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1 Introduction

Fifteen years ago, Milton Friedman’s 1957 treatise A Theory of the Consumption Func-
tion seemed badly dated. Dynamic optimization theory not been employed much in
economics when Friedman wrote, and utility theory was still comparatively primitive,
so his statement of the “permanent income hypothesis” never actually specified a formal
mathematical model of behavior derived explicitly from utility maximization. Instead,
Friedman relied at crucial points on intuition and verbal descriptions of behavior.
Although these descriptions sounded plausible, when other economists subsequently
found multiperiod maximizing models that could be solved explicitly, the implications
of those models differed sharply from Friedman’s intuitive description of his ‘model.’
Furthermore, empirical tests in the 1970s and ’80s often rejected these rigorous versions
of the permanent income hypothesis, in favor of an alternative hypothesis that many
households simply spent all of their current income.

Today, with the benefit of a further round of mathematical (and computational)
advances, Friedman’s (1957) original analysis looks more prescient than primitive. It
turns out that when there is meaningful uncertainty in future labor income, the optimal
behavior of moderately impatient consumers is much better described by Friedman’s
original statement of the permanent income hypothesis than by the later explicit max-
imizing versions. Furthermore, in a remarkable irony, much of the empirical evidence
that rejected the permanent income hypothesis as specified in tests of the 1970s and
’80s is actually consistent both with Friedman’s original description of the model and
with the new version with serious uncertainty.

There are four key differences between the explicit maximizing models developed
in the 1960s and ’70s and Friedman’s model as stated in A Theory of the Consumption
Function (and its important clarification in Friedman (1963)).

First, Friedman repeatedly acknowledged the importance of precautionary saving
against future income uncertainty. In contrast, the crucial assumption that allowed
subsequent theorists to solve their formal maximizing models was that labor income
uncertainty had no effect on consumption, either because uncertainty was assumed not
to exist (in the “perfect foresight” model) or because the utility function took a special
form that ruled out precautionary motives (the “certainty equivalent” model).1

Second, Friedman asserted that his conception of the permanent income hypothesis
implied that the marginal propensity to consume out of transitory “windfall” shocks
to income was about a third. However, the perfect foresight and certainty equivalent
models typically implied an MPC of 5 percent or less.

Third, Friedman (1957) asserted that the “permanent income” that determined

1The uncertainty considered here is explicitly labor income uncertainty. Samuelson (1969) and
Merton (1969) found explicit solutions long ago in the case where there is rate-of-return uncertainty
but no labor income uncertainty, and showed that rate-of-return uncertainty does not change behavior
much compared to the perfect-foresight model.
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current spending was something like a mean of the expected level of income in the
very near-term: “It would be tempting to interpret the permanent component [of
income] as corresponding to the average lifetime value . . . It would, however, be a
serious mistake to accept such an interpretation.” He goes on to say that households
in practice adopt a much shorter ‘horizon’ than the remainder of their lifetimes, as
captured in the assumption in Friedman (1963) that people discount future income at
a “subjective discount rate” of 33-1/3 percent. In contrast, the perfect foresight and
certainty equivalent models assumed that future income was discounted to the present
at market interest rates (say, 4 percent).

Finally, as an interaction between all of the preceding points, Friedman indicated
that the reason distant future labor income had little influence on current consumption
was “capital market imperfections,” which encompassed both the fact that future labor
income was uninsurably uncertain and the difficulty of borrowing against such income
(for example, see Friedman (1963) p. 10).

It may seem remarkable that simply adding labor income uncertainty can trans-
form the perfect foresight model into something closely resembling Friedman’s original
framework; in fact, one additional element is required to make the new model generate
Friedmanesque behavior: Consumers must be at least moderately impatient. The key
insight is that the precautionary saving motive intensifies as wealth declines, because
poorer consumers are less able to buffer their consumption against bad shocks. At
some point, the intensifying precautionary motive becomes strong enough to check the
decline in wealth that would otherwise be caused by impatience. The level of wealth
where the tug-of-war between impatience and prudence reaches a stalemate defines a
‘target’ for the buffer stock of precautionary wealth, and many of the insights from the
new model can best be understood by considering the implications and properties of
this target.

A final insight from the new analysis is that precautionary saving behavior and liq-
uidity constraints are intimately connected.2 Indeed, for many purposes the behavior of
constrained consumers is virtually indistinguishable from the behavior of unconstrained
consumers with a precautionary motive; average behavior depends mainly on the de-
gree of impatience, not on the presence or absence of constraints. As a result, most
of the existing empirical studies that supposedly test for constraints should probably
be reinterpreted as evidence on the average degree of impatience. Furthermore, fu-
ture studies should probably focus more directly on attempting to measure the average
degree of impatience rather than on attempting to detect constraints.

2For a rigorous analysis of the relationship between constraints and precautionary behavior, see
Carroll and Kimball (2001).
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2 The Modern Model(s) of Consumption

Current graduate students rarely appreciate how difficult it was to forge today’s canon-
ical model of consumption based on multiperiod utility maximization. The difficulty
of the enterprise is attested by the volume of literature devoted to the problem from
the 1950s through the ’70s, beginning with the seminal contribution of Modigliani and
Brumberg (1954). The model that eventually emerged has several key characteristics.
Utility is time separable; that is, the utility that consumption yields today does not
depend on the levels of consumption in other periods, past or future. Future utility
is discounted geometrically, so that utility one period away is worth β units of this
period’s utility, utility two periods away is worth β2, and so on, for some β between
0 and 1. Furthermore, the utility function must satisfy various criteria of plausibility
like decreasing marginal utility, decreasing absolute risk aversion, and so on. Finally,
the model must incorporate a mathematically rigorous description of how noncapital
income, capital income, and wealth evolve over time.

A version of the maximization problem inherited from this literature can be written
as follows. A consumer in period t (who has already been paid for period t’s labor) has
an amount of total resources Xt (‘cash-on-hand’ in Deaton’s (1991) terminology), the
sum of this period’s wealth and this period’s labor income. Given this starting posi-
tion, the consumer’s goal is to maximize expected discounted utility from consumption
between the current period t and a final period of life T ,

maxEt

[
T∑
s=t

βs−tu(C̃s)

]
(1)

(where the ∼ over Cs indicates that its value may be uncertain as of the date at which
expectations are being taken) subject to a set of budget constraints and shocks,

Ws+1 = Rs+1(Xs − Cs) (2)

Ys+1 = Ps+1εs+1 (3)

Ps+1 = GPsNs+1 (4)

Xs+1 = Ws+1 + Ys+1 (5)

where beginning-of-period wealth next period,Wt+1, is equal to unspent resources from
period t accumulated at a (potentially uncertain) gross interest rate Rt+1; Yt+1 is labor
(or more properly ‘noncapital’) income in period t + 1, which is equal to ‘permanent
labor income’ Pt+1 multiplied by a mean-one transitory shock εt+1, Et[ε̃t+1] = 1; perma-
nent labor income grows by a factor G between periods and is also potentially subject
to shocks, Ns+1; and ‘cash-on-hand’ in period t + 1 is equal to beginning-of-period
wealth Wt+1 plus the period’s labor income Yt+1.

