = .712 jq ; 2R .587, s = .073

(.056)



29

References

Albert and Chib, 1993, “Bayesian Analysis of Binary and Polychotomous Response Data,”
Journal of the American Statistical Association, 422, 669-79.

Bernardo and Smith (1994), Bayesian Theory. Chichester: John Wiley and Sons.

Burns L, Wholey D., 1992, “The Impact of Physician Characteristics in Conditional Choice
Models for Hospital Care,” Journal of Health Economics 11, 43-62.

Chib, S., and Greenberg, 1996, “Markov Chain Monte Carlo Simulation Methods in
Econometrics,” Econometric Theory, 12, 409-31.

Cutler, D. M., 1995, “The Incidence of Adverse Medical Outcomes Under Prospective
Payment,” Econometrica, 63(1): 29-50.

Fine, J.M., J.D. Scinto, D.H. Galusha, M.K. Petrillo, T.P. Meehan, 1998, “Patient and
Hospital Characteristics Associated with Timely Care of Elderly Patients Hospitalized
with Pneumonia: Results from the Medicare Quality Indication System Pneumonia
Module,” Abstract Book, Association of Health Services Research, 15.

Gelfand, A.E., and A.F.M. Smith, 1990, “Sampling Based Approaches to Calculating
Marginal Densities,” Journal of the American Statistical Association 85: 398-409.

Geweke, J., 1997, “Posterior Simulators in Econometrics,” in D. Kreps and K.F Wallis (eds.),
Advances in Economics and Econometrics: Theory and Applications, vol. III. Cambridge:
Cambridge University Press, 128-165.

Geweke, J., 1999, “Using Simulation Methods for Bayesian Econometric Models: Inference,
Development and Communication,” (with discussion and rejoinder) Econometric
Reviews 18: 1-126.

Geweke, J., G. Gowrisankaran and R.J. Town, 2001, “Bayesian Inference for Hospital Quality
in a Selection Model,” Cambridge, MA: NBER Working Paper 8497.

Geweke, J., M. Keane and D. Runkle, 1997, “Statistical Inference in the Multinomial,
Multiperiod Probit Model,” Journal of Econometrics, 80, 125-65.

Gowrisankaran, G., and R.J. Town, 1999, “Estimating the Quality of Care in Hospitals Using
Instrumental Variables,” Journal of Health Economics 18, 747-67.

Gray, B., 1991, The Profit Motive and Patient Care, Cambridge, MA: Harvard University
Press.

Iezzoni, L.I., 1997, Risk Adjustment for Measuring Health Care Outcomes, Ann Arbor, MI:
Health Administration Press, 2nd Edition.,



30

Iezzoni, L.I. et al., 1996, "Severity Measurement Methods and Judging Hospital Death Rates
for Pneumonia," Medical Care, 34(1): 11-28.

Keane, M.P., 1992, “A Note on Identification in the Multinomial Probit Model,” Journal of
Business and Economic Statistics, 10, 193-200.

Keeler, E. B., K.L. Kahn, D. Draper, M.J. Sherwood, L.V. Rubenstein, E.J. Reinisch, J.
Kosecoff, and R.H. Brook, 1990, “Changes in Sickness at Admission Following the
Introduction of the Prospective Payment System.” Journal of the American Medical
Association, 264, 1962-68.

Keeler, E. B., et al., 1992, “Hospital Characteristics and Quality of Care.” Journal of the
American Medical Association, 268 (13): 1709-14.

Kessler, D. and McClellan, 2000, “Is Hospital Competition Socially Wasteful?” Quarterly
Journal of Economics, 115 (2): 577-615.

Lohr, K.N., ed., 1990, Medicare: A Strategy for Quality Assurance. Volume I. Washington
DC: National Academy Press.

Luft, H., et al., 1990, “Does Quality Influence Choice of Hospital?” Journal of the American
Medical Association 263, 2899-2906.

McClellan M, B. McNeil, and J. Newhouse, 1994, “Does More Intensive Treatment of Acute
Myocardial Infarction in the Elderly Reduce Mortality?” Journal of the American
Medical Association. 272, 859-866.

McClellan, M. and H. Noguchi, 1998, “Technological Change in Heart-Disease Treatment:
Does High Tech Mean Low Value,” American Economic Review (Papers and
Proceedings), 88 (2): 90-96.

McClellan M., and D. Staiger, 1999a, “Comparing Hospital Quality at For-Profit and Not-For-
Profit Hospitals,” NBER Working Paper 7324.

McClellan M., and D. Staiger, 1999b, “The Quality of Health Care Providers,” NBER
Working Paper 7327.

McGarvey, R. and J. Harper, 1993, “Pneumonia Mortality Reduction and Quality
Improvement in a Community Hospital,” Quality Review Bulletin, 19, 124-30.

National Center for Health Statistics (1996). Available on the Internet at
http://www.cdc.gov/nchswww/nchshome.htm.

Pennington, J., 1994, Respiratory Infections: Diagnosis and Management, New York: Raven
Press, 3rd edition.



31

Rello, J. and J. Valles, 1998, “Mortality as an Outcome in Hospital-Acquired Pneumonia,”
Infection Control and Hospital Epidemiology, 19(10): 795-7.

Sloan, F., 2000, “Not-for-profit Ownership and Hospital Behavior,” in A. J. Culyer and J.P.
Newhouse, ed., The Handbook of Health Economics, Volume 1, Amsterdam: Elsevier
Science.

Thomas, J.W. and M.L.F. Ashcroft, 1991, “Measuring Severity of Illness: Six Severity
Systems and their Ability to Explain Cost-variations,” Inquiry, 28, 39-55.

United States General Accounting Office, 1994, "Report Cards" Are Useful But Significant
Issues Need to be Addressed. (GAO/HEHS-94-219) Washington, DC: United States
General Accounting Office.

Wray, N. J. Hollingsworth, N. Petersen, and C. Ashton, 1997, “Case-Mix Adjustment Using
Administrative Databases: A Paradigm to Guide Future Research,” Medical Care
Research and Review, 54, 326-356.



A1

Bayesian Inference for Hospital Quality in a Selection Model:
Appendices

John Geweke, john-geweke@uiowa.edu
Gautam Gowrisankaran, gautam_gowrisankaran@nber.org

Robert J. Town, rjtown@umn.edu
July, 2002

Appendix A1: Construction of prior distributions

This appendix describes in detail the construction of the prior distributions used in the

selection model. The notation in this appendix is the same as in the paper.

A1.1 Prior distributions for  (selection model)

There are five coefficients in the vector  in the hospital multinomial choice model (2)

corresponding to the five covariates: distance from patient i’s home to hospital j, the square of

this distance, and the product of distance with age, disease stage, and income respectively. The

priors for the five coefficients are independent, each Gaussian with mean zero and a specified

standard deviation.

To construct these standard deviations, we took a random subsample of 1,000 patients

and constructed the covariate vectors 1, ,1000; 1, ,114ij i jz  of the multinomial choice

model. For each of the five covariates we found a value of the coefficient such that if all other

coefficients are zero then the joint probability that the patient goes to one of the 27 hospitals

farthest away is 0.003. We verified that these values resulted in the probabilities of the patient

going to the nearest hospital being between 0.1 and 0.2. These resulted in coefficient values of -

6, -12, -4, -5 and -35 for the respective covariates (ordered as in Table 4, bottom panel).

The prior standard deviations are therefore set to 6, 12, 4, 5 and 35, respectively. Since

the mean of all distributions is zero, the prior is centered about independence of hospital choice

from the covariates. But it is sufficiently inclusive that it renders reasonable what we regard as a

priori reasonable effects of the covariates on hospital choices.
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A1.2 Prior distribution for  (selection model)

We begin with the probit equation (2) of the hospital choice model before differencing,
* ; ~ ,i i i i JNc Z 0 I (A1.1)

Express the correlation between i  and the shock i  to the mortality equation (1) by means of

the linear projection

1
; ~ 0,1J

i i ij i ij
N . (A1.2)

This equation corresponds to (5) in the paper; we return to this correspondence below.

Suppose that in the system (A1.1)-(A1.2) our prior distribution for  is

 1~ 0, JN h I (A1.3)

In (A1.3) the priors are independent and exchangeable across hospitals. The corresponding

correlation between i  and i  is 
1 2

1j j . Since the distribution in (A1.3) is

symmetric about zero, the prior correlation between the parameters j  and k  is zero.

As explained between (2) and (3) in the paper, normalizing * 0Jc  leads to

*
1 1 1, ~ , ,i i i i J J JNc Z 0 I e e

which is (3) in the paper. Express the linear projection of i  on i  as

1 * *
1

J
i j ij ij

. (A1.4)

The asterisks in this equation reflects the fact that *var 1i  whereas var 1i  in (5). The

next step is to derive * * *
1 1, , J  and *var i .

From (A1.4), and then from (A1.1)-(A1.2),

1 1* 1
1 1var cov , var cov , .i i i i J J i J JJ Je e (A1.5)

(In this expression, the subscript “J” denotes the last element of the 1J  vector, and the

subscript “ J ” denotes the first 1J  elements of the 1J  vector.) Since the prior distribution

of  is (A1.3), the prior distribution of *  is also normal, with mean zero and variance
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* 1 1
1var var J JJ e .

Since

11 1 1
1 1 1 1 1 1

1

var ,J
J J J J J J J JJ

J

h h h
I

e I e I I e e
e

* 1 1 1
1 1 1var J J Jh h JI e e . (A1.6)

Because *var 1i  whereas var 1i  in (5), *  differs from  by a scale factor.

