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1 Introduction

Describing the joint behavior of the yield curve and macroeconomic variables is important for
bond pricing, investment decisions and public policy. Many term structure models have used
latent factor modelsto explain term structure movements, and although there are some interpre-
tations to what these factors mean, the factors are not given direct comparisons with macroe-
conomic variables. For example, Pearson and Sun (1994)’s factors are labeled “ short rate” and
“inflation”, but their estimation does not use inflation data. The terms “short rate” and “infla-
tion” arejust convenient namesfor the unobserved factors. Another exampleisKnez, Litterman
and Scheinkman (1994), who call their factors “level,” “slope” and “ curvature”. Similarly, Dai
and Singleton (2000) use the words “level,” “dope”’ and “butterfly” to describe their factors.
These labels stand for the effect the factors have on the yield curve rather than describing the
economic sources of the shocks.

In the absence of aworkhorse general equilibrium model for asset pricing (see Hansen and
Jagannathan (1991)), factor models have the advantage that they only impose no-arbitrage con-
ditions and not al other conditions that characterize the equilibrium in the economy. Most
existing factor models of term structure are unsatisfactory, however, because they do not model
how yields directly respond to macroeconomic variables.® In contrast, empirical studies try
to directly model the relationships between bond yields and macro variables by using Vector
Autoregressive (VAR) models. Studies like Estrella and Mishkin (1997) and Evans and Mar-
shall (1998) use VAR’s with yields of various maturities together with macro variables. Using
the VAR, these studies infer the relationships between yield movements and shocks in macro
variables using impulse responses (IR’s) and variance decomposition techniques. For example,
Evans and Marshall (2000) associate shocks to economic activity and price levelswith level ef-
fectsacrosstheyield curve. Another type of shock which can be identified with various schemes
comes from monetary policy (see, for example, Gali (1992), Sims and Zha (1995), Bernanke
and Mihov (1995), Christiano, Eichenbaum and Evans (1996a), and Uhlig (1999). For asurvey,
see Christiano, Eichenbaum and Evans (1998)).

Existing macro VAR studies are characterized by threefeatures. First, only maturitieswhose
yields which have been included in the VAR may have their behavior directly inferred by the
dynamics of the VAR. As an unrestricted VAR is generally not a complete theory of the term
structure, it says little about how yields of maturities not included in the VAR may move. Sec-
ond, the implied movements of yieldsin relation to each other may not rule out arbitrage oppor-
tunities when the cross-equation restrictions implied by this assumption are not imposed in the
estimation. Finally, unobservable variables cannot be included as all variablesin the VAR must

! The exception is Piazzesi (2001), who uses a term structure model with interest-rate targeting by the central
bank and releases of macroeconomic variables such as nonfarm payroll employment.
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be observable. The VAR approach, however, is very flexible, and the Impul se Response Func-
tions (IR’s) and variance decompositions give insights into the relationships between macro
shocks and movementsin the yield curve.

A related asset-pricing literature beginning with Sargent (1979) has tried to estimate VAR
systems of yields under the null of the Expectations Hypothesis (see Bekaert and Hodrick
(2001)). While the validity of the Expectations Hypothesis as a term structure model is still
being debated (see Fisher and Gilles (1998) and Longstaff (2000)), this literature has not fo-
cused on incorporating macro variables into the VAR. Our approach in this paper specifically
focuses on how macro variables affect term structure dynamics, where the term structure dy-
namics are given by a Gaussian (VAR) term structure model with time-varying risk premia,
consistent with deviations from the Expectations Hypothesis (see Fisher (1998) and Dai and
Singleton (2001)).

We incorporate macro variables as factors in a term structure model by using a factor rep-
resentation for the pricing kernel, which prices al bonds in the economy. The pricing kernel
depends on the shocksto both observed macro factors and unobserved factors. Since macro fac-
tors are correlated with yields, incorporating these factors may lead to models whose forecasts
are better than models which omit these factors. We investigate whether the purely unobserv-
able factors of multi-factor term structure models can be explained by macro variables, and we
examine how the latent factors change when macro variables are incorporated into such models.
Using a pricing kernel with macro factorsis a direct and tractable way of modeling how macro
factors affect bond prices.

Our methodology gives us several advantages over existing empirical VAR approaches.
First, it allows us to characterize the behavior of the entire yield curve in response to macro
shocks rather than just the yields included in the VAR. Second, a direct comparison of macro
variableswith latent yield factors can be made. Third, variance decompositionsand other meth-
ods can estimate the proportion of term structure movements attributable to observable macro
shocks, and other latent variables. Finally, our approach retains the tractability of the VAR
approaches because we estimate a VAR subject to nonlinear no-arbitrage restrictions.

The model is a discrete-time multi-factor model with time-varying risk premia. This term
structure model is Gaussian, like a VAR model, and IR’s and variance decompositions from the
model can be easily obtained. Formally, our model isa specia case of discrete-time versions of
the affine class introduced by Duffie and Kan (1996), where bond prices are exponential affine
functions of underlying state variables. In our model, however, some of the state variables are
observed macroeconomic aggregates. With Gaussian processes, the affine model reduces to
a VAR with cross-equation restrictions. Our set-up accommodates lags and moving average
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errors in the driving factors and allows us to compute variance decompositions where we can
attribute the proportion of movementsin the yield curve to observable and unobservablefactors.
We can plot IR’s of shocks to various factors on any yield, since the no-arbitrage model gives
us bond prices for al maturities.

Our measures of inflation and real activity are obtained from extracting principal compo-
nents of two groups of variables that are selected to represent measures of price changes and
economic growth. These factors are then augmented by latent variables. Asterm structure stud-
ies have suggested up to three latent factors as appropriate to capture most salient features of
theyield curve, we estimate models with three latent factors in addition to the macro variables.
Our main model has three correlated unobservable factors, together with the two macro factors
(inflation and real economic activity).

The cross-equation restrictions from no arbitrage improve out-of-sample forecasts from a
VAR. We find that these forecasts can be further improved by incorporating macro factors into
models with latent variables. We show that a significant part of the latent factors implied by
traditional models with only latent yield variables can be attributed to macro variables. In
particular, “slope” and “curvature” factors can be related to macro factors, while the “level”
factor surviveslargely intact when macro variables are incorporated.

We find that macro factors explain a significant amount of the variation in bond yields.
Macro factors explain up to 85% of the forecast variance at long horizons at short and medium
maturities of the yield curve. The proportion of forecast variance of yields attributable to macro
factors decreases at longer yields. At the long end of the yield curve 60% of the forecast vari-
ance is attributable to macro factors at a 1-month forecast horizon, while at very long forecast
horizons over 60% of the variance is attributable to unobservable factors.

This paper is organized as follows. Section 2 summarizes the data and details the construc-
tion of the macro factors as principal components of several macroeconomic variables. Section
3 motivates an affine equation for the short rate, which can be interpreted as a regression of
the short rate on macro factors and an ‘unexplained” component of short rate movements. This
last term consists of one or more unobservable (orthogonal) factors. If the latent component
is orthogonal to the macro variables, we can interpret this regression as versions of a Taylor
(2993) rule, where the short rate responds to a linear combination of observable factors, and an
orthogonal unobserved component. Section 4 presents the general model, discusses the estima-
tion strategy, and describes the specific parameterization of the model to be estimated. We lay
out our estimation results in Section 5, and discuss the implied IR’s, variance decompositions
and forecasting results. Section 6 concludes.



2 Data

2.1 Yied Data

We use data on zero coupon bond yields of maturities 1, 3, 12, 36 and 60 months from Jan-
uary 1952 to December 2000. The bond yields (12, 36 and 60 months) are from the Fama
CRSP zero coupon files, while the shorter maturity rates (1 and 3 months) are from the Fama
CRSP Treasury Bill files. Figure 1 plots some of these yields in the upper graph and Table 1
presents some sample statistics. The table shows that the data are characterized by some stan-
dard stylized facts. The average postwar yield curve is upward sloping; standard deviations of
yields generally decrease with maturity; and yields are highly autocorrelated, with increasing
autocorrelation at longer maturities.

The yield levels show mild excess kurtosis at short maturities which decreases with ma-
turity, and significantly positive skewness at all maturities. Excess kurtosis is, however, more
pronounced for first-differenced yields (for example, 19.44 for the 1-month yield). Although
the distribution of yieldsin the 1990’s seems to exhibit Gaussian tails, the evidence for thelong
series of monthly postwar yields rejects a normal distribution. For our purposes, the Gaussian
assumption madein later sectionsis a sufficient first approximation to the dynamics of theyield
curve, aswe are mainly interested in the joint dynamics of yields and macroeconomic variables.
The Gaussian model we present in Section 4 can be extended to incorporate heteroskedastic dy-
namics parameterized by discretized square-root processes.