One of the unpleasant discoveries in the 1960s and ’70s was that when there is
uncertainty about the future level of labor income (i.e. if ε and N have variances
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greater than zero), it appears to be impossible (under plausible assumptions about
the utility function, e.g. constant relative risk aversion u(c) = c1−ρ/(1− ρ)) to derive
an explicit solution for consumption as a direct (analytical) function of the model’s
parameters. This is not to say that nothing at all is known about the structure of
optimal behavior under uncertainty; for example, it can be proven that consumption
always rises in response to a pure increment to wealth. But an explicit solution for
consumption is not available.

2.1 The Perfect Foresight/Certainty Equivalent Model

Economists’ main response to this problem was to focus on two special cases where the
model can be solved analytically: The “perfect foresight” version in which uncertainty
is simply assumed away, or the “certainty equivalent” version in which consumers
are assumed to have quadratic utility functions (despite unattractive implications of
quadratic utility like risk aversion that increases as wealth rises, and the existence of
a ‘bliss point’ beyond which extra consumption reduces utility).

The perfect foresight and certainty equivalent solutions are very similar; for brevity,
I will summarize only the perfect foresight solution, in which the optimal level of
consumption is directly proportional to total “wealth,” which is the sum of market
wealth Wt and ‘human wealth’ Ht,

Ct = kt(Wt +Ht), (6)

where market wealth Wt is real and financial capital, while human wealth is mainly
current and discounted future labor income (though in principle Ht also includes the
discounted value of transfers and any other income not contingent on saving decisions;
henceforth I refer to these collectively as ‘noncapital’ income). The constant of pro-
portionality, kt, depends the time preference rate, the interest rate, and other factors.

A simple example occurs when consumers care exactly as much about future utility
as about current utility (β = 1); the interest rate is zero; and there is no current or
future noncapital income (Ht = 0). In this case, the optimal plan is to divide existing
wealth evenly among the remaining periods of life. If we assume an average age of
death of 85, this model implies that the marginal propensity to consume out of shocks
to wealth for consumers younger than 65 should be less than (1/20), or 5 percent –
since the change in wealth will be spread evenly over at least 20 years. Furthermore,
the theory implies that the MPC out of unexpected transitory shocks to noncapital
income (“windfalls”; e.g. finding a $100 bill in the street) is the same as the MPC out of
wealth, because once the windfall has been received, it is theoretically indistinguishable
from the wealth the consumer already owned. When the model is made more realistic
by allowing for positive interest rates, consumers younger than 65, etcetera, it still
implies that the average MPC should be quite low, generally less than 0.05.
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In contrast, Friedman (1963) asserted that his conception of the permanent income
hypothesis implied an MPC out of transitory shocks of about 0.33 for the typical
consumer.3 Friedman (1963) provided an extensive summary of the existing empirical
evidence tending to support the proposition of an MPC of roughly a third. From today’s
perspective, however, the most surprising aspect of Friedman’s (1957, 1963) arguments
is that their main thrust is to prove an MPC much less than one (to discredit the
‘Keynesian’ model that said consumption was roughly equal to current income), rather
than to prove an MPC significantly greater than 0.05.

The 15 years after the publication of A Theory of the Consumption Function pro-
duced many studies of the MPC. Particularly interesting were some natural exper-
iments. In 1950, unanticipated payments were made to a subset of U.S. veterans
holding National Service Life Insurance policies; the marginal propensity to consume
out of these dividends seems to have been between about 0.3 and 0.5. Another natural
experiment was the reparations payments certain Israelis received from Germany in
1957-58.4 The marginal propensity to consume out of these payments appears to have
been around 20 percent, with the lower figure perhaps accounted for by the fact that
the reparations payments were very large (typically about a year’s worth of income).5

On the whole, these studies were viewed at the time as supporting Friedman’s model
because the estimated MPCs were much less than one.

The change in the profession’s conception of the permanent income hypothesis
in the 1970s from Friedman’s (1957, 1963) version to the perfect foresight/certainty
equivalent versions (with their predictions of an MPC of 0.05 or less) is nicely illustrated
by a well-known paper by Hall and Mishkin (1982) that found evidence of an MPC
of about 0.2 using data from the Panel Study of Income Dynamics (PSID). Rather
than treating than this as evidence in favor of a Friedmanesque interpretation of the
permanent income hypothesis, the authors concluded that at least 15-20 percent of
consumers failed to obey the PIH because their MPCs were much greater than 0.05.

3My definitions of ‘transitory’ and ‘permanent’ shocks (spelled out explicitly in the next subsection)
correspond to usage in much of the modern consumption literature, but differ from Friedman’s (1957)
usage. In fact, Friedman (1957) actually states that the MPC out of ‘transitory income shocks’ is
zero, but Friedman (1963) was very clear that in his conception of the PIH, first-year consumption out
of windfalls was about 0.33. The reconcilation is that such windfalls were not ‘transitory’ shocks in
Friedman’s terminology. Terminology aside, Friedman’s quantitative predictions for how consumption
should change, for example in response to a windfall, are clear, so I will simply translate the Friedman
model’s predictions into modern terminology without further remark, e.g. by stating that Friedman’s
model implies that the MPC out of (my definition of) transitory shocks is a third.

4For an excellent summary of these studies by Bodkin (1959), Kreinin (1961), Landsberger (1966),
and others see Mayer (1972).

5The concavity of the consumption function discussed below, and proved in Carroll and Kim-
ball (1996), implies that the MPC out of a large shock should be smaller than the MPC out of a small
shock.
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2.2 The New Model

The principal development in consumption theory in the last 15 years or so, start-
ing with Zeldes (1984), is that spectacular advances in computer speed have allowed
economists to relax the perfect foresight/certainty equivalence assumption and deter-
mine optimal behavior under realistic assumptions about uncertainty.

A preliminary step was to determine the characteristics of the income uncertainty
that typical households face.6 Using annual income data for working-age households
participating in the PSID, Carroll (1992) found that the household noncapital income
process is well approximated as follows. In period t a household has a certain level of
‘permanent noncapital income’ Pt, which is defined as the level of noncapital income
the household would have gotten in the absence of any transitory shocks to income.7

Actual income is equal to permanent income multiplied by a transitory shock, Yt = Ptεt
where permanent income Pt grows by a factorG over time, Pt = GPt−1. Each year there
is a small chance (probability 0.005) that actual household income will be essentially
zero (εt = 0), typically corresponding in the empirical data to a spell of unemployment
or temporary illness or disability. If the transitory shock does not reduce income all
the way to zero, that shock is distributed lognormally with a mean value of one and a
standard deviation of σε = 0.1. Carroll (1992) and subsequent papers also find strong
evidence for permanent as well as transitory shocks to income, also with an annual
standard deviation of perhaps 0.1. However, because permanent shocks complicate
the exposition without yielding much conceptual payoff, I will suppress them for the
purposes of this paper and compensate by boosting the variance of the transitory
component to σε = 0.2; for the version with both transitory and permanent shocks,
see Carroll (1992). The PSID also shows the annual household income growth factor
to be about G = 1.03 or 3 percent growth per year for households whose head is in the
prime earning years of 25-50.