The prior for  will have mean zero and variance proportional to (A1.6). To obtain the factor of

proportionality, scale *  by 
1*var i  to obtain var . By the usual population regression

formulas, * * *var vari i . From (A1.5),

1* * 1
1 1

1

1 1
1 1 1 1 1

1

1 1
1 11 1 1 1

1 1
1

.
1

J
J J

J

J
J J J J J

J

J J J J
J J J

J

J

J J
J

J J

I
I e

e

I
I e e I e

e

I e e e
I e e

e

(A1.7)

Hence from (A1.2) and (A1.7),
22* 1 1 1

1
var 1 1 1J

i J J J J jj
J J JI e e e . (A1.8)

Thus 1~ , TN h0 I  implies the prior expectation 1 1h  for *var i . This leads to the

appropriate normalization for (A1.6),
1

11 1
1var 1

1
h

h
h

.

Since *var i  involves , the implied distribution for  under the normalization

var 1i  of (5) is not Gaussian. We therefore conjecture a Gaussian prior distribution for ,

and then examine whether it is in fact similar to the non-Gaussian prior implied by (A1.3) and

(5). From (A1.3) and (A1.8), the prior expectation of *var i  is 11 h . Our conjectured

Gaussian distribution for  is therefore
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2 1~ 0,N , with 
12 1 h . (A1.9)

A series of numerical experiments showed that the non-Gaussian prior implied by (A1.3)

and (A1.5), and the Gaussian prior (A1.9), give essentially identical moments for the correlations

j  and j , for the same values of h . Table A1 shows the relationships between h  and some

moments of j  and j . (In Table A1, 2 1R , the fraction of variance in the

mortality shock explained by the hospital choice probits in (A1.2); 2 1R , the

fraction of variance in the mortality shock explained by the hospital choice probits in (5).)

Observe that as the standard deviation in the elements of , 1 2h , increases, 2R  and 2R

increase; that this must happen is obvious from (A1.2) and (5). But the correlations j  and j

do not increase significantly beyond 1 2 .08h . This is due to the large number of hospitals, and

the symmetry of the prior in . For the work reported in this paper, we chose 1 2 0.2h , or

equivalently, 0.196 .

A1.3 Prior distributions for 

The variance component structure in the prior for  described in the text can be used to

simplify the coding of the algorithm detailed in Appendix A2. Let W be a 9J J  matrix of

hospital characteristics. Let the first column of W be entirely units, columns 2 through 5

dichotomous variables for the four ownership categories, and columns 6 through 9 dichotomous

variables for the four size categories. Redefine  to be the 9 1J  vector of corresponding

coefficients. The priors for the components of this vector are mutually independent, with
2

1 ~ 0, 3N . The hierarchical prior distribution for 2 9, , J  is

2 2 2 2

2 2 2 2

2 2 2 2

, 0, 2,3, 4,5 ;

, 0, 6,7,8,9 ;

, 0, 10, , 9 .

p p p j p

s s s j s

u u u j u

s N j

s N j

s N j J

In the prior distribution used in the paper, 2 2 2 1.25p s us s s  for the conventional probit model

with 1 . As discussed in Section 2.2, the variances in the selection model are scaled by
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2 1 1 5.35J , so that 2 2 2 6.68p s us s s . For both models 5p s u . It is

readily verified that the prior distribution of W  is the same as the prior distribution of 

described in the text. The elements of the 9 1J  vector  have proper prior distributions,

and the posterior distribution of W  is exactly the same as that of  described in the text.

A1.3 Prior distributions for 

The demographic covariates ix  are of two types: dichotomous variables, and two

continuous variables (income and its square). The coefficients i  of the dichotomous variables

are independent in the prior, all with standard deviation 0.5 in the conventional probit model

with 1 . The coefficients on income and its square (call them 1 2 and ) are derived from the

independent priors
2 2

1 2

2 2 2
1 2

~ 0,0.25 ,

2 2 ~ 0,0.25 .

y y N

y y N

Substituting for average income y , scaling y by 510  and 2y  by 910  (as was done in variable

construction) yields prior variances of 3.603 and 0.1437 for 1  and 2 , respectively, and a prior

covariance of –0.7026. As discussed in Section 2.2, these coefficients are scaled by
1 22 1 1 2.31J  for the selection model relative to these values.

Appendix A2: Details of distributions and computations

This appendix describes in detail the prior and data distributions used in the selection

model, and the probit model. The notation in this appendix is the same as in the paper.

A2.1 Notation

The notation in this appendix is the same as in the paper. We collect all the definitions here

for reference, and introduce some additional useful notation.

 Indexing:

1, ,i n Patients in sample
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1, ,j J Hospitals in Los Angeles County, California

 Observed variables:

im Mortality indicator, 1 if patient dies, else 0

: 1i Jc Hospital choice indicator, 1ijc  if i chooses j, else 0

: 1i kx Individual characteristics affecting mortality

: 1i J qZ Individual characteristics affecting hospital choice

: 9J JW Matrix of hospital characteristics

,i i iu c W x

 Latent variables
*
im Mortality probit

* : 1 1i Jc Hospital choice probit

 Miscellaneous:

S z Indicator function, 1S z  if z S , else 0

: 1n ne 1, .,1ne

A2.2 Model

The model for the latent variables and observables is:
* *, 0i i i iJcc Z

* *
0,1

J
ij ij ic c c

*
i i i i im c W x

*
0,i im m

~ N ,
1

IID
i

i

0
0

0
; 1 1 1J J JI e e

2 2 2, ,p s u , , , ,

A2.3 Prior distribution
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As motivated in the text the prior distribution consists of three, independent components:

2 2 2 , ,j j js j p s u and 1~ N , H ; 1~ N , H ; 1~ N , H . Hence

the prior density is
1 2 2 22 2 2 2 2

, ,

1 2 1 2 1 21 2

p , , , 2 2 exp 2

2

exp .5 .

j jj
j j j j jj p s u

r k J q

s s

H H H

H H H

(A2.1)

A2.4 Distribution of observables and latent variables

To derive the joint density of the observable data and latent variables for individual I, let

, , , , ,i iZ W . Then

* * * * * * * *

* * * * *

p , , , p p , p , , p , ,

p , , p p , , , , , , , p

i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i

m m m

m m m

c c m m c c c c c c c

c Z c c c c Z W

1 22 * 1 * * *
0,1 1

2
* * * *

0, ,0

2 exp .5

exp .5 1 .

JJJ
i i i i ij ij ij

i i i i i i i i

c c c

m m m m m

c Z c Z

u c Z
(A2.2)

Since individuals are independent, the joint distribution of observables and latent variables

for all individuals is the product of this expression over 1, ,i n .

A2.5 Gibbs sampling algorithm

The posterior density is proportional to the product of the prior density (A2.1) and the

distribution of observables and latent variables (A2.2) over 1, ,i n , taking the observables as

fixed and the unobserved latent variables and parameters as the arguments of the posterior

density. In a Gibbs sampling algorithm (Gelfand and Smith, 1990; Geweke, 1997) the

unobservables are grouped and successive drawings are made for each group. Given weak

regularity conditions, the unique stationary distribution of these repeated drawings is the
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posterior distribution. In the algorithm described here there are 2 2n  groups: * 1, ,i i nc ,

* 1, ,im i n , , and . In each case the conditional distribution may be determined by

examining the kernel of the posterior density in the vector being drawn.

The latent vectors * 1, ,i i nc  are conditionally independent, with * 1~ N ,i i ic c H  where

1
iH , 1 1 *

i i i i i imc H Z u Z ,

and subject to * * 0ij ic c  where : 1ijj c . While the elements of *
ic  can be drawn in succession

using the generic algorithm in Geweke (1991), the fixed structure of  permits a more efficient

procedure. Specifically, it can be shown that conditional on all the other parameters and latent

variables, the j’th element of *
ic , denoted *

ijc , is

1 1* 1 2 1 * 1 2~ N 1 , 1ij ij j j i i jj
c c J J c c J ,

truncated to the interval *0, max ,j ic  if j is the observed choice; truncated to the

interval *, ikc  if ,k j J  is the observed choice; and to ,0  if k J  is the observed

choice.

The latent vectors * 1, ,im i n  are conditionally independent, with

* *~ N ,1i i i im cu Z  subject to *2 1 0i im m .

The conditional distribution of  is 1~ N , H  where

1
1

n
i ii

H H Z Z

1 1 * * *
1

n
i i i i ii

mH H Z c c u .

Let , . The conditional distribution of  is 1~ N ,H  where

*
*1

1 *
*1

,

.

n i
i i ii

i i

n i
ii

i i

m

uH 0
H u c Z

c Z0 H

u
H H

c Z

Finally,
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2 2 2 , ,j j js j p s u

where 52 2 2
2

, 4p p j p pj
s s , 92 2 2

6
, 4s s j s sj

s s , 92 2 2
10

J
u u jj

s s , and

u u J .

The conditions set forth by Roberts and Smith (1994) for the posterior distribution to be the

unique stationary distribution for a Gibbs sampling algorithm, described as Gibbs sampler

convergence condition 2 in Geweke (1997) are satisfied. The key technical condition is that the

support of the posterior distribution in latent variables and parameters is connected and upper

semicontinuous.