An important stylized fact is that yields of near maturity are extremely correlated - the
correlation between the 36-month and 60-month yield is 99%. In our estimations we use all
five yields to estimate our models, but we specify that some of the yields are measured with
error. We choose the 1, 12 and 60-month yields to be measured without error to represent the
short, medium and long ends of the yield curve in our models with 3 unknown factors. (The
3-month yield has a 99% correlation with the 12-month yield, and the 36-month yield has a
99% correlation with the 60-month yield.)

2.2 Macro Variables

We use macro variables that can be sorted in two groups. The first group consists of various
inflation measures which are based on the CPI, the PPl of finished goods, and spot market
commodity prices (PCOM). The second group contains variables that capture real activity: the
index of Help Wanted Advertising in Newspapers (HELP), unemployment (UE), the growth
rate of employment (EMPLQY) and the growth rate of industrial production (1P). This list of
variablesincludes most variables that have been used in monthly VAR’sin the macro literature.



Among these variables, PCOM and HELP are traditionally thought of as leading indicators of
inflation and real activity, respectively. All growth rates (including inflation) are measured as
the differencein logs of theindex at timet and ¢t — 12, ¢ in months.

To reduce the dimensionality of the system, we extract the first principal component of each
group of variables separately. That is, we extract thefirst principal component from theinflation
measures group, and we extract the first principal component from the real activity measures
group. This leaves us with two variables which we call “inflation” and “rea activity”. More
precisely, we first normalize the three (four) macro variables related to inflation (real activity)
to zero mean and unit variance. For each group, the normalized variable vector Z; can be
represented as

Zt = Cfto + €, (1)

where Z, = (CPI, PPl, PCOM,) for the inflation group or Z, = (HELP; UE, EMPLOY, IF;)
for the real activity group. The error term ¢, satisfies E(¢;) = 0 and cov(e;) = I', where T is
diagonal. The matrices C' and I are either 3 x 1 or 4 x 1 for the inflation group and the redl
activity group respectively. The extracted macro factor f? has mean zero (E(f?) = 0) and unit
variance (var(f?) = 1).

Table 2 shows the loadings of the first three (four) principal components, and the factor
loadings for using only one principal component to explain the variation in each group. Over
70% (50%) of the variance of nominal variables (real variables) is explained by just the first
principal component of the group. The first principal component of the inflation measures|oads
negatively on CPI, PPI, and PCOM. Since negative shocks to this variable represent positive
shocksto inflation, we multiply it by —1 so that we can interpret it asan “inflation” factor. The
first principal component of real activity measures |oads negatively on HELP, EMPLQY, and IP
and positively on UE. Again, we multiply thisvariable by —1 to interpret positive shocksto this
factor as positive shocks to economic growth. We call this factor “real activity”. We plot these
macro factorsin the bottom plot in Figure 1.

To obtain some intuition about these constructed measures of inflation and real activity,
Figure 2 plotstheinflation and real activity measures versusthe actual inflation and real activity
series. The top plot of Figure 2 graphs the inflation factor in circles versus the normalized
inflation measures CPl, PCOM and PPI. The inflation factor closely tracks CPlI and PPI, which
roughly move together. The bottom plot of Figure 2 graphs the real activity factor in circles
versus the economic growth variables HELP, EMPLOQY, IP and the negative of UE. All these
series have roughly the same cycles, and the real activity factor most closely corresponds with
EMPLOY.



Table 3 displays the correlation between the principal components and the original macro
seriesin each group. These correlations show that the inflation factor is most closely correlated
with PPl and CPI (97% and 93% respectively) and less correl ated with commodity prices (59%).
Thereal activity factor ismost closely correlated with employment growth (91%) and industrial
production (87%).

The unconditional correlation between the two macro factors is tiny, one tenth of 1%, as
reported in Table 3. Although the unconditional correlation is weak, the lower plot in Figure 1
of the macro factors indicates that some conditional correlations might be important. In fact,
when we estimate a VAR for the macro factors, some of the conditional correlations turn out
to be significant (they are not reported here). More specifically, we estimate a bivariate process
with 12 autoregressive lags for the macro factors:

fe=pfia+ oot pafig+ Qug (2

where p; to p12 and 2 are 2 x 2 matrices with u; 11D N(O,I). The estimation results show that
the coefficient on the seventh lag of real activity in the inflation equation is significant and the
coefficient on the first two lags of inflation in the equation for real activity are significant. This
can also be seen from the impulse responses plotted in Figure 3. The response of inflation
to shocks in rea activity is positive and hump-shaped, while the response of real activity to
inflation shocks is initially weakly positive, and then turns slightly negative before dying out.
Since principal components are linear transformations of the data, the skewness, kurtosis and
autocorrelation of the macro variables (Table 1) are inherited by the principal components f;.

Some preliminary information about the relationship between the macro factors and the
yield curve can be gained from the correlation matrix in Table 3. The inflation factor is highly
correlated with yields. This correlation is highest for short yields (67% correlation between
inflation and 1-month yields), and somewhat smaller for long yields (56% correlation between
inflation and 60-month yields). Real activity is only weakly correlated with yields. This corre-
lation does not exceed 6% for any maturity. Thisweak relationship is not representative for all
measures of real activity. For example, the correlation of HELP and 1-month yieldsis 63%, but
our real activity factor loads mostly on EMPLQOY and IP. Hence, at least for measures of eco-
nomic activity, it may matter whether the particular variable in question is a leading indicator
of business cycles. Thisimpliesthat in our analysis we may potentially understate the impact
of real activity on theyield curve by the construction of our real activity factor.



3 A First Look at Short Rate Dynamics

3.1 Policy Rulesand Short Rate Dynamicsin Affine M odels

According to the policy rule recommended by Taylor (1993), movementsin the short rate should
be traced to movements in contemporaneous macro variables f and a component which is not
explained by macro variables, an orthogonal shock v,:

re = ag + ay fY + v (3)

The shock v; may be interpreted as a monetary policy shock following identifying assumptions
made in Christiano, Eichenbaum and Evans (1996a,1996b). Taylor’s original specification uses
two macro variables as factors in f?. The first variable is an annua inflation rate, similar to
our inflation factor, and the second variable is the output gap. GDP data are only available at
a quarterly frequency, while our real activity factor is constructed using various monthly series
such asEMPLQY and IP.

Another type of policy rule that has been proposed by Clarida, Gali, and Gertler (2000) is
a forward-looking version of the Taylor rule. According to this rule, the central bank reacts
to expected inflation and the expected output gap. Thisimpliesthat any variable that forecasts
inflation or output will enter the right-hand side of (3). In the hope of capturing the information
underlying macro forecasts, we add lagged macro variables as argumentsin equation (3).2 This
isdone by writing X7 = (f? f2, ..., f 1)’ for somelag length p and including the lags as
argumentsin the policy rule:

re = by + V1 X7 + vy (4

Affine term structure models (Duffie and Kan (1996)) are based on a short rate equation
just like equation (3) together with an assumption on risk premia. The difference between the
short rate dynamics in affine term structure models and the Taylor rule is that in affine term
structure models the short rate is specified to be an affine (constant plus linear term) function of
underlying latent factors X;*:

re = co + L X} (5)

2 Clarida, Gali, and Gertler (2000) implement their forward-looking rule by redefining the shock term v, to
includeforecast errors f 2, | —E;(f2, ;). Thisallowsthem to usefuturevalues of macrovariables f?, ; asarguments
on the right-hand side of (3). We could in principle adopt the same approach by including these forecast errors
into some latent variables, but this would mean that we would have to drop the assumption that latent and macro
variables are orthogonal. Our focus is assigning as much explanatory power to macro factors as possible, so we
specify the latent variables as orthogonal .



The unobserved factors themselves follow affine processes, of which a VAR is a special Gaus-
sian case. The prices of bonds of longer maturities are explicit exponentia affine functions
(dependent upon parameters) of f;* if pricing is risk neutral. In the more general case that we
consider, the risk adjustment needs to be specified carefully to obtain similar closed-form so-
lutions for bond yields (this is explained in the next section). With or without risk adjustment,
eguation (5) is always an important determinant of the shape of the entire yield curve in affine
term structure models.

Equations (3) through (5) are very similar: they all specify the short rate as affine functions
of factors. We can combine them by writing:

ry = 0o + 01, X7 + 01, X}, (6)

The approach we take in this paper isto specify the latent factors X;* as orthogonal to the macro
factors X7. In this case, the short rate dynamics of the term structure model can be interpreted
asaversion of the Taylor rule with the errors v; = 61, X;* being unobserved factors. We use the
restrictions from no-arbitrage to separately identify the individual unobserved factors.