The next step in solving the model computationally is to choose values for the
parameters that characterize consumers’ tastes. For the simulation results presented
in this paper, I will assume a rather modest precautionary saving motive by choosing
a coefficient of relative risk aversion of ρ = 2, toward the low end of the range from
1 to 5 generally considered plausible.8 I follow a traditional calibration in the macro

6One might suppose that this would have been a subject of preexisting research in the labor
economics literature. However, labor economists tend to focus on the wage process for individual
workers rather than the degree of uncertainty in post-transfer, household-level noncapital income that
is the relevant concept from consumption theory.

7Friedman (1963), p. 5, says that ‘permanent income is of the nature of the mean of a hypothetical
probability distribution’ which is precisely what Pt here is.

8This choice of ρ implies that a consumer would be indifferent between consuming $66,666 with
certainty or consuming $50,000 with probability 1/2 and $100,000 with probability 1/2. For ρ = 0, the
consumer is not risk averse at all and would be indifferent between $75,000 with certainty and $50,000
with probability .5 and $100,000 with probability .5. For ρ =∞, the consumer is infinitely risk averse,
and would choose $50,000.01 with certainty over equal probabilities of $50,000 and $100,000.
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literature and choose a time preference factor of β = 0.96 implying that consumers
discount future utility at a rate of about 4 percent annually, and I make a symmetric
assumption that the interest rate is also 4 percent per year.

We are now in position to describe how the model can be solved computationally.
As is usual in this literature, it is necessary to solve backwards from the last period
of life. For simplicity, we will assume that the income process described above, with
constant income growth G, holds for every year of life up to the last. (For a version
with a more realistic treatment of the lifetime income profile, including the drop in
income at retirement, see Carroll (1997)).

In the last time period, the solution is easy: The benchmark model assumes there
is no bequest motive, so the consumer spends everything. Following Deaton (1991),
define cash-on-hand X as the sum of noncapital income and beginning-of-period wealth
(including any interest income earned on last period’s savings). In the second-to-last
period of life, the consumer’s goal is to maximize the sum of utility from consumption
in period T −1 and the mathematical expectation of utility from consumption in period
T , taking into account the uncertainty that results from the possible shocks to future
income YT . For any specific numerical levels of cash-on-hand and permanent income
in period T − 1 (say, XT−1 = 5 and PT−1 = 1.4), a computer can calculate the sum
of current and expected future utility generated by any particular consumption choice.
The optimal level of consumption for {XT−1, PT−1} = {5, 1.4} can thus be found by a
computational algorithm that essentially tries out different guesses for CT−1 and homes
in on the choice that yields the highest current and discounted expected future utility.

Note that for each different combination of {XT−1, PT−1}, the utility consequences
of many possible choices of CT−1 must be compared to find the optimum, and for
each CT−1 that is considered, the numerical expectation of next period’s utility must
be computed. The solution procedure is basically to calculate optimal CT−1 for a
grid of many possible {XT−1, PT−1} choices, and then to construct an approximate
consumption function by interpolation (‘connect-the-dots’).

Once the approximate consumption rule has been constructed for period T −1, the
same steps can be repeated to construct a consumption rule for T − 2 and so on.

This begins to give the flavor for why numerical solutions are so computation in-
tensive. Indeed, the problem as just described would be something of a challenge even
for current technology. Fortunately, there is a trick that makes the problem an order of
magnitude easier: Everything can be divided by the level of permanent income. That
is, defining the cash-on-hand ratio as xt = Xt/Pt and ct = Ct/Pt, it is possible to find
the optimal value of the consumption-to-permanent-income ratio as a function of the
cash-on-hand ratio, so that rather than solving the problem for a two-dimensional grid
of {XT−1, PT−1} points one can solve for a one-dimensional vector of values of {xT−1}.
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Figure 1: Convergence of Consumption Functions cT−n(x) as n Rises

Formally, the problem can be rewritten in the recursive value function form9

vt(xt) = max
{ct}

u(ct) + βEt[G
1−ρvt+1(x̃t+1)] (7)

s.t.

wt+1 = (R/G)(xt − ct) (8)

xt+1 = wt+1 + εt+1. (9)

The solution to the optimal consumption problem is depicted in Figure 1. The cash-
on-hand ratio x is on the horizontal axis. The optimal consumption ratio for a given
cash-on-hand ratio is on the vertical axis. The solid lines represent the consumption
rules for different time periods, showing how optimal consumption changes as the ratio
of cash-on-hand to labor income increases.

Consumption in the last period cT (x) coincides with the 45 degree line, indicating
consumption equal to cash-on-hand. For very low levels of x, consumption in the
second-to-last period cT−1(x) is fairly close to the 45 degree line; the consumer spends
almost, but not quite, everything. This reflects the precautionary motive: Because
there is a chance the consumer will receive zero income in period T , she will never

9See Carroll (2000a) for a proof, and for a detailed description of several other tricks that make
the problem computationally tractable.

9



spend all of her period-T − 1 resources because of the dire consequences of arriving
at T with nothing and then possibly receiving zero income. Note the contrast with
behavior at high levels of wealth; for example, at an xT−1 of around 10 the figure shows
cT−1 of a bit more than 5 – indicating that at this large level of wealth the consumer
divides remaining lifetime resources roughly evenly between the last two periods of life.

An important feature of this problem is that, if certain conditions hold (in partic-
ular, if consumers are ‘impatient’ in a sense to be described shortly), the successive
consumption rules cT (x), cT−1(x), cT−2(x), . . . , cT−n(x) will ‘converge’ as n grows large.
The meaning of convergence is most easily grasped visually: In Figure 1, the rules cT (x)
and cT−1(x) are very far apart, while the rules cT−10(x) and the converged consumption
rule c(x) (which can be thought of as cT−∞(x)) are very close.

The importance of convergence can best be understood by contrasting it with the
alternative. Modigliani (1966) points out that in the certainty equivalent model, opti-
mal behavior is different at every different age, so that one cannot draw many general
lessons about consumption behavior from the rule for any particular age. In the model
solved here, however, behavior is essentially identical for all consumers more than 10
years from the end of life, so analysis of the converged consumption rule yields insights
about behavior of most agents in the economy.

What is required to generate convergence? Deaton (1991) and Carroll (2001b) show
that the necessary condition is that consumers be impatient, in the sense that if there
were no uncertainty or liquidity constraints the consumer would choose to spend more
than her current income. Technically, the required condition is

(Rβ)1/ρ < G, (10)

where ρ is the coefficient of relative risk aversion and G is the income growth factor.
Consider the version of this equation where G = ρ = 1, so that consumers are

impatient if Rβ < 1. In this case, impatience depends directly on the whether the
reward to waiting, as determined by the interest rate factor R, is large enough to over-
come the utility cost to waiting, β. Positive income growth (G > 1) makes consumers
more impatient (in the sense of wanting to spend more than current income) because
forward-looking consumers with positive income growth will want to spend some of
their higher future income today. Finally, the exponent (1/ρ) on the Rβ term captures
the ‘intertemporal elasticity of substitution,’ which measures the extent to which the
consumer responds to the net incentives for reallocating consumption between periods.