A2.6 Computation time

Using an IBM 332Mhz 604e processor and ESSL matrix computation routines, the

computational time per iteration was approximately 6 minutes. This processor is comparable to a

Pentium III 600. We then used an IBM SP supercomputer with Silver nodes, each of which has

the 604e processor as its base, in order to compute each iteration in parallel. Two steps were very

parallelizable: the *
ijc  can be computed in parallel for each individual, and the matrix

multiplications necessary to compute the conditional posterior of  can also be broken up by

individual. We were able to reduce the computation time close to proportionally to the number of

processors that we used. For instance, the algorithm took 100 seconds per iteration with 4

processors, 60 seconds per iteration with 8 processors and 33 seconds per iteration with 20

processors. Thus, computation time for 20,000 iterations with 20 processors is roughly 8 days.

Appendix A3: Accuracy of the MCMC approximation to posterior moments

Collect the parameter vectors in the single vector , , ,  and the data in the

single vector y. A posterior moment can then be expressed E g y  for the appropriate

function of interest g. The Gibbs sampling algorithm produces serially correlated draws
1 , , M  from the posterior distribution. Hence 1g , ,g M  is a sequence of draws

from the posterior distribution of g . The numerical approximation of E gg y  is
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1
1
gM m

M m
g M . Standard methods for serially correlated time series (Geweke (1999),

Section 3.7) then produce a consistent (in M) approximation of 
22 lim E M

M M g g .

[Expectation in the latter expression is with respect to the Markov chain that defines the Gibbs

sampling algorithm.]

The efficiency of any Markov chain Monte Carlo (MCMC) algorithm can be evaluated by

comparing 2  with the posterior variance of g , 
22 E g g y . If the algorithm

produced iid draws from the posterior distribution, then 2 2 . More generally, the relative

numerical efficiency of any MCMC algorithm for the function of interest g  is

2 2RNE . Numerical approximations of g based on M iterations of the algorithm will have

the same accuracy as RNE M  iterations from a hypothetical algorithm that made iid drawings

directly from the posterior distribution. The ratio of the standard error of approximation
1 22 M , to the posterior standard deviation , is 1 2RNE M . For any given posterior

distribution and MCMC algorithm, RNE will be different for different functions of interest.

The results reported in the paper are based on 20,000 iterations of the Gibbs sampler.

Visual inspection of parameter draws shows that convergence to the invariant (i.e., posterior)

distribution occurs within the first 1,000 iterations, which are discarded. Of the remaining

19,000, every tenth iteration is used to compute posterior moments. (This reduces the size of the

posterior files. Because of the serial correlation in functions of interest over iterations, little

information is lost.)

The values of NSE and RNE corresponding to the moments reported in Table 4 are

provided in Table A2. (RNE is computed from the 1900 retained iterations.)  The Gibbs

sampling algorithm for the probit model exhibits no serial correlation, and consequently

numerical standard errors are all about 1 1900 1 44  of the posterior standard deviation. The

degree of serial correlation in the Gibbs sampling algorithm for the selection model varies,

depending on the moments. Serial correlation is modest for the demographic and severity

coefficients in the mortality probit equation, with all but one RNE greater than 0.2. For the group

quality probits and the coefficients in the multinomial probit hospital selection model serial

correlation is greater, with RNEs between 0.004 and 0.014. Observe that if RNE is 0.01, with
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1900 iterations the variance in the posterior moments due to simulation is 1/19 that of the

posterior variance itself: stated less formally, simulation noise inflates the posterior standard

deviation by 1 220 19 1 2.6% .

Table A3 provides similar information about the numerical accuracy of approximations

in the Gibbs sampling algorithm for the quality probits jq  (selection model) and *
jq  (probit

model) and for j , the correlation between the mortality probit equation shock and the shocks to

the hospital choice multinomial probit model. The RNEs for *
jq  in the probit model are centered

about 1.0, as was the case for all moments of this model in Table A2. The RNEs of the quality

probits jq  in the selection model are comparable to those of the group quality probits and 

vector in Table A2, while for the correlations j  they are somewhat lower.

Appendix A4: Rankings of hospitals

Table A4 provides rankings for hospitals based on quadratic and absolute value loss

functions, using the posterior density from the selection model. Table A5 provides pairwise

comparisons: for hospitals at equally spaced quartiles of the posterior quality distribution, the

table indicates the posterior probability that the hospital has lower quality than each of the other

hospitals in the set. The choice of loss function does not have a large effect on the orderings of

relative quality. The majority of hospitals have probability of at least 0.05 of being in any of

three quartiles of the distribution. Roughly 10% of hospitals appear to be either better or worse

than average, with posterior probability of at least 95%. Fairly confident pairwise rankings can

be made for the ends of the distribution but not for the majority of hospitals.

Tables A6 and A7 provide the same figures as Tables A4 and A5 respectively, using the

posterior density from the probit model. The two sets of tables indicate substantially different

orders of rankings, but similar magnitudes of coefficients. In both models, there are 42 hospitals

that have quality probit exceeding 0.1 in absolute value. However, the probit model exhibits

somewhat more confidence about the rankings. There are only 9 hospitals (as opposed to 21 for

the selection model) for which the probability of placement is at least .10 in each quartile, and

about 25% of hospitals appear to be either better or worse than average, with posterior
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probability of at least 95%. The greater confidence in rankings can be ascribed to the restriction

of no correlation between shocks to hospital choice and mortality in the probit model.

Appendix A5: Results with alternative prior distributions

Section 4.4 of the paper describes three alternative priors chosen to study their impact on

the results. To recapitulate, variant A effectively eliminates the instruments, by scaling the prior

standard deviations of the coefficient vector  in the multinomial hospital assignment model by

the factor 610 . This leaves only the functional form to identify the hospital-specific parameters

in the mortality equation. Variant B scales the prior standard deviations of  in the original

selection model downward by a factor of 5. It does the same for the hospital coefficients  in

the mortality probit equation, by taking 2 2 21 1
5 51.25 1 1 ~ 5jJ  rather than

2 2 21.25 1 1 ~ 5jJ . Variant C is like Variant B except that prior standard

deviations are increased by a factor of 5 relative to the base model. Variants B and C are simply

reasonable alternatives to the base prior used in the paper.

Tables 3 and 4 in the paper are reproduced for each of these variants in this appendix: for

variant A in Tables A8 and A9, for variant B in Tables A10 and A11, and for variant C in Tables

A12 and A13. Turning first to the variants on Table 3 (i.e. Tables A8, A10, A12), note that there

is almost no sensitivity of the covariate coefficients in the mortality equation to the three

alternative priors. Given that (1) the priors for these coefficients are the same in all three

variants, (2) these priors are independent of the priors for all the other parameters in the model,

and (3) that hospital choice and unobserved disease severity are orthogonal to the covariates in

the sample, the posterior distribution of the covariate coefficients in the mortality equation would

be the same under all three priors. Conditions (1) and (2) are met here; (3) cannot be verified, but

it is reasonable as an approximation and is the leading interpretation of the insensitivity of

mortality covariate coefficients to priors for hospital quality and the hospital choice multinomial

probit model. The posterior distribution of the coefficient vector  in this model is little affected

by the alternative priors B and C, while of course under variant A these coefficients are much

smaller.
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As one would expect, there is substantially more variation in the group hospital quality

probits jq , across the alternative priors. Table A14 provides the correlation coefficients between

the posterior means of the individual hospital quality probits across the 114 hospitals. The

correlations between the base selection model and prior variants B and C are both 0.80, whereas

correlation between the base model and prior variant A is 0.34. These comparisons support the

conclusion of the paper (in Section 4.4) that reasonable variations in the prior distribution

produce distinct but small effects on the posterior moments of interest, while eliminating the

instruments from the selection model produces a substantially larger effect.

This relationship between the alternative priors and the base model is also evident in the

posterior probability comparisons of orderings in group quality probits: see the variants on Table

4 in Tables A9, A11 and A13. For the hospital size and ownership group quality probits, the

results are clear: the tighter (B) and looser (C) priors produce results close to the base model. By

contrast elimination of instruments (prior variant A) produces results entirely dissimilar from the

base model.
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Table A1

Relationship between 1 2h  and severity correlations

1 2h .01 .08 .20 .50 .80

jE .008 .048 .067 .067 .067

. . js d .010 .050 .060 .061 .061

,i jcorr
.001 .005 .005 .005 .005

2R .001 .060 .271 .683 .838

2. .s d R .0005 .025 .088 .104 .070

jE .008 .067 .067 .067 .067

. . js d .006 .051 .051 .051 .051

,i jcorr .223 .233 .233 .233 .233

2R .011 .421 .819 .966 .986

2. .s d R .0015 .032 .020 .005 .002
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Table A2
Posterior numerical standard errors and relative numerical efficiencies

Coefficient Selection model

1 21

Age 70-74 -0.009 (.024) [.0005, 1.040]
Age 75-79 0.065 (.023) [.0011, 0.220]
Age 80-84 0.184 (.023) [.0010, 0.296]
Age > 84 0.369 (.022) [.0001, 0.269]
Female -0.087 (.013) [.0006, 0.258]
Black -0.020 (.028) [.0021, 0.099]

Hispanic -0.122 (.022) [.0011, 0.210]
Native 0.152 (.133) [.0039, 0.622]
Asian -0.091 (.030) [.0010, 0.466]

Income 0.222 (.021) [.0068, 0.490]D
em

og
ra

ph
ic

 c
ov

ar
ia

te
s

Income^2 -0.028 (.024) [.0008, 0.478]
1 21

Emergency admit 0.180 (.015) [.0006, 0.327]
Disease stages 1.3-2.3 0.089 (.028) [.0009, 0.502]
Disease stages 3.1-3.6 0.493 (.023) [.0004, 1.849]