3.2 Estimatingthe Short Rate Dynamics

The short rate equation (6) can be estimated by ordinary least squares because of the indepen-
dence assumption on X and X*. Table 4 reports the estimation results from two regressions:
the original Taylor rule (3) and the forward-looking version of the Taylor rule (4), which in-
corporates lags of the macro variables. These regression results give a preliminary view as to
how much of the yield movements macro factors may explain with respect to the unobservable
variables. The R? of the estimated Taylor rule is 45%, while the estimated forward-looking
version of the Taylor raises the R? to 53%. These numbers suggest that macro factors should
have explanatory power for yield curve movements.

The behavior of the residuals, however, provides some intuition about what to expect from
a model with unobservable factors. First, the residuals from both versions of the Taylor rule
are highly autocorrelated. The autocorrelation of residuals from the short rate equation with
only contemporaneous macro factors is 0.945, while the autocorrel ation from the equation that
includes lagged macro factors is slightly lower, 0.937. The short rate itself has an autocorre-
lation of 0.972, indicating that macro variables do explain some of the persistent shocks to the
short rate. Second, unless a variable which mimicsthe short rate itself is placed on the RHS of
eguation (3), the residuals will follow the same broad pattern as the short rate. This can be seen
from Figure 4, which plots the residuals together with the de-meaned short rate. This suggests
that the “level” factor found by earliest term structure studies (see Vasicek (1977)), may still
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reappear when macro variables are added in a linear form to the short rate in a term structure
model.

The coefficients on inflation and real activity in the ssimple Taylor rule are both significant
and positive. Thisis consistent with previous estimates of the Taylor rule in the literature, and
also the parameter values proposed by Taylor (1993)’'s original specification. However, these
coefficients are highly sensitive to the sample period selected. In particular, the sign of the
Taylor-rule coefficient on real activity crucialy depends on the inclusion of the two recessions
in 1954 and 1958. This is evident from the plots of real activity and the 1-month yield in
Figure 1. There are two major reductions in output around May 1954 and April 1958, which
also correspond to NBER recessions. Both these recessions go hand in hand with decreases
in the 1-month rate. These two recessions make the Taylor rule coefficient on output positive.
If we start the estimation of the Taylor rule later, say in 1960 or 1970, the coefficient on red
activity is negative. Only if we start the estimation after the monetary experiment of 1982 is
the coefficient positive. Interestingly enough, the coefficient on output is not significant for the
whole post-1982 period, but it is significant for the Greenspan years (post-1987). In contrast,
Table 4 reports that most parameter estimates for the forward-looking version of the Taylor
rule are not significant, except for the 11th lag on the inflation rate and current real activity.
This suggests that using many lags in the Taylor rule may lead to an over-parameterized and
potentially poorly behaved system.

4 A Term Structure Modd with Macro Factors

Based on the macro dynamics (2) and the short rate equation (6), we now develop a discrete-
time term structure model. The model combines observable macroeconomic variables with un-
observable or latent factors. Risk premiain our set-up are time-varying, because they are taken
to be affine in potentially al of the underlying factors. Section 4.1 presents the general model
and Section 4.2 parameterizes the latent variables and risk premia. We outline our estimation
procedure in Section 4.3. Section 4.4 summarizes our parameterization.

4.1 General Setup
4.1.1 State Dynamics

Suppose there are K; observable macro variables f? and K, latent variables f;*. The vector
F, = (f7, f*)" is assumed to follow a Gaussian VAR(p) process:

Ft = (1)0 + (I)lFt—l +...+ (I)th_p + 90ut (7)



with u; ~ 11D N(0,1). The state of the economy is described by a K vector of state vari-
ables X,. We partition the state vector X; into observable variables X and unobservable vari-
ables X;*. The observable vector contains current and past levels of macroeconomic variables
XP = (fF f2y .., f2,), while X = f* contains latent yield factors. We take the bivariate
VAR(12) in equation (2) as the process for inflation and real activity so set p = 12. Moving

average terms can be accommodated by including ¢ lagged error terms 6, u;_1, . . . , 0 ui—q ON
theright hand side of (7). In this case, the vector of observable state variables also includes past
innovationsto the macro variables X7 = (f¢ foy ..., fl udy .. ug ) 3

We write the dynamics of X; = ((X7)' (X))’ in compact form as afirst order Gaussian
VAR:

Xe=p+0X; 1 + X (8)

withe; = (u;0 ... 0)’. Inthefirst order companion form, there are blocks of zerosinthe K x K
matrix X to accommodate higher order lagsin F;.

4.1.2 Short Rate Equation

The one-period short rate r; isassumed to be an affine function of all state variables:
ry = 5() + 51Xt (9)

We work with monthly data, so that we can use the one-month yield ¢} as an observable short
rate r,. By constraining the coefficient 4; to depend only on contemporaneous factor values,
we can obtain strict versions of the Taylor rule (3). We call thisthe “Macro Model.” We aso
consider the case where 4, is unconstrained, which correspond to the forward-looking Taylor
ruleincorporating lags. We refer to thisformulation asthe “Macro Lag Model,” because it uses
lags of macro variablesin the short rate equation.

Structural changes (or regime shifts) in the economy may cause the relationshipsin the fac-
tor dynamics (8) and the short rate equation (9) to change over time (Ang and Bekaert (1998)).
We will assume that during our sample period, these relationships are stable, just as in Gali
(1992), Christiano, Eichenbaum and Evans (1996a) and Cochrane (1998).

4.1.3 Pricing Kernel

To devel op the term structure model, we use the assumption of no-arbitrage (Harrison and Kreps
(1979)) to guarantee the existence of an equival ent martingale measure (or risk-neutral measure)
@ such that the price of any asset V; that does not pay any dividendsat timet + 1 satisfiesV;, =

3 Inthe case of onelag p = 1 and no MA componentsq = 0, then K = K| + K».
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EZ (exp(—ry)V+1), Where the expectation is taken under the measure (. The Radon-Nikodym
derivative (which converts the risk-neutral measure to the data-generating measure) is denoted
by & 1. Thus, for any ¢t + 1 random variable Z,,; we have that E?(ZtH) = E¢(&11Ze11) /&
The assumption of no-arbitrage, or equivalently the assumption of the existence of &, 1, allows
usto price any asset in the economy, in particular all nominal bond prices.

Assumethat &, followsthe log-normal process:

1
§iv1 = & exp ( - 5)\::)% - )\::etH), (10)

where )\, arethetime-varying the market prices of risk associated with the sources of uncertainty
;. We parameterize \; as an affine process:

)\t - )\() "— )\1Xt (11)

for a K-dimensional vector Ay and a K x K matrix A;. This specification has been used by
Constantinides (1992), El Karoui, Myneni and Viswanathan (1992), and Liu (1999), among
many others. Fisher (1998) and Dai and Singleton (2001) argue that this specification can
explain deviations from the Expectations Hypothesis. Equations (10) and (11) relate shocksin
the underlying state variables (macro and latent factors) to &, and therefore determine how
factor shocks affect all yields.

We define the pricing kernel m; ., as:
M1 = eXp(—Tt) §t+1/§t- (12)
Substituting r; = g + 07X, we have:
1
Mip1 = eXp(—é)\Q/\t — 00 — 01Xy — N€rr1) (13)

414 Bond Prices

We take equation (13) to be a nominal pricing kernel which prices all nominal assets in the
economy. This means that the total gross return process R, ; of any nominal asset satisfies:

Et(mt+1Rt+1) =1L (14)

If p} represents the price of an n-period zero coupon bond, then equation (14) allows bond
prices to be computed recursively by:

P?H = E (mt+1p?+1)- (15)
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The state dynamics of X, (equation (8)) together with the dynamics of the short rate r,
(equation (9)) and the Radon-Nikodym derivative (equation (10)) form a discrete-time Gaussian
K -factor model with K; observable factors and K, unobservable factors. It falls within the
affine class of term structure model s because bond prices are exponential affine functions of the
state variables. More precisely, bond prices are given by:

p = exp(A, + B.X,), (16)
where the coefficients A,, and B,, follow the difference equations:
Jaﬂzﬁwfam—zu@+émzﬂ&—&
By = B,(6—3\) — & (17)
with A, = —6, and B; = —4;.

These difference equations can be derived by induction using equation (15).* For a one-
period bond, n = 1, we have:

Pi = E [th] = exp {—Tt}
= exp{—dy — 01 X;}.