The remainder of the paper will focus almost exclusively on implications of the
converged consumption function. It is natural to wonder, however, whether we should
expect these results to be useful in understanding the behavior of consumers whose
permanent income paths over the lifetime do not resemble the “constant growth at
rate G until death” specification used here. For instance, income can be predicted
to decline at retirement! However, Carroll (1997) shows that when a model like this
is solved with an empirically realistic pattern of income growth over the lifetime, the
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consumption function resembles the ‘converged’ consumption function examined here
until roughly age 50. After 50, with retirement looming, the consumer begins saving
substantial amounts and behavior begins more and more to resemble that in the per-
fect foresight model. Thus, the results in the remainder of the paper based on the
converged consumption function are most appropriately represented as characterizing
the behavior of moderately impatient households up to about age 50.10

At present, three further observations about the converged consumption function
depicted in Figure 1 are important. (The general shape of the consumption function,
and the validity of the points made here, are robust to alternative assumptions about
parameter values, so long as consumers remain moderately impatient.)

First, the converged consumption function is everywhere well below the perfect fore-
sight solution (the dashed line). Since precautionary saving is defined as the amount
by which consumption falls as a consequence of uncertainty, the difference between the
converged c(x) and the dashed perfect-foresight line measures the extent of precaution-
ary saving. The precautionary effect is large here because under our baseline parameter
values, human wealth is quite large and therefore induces a lot of consumption by the
perfect-foresight consumers. In contrast, consumers with a precautionary motive are
unwilling to spend much on the basis of uncertain future labor income, so the large
value of human wealth has little effect on their current consumption.

The second important observation is that as x gets large, the slope of c(x) (which
is to say, the marginal propensity to consume) gets closer and closer to the slope of
the dashed perfect foresight line. That is, as wealth approaches infinity the marginal
propensity to consume approaches the perfect foresight MPC. This happens because as
wealth approaches infinity the proportion of future consumption that will be financed
out of uncertain labor income approaches zero, so the labor income uncertainty becomes
irrelevant to the consumption decision.

The final observation is that for periods before the last one the consumption function
lies everywhere below the 45-degree line; that is, consumers choose never to borrow
(which they would need to do in order to have c > x and to be above the 45-degree
line), even though no liquidity constraint was imposed in solving the problem.

This last result deserves explanation. As noted above, in the second-to-last period,
consumers will always choose to spend less than their cash-on-hand because of the risk
of zero income in the last period of life. If we know that in period T − 1 consumption
will be less than x, then that implies that in period T − 2 the consumer will always
behave in such a way to make sure that he arrives in T − 1 with positive assets, again
out of the fear of a zero-income event in T − 1. Similar logic goes through recursively
to any earlier period.

This mechanism for preventing borrowing may seem rather implausible, relying as
it does on the slight possibility of disastrous zero-income events. However, essentially

10Recent work by Gourinchas and Parker (1999) finds the switchpoint to be between 40 and 45
rather than 50, but Cagetti’s (1999) similar work suggests a later switching age.
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the same logic works as long as income has a well-defined lower bound. For example,
suppose the worst possible outcome were that income might fall to, say, 30 percent of
its permanent level. In this case the recursive logic outlined above would not prohibit
borrowing. But it would prevent the consumer from borrowing more than the amount
H that could be repaid with certainty out of the lowest possible future income stream.
In this case, consumers would define their precautionary target in terms of the size of
their wealth holdings in excess of the lowest feasible level -H. The distinctive features
of the model discussed below would all go through, with the solitary difference that
the average level of wealth would be lower (perhaps even negative).

This logic provides the simplest intuition for a fundamental conclusion: The pre-
cautionary saving motive can generate behavior that is virtually indistinguishable from
that generated by a liquidity constraint,11 because the precautionary saving motive es-
sentially induces self-imposed reluctance to borrow (or borrow too much).

3 Implications

3.1 Concavity of the Consumption Function and Buffer Stock

Saving

Perhaps the most striking feature of the converged consumption function c(x) depicted
in figure 1 is that the marginal propensity to consume (the slope of the consumption
function) is much greater at low levels of cash-on-hand than at high levels. In other
words, the converged consumption function is strongly concave.12 Thus, the first intu-
itive result that comes out of the analysis is that, as Keynes (1935) argued long ago,
rich people spend a smaller proportion of any transitory shock to their income than do
poor people.

Carroll (2001b) shows that concavity of the consumption function also implies that
impatient consumers will engage in ‘buffer-stock’ saving behavior. That is, there will
be some target level of the cash-on-hand ratio x∗ such that, if actual cash-on-hand
is greater than the target, impatience will outweigh prudence and wealth will fall
(formally, Et[xt+1 < xt|xt > x∗]), while if cash-on-hand is below the target the pre-
cautionary saving motive will outweigh impatience and the consumer will try to build
wealth up back toward the target (formally, Et[xt+1 > xt|xt < x∗]). As usual, this re-
sult is something that Friedman grasped intuitively: He refers repeatedly to the role of
wealth as an ‘emergency reserve’ against uncertainty or a ‘balancing resource’; indeed,

11In fact, Carroll and Kimball (2001) show that as the probability of the zero-income events ap-
proaches zero, behavior in the model with zero-income events becomes mathematically identical to
behavior in the liquidity-constrained model.

12Carroll and Kimball (1996) provide a proof that uncertainty induces a concave consumption
function for a very broad class of utility functions, including the constant relative risk aversion form
used here.
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Figure 2: Cumulative Distribution Functions Starting With w1,i = 0 ∀ i

Mayer (1972), p. 70 summarizes Friedman’s version of the PIH succinctly: ‘It is basic
to [Friedman’s] permanent income theory that households attempt to maximize utility
by using savings as a buffer against income fluctuations.’

Buffer-stock saving behavior is a qualitative implication of the model. In order to
determine the model’s quantitative implications (for example, what it predicts about
the average value of the MPC), it is necessary to simulate a population of consumers
behaving according to the converged consumption rule. Figure 2 presents the results
when a population of 10,000 consumers is endowed with initial wealth w1,i = 0 ∀ i, then
appropriately-distributed random income shocks are drawn to generate x1,i, implying
consumption c1,i = c(x1,i) and second period wealth w2,i = (R/G)(x1,i − c1,i), and so
on. The figure shows the evolution of the distribution of wealth wt,i in years 2, 3, and 5,
along with the steady-state distribution that emerges after sufficiently many periods.
It clearly does not take long for the actual wealth distribution to get fairly close to
the steady-state distribution, so statistics for consumers distributed according to the
steady-state distribution should be a good approximation to typical behavior most of
the time (even if the economy is for some reason temporarily out of steady-state).

The first row of Panel A of Table 1 provides a variety of statistics about average
behavior when consumers are distributed according to the steady-state distribution
generated by the baseline parametric assumptions. Columns two and three indicate
that the mean and median of the wealth ratio are both about 0.4, or equal to about five
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months’ worth of permanent noncapital income (remember that the time unit is a year).
The average marginal propensity to consume is 0.33, in the ballpark of both empirical
estimates and Friedman’s (1957) statement of his conception of the permanent income
hypothesis, but a long way from the approximately 0.04 implied by the perfect foresight
model under our baseline parameter values.