Disease stage 3.7 0.635 (.019) [.0008, 0.292]

D
is

ea
se

 se
ve

rit
y

co
va

ria
te

s

Disease stage 3.8 1.396 (.038) [.0010, 0.704]

Gq G

150 beds or less 0.018 (0.021) [0.0053, 0.008] 0.001 (0.008) [0.0025, 0.006]
151 to 200 beds -0.069 (0.032) [0.0065, 0.012] -0.017 (0.003) [0.0032, 0.007]
201 to 300 beds -0.023 (0.027) [0.0052, 0.014] -0.010 (0.011) [0.0024, 0.010]
Over 300 beds 0.039 (0.020) [0.0040, 0.013] 0.022 (0.008) [0.0022, 0.006]

Private, not for profit 0.006 (0.018) [0.0041, 0.011] 0.003 (0.008) [0.0020, 0.008]
Private, for profit 0.007 (0.015) [0.0039, 0.008] 0.008 (0.006) [0.002, 0.007]
Private Teaching 0.019 (0.041) [0.0121, 0.006] 0.006 (0.014) [0.0045, 0.005]H

os
pi

ta
l g

ro
up

 q
ua

lit
y

pr
ob

its
 a

nd
 se

ve
rit

y
co

rr
el

at
io

ns

Public -0.071 (0.089) [0.0319, 0.004] -0.017 (0.029) [0.0113, 0.003]
2 1

Size 0.020 (0.144) [0.0057, 0.334]
Ownership 0.020 (0.135) [0.0042, 0.537]V

ar
ia

nc
e

of
 q

ua
lit

y

Individual Hospital 0.037 (0.006) [0.0005, 0.099]

Distance -13.65 (0.15) [0.022, 0.024]

Distance 2 12.43 (0.09) [0.015, 0.015]

Distance Age -0.453 (0.025) [0.0057, 0.010]

Distance Severity -0.311 (0.034) [0.0066, 0.014]

H
os

pi
ta

l c
ho

ic
e

co
va

ria
te

s

510 Distance
Income

-0.974 (0.257) [0.0256, 0.053]

Notation and definitions are exactly as in Table 3 of the paper. The first two numbers in each entry indicate the
posterior mean and standard deviation, respectively. The pair of numbers in brackets, separated by a comma,
indicate the numerical standard error (NSE) and relative numerical efficiency (RNE) for the Gibbs sampling
approximation of the corresponding posterior mean.
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Table A2 (continued)
Posterior means and standard deviations

Coefficient Probit model

Age 70-74 -0.008 (0.025) [0.0005, 1.354]
Age 75-79 0.068 (0.024) [0.0004, 1.842]
Age 80-84 0.187 (0.024) [0.0005, 1.317]
Age > 84 0.374 (0.022) [0.0003, 3.669]
Female -0.087 (0.013) [0.0003, 1.339]
Black -0.025 (0.028) [0.0006, 1.356]

Hispanic -0.126 (0.023) [0.0006, 0.712]
Native 0.168 (0.134) [0.0028, 1.168]
Asian -0.091 (0.031) [0.0004, 3.106]

Income 0.253 (0.201) [0.0032, 2.074]D
em

og
ra

ph
ic

 c
ov

ar
ia

te
s

Income^2 -0.033 (0.024) [0.0004, 1.549]

Emergency admit 0.181 (0.016) [0.0003, 1.889]
Disease stages 1.3-2.3 0.089 (0.028) [0.0007, 0.940]
Disease stages 3.1-3.6 0.496 (0.023) [0.0005, 1.015]

Disease stage 3.7 0.640 (0.018) [0.0004, 1.061]

D
is

ea
se

 se
ve

rit
y

co
va

ria
te

s

Disease stage 3.8 1.412 (0.037) [0.0008, 1.239]
*
Gq

qu
al

i
ty pr
ob its an
d

150 beds or less 0.007 (0.012) [0.0002, 1.252]
151 to 200 beds -0.034 (0.018) [0.0006, 0.422]
201 to 300 beds -0.003 (0.013) [0.0003, 1.418]
Over 300 beds 0.004 (0.012) [0.0001, 3.594]

Private, not for profit -0.001 (0.009) [0.0001, 2.454]
Private, for profit -0.008 (0.009) [0.0002, 1.057]
Private Teaching 0.021 (0.024) [0.0005, 1.013]

Public -0.167 (0.042) [0.0009, 1.077]
2

Size 0.209 (0.155) [0.0028, 1.601]
Ownership 0.208 (0.155) [0.0039, 0.841]

V
ar

ia
nc

e
of

 q
ua

lit
y

Individual Hospital 0.030 (0.005) [0.0001, 1.353]

Notation and definitions are exactly as in Table 3 of the paper. The pair of numbers in brackets, separated by a
comma, indicate the numerical standard error (NSE) and relative numerical efficiency (RNE) for the Gibbs sampling
approximation of the corresponding posterior mean.
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Table A3
Some relative numerical efficiencies of the algorithm for hospital-specific parameters

Parameter name jq j
*
jq

Average efficiency .0201 .0084 1.62

Lowest .0039 .0036 0.27

Third quartile .0074 .0051 0.91

Median .0103 .0064 1.23

First quartile .0215 .0095 2.02

Highest .1687 .0723 4.86

Number of parameters 114 113 114

Posterior moments are computed using every 10th draw of the Gibbs sampling algorithm. Relative numerical
efficiency is the ratio of the estimated variance of numerical approximation errors using every 10th draw, to the
estimated posterior variance.
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Table A4
Posterior distribution of hospital quality probits, selection model