Matching coefficients leadsto A; = —d, and B; = —6;. Suppose that the price of an n-period
bond is given by p;' = exp(A,, + B,X;). Now we show that the exponential form also applies
to the price of the n period bond:

it = Ei[menapy]
= exp {—Tt — %)\;)\t -+ An} E; [exp {—\er1 + B, X1}
= exp {—rt — %)\;/\t + An} E; [exp {—Aier11 + Bl (1 + ¢X; + Zeri1)}]
= ©exp {An — 8o+ B+ (B¢ — 1) X, — %)\2)%} E¢ [exp {—(A\; + B X)érr1}]
:em{4rwa+&W—E&H&Epﬂ&—&&+3ﬁ&—3ﬁh&}
Matching coefficients results in the recursive relations in equations (17).

The continuously compounded yield y;* on an n-period zero coupon bond is given by:

n _ logp}
Yy = — n
=A,+ B.X; (18)

4 See the techniquesin Campbell, Lo and MacKinlay (1997), Bekaert and Grenadier (2001) and Backus, Foresi,
Mozumdar and Wu (2001).
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where 4, = —A,/n and B, = —B,/n. Note that yields are affine functions of the state
X, so that equation (18) can be interpreted as being the observation equation of a state space
system. Additional observation equations will come from the observable variables X . Most
examples of discrete-time affine models have not incorporated lagged state variables or moving
average errors. However, by treating both the lagged variables and moving average errors as
state variables in X, the affine form is still maintained. Despite time-varying risk premia, our
systemisstill Gaussian, and IR’s, variance decompositions and other techniques can be handled
as easily as an unrestricted VAR.

4.2 Choice of Parameterization
421 Latent Variables

Empirical studies have concluded that three unobserved factors explain much of yield dynamics
(see Knez, Litterman and Scheinkman (1994)). To compare models with only latent variables
with models incorporating both latent and macro factors we use three unobservable factors.
Hence our most comprehensive model consists of two macro and three latent factors.

Since there are unobservabl e variables present, normalizations can be made that give obser-
vationally equivalent systems. The idea behind these normalizations in a VAR setting is that
affine transformations and rotations of the unobservable factors lead to observationally equiv-
alent yields. These normalizations are discussed in detail in Dai and Singleton (2000). We
estimate the most general parameterization for the unobserved variables in this paper, and then
re-estimate the system a second time while setting any insignificant parameters to zero. This
is more efficient, ensures identification, allows comparison across models, and gives sufficient
freedom to capture yield curve dynamics.

We estimate the following system for the unobservable factors:

fi = pfisa (19)

where« 11D N(0,1) and the 3 x 3 companion matrix p islower triangular. Thisisthe most gen-
eral identified representation for a Gaussian specification. A multi-factor Vasicek (1977) model
with correlated unobservable factors consists of (19), an affine short rate equation (5), and the
assumption that A; = 0. In aVasicek model, specifying the companion form and holding fixed
the covariances is equivalent to holding the companion form fixed and specifying the covari-
ances. As the latent factors are AR(1) processes, the coefficients ®, ... ®,, in equation (7)
corresponding to X;* = f;* are zero. Numerous papersin the term structure literature have used
independent factors as a first-cut modeling approach, including Longstaff and Schwartz (1992)
and Chen and Scott (1993). At the estimated parameters, however, the latent factors usually
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turn out to violate the independence assumption. We therefore estimate a correlated |atent fac-
tor model to give the latent variables a fair chance to explain the yield curve by themselves,
without the inclusion of macro variables.

We impose independence between latent and macro factors, so that the upper-right 24 x 3
corner and the lower-left 3 x 24 corner of ® in the compact form in (8) contains only zeros.
This approach to including observed macro factorsin apricing kernel specifies all uncertainties
arising in the latent factors as orthogonal to the macro variables and can answer how yields
respond to pure macro shocks. However, by assuming independence of |atent and macro factors
we cannot ask how macro factors respond to latent yield factors. This contradicts empirical
evidence that the term structure predicts movements in macro economic activity (see Harvey
(1988) and Estrellaand Hardouvelis (1991)). Extensions of this model where this question can
be addressed can be done by freeing up the companion matrix to allow feedback (so ¢ does not
contain zero corner blocks), and looking at contemporaneous correlations of macro and latent
factors (0, does not contain zero corner blocks). We leave extensions that free up correlations
between factors for future research and focus on the impact of macro variables on yields.

4.2.2 Risk Premia

The data-generating and the risk neutral measures coincideif A, = 0 for all ¢. Thiscaseisusu-
aly called the“Loca ExpectationsHypothesis,” which differsfrom the traditional Expectations
Hypothesis by Jensen inequality terms (see Cochrane (2001), Chapter 19). Macro models, such
as Fuhrer and Moore (1995), usually impose the Expectations Hypothesis to infer long term
yield dynamics from short rates. The dynamics of the term structure in the real measure depend
on the risk premia parameters Ay and A\; in equation (11). A non-zero vector )\, affects the
long-run mean of yields because this parameter affects the constant term in the yield equation
(18). A non-zero matrix \; affects the time-variation of risk-premia, since it affects the slope
coefficientsin the yield equation (18). In a Vasicek (1977) model \q isnon-zero and A is zero,
which allows the average yield curve to be upward sloping, but does not allow risk premiato be
time-varying.

Estimating prices of risk isdifficult. Many estimations of term structure models with latent
factors cannot reject the hypothesis that the market prices of risk are zero (for example, see the
low t-statistics in Dai and Singleton (2000)). Parameter estimates of A\, and \; are therefore
interesting in themselves, because the evidence against the expectations hypothesisis till being
debated. Although thereis strong traditional evidence against it (Campbell and Shiller (1991)),
newer evidence finds the expectations hypothesis much harder to reject in international data
(Hardouvelis (1994)), or taking into account small-sample biases (see Bekaert and Hodrick
(2001) and Bekaert, Hodrick, and Marshall (2001)).
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The number of )\ parameters to estimate is very large: )y has 5 and \; has 25 parameters
in the case of the models with macro variables. To avoid over-fitting, we fix some of these
parameters before estimation. First, we set any A\; parameters corresponding to the latent vari-
ables to zero in estimations of models with macro variables, if they were aready insignificant
in the Yields-Only estimation. We also specify the \; matrix to be block-diagonal, with zero
restrictions on the upper-right and lower-left corner blocks. This assumption isin the spirit of
trying to let the macro variables characterize as much of the term structure dynamics as possible
without resorting to orthogonal latent variables. Finally, we set all \; parameters corresponding
to lagged macro variables to zero. This leaves two non-zero matrices on the diagonal of \; to
estimate: a2 x 2 matrix for current macro variablesand a3 x 3 matrix for the latent variables.

4.3 Estimation Method

To estimate the model, we transform a system of yields and observables (Y;, X?) into asystem
of observables and unobservables X; = (X7, X}*). Theyields themselves are analytical func-
tions of the state variables X;, which allow usto infer the unobservable factors from the yields.
The estimation method is maximum likelihood, and we derive the likelihood function in the Ap-
pendix. In traditional VAR approaches, yields and macro variables are used directly as inputs
into a VAR after specifying the autoregressive lag length. The likelihood for the VAR isafunc-
tion of (Y;, X7), and inferences about yield curve movements and macro shocks can be drawn
from the parameters in the companion form coefficients and covariance terms. Our approach
amounts to estimating a VAR of (Y;, X7?), with assumptions that (¢) identify an unobservable
component orthogonal to macro shocks and (i:) guarantee no arbitrage.

We use a two-step consistent estimation procedure. In the first step, we estimate the macro
dynamics (2) and the coefficients d, and §;; of the macro factors in the short rate dynamics
equation (6). In a second step, we estimate the remaining parameters of the term structure
model holding all pre-estimated parameters fixed. One reason to do this is the difficulties as-
sociated with estimating a large number of factors simultaneously with maximum likelihood
when yields are highly persistent.® This procedure also avoids the estimation of alarge number
of lag coefficients (p1, . . . p12) in the bivariate VAR for the macro variables by maximizing a
computationally intensive likelihood function.

Both the macro dynamics (2) and the short rate coefficients of the macro variablesin equa-
tion (6) are estimated by ordinary least squares, as reported in Sections 2 and 3. Since our

5 We tried to estimate various versions of the model in asingle step with maximum likelihood. These estimations
typically produced explosive yield dynamics. Fixing the parameters that characterize the dependence of the short
rate on the observable factors in a (consistent) first-step estimation turned out to be a tractable way to avoid the
problem of nonstationary dynamics.
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constructed macro factors have zero mean and unit variance, the constant ¢, in the short rate
eguation represents the unconditional mean of the 1 month yield, which equals 5.10% on an
annualized basis. This number hasto be divided by 12 to obtain an estimate for 6, at amonthly
frequency. The regression coefficients d;; of the short rate equation give the maximal proportion
of short rate movements explained by the macro factors, with all remaining orthogonal factors
being unobservable. We use the term structure model to identify the unexplained proportion.