The second row of Panel A presents results under the assumption that household
noncapital income growth is 2 percent a year, rather than the baseline of 3 percent.
Lower income growth makes people more “patient,” in the sense that the contrast
between tomorrow’s and today’s income – and thus the temptation to borrow against
future income – is not as great. The table shows that greater patience leads to a higher
mean wealth ratio a lower average MPC.

The final row of Panel A presents results when predictable income growth is zero.13

With these extremely patient consumers, who cannot rely on future income gains at
all, average wealth is much higher, and the average MPC is only about 0.06, not much
greater than in the perfect foresight model.

These results confirm that if consumers are moderately impatient, their behavior in
the modern model with uncertainty resembles Friedman’s conception of the permanent
income hypothesis. Neither liquidity constraints nor myopia is necessary to generate
the high average marginal propensity to consume that has repeatedly been found in
empirical studies and that Friedman (1957) deemed consistent with his conception of
the permanent income hypothesis. Impatience plus uncertainty will do the trick.

The reason precautionary saving increases the MPC is because the precautionary
motive relaxes as the level of wealth rises. To put it another way, an extra unit of
cash-on-hand today means that one has a better ability to buffer consumption against
income shocks in the future, and so there is less need to depress consumption to build
up one’s precautionary assets. Thus, the decline in the intensity of the precautionary
motive as cash-on-hand rises allows consumption to rise faster than it would in the
absence of a precautionary motive – which is to say, the MPC out of cash-on-hand
(and therefore the MPC out of transitory shocks to income) is higher.

Recall that another difference between Friedman and the subsequent models was in
the rate at which consumers were assumed to discount future income. In the subsequent
models, the mean expectation of future labor income was discounted to the present
at a market interest rate (say, 4 percent). Friedman (1963) insisted that future labor
income was discounted at a rate of around 33 percent. (A substantial body of empirical
evidence confirms that the actual reaction of consumption to information about future
income is much smaller than the perfect foresignt and certainty equivalent models
imply; see Campbell and Deaton (1989); Viard (1993); Carroll (1994); and the large
literature that finds that saving responds much less than one-for-one to expected future
pension benefits (Samwick (1995)).)

13In this case the consumer is on the edge of failing the impatience condition (but the condition
does hold because (Rβ)1/ρ = 0.9992 < 1.00 under the baseline values for {R, β, ρ} = {1.04, 0.96, 2}).



Table 1: Steady-State Statistics For Alternative Consumption Models

Income Aggregate
Growth Mean Median Consumption Mean Frac With Frac With
Factor w w Growth MPC w < 0 w = 0

Panel A. Baseline Model, No Constraints
G=1.03 0.43 0.40 1.030 0.330 0.000 0.000
G=1.02 0.52 0.48 1.020 0.276 0.000 0.000
G=1.00 2.26 2.06 1.000 0.064 0.000 0.000

Panel B. Strict Liquidity Constraints
G=1.03 0.28 0.24 1.030 0.361 0.000 0.070
G=1.02 0.36 0.32 1.020 0.301 0.000 0.051
G=1.00 2.28 2.06 1.000 0.065 0.000 0.000

Panel C. Borrowing Up To 0.3 Allowed
G=1.03 −0.03 −0.06 1.030 0.361 0.611 0.000
G=1.02 0.06 0.01 1.020 0.299 0.478 0.000
G=1.00 1.94 1.71 1.000 0.064 0.023 0.000

Panel D. Borrowing Up to 0.3 at R = 1.15 Allowed
G=1.03 0.11 0.07 1.030 0.327 0.320 0.058
G=1.02 0.21 0.16 1.020 0.274 0.210 0.046
G=1.00 2.11 1.89 1.000 0.064 0.007 0.002

Panel E. Statistics from the 1995 SCF
– 1.02 0.29 – – 0.205 0.025

Notes: Results in Panels A through D reflect calculations by the author using simulation programs
available at the author’s website, http://www.econ.jhu.edu/people/carroll/ccaroll.html. In Panel A,
no constraint is imposed, but income can fall to zero, which prevents consumers from borrowing. In
Panels B through D, the worst possible event is for income to fall to half of permanent income. For
comparison, Panel E presents the mean and median values of the ratio of nonhousing wealth to
permanent income from the 1995 Survey of Consumer Finances for non-self-employed households
whose head was aged 25-50; the measure of permanent income is actual measured household income
for households who reported that their income over the past year was ‘about normal’, and whose
reported income was at least $5000; other households are dropped. The program that generates
these statistics (and figure 6) is also available at the author’s website.
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We can examine this controversy in the new model by determining how average con-
sumption changes when expectations about the future path of income change. Suppose
we have a population of consumers who have received their period t income and are
distributed according to the steady-state distribution of xt that obtains under the base-
line parameter values. Now consider informing these consumers that henceforth growth
will be G = 1.02 rather than 1.03. It turns out that under the baseline parameter val-
ues, consumers react to the news of the change in income growth as though they are
discounting future noncapital income at a 39 percent rate - even higher than Fried-
man’s estimate of 33 percent!14 The reason for the high discount rate is that prudent
consumers know it would be unwise to spend today on the basis of future income that
might not actually materialize.

3.2 The Consumption Euler Equation

Robert Hall (1978) provided the impetus for a large empirical literature over the past
two decades by pointing out that in the certainty equivalent model, the predictable
change in consumption in a given period should be unrelated to any information that
the consumer possessed in earlier periods; consumption should follow a ‘random walk.’

To derive this result, Hall relied on an optimality condition known as the Euler
equation which links marginal utility in adjacent periods. In the CRRA-utility model
with uncertainty, a crude (‘first-order’) approximation to the Euler equation implies
that an equation of the form

Et[∆ logCt+1] ≈ ρ−1(r − θ) (11)

∆ logCt+1 ≈ ρ−1(r − θ) + ζt+1 (12)

will hold, where β = 1/(1 + θ) and θ is the pure rate of time preference, and ζt+1 is an
‘expectational error,’ which implies that nothing known in period t should be able to
predict the value of ζt+1.

A more precise (‘second order’) approximation of the consumption Euler equation

14The procedure for calculating an average ‘effective’ interest rate is as follows. First, determine
what aggregate consumption would be in period t if consumers continued to expect G = 1.03; call
the result C.03

t . Next, find the converged consumption rule under the expectation that G = 1.02, and
use it to determine how much consumption would be done if consumers’ expectations were suddenly
switched to G = 1.02 permanently; call that result C.02

t . Finally, find the value of the interest
factor R such that, in the perfect foresight model, if growth expectations changed from G = 1.03
to G = 1.02 then consumption would change by C.03

t − C.02
t . Unfortunately, the answer that one

gets from this methodology for the “effective” interest rate depends very much on how the change in
income is distributed over time, its stochastic properties, the level of current wealth, and all of the
other parameters of the model.
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leads to a relationship of the form:15

Et[∆ logCt+1] ≈ ρ−1(r − θ) +

(
ρ+ 1

2

)
Et[(∆ logCt+1)

2]. (13)

The term involving the expectation of the square of consumption growth is van-
ishingly small when there is no uncertainty, so in this case the equation essentially
collapses to (11). However, when there is important uncertainty the expected square
of consumption growth need not be negligible at all. This term, which resembles a
variance, reflects the effect of precautionary saving on consumption growth.