Hospital name jq Rank Quartile probabilities
Mean Mean Median

1  MONTEREY PARK HOSPITAL 0.338 6.7 3 0.959 0.037 0.004 0
2  ST. JOHNS HOSPITAL AND HEALTH 0.294 7.9 5 0.964 0.034 0.003 0
3  TERRACE PLAZA MEDICAL CENTER 0.258 13.2 8 0.88 0.096 0.02 0.004
4  SAN DIMAS COMMUNITY HOSPITAL 0.231 15.4 11 0.839 0.138 0.022 0.001
5  QUEEN OF ANGELS/HOLLYWOOD PRES 0.194 18.9 12 0.769 0.197 0.034 0
6  DANIEL FREEMAN MARINA HOSPITAL 0.181 22.9 15 0.691 0.223 0.077 0.009
7  EAST LOS ANGELES DOCTORS HOSPI 0.173 24.2 16 0.685 0.206 0.089 0.019
8  COMMUNITY HOSPITAL OF HUNTINGT 0.183 25.4 15 0.687 0.17 0.097 0.046
9  WOODRUFF COMMUNITY HOSPITAL 0.165 26.1 19 0.646 0.235 0.099 0.02
10  LOS ANGELES COMMUNITY HOSPITAL 0.159 27.3 19 0.633 0.229 0.106 0.032
11  LINDA VISTA COMMUNITY HOSPITAL 0.165 27.4 19 0.632 0.221 0.113 0.034
12  KAISER FOUNDATION HOSPITAL - L 0.15 27.7 22 0.608 0.272 0.107 0.012
13  AMI TARZANA REGIONAL MEDICAL C 0.14 28.4 21 0.597 0.277 0.102 0.024
14  MISSION HOSPITAL 0.146 28.8 22 0.609 0.248 0.112 0.031
15  BELLFLOWER DOCTORS HOSPITAL 0.141 30.2 25 0.555 0.295 0.126 0.024
16  CEDARS SINAI MEDICAL CENTER 0.115 30.4 29 0.486 0.456 0.058 0
17  NU MED REGIONAL MED CENTER WES 0.118 31 27 0.536 0.344 0.108 0.012
18  DOCTORS HOSPITAL OF LAKEWOOD - 0.14 31.7 22 0.574 0.222 0.154 0.051
19  WHITE MEMORIAL MEDICAL CENTER 0.118 32.6 26 0.548 0.293 0.116 0.044
20  PRESBYTERIAN INTERCOMMUNITY HO 0.111 34.3 24 0.565 0.206 0.174 0.055
21  CIGNA HOSPITAL OF LOS ANGELES 0.114 34.5 28 0.502 0.3 0.152 0.047
22  ST. MARY MEDICAL CENTER 0.101 34.8 30 0.457 0.385 0.139 0.018
23  ST. VINCENT MEDICAL CENTER 0.089 36.1 34 0.384 0.481 0.13 0.005
24  ANTELOPE VALLEY HOSPITAL MEDIC 0.092 36.1 32 0.425 0.414 0.151 0.011
25  GREATER EL MONTE COMMUNITY HOS 0.083 38.1 36 0.373 0.444 0.173 0.009
26  SANTA MARTA HOSPITAL 0.081 39.1 35 0.402 0.388 0.161 0.049
27  LOS ANGELES CO. USC MEDICAL CE 0.078 39.8 36 0.376 0.395 0.193 0.037
28  SHERMAN OAKS COMMUNITY HOSPITA 0.076 40 38 0.363 0.408 0.195 0.033
29  GLENDALE MEMORIAL HOSPITAL & H 0.074 40.9 40 0.299 0.476 0.206 0.018
30  ST. JOSEPH MEDICAL CENTER 0.068 41.4 37 0.373 0.374 0.217 0.036
31  SOUTH BAY HOSPITAL 0.075 41.6 37 0.385 0.337 0.197 0.081
32  PACIFIC ALLIANCE MEDICAL CENTE 0.071 41.8 38 0.377 0.343 0.211 0.069
33  WESTSIDE HOSPITAL 0.072 42.1 40 0.362 0.358 0.217 0.063
34  COVINA VALLEY COMMUNITY HOSPIT 0.069 42.6 38 0.379 0.335 0.207 0.079
35  LITTLE COMPANY OF MARY HOSPITA 0.061 42.7 39 0.307 0.434 0.224 0.035
36  MOTION PICTURE & TELEVISION HO 0.073 43.5 37 0.414 0.258 0.192 0.135
37  KAISER FOUNDATION HOSPITAL - P 0.059 43.9 41 0.309 0.397 0.241 0.053
38  HENRY MAYO NEWHALL MEMORIAL HO 0.047 45.8 45 0.182 0.565 0.243 0.011
39  KAISER FOUNDATION HOSPITAL - B 0.053 46.1 45 0.316 0.333 0.274 0.078
40  GLENDALE ADVENTIST MED CENTER 0.046 46.3 44 0.299 0.368 0.285 0.047
41  SANTA MONICA HOSPITAL MEDICAL 0.048 46.3 44 0.286 0.367 0.295 0.052
42  UCLA MEDICAL CENTER 0.047 46.5 42 0.281 0.412 0.217 0.091
43  HOLLYWOOD COMMUNITY HOSPITAL 0.044 48.4 44 0.317 0.301 0.233 0.149
44  ALHAMBRA COMMUNITY HOSPITAL 0.041 48.9 48 0.26 0.353 0.301 0.086
45  HUMANA HOSPITAL WEST HILLS 0.033 49.5 48 0.207 0.419 0.312 0.062
46  VALLEY PRESBYTERIAN HOSPITAL 0.037 49.8 49 0.227 0.373 0.328 0.072
47  CENTINELA HOSPITAL MEDICAL CEN 0.034 49.8 48 0.259 0.345 0.298 0.097
48  BEVERLY HILLS MEDICAL CENTER 0.035 50.6 49 0.29 0.298 0.263 0.149
49  HAWTHORNE HOSPITAL 0.027 51.7 50 0.241 0.342 0.293 0.124
50  KAISER FOUNDATION HOSPITAL - H 0.033 52 53 0.314 0.223 0.282 0.182
51  SAN PEDRO PENINSULA HOSPITAL 0.027 52 53 0.222 0.329 0.364 0.085
52  LONG BEACH DOCTORS HOSPITAL 0.016 53.8 53 0.236 0.309 0.302 0.153
53  METHODIST HOSPITAL OF SOUTHERN 0.014 53.9 51 0.181 0.396 0.314 0.109
54  SAN FERNANDO COMMUNITY HOSPITA 0.011 55.1 56 0.243 0.279 0.291 0.187
55  INTER COMMUNITY MEDICAL CENTER 0.009 55.7 55 0.115 0.42 0.379 0.086
56  BAY HARBOR HOSPITAL 0.002 57 57 0.074 0.433 0.419 0.074
57  PICO RIVERA COMMUNITY HOSPITAL -0.003 58.2 59 0.201 0.284 0.301 0.215
58  CHARTER SUBURBAN HOSPITAL -0.008 59 59 0.162 0.329 0.311 0.198
59  MONROVIA COMMUNITY HOSPITAL -0.016 59.8 58 0.225 0.267 0.234 0.273
60  BROTMAN MEDICAL CENTER -0.009 60.4 62 0.13 0.311 0.383 0.177
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61  CENTURY CITY HOSPITAL -0.015 60.8 61 0.127 0.323 0.363 0.188
62  MEMORIAL MEDICAL CENTER OF LON -0.014 61 63 0.144 0.303 0.352 0.202
63  AMI GLENDORA COMMUNITY HOSPITA -0.019 61 61 0.164 0.301 0.288 0.246
64  LANCASTER COMMUNITY HOSPITAL -0.018 61.9 62 0.062 0.377 0.407 0.154
65  BELLWOOD GENERAL HOSPITAL -0.02 62 63 0.147 0.286 0.339 0.228
66  RIO HONDO MEMORIAL HOSPITAL -0.023 62.1 62 0.088 0.348 0.388 0.175
67  NORTHRIDGE HOSPITAL MEDICAL CE -0.02 62.1 62 0.059 0.362 0.435 0.144
68  QUEEN OF THE VALLEY HOSPITAL - -0.022 62.6 64 0.074 0.322 0.453 0.152
69  PACIFICA HOSPITAL OF THE VALLE -0.022 62.9 65 0.132 0.271 0.371 0.226
70  CHARTER COMMUNITY HOSPITAL -0.03 64.1 65 0.094 0.311 0.375 0.22
71  LOS ANGELES DOCTORS HOSPITAL -0.035 64.7 67 0.149 0.259 0.302 0.291
72  MIDWAY HOSPITAL MEDICAL CENTER -0.034 65.6 70 0.098 0.272 0.392 0.238
73  COMMUNITY HOSPITAL OF GARDENA -0.043 66.7 70 0.124 0.244 0.328 0.304
74  HOLY CROSS MEDICAL CENTER -0.045 68.3 71 0.047 0.271 0.445 0.237
75  BEVERLY HOSPITAL -0.047 68.5 73 0.105 0.218 0.361 0.316
76  ROBERT F. KENNEDY MEDICAL CENT -0.054 68.8 71 0.088 0.259 0.335 0.317
77  TEMPLE COMMUNITY HOSPITAL -0.055 69.2 72 0.084 0.263 0.335 0.319
78  MEDICAL CENTER OF LA MIRADA -0.056 69.2 73 0.117 0.217 0.323 0.343
79  PALMDALE HOSPITAL MEDICAL CENT -0.049 69.3 71 0.033 0.262 0.465 0.24
80  HUNTINGTON MEMORIAL HOSPITAL -0.051 70 71 0.013 0.265 0.486 0.236
81  NORWALK COMMUNITY HOSPITAL -0.062 71.4 74 0.056 0.235 0.388 0.321
82  ST. LUKE MEDICAL CENTER -0.066 71.5 74 0.054 0.254 0.357 0.335
83  LOS ANGELES CO. OLIVE VIEW MED -0.082 74.2 79 0.081 0.197 0.319 0.403
84  TORRANCE MEMORIAL HOSPITAL MED -0.073 74.4 77 0.024 0.223 0.398 0.355
85  DANIEL FREEMAN MEMORIAL HOSPIT -0.078 74.5 78 0.053 0.221 0.328 0.398
86  GARFIELD MEDICAL CENTER -0.086 74.6 76 0.046 0.224 0.358 0.372
87  ST. FRANCIS MEDICAL CENTER -0.078 75.2 78 0.023 0.213 0.391 0.373
88  ENCINO HOSPITAL -0.086 75.5 80 0.058 0.194 0.326 0.422
89  THE HOSPITAL OF THE GOOD SAMAR -0.085 76.3 77 0.017 0.202 0.399 0.383
90  DOWNEY COMMUNITY HOSPITAL -0.083 76.8 79 0.016 0.185 0.417 0.382
91  KAISER FOUNDATION HOSPITAL - W -0.095 77 81 0.047 0.195 0.328 0.431
92  POMONA VALLEY HOSPITAL MEDICAL -0.085 77.6 81 0.009 0.173 0.413 0.405
93  WHITTIER HOSPITAL MEDICAL CENT -0.106 78.2 84 0.073 0.166 0.285 0.477
94  GRANADA HILLS COMMUNITY HOSPIT -0.094 78.3 83 0.027 0.181 0.349 0.442
95  PIONEER HOSPITAL -0.096 79.1 85 0.043 0.141 0.346 0.471
96  PANORAMA COMMUNITY HOSPITAL -0.114 81.3 87 0.041 0.147 0.302 0.51
97  LOS ANGELES CO. MARTIN L. KING -0.151 82.4 88 0.05 0.161 0.279 0.51
98  LONG BEACH COMMUNITY HOSPITAL -0.122 83.6 88 0.014 0.121 0.33 0.535
99  SAN GABRIEL VALLEY MEDICAL CEN -0.125 83.8 87 0.006 0.124 0.367 0.504
100  BURBANK COMMUNITY HOSPITAL -0.127 84.5 92 0.035 0.111 0.262 0.592
101  CALIFORNIA MEDICAL CENTER - LO -0.142 86.1 94 0.018 0.13 0.26 0.592
102  SANTA TERESITA HOSPITAL -0.141 86.7 91 0.009 0.092 0.327 0.572
103  WASHINGTON MEDICAL CENTER -0.137 87 92 0.008 0.088 0.315 0.589
104  DOMINGUEZ MEDICAL CENTER -0.179 91.3 98 0.018 0.079 0.212 0.691
105  VALLEY HOSPITAL MEDICAL CENTER -0.159 91.8 96 0.001 0.044 0.254 0.702
106  MEDICAL CENTER OF NORTH HOLLYW -0.165 92.9 97 0 0.032 0.253 0.716
107  VERDUGO HILLS HOSPITAL -0.169 94.1 98 0.001 0.025 0.213 0.761
108  FOOTHILL PRESBYTERIAN HOSPITAL -0.169 94.3 97 0.001 0.019 0.221 0.759
109  CANOGA PARK HOSPITAL -0.213 96.4 103 0.005 0.05 0.165 0.779
110  COAST PLAZA MEDICAL CENTER -0.213 97.9 104 0.002 0.032 0.154 0.812
111  MEMORIAL HOSPITAL OF GARDENA -0.277 102.1 108 0 0.016 0.113 0.871
112  LOS ANGELES CO. HARBOR/UCLA ME -0.275 103.5 108 0 0.01 0.094 0.896
113  KAISER FOUNDATION HOSPITAL - W -0.282 105 108 0 0.002 0.061 0.938
114  PACIFIC HOSPITAL OF LONG BEACH -0.333 108.8 112 0 0.002 0.023 0.975
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Table A5
Comparison of selected hospital quality probits, selection model