Holding ¢y, 611, and the parameters entering equation (2) fixed, we estimate all other pa-
rameters of the term structure model including the remaining coefficientsin §,, corresponding
to the latent factors in the term structure estimation. To obtain starting values for p in equation
(19) we estimate the model with Ay and \; equal to zero. We then estimate A; still holding A
fixed at zero. In the next estimation round, we estimate )\, while setting parametersin \; that
turned out to be insignificantly different from zero. We finally set insignificant A\, parameters
to zero and re-estimate. This method gives more efficient estimates than a one-step estimation
under the null that the insignificant parameters are equal to zero.

Finally, our likelihood construction solves for the unobservable factors from the joint dy-
namics of the zero coupon bond yields and the macro factors. To do this, we follow Chen and
Scott (1993) and assume that as many yields as unobservable factors are measured without er-
ror, and the remaining yields are measured with error. In particular, for our models with three
latent factors we assume the 1, 12 and 60-month yields are measured without error, and the 3
and 36-month yields are measured with error.

4.4 Summary of Parameterization

To summarize, we estimate the following special case of the general model. The bivariate
system of macro factors f; follows the process:

fE=pifig 4+ 4 praflis + Quy, (20)
with u; 11D N(O,1). The 2 x 2 matrices py, ... , p12, {2 consist of free parameters.
The trivariate system of latent factors f;* follows the process:
[t =pfil + e (21)

with €, 11D N(0,1). The 3 x 3 matrix p is lower triangular to ensure identification. The shock
processes ¢; and u; are independent.
The short rate equation is:

re = 0 + 511Xf + 512Xtu7 (22)

16



where the parameters §, and ¢;; are consistently estimated by least squaresin afirst-step proce-
dure prior to maximizing the likelihood. The observable factorsare X7 = (f¢ f'y ..., f,)
and the latent factors are X" = f*. Thefull set of state variablesis X; = ((X7?)', (X})')".

Market prices of risk are affine in the state vector:
)\t - )\() + )\1Xt. (23)

The matrix \; has an upper-left 2 x 2 matrix and alower-right 3 x 3 matrix corresponding to
f?and f}*, while the remaining parameters are set to zero. The parametersin )\, corresponding
to f7 and f;* are free, and all remaining parameters are restricted to be zero.

Our most comprehensive model contains two macro factors and three unobservable factors,
which we denote as the “Macro Lag” model. The estimation of §,; that restricts the parame-
ters on lagged parameters to be zero as in equation (22) is denoted the “Macro” model. The
estimation without any macro variables we call the “Yields-Only” model.

5 Estimation Results

Section 5.1 interprets the parameter estimates of the Macro and Yields-Only models. To deter-
mine the effect of the addition of macro factors into term structure models, we look at the IR’s
of each factor in Section 5.2. The variance decompositions in Section 5.3 allow us to attribute
the forecast variance at a particular horizon to shocks in macro and latent factors. We compare
the latent factors from the different models in Section 5.4 and find that macro factors do ac-
count for some of the latent factors from the Yields-Only model. In Section 5.5, we find that
imposing the cross-equation restrictions from no-arbitrage forecasts better than the unrestricted
VAR’'s common in the macro literature. Moreover, incorporating macro variables into a term
structure model helps us obtain even better forecasts. Derivations for the IR’'s and variance
decompositions are presented in the Appendix.

5.1 Parameter Estimates
5.1.1 Yields-Only M odel

Table 5 presentsthe estimation resultsfor the Yields-Only Model. The order of the latent factors
in Table 5 is unspecified, but we present the estimation results by ordering the latent factors by
decreasing autocorrelation. The model has one very persistent factor, one less persistent but still
very strongly persistent factor, and the last factor is strongly mean-reverting. Thisis consistent
with previous multi-factor estimatesin the literature such as Chen and Scott (1993).

17



These unobservabl e factors have been labeled “level,” “slope,” and “curvature” respectively
because of the effects of these factors on the yield curve. In Figure 5 we plot the normalized
factors against three normalized transformations of the 1 month, 12 month and 60 month yields
(v}, yi? and y2° respectively). Thefirst latent variable, Unobs 1, closely correspondsto a“level”
effect, which is defined as 1/3(y; + v/ + y°). The correlation between Unobs 1 and the
level transformation is 92%. The second latent variable, Unobs 2, closely corresponds to a
“spread” transformation, defined asy®° — ;. Unobs 2 and the spread have a correl ation of 58%.
Finally, the third latent variable, Unobs 3, isrelated to a*“ curvature” transformation, defined as
yl — 2yt + y9°. Unobs 3 has a 77% correlation with curvature.®

In Table 5, the estimated vector )\, has one significant parameter corresponding to the most
highly autocorrelated factor. The parameter is negative, so that the unconditional mean of the
short rate under the risk-neutral measure is higher than under the data-generating measure.
Since bond prices are computed under the risk-neutral measure, negative parametersin ), in-
duce long yields to be on average higher than short yields. Time-variation in risk premiais
mainly driven by the first and third unobservable factor. In other words, risk premiain bond
yields mainly depend on the level and the curvature of the yield curve.

5.1.2 Modeswith Yiedsand Macro Variables

Tables 6 and 7 contain estimation results of the Macro Model and the Macro Lag Model. The
autocorrelations of the unobservable factors are comparable across al models, with the excep-
tion of Unobs 3. The autocorrelation of Unaobs 3 is approximately the same in the Yields-Only
and Macro Model (0.7646 and 0.7728 respectively) but is more persistent in the Macro Lag
Model (0.8210). The §, coefficients corresponding to latent factors are also approximately the
same across the three models.

Turning to therisk premiaparametersin Tables 6 and 7, the \; coefficients corresponding to
inflation and real activity are significant. Thisimplies that time-variation in risk premia signif-
icantly depends on observable macro factors. However, the estimates of the \; risk parameters
differ across the Macro and Macro Lag Model. In particular, the inflation-real activity cross-
terms (A1 12 and A, 21), where the additional two subscripts denote matrix elements, are much
larger in absolute magnitude in the Macro Model than in the Macro Lag Model. Similarly,
the inflation and real activity diagonal terms (A, 1; and A, 55) are smaller in the Macro Model
estimation than in the Macro Lag Model. This implies that the behavior of inflation and real
activity on the term structure may be potentially quite different across the Macro and Macro

6 For comparison, the standard Knez, Litterman and Scheinkman (1994) three principal components of the
1 month, 12 month and 60 month yields have correlations 100%, 99.8% and 88.6% with the level, spread and
curvature yield transformations.
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Lag Models. We confirm this in the following sections where we examine IR’s and variance
decompositions. In contrast, the A\, parameters corresponding to the latent factors are roughly
similar across the Macro and Macro Lag Models, with the exception of the Unobs 3 diagonal
term (Ay,55).

5.2 Impulse Responses
5.2.1 Factor Weights Acrossthe Yield Curve

From equation (18), the effect of each factor on the yield curve is determined by the weights
B,, that the term structure model assigns on each yield of maturity n. These weights B,, aso
represent the initial response of yields to movements in the various factors. Figure 6 plots
these weights as a function of yield maturity for the Yields-Only model in the upper graph, and
the Macro Model in the lower graph. The B,, coefficients have been scaled to correspond to
movements of one standard deviation of the factors, and have been annualized by multiplying
by 1200.

Turning first to the Yields-Only model, the weight on the most persistent factor (Unobs 1)
isamost horizontal. This means that it affects yields of all maturities the same way, so we can
cal it alevel factor. The coefficient of the second factor (Unobs 2) is upward sloping. It mainly
moves the short end of the yield curve relative to the long end, so Unaobs 2 is therefore a slope
factor. The coefficient on the least persistent factor (Unobs 3) is hump-shaped. Movementsin
this factor affect yields at the short-end of the yield curve and middle and long-end of the yield
curve with different signs. Hence, the B,, weights corresponding to Unobs 3 have a twisting
effect, so Unobs 3 is thus a curvature factor. The inverse hump in the coefficient of this factor
cannot be accommodated in a model with independent factors and constant risk premia, where
yield coefficients are monotone functions of maturity.