One of the most surprising features of equations (11) and (13) is that the growth
rate of income does not appear in either equation. Thus, these equations appear to
imply that consumption growth is determined entirely by consumers’ tastes and does
not depend at all on income growth.

However, Panel A of Table 1 shows that when the growth rate of permanent income
is changed from 3 percent to 2 percent to 0 percent, the growth rate of aggregate
consumption changes in an identical way, from 3 to 2 to 0 percent. At a minimum,
this tells us that there is something profoundly wrong with at least (11) as a way to
describe the relationship between income growth and consumption growth.

It turns out that equation (13) is not as hopeless, because it contains a term involv-
ing the square of consumption growth. It is clearly possible for expected consumption
growth to equal expected income growth for some possible value of the precautionary
term Et[(∆ logCt+1)

2]; in fact, it turns out that this precautionary term is precisely
the thing that adjusts to make aggregate consumption growth match aggregate income
growth.

The magnitude of the precautionary term for any given xt can only be determined
by solving the model numerically and then computing the expectation numerically.
Figure 3 plots the expectation of consumption growth as a function of the level of the
period-t cash-on-hand ratio xt. The most striking thing about the figure is the strong
negative relationship between the level of xt and expected consumption growth. This
is a manifestation of the weakening of the precautionary motive as wealth rises. For
example, at very low levels of cash-on-hand xt (levels below x∗), the intense precau-
tionary motive induces the consumer to keep ct low compared to mean expected future
income, out of the fear of an unfavorable income shock in period t + 1. But by defi-
nition, the actual draw of income in period t + 1 is usually not unfavorable, so most
of the time the consumer’s high precautionary saving in period t will result in a larger
xt+1 than xt, leading to rapid growth in consumption as the higher level of resources
in t+1 allows for a relaxation of the precautionary saving motive. On the other hand,
if the consumer starts with a large value of xt (greater than x∗), the precautionary
motive will be weak and will be outweighed by impatience. The consumer will spend

15See Carroll (2001a) for derivations of these equations.
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more than his expected income, leading (in expectation) to a lower value of xt+1 next
period, and a lower value of ct+1 than ct; hence expected consumption growth will be
low for large values of xt.

One might suppose that the level of xt where the expected growth rate of consump-
tion equals the underlying growth rate of permanent income would be at the target
cash-on-hand, x∗. In fact, the figure shows that at x∗, expected consumption growth
is slightly lower (by an amount γ) than the growth rate of permanent income. The
reason has to do with the concavity of the consumption function, but is not of much
intrinsic interest. For purposes of manipulating the diagram, we will just assume γ is
a constant, which numerical exercises show is a reasonable approximation.

Assuming γ is constant makes it easy to examine the effects of changing the model’s
parameters. For example, consider increasing the growth rate to g′ = g + γ (shown as
the dashing horizontal line). If growth is g+ γ, then point at which the Et[∆ logCt+1]
curve intersects the original g curve will be exactly γ below the g′ curve, and thus
this intersection will indicate the new target value of cash-on-hand, x∗∗ < x∗.16 The
new target is at a lower level of cash-on-hand, and (consequently) a higher expected
variance of consumption growth. This is simply the human wealth effect in this model:
Consumers who expect to have higher income in the future are less willing to save
today, so they end up holding a lower buffer stock and suffering a greater degree of
consumption variance.

Note a key implication of the figure: Far from being unpredictable a la Hall (1978),
consumption growth between t and t+1 should be related to anything that is related to
period-t wealth or income or to the expected variance of consumption growth between
t and t+ 1 (such as, for example, the variance of income shocks).

Now consider the implications of this analysis for attempts to detect liquidity con-
straints by looking for violations of the first-order approximation to the Euler equa-
tion, (11). A pioneering paper by Zeldes (1989) pointed out that liquidity constrained
consumers would be expected to have faster consumption growth than unconstrained
consumers, ceteris paribus, because constraints were keeping their consumption lower
than they would like. Zeldes’s methods for identifying liquidity constrained consumers
involved finding households with low levels of assets or current income (the two com-
ponents of ‘cash-on-hand’ in the model above) and examining whether such households
had faster subsequent consumption growth than others with more cash-on-hand. He
found evidence that they did, and concluded that these consumers were liquidity con-
strained.

But the thrust of the analysis above was that consumers with low wealth or current
income should have higher expected consumption growth even if they are not liquid-
ity constrained. This illustrates a general principle: The implications of precautionary

16One more theoretical subtlety: Assuming growth is g + γ would also cause changes in the
Et[(∆ logCt+1)2] component of the Et[∆ logCt+1] locus, but ignoring these changes (as is done in the
diagram) gives the right qualitative answer. For further discussion of this figure, see Carroll (1997).
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saving and liquidity constraints for consumption growth are virtually indistinguishable.
The reason is that the precautionary motive reduces consumption in precisely the same
circumstances as a liquidity constraint would: when cash-on-hand is low. Precaution-
ary saving is in essence like a self-imposed, ‘smoothed’ liquidity constraint. Muddying
the waters even further, Zeldes (1984) showed numerically that liquidity constraints
can induce a precautionary saving motive even for consumers who have quadratic util-
ity functions and thus do not have a utility-based reason to engage in precautionary
saving (see Carroll and Kimball (2001) for a precise statement of the conditions under
which liquidity constraints induce precautionary saving, and proofs).

For some purposes, this virtual observational equivalence may not matter much. For
example, macroeconomic modellers often need to know what the marginal propensity
to consume will be out of some observed transitory fluctuation in aggregate income.
Either liquidity constraints or precautionary saving would suggest that some consumers
will have a high MPC, and from the modeller’s standpoint it may not matter whether
the high MPC results from liquidity constraints or precautionary saving. All that
really matters is what fraction of the population is sufficiently impatient that they
have a marginal propensity to consume that is much higher than implied by the perfect
foresight version of the model.
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3.3 Other Methods of Identifying Liquidity Constraints

Of course, there are other purposes for which it is important to distinguish between
liquidity constraints and precautionary behavior, most notably in the analysis of the
consumption effects of policies that affect credit supply. Fortunately, the fact that
it is difficult to distinguish precautionary saving from liquidity constraints using Eu-
ler equations does not mean that the two hypotheses cannot be distinguished using
other methods. The most promising route is to look at wealth holdings, rather than
consumption growth.

The simplest form of liquidity constraint is one in which all borrowing must be col-
lateralized so that consumers are prohibited from having negative net worth. Append-
ing such a constraint to the problem specified above actually has no effect on behavior,
since the possibility of the dreaded zero-income-events means that consumers would
not have chosen to borrow anyway. However, one could plausibly argue that in modern
industrial societies the social safety net prevents consumption from falling all the way
to zero, mitigating the impact of unemployment spells. To capture the existence of
such a social safety net, suppose that the worst possible event is now defined as an
unemployment spell in which income drops to 50 percent of its usual level, an event
that occurs with probability p = 0.05 to produce a 5 percent aggregate unemployment
rate. What does optimal behavior look like with such a social safety net if consumers
are prohibited from borrowing?