Posterior probability that hospital with rank in row ranks below hospital with rank in column

1 15 29 43 57 71 85 99

15 0.886 1

29 0.91 0.638 1

43 0.938 0.682 0.568 1

57 0.972 0.775 0.658 0.604 1

71 0.977 0.822 0.724 0.648 0.559 1

85 0.999 0.911 0.8 0.713 0.655 0.580 1

99 0.992 0.947 0.888 0.822 0.751 0.677 0.634 1

114 1 0.998 1 0.985 0.969 0.957 0.968 0.887

Identity of hospital by rank

Rank Hospital Name

1 Monterey Park Hospital

15 Bellflower Doctors Hospital

29 Glendale Memorial Hospital & Health Center

43 Hollywood Community Hospital

57 Pico Rivera Community Hospital

71 Los Angeles Doctors Hospital

85 Daniel Freeman Memorial Hospital

99 San Gabriel Valley Medical Center

114 Pacific Hospital of Long Beach
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Table A6
Posterior distribution of hospital quality probits, probit model

Hospital name *
jq Rank Quartile probabilities

Mean Mean Median
1  SANTA MARTA HOSPITAL 0.331 3.1 2 0.998 0.002 0 0
2  ST. JOHNS HOSPITAL AND HEALTH 0.227 7.5 6 0.995 0.005 0 0
3  LINDA VISTA COMMUNITY HOSPITAL 0.24 12.4 6 0.868 0.098 0.029 0.005
4  MONTEREY PARK HOSPITAL 0.187 13.9 10 0.883 0.106 0.011 0
5  WOODRUFF COMMUNITY HOSPITAL 0.199 15.7 9 0.827 0.129 0.038 0.006
6  COMMUNITY HOSPITAL OF HUNTINGT 0.194 16.6 9 0.812 0.142 0.041 0.006
7  QUEEN OF ANGELS/HOLLYWOOD PRES 0.145 17.6 16 0.896 0.104 0 0
8  TERRACE PLAZA MEDICAL CENTER 0.174 19.1 12 0.763 0.173 0.058 0.006
9  SAN DIMAS COMMUNITY HOSPITAL 0.155 19.5 14 0.768 0.198 0.03 0.003
10  WHITE MEMORIAL MEDICAL CENTER 0.141 19.7 17 0.794 0.194 0.012 0
11  HENRY MAYO NEWHALL MEMORIAL HO 0.135 20.9 18 0.763 0.217 0.019 0.001
12  BELLFLOWER DOCTORS HOSPITAL 0.149 21.7 15 0.709 0.228 0.057 0.005
13  SAN PEDRO PENINSULA HOSPITAL 0.123 23.6 21 0.698 0.274 0.028 0
14  SOUTH BAY HOSPITAL 0.135 24.1 17 0.677 0.239 0.075 0.008
15  MOTION PICTURE & TELEVISION HO 0.152 25.2 14 0.663 0.196 0.102 0.039
16  CHARTER SUBURBAN HOSPITAL 0.113 26.4 23 0.618 0.326 0.053 0.003
17  DANIEL FREEMAN MARINA HOSPITAL 0.116 26.5 22 0.617 0.318 0.06 0.005
18  BEVERLY HOSPITAL 0.098 28.5 27 0.549 0.417 0.034 0
19  CEDARS SINAI MEDICAL CENTER 0.09 29.4 28 0.502 0.488 0.011 0
20  INTER COMMUNITY MEDICAL CENTER 0.088 31.5 29 0.486 0.442 0.071 0.001
21  LOS ANGELES CO. USC MEDICAL CE 0.086 32.2 30 0.46 0.464 0.075 0.002
22  COVINA VALLEY COMMUNITY HOSPIT 0.096 32.4 27 0.519 0.321 0.134 0.026
23  LOS ANGELES COMMUNITY HOSPITAL 0.102 33 26 0.544 0.267 0.135 0.053
24  HUMANA HOSPITAL WEST HILLS 0.084 33.6 31 0.464 0.399 0.129 0.008
25  ST. MARY MEDICAL CENTER 0.081 33.6 31 0.455 0.435 0.102 0.008
26  MISSION HOSPITAL 0.101 33.7 27 0.527 0.265 0.152 0.056
27  AMI TARZANA REGIONAL MEDICAL C 0.081 34 32 0.435 0.442 0.115 0.008
28  HOLLYWOOD COMMUNITY HOSPITAL 0.088 34.3 29 0.492 0.332 0.146 0.03
29  GLENDALE MEMORIAL HOSPITAL & H 0.073 34.4 34 0.337 0.627 0.036 0
30  HAWTHORNE HOSPITAL 0.09 34.8 29 0.486 0.31 0.163 0.041
31  UCLA MEDICAL CENTER 0.074 35.6 33 0.396 0.472 0.129 0.003
32  CENTURY CITY HOSPITAL 0.072 37.1 33 0.422 0.384 0.167 0.027
33  SANTA MONICA HOSPITAL MEDICAL 0.062 38 37 0.287 0.606 0.105 0.001
34  KAISER FOUNDATION HOSPITAL - P 0.065 38 36 0.347 0.487 0.157 0.009
35  KAISER FOUNDATION HOSPITAL - L 0.061 38.4 37 0.299 0.577 0.123 0.002
36  PACIFIC ALLIANCE MEDICAL CENTE 0.065 38.4 36 0.38 0.429 0.17 0.021
37  GREATER EL MONTE COMMUNITY HOS 0.062 38.9 37 0.344 0.465 0.182 0.009
38  CIGNA HOSPITAL OF LOS ANGELES 0.065 40 36 0.394 0.352 0.199 0.055
39  PRESBYTERIAN INTERCOMMUNITY HO 0.051 41.7 41 0.242 0.567 0.188 0.003
40  ALHAMBRA COMMUNITY HOSPITAL 0.052 42.3 40 0.307 0.439 0.22 0.033
41  BELLWOOD GENERAL HOSPITAL 0.046 44.6 42 0.308 0.39 0.237 0.065
42  NORTHRIDGE HOSPITAL MEDICAL CE 0.041 44.8 44 0.2 0.549 0.239 0.012
43  SAN FERNANDO COMMUNITY HOSPITA 0.05 45.1 41 0.365 0.291 0.232 0.113
44  LANCASTER COMMUNITY HOSPITAL 0.033 47.3 47 0.207 0.472 0.286 0.035
45  ST. LUKE MEDICAL CENTER 0.031 47.9 47 0.203 0.46 0.303 0.034
46  WHITTIER HOSPITAL MEDICAL CENT 0.033 48 46 0.247 0.407 0.267 0.079
47  EAST LOS ANGELES DOCTORS HOSPI 0.031 48.2 48 0.232 0.415 0.296 0.057
48  BEVERLY HILLS MEDICAL CENTER 0.037 48.5 46 0.331 0.282 0.235 0.153
49  GRANADA HILLS COMMUNITY HOSPIT 0.027 49.2 49 0.204 0.427 0.316 0.052
50  LITTLE COMPANY OF MARY HOSPITA 0.02 50.9 51 0.127 0.504 0.341 0.029
51  BROTMAN MEDICAL CENTER 0.019 51.2 51 0.104 0.537 0.336 0.023
52  NORWALK COMMUNITY HOSPITAL 0.017 52.6 52 0.207 0.365 0.311 0.117
53  ST. JOSEPH MEDICAL CENTER 0.012 53.2 53 0.036 0.597 0.359 0.008
54  ST. VINCENT MEDICAL CENTER 0.012 53.3 53 0.11 0.474 0.365 0.051
55  ANTELOPE VALLEY HOSPITAL MEDIC 0.01 54.3 54 0.119 0.447 0.358 0.075
56  KAISER FOUNDATION HOSPITAL - H 0.007 55.1 55 0.106 0.44 0.387 0.067
57  THE HOSPITAL OF THE GOOD SAMAR 0.005 55.6 56 0.048 0.499 0.428 0.025
58  TORRANCE MEMORIAL HOSPITAL MED 0.004 55.9 56 0.071 0.455 0.421 0.053
59  MEMORIAL MEDICAL CENTER OF LON -0.002 57.7 58 0.051 0.443 0.454 0.052
60  LOS ANGELES CO. MARTIN L. KING -0.003 58 58 0.126 0.367 0.374 0.134
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61  KAISER FOUNDATION HOSPITAL - B -0.005 58.5 59 0.067 0.398 0.449 0.085
62  LOS ANGELES DOCTORS HOSPITAL -0.006 58.9 61 0.234 0.242 0.267 0.257
63  ROBERT F. KENNEDY MEDICAL CENT -0.009 59.9 61 0.074 0.367 0.469 0.09
64  DOCTORS HOSPITAL OF LAKEWOOD - -0.009 60 60 0.043 0.399 0.484 0.074
65  LONG BEACH DOCTORS HOSPITAL -0.013 60.8 61 0.144 0.314 0.326 0.216
66  SAN GABRIEL VALLEY MEDICAL CEN -0.018 62.6 63 0.009 0.354 0.587 0.049
67  NU MED REGIONAL MED CENTER WES -0.023 63.9 65 0.051 0.325 0.467 0.157
68  AMI GLENDORA COMMUNITY HOSPITA -0.029 64.9 67 0.116 0.283 0.349 0.253
69  LOS ANGELES CO. OLIVE VIEW MED -0.03 65.1 66 0.123 0.283 0.308 0.286
70  HOLY CROSS MEDICAL CENTER -0.039 68.9 70 0.022 0.244 0.545 0.189
71  ENCINO HOSPITAL -0.041 69 70 0.052 0.255 0.433 0.261
72  GLENDALE ADVENTIST MED CENTER -0.038 69.2 70 0 0.183 0.736 0.081
73  SHERMAN OAKS COMMUNITY HOSPITA -0.045 69.8 73 0.075 0.23 0.406 0.289
74  BURBANK COMMUNITY HOSPITAL -0.046 70.1 72 0.059 0.243 0.414 0.285
75  KAISER FOUNDATION HOSPITAL - W -0.046 70.3 72 0.048 0.242 0.433 0.277
76  CENTINELA HOSPITAL MEDICAL CEN -0.045 70.6 73 0.032 0.228 0.488 0.251
77  VALLEY PRESBYTERIAN HOSPITAL -0.044 70.8 72 0.006 0.216 0.602 0.176
78  PICO RIVERA COMMUNITY HOSPITAL -0.056 71.1 76 0.123 0.215 0.276 0.387
79  WESTSIDE HOSPITAL -0.053 72.4 74 0.031 0.209 0.473 0.287
80  GARFIELD MEDICAL CENTER -0.049 72.5 74 0.002 0.164 0.669 0.165
81  METHODIST HOSPITAL OF SOUTHERN -0.054 73.9 75 0.001 0.135 0.676 0.188
82  MONROVIA COMMUNITY HOSPITAL -0.061 74.1 77 0.046 0.202 0.394 0.358
83  COMMUNITY HOSPITAL OF GARDENA -0.071 75.1 81 0.092 0.184 0.292 0.432
84  PALMDALE HOSPITAL MEDICAL CENT -0.07 76.7 79 0.025 0.168 0.418 0.388
85  WASHINGTON MEDICAL CENTER -0.076 78.7 82 0.016 0.158 0.422 0.405
86  SANTA TERESITA HOSPITAL -0.086 82.5 84 0.002 0.077 0.473 0.447
87  PACIFIC HOSPITAL OF LONG BEACH -0.088 82.6 85 0.004 0.087 0.455 0.454
88  HUNTINGTON MEMORIAL HOSPITAL -0.088 83.9 85 0.001 0.023 0.518 0.458
89  TEMPLE COMMUNITY HOSPITAL -0.103 84.4 89 0.024 0.11 0.32 0.546
90  MEDICAL CENTER OF LA MIRADA -0.109 84.6 91 0.026 0.115 0.297 0.562
91  FOOTHILL PRESBYTERIAN HOSPITAL -0.095 84.7 87 0.002 0.069 0.416 0.513
92  DOWNEY COMMUNITY HOSPITAL -0.094 85.2 87 0.001 0.033 0.457 0.51
93  MEDICAL CENTER OF NORTH HOLLYW -0.095 85.2 87 0 0.049 0.429 0.522
94  VALLEY HOSPITAL MEDICAL CENTER -0.103 86.3 89 0.004 0.066 0.362 0.568
95  BAY HARBOR HOSPITAL -0.104 87.5 89 0 0.025 0.389 0.586
96  MIDWAY HOSPITAL MEDICAL CENTER -0.105 88.3 90 0 0.005 0.383 0.612
97  PANORAMA COMMUNITY HOSPITAL -0.121 89 94 0.009 0.067 0.298 0.626
98  QUEEN OF THE VALLEY HOSPITAL - -0.109 89 91 0 0.019 0.359 0.622
99  PACIFICA HOSPITAL OF THE VALLE -0.124 90.1 95 0.003 0.062 0.285 0.651
100  CHARTER COMMUNITY HOSPITAL -0.121 91 94 0 0.027 0.302 0.672
101  POMONA VALLEY HOSPITAL MEDICAL -0.12 91.8 94 0 0.007 0.268 0.724
102  DANIEL FREEMAN MEMORIAL HOSPIT -0.127 93.1 95 0 0.007 0.241 0.752
103  LONG BEACH COMMUNITY HOSPITAL -0.13 93.3 96 0 0.015 0.232 0.753
104  VERDUGO HILLS HOSPITAL -0.134 94 96 0 0.012 0.221 0.768
105  COAST PLAZA MEDICAL CENTER -0.161 95.5 102 0.005 0.044 0.201 0.75
106  RIO HONDO MEMORIAL HOSPITAL -0.167 98.7 103 0.001 0.017 0.136 0.847
107  DOMINGUEZ MEDICAL CENTER -0.206 100.6 107 0.004 0.031 0.126 0.839
108  PIONEER HOSPITAL -0.183 101.3 105 0 0.009 0.1 0.891
109  KAISER FOUNDATION HOSPITAL - W -0.18 102 105 0 0.002 0.076 0.922
110  MEMORIAL HOSPITAL OF GARDENA -0.204 104.2 107 0 0.004 0.06 0.936
111  LOS ANGELES CO. HARBOR/UCLA ME -0.213 105.2 108 0 0.002 0.045 0.954
112  ST. FRANCIS MEDICAL CENTER -0.197 105.2 107 0 0 0.011 0.989
113  CANOGA PARK HOSPITAL -0.276 106.8 112 0.001 0.016 0.058 0.926
114  CALIFORNIA MEDICAL CENTER - LO -0.315 112.5 113 0 0 0 1
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Table A7
Comparison of selected hospital quality probits, probit model