The corresponding coefficients of the Macro model in the lower plot in Figure 6 look very
similar. We again find that Unobs 1 though 3 represent level, slope and curvature factors. We
find the same correspondence in the B,, coefficients of the Macro Lag model (which we do not
graph here). The B,, coefficients corresponding to inflation and real activity we represent as
stars and circles, respectively. The effect of inflation is hump-shaped but mostly affects short
yields and less so long yields. The magnitude of the inflation weights are higher than the level
factor weights at short maturities, and about half the magnitude of the slope factor weights. Real
activity has a much weaker hump-shaped effect on the yield curve. This suggests that macro
factors have much explanatory power for yield curve dynamics. To trace out the long-term
responses of the yield curve from shocks to the macro variables after the yield curve's initial
response, we now compute IR’s.
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5.2.2 Impulse Responses from Macro Shocks

We look at IR’s to yields of maturities 1, 12 and 60 months. Our term structure model allows
us to obtain the movements of the yield curve in response to driving shocks at all horizons,
including maturities omitted in estimation. The IR’s for all maturities are known analytical
functions of the parameters. Thisisin contrast to estimations with VAR's where IR’s can only
be calculated for yieldsincluded in the VAR. Our estimation al so guarantees that the movements
of yields are arbitrage-free.

Figure 7 shows IR’s of 1, 12 and 60 month yields from the Macro model and the Macro
Lag model. In addition, we calculate the IR’s from a simple unrestricted VAR(12), with macro
factorsand 5 yields similar to Campbell and Ammer (1993). We order the variables with macro
factors first, and then yields with increasing maturities. The x-axis on each plot is in months
and the IR’s are givenin terms of annualized percentages for ashock of one standard deviation.

In al models, shocksto inflation and real activity raise the yield curve across al maturities,
with a larger response to inflation shocks. The IR’s of macro shocks are hump-shaped in all
models. The hump in the unrestricted response to real activity shocks occurs after one year,
while the hump in the response to inflation shocks occurs later, after two years. The magnitudes
and the exact location of the humps differ across models.

Turning first to the IR’s of the unrestricted VAR in the first column of Figure 7, a one-
standard deviation shock to inflation initialy raises the 1-month yield about 10 basis points.
The response peaks after about two years at 30 basis points and then slowly levels off. The
response of longer yields has the same overall shape. The initial response of the 1-year yield
(5-year yield) isonly 8 basis points (5 basis points). The response increases to around 25 basis
points (22 basis points) after two years, and then dies off slowly. The response of yieldsto real
activity shocksin the unrestricted VAR is slightly smaller than the response to inflation shocks.
The response is again hump-shaped with the hump occurring after one year. The unrestricted
response of the 1-month yield to a 1 standard deviation output shock is around 15 basis points
initially. The response increases to 30 basis points after two years, and then dies off. The initial
responses of the 1-year yield (5-year yield) is 15 (10) basis points. The response increases to
25 (18) basis points after one year and then dies off.

The last two columns of Figure 7 list IR’s in the Macro and Macro Lag models. The hump-
shape of the IR’s are similar to the shape of the IR’s from the unrestricted VAR, but the IR’s
are much larger. For example, the initial response of the 1-year yield to a 1 standard deviation
inflation shock is 50 basis points in the Macro model. The response then increases to almost
1 percentage point after one year, where it peaks. The hump in the IR to inflation shocks in
the Macro Lag model occurs later, after 2 years, and is therefore similar to the pattern in the
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unrestricted response. ThelR’sfrom the Macro Lag model, however, are more erratic than those
of the Macro model. Thisis because the contemporaneousand 11 lags of the short rate equation
contain many insignificant parameters, which cause poor behavior dueto over-parameterization.

Our results are different from the empirical VAR studies such as Evansand Marshall (2000).
They associate shocks to price levels and economic growth as having a level-shift effect across
the yield curve. We find that shocks to these factors generally affect the short yield end of the
yield curve more than the long end of the yield curve. The structure in Evans and Marshall
(2000) isto construct VAR's for yields with macro variables and a monetary policy proxy (the
federal funds rate). In our model, most of the movement in the yield curve at long horizons
is explained by unobserved factors, whereas in the VAR most movements in the term structure
are unexplained and are absorbed by the VAR as covariance error. When estimating the model,
the first unobservable factor mimics the level of the term structure because this is the linear
combination that looks like the first principal component of yields, which the macro factors
cannot replicate. Thisfactor is very persistent, and affects the long end of the yield curve more
than the short end.

5.3 Variance Decompositions

To gauge the relative contributions of the macro and latent factorsto forecast variances we con-
struct variance decompositions. These show the proportion of the forecast variance attributable
to each factor, and are closely related to the IR’s of Section 5.2. Table 8 summarizes our results.
The proportion of unconditional variance accounted for by macro factors is decreasing with the
maturity of yields: highest at the short and middle-ends of the yield curve, and smallest for the
long-end. The largest effect is on the 1-month yield where macro factors account for 83% of
the unconditional variance (where the forecasting horizon is infinite). The proportion of fore-
cast variance explained by macro factors displays an interesting pattern for different parts of the
yield curve. For short and intermediate maturities, this pattern is hump-shaped. For example,
macro factors account for 50% of the 1-step ahead forecast variance of the 1-monthyield. This
percentage risesto 78% at 12 months and 85% at 60 months, but then converges to 83% for ex-
tremely long horizons. For long yields, the explanatory power of the macro variables decreases
with forecasting horizon. Macro variables only account for 40% of the unconditional variance
of long yields, while the rest is attributed to latent factors. The low variance decomposition
of long yieldsis due to the dominance of persistent unobserved factors (the near unit-root fac-
tor). Overal, Table 8 shows that the macro factors explain a large amount of term structure
movements, particularly at the short and middle parts of the yield curve.

More detailed variance decompositions are listed in Table 9 for 1, 12 and 60 month maturi-
ties. To interpret the top row of Table 9, for the Yields-Only model, 13.81% of the 1-step ahead
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forecast variance of the 1-month yield is explained by thefirst unobserved factor, 33.03% by the
second unobserved factor and 53.14% by the third unobserved factor. In therow labeled h = 1
of the Macro Model in the first panel corresponding to the 1-month yield, 48.87% of the 1-step
ahead forecast variance is attributable to inflation, 0.74% to real activity and the remainder to
the latent factors.

Focusing on the Macro Model, inflation has more explanatory power for forecast variances
than real activity at all pointsof theyield curve and for all forecast horizons. For example, at the
12-month horizon 68.60% (9.46%) of the forecast variance of the 1-month yield is accounted
for by inflation (economic growth). The explanatory power of real activity generaly rises with
the forecast interval h. At the long end of the yield curve the explanatory power of inflation
decreases with h. Inflation and real activity remain important in the Macro Lag Model, but
the proportion attributable to macro variables is much smaller for the 60 month yield than the
Macro Model.

Turning now to the latent factorsin Table 9, Unobs 1, corresponding to the first highly per-
sistent latent factor, dominates the variance decompositions for all the yields at long horizons.
Its importance increases for yields with long maturity. This effect mirrorstheflat B,, yield fac-
tor weightsin Figure 6. The second unobserved factor (Unobs 2) has greatest effect on short-run
flucations of yields with intermediate maturities. The third unobserved factor (Unobs 3) is the
strongly mean-reverting factor and acts only on the short end of the yield curve. In Table 9 it
accounts for 53% of the forecast variance for the 1-month yield at a one month horizon, but has
little effect on longer yields. These patterns are mirrored in both the Yields-Only model and
models with macro variables, but with different magnitudes. These variance decompositions
suggest that the role of the “level” factor (Unobs 1), “butterfly” factor (Unobs 2) and “slope’
factor (Unobs 3) remain roughly the same with the addition of macro factors. The next sec-
tion seeks to quantify the change in the behavior of these unobserved factors in the presence of
macro variables.

54 Comparison of Factors

The addition of macro factors into aterm structure model is shown quantatively in Table 10. In
this table we regress the latent factors from the Yields-Only model onto the macro and latent
factors from the Macro and Macro Lag Models. We run three series of regressions, first only on
the macro variables (Panel A), and then onto the macro and latent variables of the Macro Model
(Panel B), and then onto the macro and latent variables of the Macro Lag Model (Panel C). All
the variablesin the regressions are normalized.

Turning first to Panel A of Table 10, the traditional level factor loads significantly onto
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inflation and real activity, with an adjusted R? of 22%. In particular, the loading on inflation is
positiveand large (0.46). Thissuggeststhat thetraditional level factor capturesastronginflation
effect. When the second latent factor, labeled “slope,” is regressed onto the macro factors, we
obtain a high R? of 49%, with significant negative loadings particularly on inflation (-0.67).
Hence, much of the traditional slope factor is aso related to the dynamics of inflation. Finally,
the third latent factor (“curvature”) is poorly accounted by macro factors R? = 3%. However,
the traditional curvature factor does |oad significantly onto real activity.