For baseline values of other parameters, the converged consumption rule is depicted
as the locus labelled ‘No Borrowing’ in Figure 4. Below a certain level of cash-on-
hand, it is optimal to spend everything, so that the consumption rule coincides with
the 45 degree line. Above this cutoff, the consumption function is again concave;
since concavity of the consumption function was responsible for most of the insights
discussed above (including the endogeneity of consumption growth with respect to the
level of wealth and to preference parameters), those insights carry over to the liquidity
constrained model for consumers for whom constraints are not currently binding.

A telltale sign of liquidity constraints is visible in the steady-state wealth distri-
bution function, depicted in Figure 5. Whereas the CDF for wealth was completely
smooth in the model with precautionary saving but no binding constraints (Figure 2),
with constraints there is a mass of households with exactly zero wealth, corresponding
to the small vertical segment at the left edge of the CDF. These are the households
who were on the 45 degree line portion of c(x) in the previous period and consumed
all their resources. Thus, a potential measure of the proportion of the population for
whom liquidity constraints are currently binding is simply the proportion for whom
wealth (or liquid wealth) is exactly zero.

Panel B. of Table 1 presents the summary statistics for average behavior in the
steady-state for this model. The mean and median amount of buffer-stock wealth are
both now around 0.25, or about 2 months’ worth less of income than in the uncon-
strained case. Precautionary savings are lower because the zero income events have
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Figure 4: Converged Consumption Rule Under Liquidity Constraints

now been replaced with a comparatively generous unemployment insurance system.
Note, however, that the average MPC in the population is roughly the same as under
the baseline parameter values in Panel A; furthermore, the effect on the MPC of mak-
ing consumers more patient is also virtually identical to that in Panel A: for patient
consumers, the MPC drops to about 6 percent.

Of course, a complete inability to borrow is unrealistic in modern America, where
even household pets receive unsolicited offers of credit cards (and sometimes accept
them! see Bennett (1999)). Figures 4 and 5 therefore present the consumption function
and steady-state wealth distribution when consumers are allowed to borrow, but only
an amount up to thirty percent of their permanent labor income (Ludvigson (1999)
presents evidence that actual lenders do strive to limit the ratio of the borrower’s debt
to income in this manner.) The effect is essentially just to shift the no-borrowing
consumption function and CDF to the left by what appears to be about 0.3; Panel C.
of Table 1 confirms that mean and median wealth decline by about 0.3. Note that the
steady-state average marginal propensity to consume is essentially the same as when
consumers were prohibited from borrowing. This may go against the grain of intuition,
since the natural supposition would seem to be that consumers who can borrow should
be better able to shield their consumption against income shocks. But remember that
precautionary motives are the only reason these impatient consumers do any saving
in the first place. The ‘buffering capacity’ of a given level of wealth depends on how
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Figure 5: Steady-State Distribution of Wealth with Constraints

much lower wealth could potentially be driven in the case of a bad shock, so allowing
borrowing just shifts the whole consumption locus and CDF left, without changing
steady-state consumption behavior.

Collectively, the results in Panels A. through C. of the table demonstrate that
liquidity constraints are neither necessary nor sufficient to generate a high MPC. What
is both necessary and sufficient is impatience, whether there are liquidity constraints
or not.

The point that the average MPC depends on impatience rather than the presence
or absence of constraints means that many traditional tests of liquidity constraints are
questionable at best. For example, Campbell and Mankiw (1991) argue that differ-
ences across countries in the sensitivity of consumption growth to predictable income
growth may reflect differences in the degree of liquidity constraints, while Jappelli and
Pagano (1989) suggest that constraints may be stronger in countries in which con-
sumption growth exhibits excess sensitivity to lagged income growth. It is not clear
that either of these interpretations is valid. Instead, the warranted conclusion would
seem to be that countries in which consumption exhibits excess sensitivity to lagged
or current income may have more households who more impatient, and consequently
inhabit the portion of the consumption function where the MPC is high.

If empirical evidence on excess sensitivity of consumption to income is not informa-
tive about whether liquidity constraints are important, what kind of evidence would
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be? One example is given by recent work of Gross and Souleles (2000). These authors
have managed to obtain a database containing credit report information on a repre-
sentative sample of consumers, and they show that exogenous increases in households’
credit limits result in a substantial increase in actual total debt burdens; in fact, the
observed behavior appears to be qualitatively similar to the simulation results pre-
sented in Panels B. and C. of the table, in the sense that the debt load after the credit
expansion appears to stabilize at a point which provides roughly the same amount of
unused credit capacity as before the expansion in the credit line.

Another approach would start with the point, noted above, that the wealth dis-
tribution under constraints contains a mass of households at zero wealth (or at the
borrowing limit when that is different from zero). For comparison, Figure 6 presents
the corresponding cumulative distribution function for data from the 1995 US Survey
of Consumer Finances on the ratio of nonhousing wealth to permanent income for US
consumers between the ages of 25 and 50 (the age range for which the baseline buffer-
stock model has been claimed as a plausible description of behavior).17 Although it is
hard to see in the figure, there is indeed a small concentration of households (about 2.5
percent of the population, as indicated in Panel E of Table 1) at exactly the zero-wealth
point, and a total of about 10 percent have net worth in the range from zero to two
weeks’ worth worth (one paycheck) of their permanent income. However, the overall
shape of the distribution function (and especially the lower tail) much more closely
resembles the shape of the CDF in the unconstrained model, Figure 2, than that in the
constrained models, Figure 5; recall also that it is easy to get the unconstrained model
to permit negative wealth by assuming a positive minimum value of future income.

The main reason the CDF for the model that allows borrowing fails to match the
empirical CDF is that the model implies that there will be a large mass of people who
have borrowed up to the maximum credit limit, but the only place in the empirical
data where there is any substantial mass is at exactly zero wealth. In fact, Panel
C shows that the model predicts essentially zero consumers exactly at zero wealth -
because there is nothing special about zero wealth in this model. There is, however, a
final element of realism that can be added to the model with constraints that brings
its predictions more into accord with the empirical CDF: We can assume that the
interest rate at which consumers can borrow is higher than the rate that they can
earn on savings. Specifically, if we assume that Rborrow = 1.15 (roughly reflecting
credit card interest rates in the US), we obtain the consumption function presented in
Figure 7. The segment of the new consumption function that lies along the 45 degree

17Housing and vehicle wealth has been excluded on the grounds that the model does not pretend
to be able to capture the complexities associated with durable goods investment. See Carroll and
Dunn (1997) for simulation results showing that even when durable goods are added to the model,
‘buffer stock’ saving behavior emerges with respect to liquid asset holdings. ‘Permanent income’ is
taken to be actual income for the subset of households who said that their income in the survey year
was ‘about normal.’
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line corresponds to the range of x for which the interest rate on saving is not large
enough to induce positive saving, but the interest rate on borrowing is high enough
to make consumers not want to borrow. At a sufficiently low level of cash-on-hand,
however, it becomes worthwhile to borrow even at a 15 percent interest rate, and so
the consumption function rises above the 45 degree line.

The CDF from this model is presented in Figure 8. Not only does the model match
the bottom tail of the distribution, it also delivers the implication that a small mass
of consumers will have exactly zero wealth, just as found in the empirical data.