Posterior probability that hospital with rank in row ranks below hospital with rank in column

1 15 29 43 57 71 85 99

15 0.87 1

29 0.995 0.708 1

43 0.975 0.724 0.574 1

57 1 0.843 0.864 0.636 1

71 0.999 0.885 0.899 0.728 0.681 1

85 1 0.927 0.959 0.807 0.805 0.619 1

99 1 0.96 0.986 0.894 0.915 0.782 0.673 1

114 1 0.999 1 0.996 1 0.997 0.991 0.974

Identity of hospital by rank

Rank Hospital Name

1 Santa Marta Hospital

15 Motion Picture & Television Hospital

29 Glendale Memorial Hospital & Health Center

43 San Fernando Community Hospital

57 The Hospital of the Good Samaritan

71 Encino Hospital

85 Washington Medical Center

99 Pacifica Hospital of the Valley

114 California Medical Center - Los Angeles
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Table A8
Posterior means and standard deviations

Selection model, prior variant A: instruments eliminated

Coefficient Selection model

1 21

Age 70-74 -0.006 (0.025)
Age 75-79 0.068 (0.024)
Age 80-84 0.186 (0.024)
Age > 84 0.368 (0.022)
Female -0.086 (0.012)
Black -0.031 (0.027)

Hispanic -0.11 (0.023)
Native 0.171 (0.13)
Asian -0.085 (0.031)

Income 0.256 (0.197)D
em

og
ra

ph
ic

 c
ov

ar
ia

te
s

Income^2 -0.029 (0.023)
1 21

Emergency admit 0.173 (0.015)
Disease stages 1.3-2.3 0.088 (0.028)
Disease stages 3.1-3.6 0.487 (0.022)

Disease stage 3.7 0.630 (0.018)

D
is

ea
se

 se
ve

rit
y

co
va

ria
te

s

Disease stage 3.8 1.387 (0.036)

Gq G

150 beds or less 0.006 (0.025) -0.0002 (0.041)
151 to 200 beds -0.005 (0.072) 0.009 (0.052)
201 to 300 beds 0.033 (0.037) 0.012 (0.040)
Over 300 beds -0.020 (0.031) -0.006 (0.048)

Private, not for profit 0.024 (0.031) 0.009 (0.047)
Private, for profit -0.047 (0.038) -0.012 (0.034)
Private Teaching -0.006 (0.13) -0.006 (0.046)H

os
pi

ta
l g

ro
up

 q
ua

lit
y

pr
ob

its
 a

nd
 se

ve
rit

y
co

rr
el

at
io

ns

Public 0.038 (0.19) 0.017 (0.066)
2 1

Size 0.24 (0.18)
Ownership 0.25 (0.18)V

ar
ia

nc
e

of
 q

ua
lit

y

Individual Hospital 0.046 (0.009)

Distance -1.39 10-6 (6.12 10-6)

Distance 2 -3.40 10-6 (1.17 10-6)

Distance Age -2.33 10-6 (3.98 10-6)

Distance Severity -1.65 10-6 (4.91 10-6)

H
os

pi
ta

l c
ho

ic
e

co
va

ria
te

s

510 Distance
Income

-1.58 10-6 (1.39 10-6)

Notation and definitions are exactly as for Table 3 of the paper.
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Table A9
Posterior probability comparisons of group hospital quality probits

Selection model, prior variant A: instruments eliminated

A. Hospitals grouped by size

 150 beds 151-200 beds 201-300 beds > 300 beds

 150 beds --
0.10 (--)

34%
0.099 (0.013)

75%
0.105 (0.009)

31%
0.096 (0.007)

151-200 beds 66%
0.103 (0.012)

--
0.10 (--)