Panel B of Table 10 reports the regression from the traditional Yields-Only factors onto the
macro and latent factors implied by the Macro Model. The level factor from the Yields-Only
model translates almost one for one with the level factor of the Macro Model. The magnitude
of the coefficient on Unobs 1 of the Macro model is very close to 1, and the full regression
produces an R? of 99%. However, the loadings on the macro factors are significant suggesting
that macro variables do account for some of the level factor.

The reason why the level factor survives almost intact when macro factors are introduced is
because the level factor proxies for the first principal component of the yield curve, as shown
in Figure 5. The unobservable factors are linear combinations of the yields, and the best linear
combination of yieldswhich explainsterm structure movementsisthefirst principal component.
When macro factors are added, these factors still do not resemble the level of the yield curve,
and so thisfactor is still necessary to explain the movements across the term structure.

When we regress the Yields-Only slope factor (Unobs 2) onto the Macro Model factors
the loading of the Unobs 2 factor from the Macro Model is significantly smaller than 1, while
the coefficient on inflation is very large and negative, and the coefficient on real activity is
also significant. This means that a large part of the traditional slope factor can be attributed
to inflation movements. In particular, when inflation is high, the slope narrows because the
short rate increases relative to the long rate. Turning finally to the regression of the Yields-Only
curvature factor (Unobs 3), this regression still has a significant negative coefficient on real
activity, but most of the correspondence is with the Unobs 3 factor from the Macro Model (the
coefficient is 0.91).

Panel C of Table 10 reports the regression coefficients of the latent factors from the Yields-
Only model onto the macro and latent factors of the Macro Lag Model. We see that the level
effect again survivesalmost onefor one and thereisstill alargeloading on theinflation factor by
the Yields-Only model’s Unobs 2. However, the R%'s of the Unobs 2 and Unobs 3 regressions
are much smaller than the Macro Model regressionsin Panel B.

In summary, Table 10 shows that the traditional level and slope factors are markedly as-
sociated with and accounted by observable macro factors. In particular, inflation accounts for
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large amounts of the dynamics of the traditional slope factor. However, the level effect survives
amost intact when macro factors are added to a term structure model.

5.5 Forecasts

The variance decompositions hint that term structure models with observable macro variables
may help in forecasting future movementsin yields. However, these are statements based on
assuming a particular model as the true model after estimation, and may not hold in a practical
setting where more parsimonious data representations often out-perform sophisticated models,
particularly if these more sophisticated models are over-parameterized. To determine if thisis
actually the case we conduct an out-of-sampl e forecasting experiment.

Our procedure for examining out-of-sampl e forecasts over the last 5 years of our sampleis
as follows. We examine forecasts for al the five yields used in estimation. At each date ¢, we
estimate the models using data up to and including time ¢, and then forecast the next month’s
yields at time ¢t + 1. The macro factor data is formed using the principal components of the
macro data up to time ¢, and we estimate the short rate equation and the bivariate VAR of the
macro dynamics only using data up to time ¢ for the Macro and Macro Lag Models. Hence, we
only use data available in the information set at time ¢ in making the forecast at timet + 1.

We perform a comparison of out-of-sample forecasts for six models. First, we use asimple
random walk. Second, we investigate out-of-sample forecasts for the corresponding VAR(12)'s
which do not impose cross-equation restrictions. Our first VAR uses only yields, and we use
a second VAR which incorporates yields and macro variables. Our last three models are the
Yields-Only model, the Macro model and the Macro Lag model. We use two criteriato compare
our forecasts across the models. Thefirst isthe Root Mean Squared Error, RMSE, of actual and
forecasted yields, and the second is the Mean Absolute Deviation, MAD.

Table 11 lists the results of the out-of-sample comparisons. Lower RMSE and MAD vaues
denote better forecasts. We note the following points regarding the forecasting performance of
the models. First, a random walk easily beats an unconstrained VAR. The result holds inde-
pendently of whether the VAR’s only contain yields, or are augmented with macro variables.
The bad performance is due to the high persistence of yields and small sample biases in the
estimation of autoregressive coefficients in over-parameterized VAR's.

Second, imposing the cross-equation restrictionsfrom no-arbitrage helpsin forecasting. The
improvement in forecasting performance is substantial, generally about 25% of the RM SE and
30% of the MAD for all yields. These constrained VAR'’s perform in line with, and dlightly
better, than a random walk (except for the 3-month yield). Duffee (2001) remarks that beating
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a random walk with a traditional affine term structure model is difficult. From forecasting
exercises without risk premia (not reported here), we know that thisresult crucially depends on
the type of risk adjustment. Linear risk premia, not considered by Duffee (2001), seem to do
well in thisregard.

Third, the forecasts of the Macro model are far better than those of the Macro Lag model.
While the forecasts of the Macro Lag model are comparable to those of unconstrained VAR's,
the Macro model dlightly outperforms a random walk (except for the 3-month yield). Both
the Macro model and the Macro Lag model impose cross-equation restrictions on a VAR with
yieldsand macro variables. The Macro Lag model, however, has alarge number of insignificant
coefficients entering the short rate equation. This over-parameterization causes poor out-of-
sampl e performance.

Finally, incorporating macro variables helps in forecasting. More precisely, the forecasts
of the Macro model are uniformly better than the Yields-Only model (except for the 3 month
yield). Hence, we can conclude that (i) adding term structure restrictions improves forecasts
relative to unconstrained VAR's, even beating a random walk, and (ii) forecasts can be further
improved by including macro variables. Note, however, that we have shown this improvement
isonly inincrementally adding macro factors to a given number of latent factors.

6 Conclusion

This paper presents a Gaussian model of the yield curve with observable macroeconomic vari-
ables and traditional latent yield variables. The model takes afirst step towards understanding
the joint dynamics of macro variables and bond prices in a factor model of the term structure.
Risk premia are time-varying; they depend on both observable macro variables and unobserv-
able factors. Our approach extends the existing empirical VAR work by imposing no-arbitrage
assumptions which allow identification of unobservable factors, and allows the movements of
the entire yield curve to be derived consistent with no-arbitrage.

We find that macro factors explain a significant portion (up to 85%) of movementsin the
short and middle parts of the yield curve, but explain only around 40% of movements at the
long end of the yield curve. The effects of inflation shocks are strongest at the short end of
the yield curve. Comparing the latent factors from traditional three latent factor models of
term structure, the “level” factor survives almost intact when macro factors are incorporated,
but a significant proportion of the “level” and “slope” factors are attributed to macro factors,
particularly to inflation. Incorporating macro factors in a term structure model aso improves
out-of -sample forecasts.
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In future research, we plan to extend our empirical specification to alow non-diagonal terms
in the companion form for the factors. Thisintroduces correlations among the latent factors and
feedback from latent factorsto macro variables. Thisallowsinference of how latent yield factors
drive macro variables, along the lines of Estrellaand Hardouvelis (1991) but with the dynamics
of the yield curve modeled in a no-arbitrage pricing approach.
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Appendix

A Likeihood Function

We have dataon an N vector of zero coupon yields Y;. Our approach to estimation is to solve for the unobserved
factors f;* from the yields Y; and the observed variables X ?, which includes observed macro variables f? and
latent variables f;* and lagged terms of the driving factors.

Suppose first that we have N = K, yields of different maturity n4,...,nxk,, a many yields as we have
unobserved factors, . Stacking the equations for the K, yields, with Y; = (y7"* ... 3, ")/, we can write:

Y, = A+ BX,, (A-1)

where A is Kox1 and B is KoxK. Partition the matrix B into B = [B° B%] where B° isa Ko x (K — K»)
matrix which picks up the observable factorsand B* is a Kox K5 invertible matrix that picks up the unobservable
factors. Then we can infer the unobservablefactorsin X/ = f* fromY; and the pricing matrices A and B using
an inversion from the eguation:

Y, = A+ B°X{ + B"X}". (A-2)

However, the term structure model will only price exactly the yields used to invert the latent factors. To
increase the number of yieldsto N > K5 in the estimation, we follow Chen and Scott (1993), and others, in
assuming that some of the yields are observed with measurement error. There will be K5 yields from which
we invert to obtain the latent variables, and the other N — K 5 yields are measured with error. We assume this
measurement error is |1D, and the measurement error is uncorrelated across the yields measured with error. Let
B™ denotea N x (N-K3) measurement matrix and u}* be an (IV-K3)-dimensional Gaussian white noise with a
diagonal covariance matrix independent of X ;. We can then write:

Y, = A+ B°X{ + BUX{ + B™ul". (A-3)

In equation (A-3) the yields measured without error will be used to solve for X *, and the yields measured with
error have non-zero u}. For agiven parameter vector § = (u, ®, %, dg, 01, Ao, A1), We can invert equation (A-3) to
obtain X}* and u}". Thevariance of the measurement error in our estimations are very small and choosing different
bonds to be measured without error do not affect our results.