We now have two models that can match both the high empirical MPC and the
general shape of the lower to middle part of the empirical wealth/permanent income
ratio. The version without constraints (and with a positive minimum income so that
buffer-stock wealth is actual wealth in excess of the lowest possible wealth −H) has
the attraction of simplicity, while the version with liquidity constraints (in the form
of both an absolute limit on the amount of borrowing and of differing interest rates
for borrowing and lending) has the attraction of greater realism but the cost that it is
substantially more complicated, and thus harder to solve.

However, one problem for both models is evident from a closer look at the upper part
of the empirical CDF (Figure 6). Although the empirical median wealth/income ratio,
at about 0.3, is in the vicinity of the small values predicted by all the models under
baseline parameter values, the upper part of the empirical distribution contains vastly
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Figure 8: Steady-State Wealth Distribution with Credit Card Borrowing

more wealth than is implied by the model; Panel E. of Table 1 indicates that the mean
value of the empirical w is much greater than its median, indicating the skewness of the
distribution. Thus, while the presence of substantial numbers of impatient consumers
may be essential for reproducing the empirical finding of a high average marginal
propensity to consume, the presence of some patient consumers is also required if the
model is to match the overall amount of wealth in the US. Whether a life cycle version
of the model can match the entire distribution of wealth is a matter of ongoing debate;
my own view is that the model certainly cannot match the behavior of the richest few
percent in the distribution (unless a bequest motive is added), but may be able to
match much of the rest.18

4 Limitations

I have argued here that the modern version of the dynamically optimizing consump-
tion model is able to match many of the important features of the empirical data on

18See Huggett (1996), Dynan Skinner and Zeldes (1996), Quadrini and Ŕios-Rull (1997), Engen,
Gale, and Uccello (1999), and Carroll (2000c) for several perspectives on this question. For general
equilibrium macro models which attempt to match both micro and macro data using mixed population
of patient and impatient consumers, see Krusell and Smith (1998) and Carroll (2000b).
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consumption and saving behavior. There are, however, several remaining reasons for
discomfort with the model.

One problem is the spectacular contrast between the sophisticated mathematical
apparatus required to solve the optimal consumption problem and the mathematical
imbecility of most actual consumers. We can turn, again, to Milton Friedman for a
potentially plausible justification for such mathematical modelling. Friedman (1953)
argued that repeated experience in attempting to solve difficult problems could build
good intuition about the right solution. His example was an experienced pool player
who does not know Newtonian mechanics, but has an excellent intuitive grasp of where
the balls will go when he hits them. This parable may sound convincing, but some
recent work I have done with Todd Allen (2001) suggests that it may sound more
convincing than it should. We examine how much experience it would take for a
consumer who does not know how to solve dynamic optimization problems to learn
nearly optimal consumption behavior by trial and error. Under our baseline setup,
we find that it takes about a million ‘years’ of model time to find a reasonably good
consumption rule by trial and error. This result may sound preposterous, but we
are fairly confident that our qualitative conclusion will hold up, because if there were
some trial-and-error method of finding optimal consumption behavior without a large
number of trials (and errors), such a method would also constitute a fundamental
breakthrough in numerical solution methods for dynamic programming problems. We
suspect that the total absence of trial-and-error methods from the literature on optimal
solution methods for dynamic optimization problems indicates that such methods are
very inefficient, even compared to the enormous computational demands of traditional
dynamic programming solution methods. We conclude by speculating that there may
be more hope of consumers finding reasonably good rules in a “social learning” context
in which one can benefit from the experience of others. However, even the social
learning model will probably take considerable time to converge on optimal behavior,
so this model provides no reason to suppose that consumers will react optimally in the
short- or medium-run to the introduction of new elements into their environment.

As an example of such a change in the consumption and savings environment,
consider the introduction of credit cards. In a trial-and-error economy, many consumers
would need to try out credit cards, discover that their heavy use can yield lower utility if
they lead to high interest payments, and communicate this information to others before
there would be any reason to expect the social use of credit cards to approximate their
optimizing use. This social learning process could take some time, and even the passage
of a recession or two.

There certainly seems to be strong evidence that many American households are
now using credit cards in nonoptimal ways. The optimal use of credit cards (at least
as implied by solving the final optimizing model discussed above) is as an emergency
reserve to be drawn on only rarely, in response to a particularly bad shock or series
of shocks. However, the median household with at least one credit card holds about
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$7,000 in debt on all cards combined; that $7,000 is the balance on which interest is
paid, not just the transactions use (Gross and Souleles (2000)). Laibson, Repetto, and
Tobacman (1999) argue that this pattern results from time-inconsistent preferences
in which consumers have a powerful preference for immediate consumption. Their
approach is discussed further in the paper in this symposium.

Another set of empirical findings that are very difficult to reconcile with the mod-
ern model of consumption presented here comes in the relationship between saving and
income growth, either across countries or across households. A substantial empirical
literature has found that much and perhaps most of the strong positive correlation
between saving and growth across countries reflects causality from growth to saving
rather than the other way around (see Carroll, Overland, and Weil (2000) for a sum-
mary). This is problematic because the model implies that consumers expecting faster
growth should save less, not more (cf. the model simulations in Table 1). Carroll,
Overland, and Weil (2000) suggest that the puzzle can be explained by allowing for
habit formation in consumption preferences, but as yet, there is no consensus answer
to this puzzle.

A final problem for the standard model is its inability to explain household port-
folio choices. The “equity premium puzzle” over which so much ink has been spilled
(for a summary see Siegel and Thaler (1997)) remains a puzzle at the microeconomic
level, where standard models like the ones presented here imply that consumers should
hold almost 100 percent of their wealth in the stock market (for simulation results,
see, e.g., Fratantoni (1998), Cocco, Gomes, and Maenhout (1998), Gakidis (1998),
Hochguertel (1998), Bertaut and Haliassos (1997)).

5 Conclusion

We shall never cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

- T.S. Eliot, “Four Quartets”

Few consumption researchers today would defend the perfect foresight or certainty
equivalent models as adequate representations either of the theoretical problem facing
consumers or of the actual behavior consumers engage in. Most would probably agree
that Milton Friedman’s original intuitive description of behavior was much closer to the
mark, at least for the median consumer. It is tempting therefore to dismiss most of the
work between Friedman (1957, 1963) and the new computational models of the 1980s
and ‘90s as a useless diversion. But a more appropriate view would be that solving
and testing those first formal models was an important step on the way to obtaining
our current deeper understanding of consumption theory, just as (in a much grander
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way) the development of Newtonian physics was a necessary and important precursor
to Einstein’s general theory.

Understanding of the quantitative implications of the new computational model
of consumption behavior is by no means complete. As techniques for solving and
simulating models of this kind disseminate, the coming decade promises to produce
a flood of interesting work that should define clearly the conditions under which ob-
served consumption, portfolio choice, and other behavior can or cannot be captured
by the computational rational optimizing model. Indeed, one purpose of this paper
is to encourage readers to join in this enterprise - a process that I hope will be made
considerably easier by the availability on the author’s website (see the address on the
first page) of a set of Mathematica programs capable of solving and simulating quite
general versions of the computational optimal consumption/saving problem described
in this paper.
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