74%
0.108 (0.017)

51%
0.098 (0.013)

201-300 beds 25%
0.096 (0.009)

26%
0.095 (0.018)

--
0.10 (--)

13%
0.092 (0.008)

> 300 beds 69%
0.105 (0.008)

49%
0.103 (0.014)

87%
0.110 (0.010)

--
0.10 (--)

B. Hospitals grouped by ownership classification

Private
not-for-profit

Private
for-profit

Private
teaching Public

Private
not-for-profit

--
0.10 (--)

15%
0.089 (0.011)

47%
0.096 (0.020)

56%
0.107 (0.034)

Private
for-profit

85%
0.114 (0.012)

--
0.10 (--)

57%
0.110 (0.027)

67%
0.120 (0.035)

Private
teaching

53%
0.107 (0.022)

43%
0.096 (0.025)

--
0.10 (--)

50%
0.117 (0.053)

Public 44%
0.102 (0.036)

33%
0.090 (0.030)

50%
0.101 (0.049)

--
0.10 (--)

Notation and definitions are exactly as for Table 4 of the paper. The first number in each cell is the posterior
probability that the group quality probit Gq  in the column category exceeds Gq  in the row category, and the second
number is the posterior mean probability of mortality in the row category given a 10% probability of mortality in the
column category, with the posterior standard deviation of this statistic in parentheses.
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Table A10
Posterior means and standard deviations

Selection model, prior variant B: tighter prior on and 

Coefficient Selection model

1 21

Age 70-74 -0.008 (0.024)
Age 75-79 0.066 (0.025)
Age 80-84 0.185 (0.025)
Age > 84 0.370 (0.023)
Female -0.087 (0.013)
Black -0.008 (0.026)

Hispanic -0.13 (0.022)
Native 0.177 (0.13)
Asian -0.089 (0.031)

Income 0.262 (0.198)D
em

og
ra

ph
ic

 c
ov

ar
ia

te
s

Income^2 -0.033 (0.024)
1 21

Emergency admit 0.183 (0.016)
Disease stages 1.3-2.3 0.091 (0.028)
Disease stages 3.1-3.6 0.492 (0.023)

Disease stage 3.7 0.633 (0.018)

D
is

ea
se

 se
ve

rit
y

co
va

ria
te

s

Disease stage 3.8 1.402 (0.038)

Gq G

150 beds or less -0.001 (0.019) -0.009 (0.021)
151 to 200 beds -0.062 (0.029) -0.013 (0.025)
201 to 300 beds 0.013 (0.025) 0.004 (0.019)
Over 300 beds 0.025 (0.021) 0.014 (0.017)

Private, not for profit 0.007 (0.019) 0.002 (0.016)
Private, for profit 0.003 (0.018) 0.007 (0.024)
Private Teaching 0.033 (0.045) 0.012 (0.026)H

os
pi

ta
l g

ro
up

 q
ua

lit
y

pr
ob

its
 a

nd
 se

ve
rit

y
co

rr
el

at
io

ns

Public -0.068 (0.069) -0.020 (0.023)
2 1

Size 0.011 (0.008)
Ownership 0.012 (0.009)V

ar
ia

nc
e

of
 q

ua
lit

y

Individual Hospital 0.008 (0.0023)

Distance -13.47 (0.141)

Distance 2 12.35 (0.073)

Distance Age -0.46 (0.025)

Distance Severity -0.36 (0.040)

H
os

pi
ta

l c
ho

ic
e

co
va

ria
te

s

510 Distance
Income

-0.979 (0.232)

Notation and definitions are exactly as for Table 3 of the paper.
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Table A11
Posterior probability comparisons of group hospital quality probits

Selection model, prior variant B: tighter prior on and 

A. Hospitals grouped by size

 150 beds 151-200 beds 201-300 beds > 300 beds

 150 beds --
0.10 (--)

2%
0.090 (0.005)

68%
0.103 (0.007)

76%
0.104 (0.006)

151-200 beds 98%
0.111 (0.006)

--
0.10 (--)

94%
0.114 (0.009)

98%
0.112 (0.008)

201-300 beds 32%
0.098 (0.007)

6%
0.088 (0.008)

--
0.10 (--)

66%
0.102 (0.005)

> 300 beds 23%
0.096 (0.006)

2%
0.086 (0.007)

34%
0.098 (0.005)

--
0.10 (--)

B. Hospitals grouped by ownership classification

Private
not-for-profit

Private
for-profit

Private
teaching Public

Private
not-for-profit

--
0.10 (--)

44%
0.100 (0.006)

70%
0.105 (0.009)

12%
0.088 (0.011)

Private
for-profit

56%
0.101 (0.006)

--
0.10 (--)

70%
0.106 (0.009)

20%
0.088 (0.013)

Private
teaching

30%
0.096 (0.009)

30%
0.095 (0.008)

--
0.10 (--)

11%
0.084 (0.017)

Public 87%
0.114 (0.014)

81%
0.114 (0.015)

89%
0.120 (0.015)

--
0.10 (--)

Notation and definitions are exactly as for Table 4 of the paper. The first number in each cell is the posterior
probability that the group quality probit Gq  in the column category exceeds Gq  in the row category, and the second
number is the posterior mean probability of mortality in the row category given a 10% probability of mortality in the
column category, with the posterior standard deviation of this statistic in parentheses.
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Table A12
Posterior means and standard deviations

Selection model, prior variant C: looser prior on and 

Coefficient Selection model

1 21

Age 70-74 -0.007 (0.023)
Age 75-79 0.068 (0.023)
Age 80-84 0.187 (0.024)
Age > 84 0.370 (0.023)
Female -0.088 (0.014)
Black -0.023 (0.028)

Hispanic -0.12 (0.024)
Native 0.140 (0.12)
Asian -0.091 (0.029)

Income 0.211 (0.194)D
em

og
ra

ph
ic

 c
ov

ar
ia

te
s

Income^2 -0.024 (0.023)
1 21

Emergency admit 0.179 (0.016)
Disease stages 1.3-2.3 0.088 (0.028)
Disease stages 3.1-3.6 0.490 (0.022)

Disease stage 3.7 0.634 (0.018)

D
is

ea
se

 se
ve

rit
y

co
va

ria
te

s

Disease stage 3.8 1.388 (0.038)

Gq G

150 beds or less 0.009 (0.019) -0.003 (0.029)
151 to 200 beds -0.028 (0.029) 0.003 (0.031)
201 to 300 beds -0.021 (0.020) -0.006 (0.029)
Over 300 beds 0.013 (0.024) 0.011 (0.031)

Private, not for profit -0.001 (0.012) 0.002 (0.028)
Private, for profit -0.003 (0.020) 0.005 (0.028)
Private Teaching 0.023 (0.071) 0.010 (0.048)H

os
pi

ta
l g

ro
up

 q
ua

lit
y

pr
ob

its
 a

nd
 se

ve
rit

y
co

rr
el

at
io

ns

Public -0.098 (0.058) -0.025 (0.028)
2 1

Size 3.95 (2.53)
Ownership 3.99 (2.41)V

ar
ia

nc
e

of
 q

ua
lit

y

Individual Hospital 0.28 (0.044)

Distance -13.67 (0.122)

Distance 2 12.43 (0.073)

Distance Age -0.45 (0.021)

Distance Severity -0.31 (0.035)

H
os

pi
ta

l c
ho

ic
e

co
va

ria
te

s

510 Distance
Income

-0.875 (0.216)

Notation and definitions are exactly as for Table 3 of the paper.
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Table A13
Posterior probability comparisons of group hospital quality probits

Selection model, prior variant C: looser prior on and 

A. Hospitals grouped by size

 150 beds 151-200 beds 201-300 beds > 300 beds

 150 beds --
0.10 (--)

9%
0.094 (0.005)

13%
0.095 (0.004)

50%
0.101 (0.007)

151-200 beds 91%
0.107 (0.006)

--
0.10 (--)

59%
0.102 (0.005)

77%
0.108 (0.008)

201-300 beds 87%
0.106 (0.005)

41%
0.099 (0.005)

--
0.10 (--)

81%
0.106 (0.007)

> 300 beds 50%
0.100 (0.007)

23%
0.094 (0.008)

19%
0.095 (0.006)

--
0.10 (--)

B. Hospitals grouped by ownership classification

Private
not-for-profit

Private
for-profit

Private
teaching Public

Private
not-for-profit

--
0.10 (--)

50%
0.100 (0.004)

65%
0.105 (0.013)

4%
0.084 (0.009)

Private
for-profit

50%
0.100 (0.004)

--
0.10 (--)

63%
0.106 (0.015)

5%
0.085 (0.010)

Private
teaching

35%
0.097 (0.013)

37%
0.097 (0.014)

--
0.10 (--)

11%
0.082 (0.014)

Public 96%
0.119 (0.011)

95%
0.119 (0.012)

89%
0.124 (0.020)

--
0.10 (--)

Notation and definitions are exactly as for Table 4 of the paper. The first number in each cell is the posterior
probability that the group quality probit Gq  in the column category exceeds Gq  in the row category, and the second
number is the posterior mean probability of mortality in the row category given a 10% probability of mortality in the
column category, with the posterior standard deviation of this statistic in parentheses.
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Table A14
Correlation between posterior means of hospital quality probits, alternative selection models

Prior variant A Prior variant B Prior variant C

Base model .34 .80 .80

Prior variant A -- .16 .47

Prior variant B -- -- .66

Table entry indicates correlations between row and column models.
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