Denoting the normal density functions of the state variables X ; and the errorsu;* as fx and f,,~ respectively,
the joint likelihood £(#) of the observed data on zero coupon yields Y; and the observable factors X ? is given by:

2(0)) f(Y;,Xf|Y;5,1,X,§Ll)

Il
=

o~
U

2

I
]~

log(£(0)) —log | det(J)| + log f (X7, X;'| X7 1, Xi'y) + log fum (ui")

-
||
v

= —(T —1)log|det(J)| - (T - 1)% log(det(2%"))
T
- % Z(Xt il (I)Xt—l)/(zzl)il(Xt —pn—®X; 1)

=2

~

(A-4)

where o2 is the variance of the i-th measurement error and the Jacobian term is given by

I 0 0
J_<B° Bu Bm>'

Note that the Jacobian terms of the likelihood in equation (A-4) do not involve A ,,, and hence the constant prices
of risk Ao but do involve the linear prices of risk A .
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B Impulse Responses

Toderivethe|R’s of theyields from shocksto the macro variablesand latent yield factors F', = (f¢', f*')’ consider
the VAR(12) form of F} in equation (7), repeated here:

Ft = (I)O +¢1Ft_1 +...+<Dth_12 —|—90ut. (B'5)

The ®; coefficients take the following form in our parameterization:

_ _(p,m O _(pi O .
Py=0 <I>1<0 p> <I>l<0 0>for22,...,12.

We write this as an implied Wold MA (co) representation:
o0
F = Z Piut—;, (B-6)
=0

where u; = (u u¥')’ are the shocks to F;. Note that a Choleski adjustment is needed to take into account the
contemporaneous correlation of the shocks.

Theyield on an n-period zero coupon bond y * isalinear combination of current and lagged values of «, from
equation (18), which we can write as:

= An+ > Plu, (B-7)

=0

where the row vectors " arefunctionsof B,,. Note that thisis just alinear transformation of the original MA (oco)
form, and the B,, are closed-form from equation (17).
For example, for the Macro Model, the state-space X ; is given by:

X = (fto fto—l fto—12 ftu ),;

where f? are the two macro factors, and f;* are the three unobservable factors. Theyields for maturity n, ', can
be written as:

y? = An + B;Xt
= A, + By ff + -+ Bl ff1a + Bt
=A,+ B Fi+ -+ Bl yF 12 (B-8)
where we partition as B, = [Bp1 ... Bpi3], Where B,,; correspondsto f? ; fori = 0,...,12 and B3 corre-
spondsto f¥, and B,,; = [Bn1 Bnis), and B,,; = [Bn; 0] fori =2,...12.
Then substituting the MA (o) representation for F'; we have:

l[)g = B’I/’LIPO

’d}? = B'iLl‘Pl + B;LQPO

Yi = B;Llpi—l +ot Bq/z12pi—127 fori > 12. (B-9)
and so on.

The vector ¢ isthe IR for the n-period yield at horizon ¢ for shocks to the driving variables F'; at time 0. For
k yields of maturitiesny, . . . ng, we can stack the coefficients of each yield to write:

Y, =A+ Z Wiug g, (B-10)
i=0

whereY; = (y;'! ...y, *)" and the j-th row of ¥; isyP.
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C Variance Decompositions

Working with the MA(c0) representation of the yields in equation (B-10), the error of the optimal h-step ahead
forecast at timet, Y, ¢ is:

h—1

YA;erh\t ~Yiin = Z Vit h—i (C-11)
i=0

L et the j-th component of a vector be denoted by a superscript j and ¥ ;. ; denote the element in row j, column &
of ¥;. Then:

K

Vi = Yion = 2 (Winoutin + - Ui norufyy) (C-12)
k=1

Denote the mean squared error of Y’t{rh‘t asMSE(Y; 4 p1¢). Then

K
MSE(YHW) = Z(‘I’?k,o +eeet ‘I’?k,hq)' (C-13)
k=1

The contribution €2, 5, of the k-th factor to the MSE of the h-step ahead forecast of the j-th yield is:

h—1 1,2
Zi:o \Ijjk,i

e L (C-14)
MSE(Y;4n)¢)

Qjk,n =

which decomposes the forecast variance at horizon h of the j-th yield to the various factors.
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Table 1: Summary Statistics of Data

Centra Moments

Autocorrelations

mean stdev skew kurt lag 1 lag 2 lag 3

1 mth 51316 27399 1.0756 4.6425 | 0.9716 0.9453 0.9323
3 mth 54815 2.8550 1.0704 4.5543 | 0.9815 0.9606 0.9419
12 mth 58849 28445 0.8523 3.8856 | 0.9824 0.9626 0.9457
36 mth 6.2241 27643 0.7424 3.5090 | 0.9875 0.9739 0.9620
60 mth 6.4015 27264 0.6838 3.2719 | 0.9892 0.9782 0.9687
CPI 38612 28733 12709 4.3655 | 0.9931 0.9847 0.9738
PCOM 0.9425 11.2974 1.0352 6.0273 | 0.9684 0.9162 0.8600
PPl 30590 36325 14436 4.9218 | 0.9863 0.9705 0.9521
HELP 66.7517 22.0257 -0.1490 1.8665 | 0.9944 0.9900 0.9830
EMPLOY 16594 15282 -0.4690 3.2534 |0.9378 0.8954 0.8410
IP 34717 53697 -0.5578 3.6592 | 0.9599 0.8889 0.7972
UE 57344 15650 04924 3.2413 | 09906 0.9777 0.9595

The 1, 3, 12, 36 and 60 month yields are annual zero coupon bond yields from the Fama-Bliss CRSP bond
files. The inflation measures CPI, PCOM and PPI refer to CPI inflation, spot market commodity price in-
flation, and PPI (Finished Goods) inflation respectively. We calculate the inflation measure at time ¢ using
log(P;/P;—12) where P, istheinflation index. The real activity measuresHELP, EMPLOY, |P and UE refer
to the Index of Help Wanted Advertising in Newspapers, the growth rate of employment, the growth rate in
industrial production and the unemployment rate respectively. The growth rate in employment and industrial
production are calculated using log(I;/I;—12) where I, is the employment or industrial production index.
For the macro variables, the sample period is 1952:01 to 2000:12. For the bond yields, the sample period is

1952:06 to 2000:12.
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Table 2: Principal Component Analysis

Principal Components: Inflation

Factor
1st 2nd 3rd Loading
CPI -0.6343 -0.3674 0.6802 -0.9286
PCOM -0.4031 0.9080 0.1145 -0.5901
PPI -0.6597 -0.2015 -0.7240 -0.9657
% variance
explaned 0.7143 0.9775 1.0000
Principal Components: Real Activity
Factor
1st 2nd 3rd 4th Loading
HELP -0.3204 -0.7365 -0.5300 0.2719 -0.4622
UE 0.3597 -0.6283 0.6871 0.0612 0.5188
EMPLOY -0.6330 -0.1648 0.2444 -0.7158 -0.9131
IP -0.6060 0.1886 0.4327 0.6403 -0.8742

% variance
explained 0.5202 0.7946 0.9518 1.0000

We take the three (four) macro variables representing inflation (real activity) and normalize them to unit
variance. Then the normalized data Z; has the following 1 factor model:

Zy=Cf +e

where C' isthe factor loading vector, E(f?) = 0, cov(f?) = I, E(e;) = 0, and cov(e;) = T', whereT" isadi-
agona matrix. The columnstitled “principal components” list the principal components corresponding to the
first to smallest eigenvalue. The % variance explained for the nth principal component gives the cumulative
proportion of the variance explained by thefirst up to the nth eigenvalue. I P refersto the growth in industrial
production, CPI to CPI inflation, PCOM to commodity price inflation and PPI to PPI inflation, HELP refers
to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment rate, EMPLOY to the
growth in employment. The sample period is 1952:01 to 2000:12
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Table 3; Selected Correlations

CPI PCOM PPl
Inflation 0.9286  0.5901 0.9657

HELP UE EMPLOY IP
Real Activity 0.4622  -0.5188 0.9131 0.8742

Real
Inflation  Activity 1 mth 12 mth
Real Activity  0.0017

1 mth 0.6666  0.0627
12 mth 0.6484  0.0510 0.9771
60 mth 05614 -0.0270 09191  0.9639

The table reports selected correlations for the inflation factor extracted from the first principal component
of PCI, PCOM and PPI, the real activity factor extracted from the first principal component of HELP, UE,
EMPLOY and IR, and the 1, 12 and 60 month bond yields, which are used in the estimation. IP refersto
the growth in industrial production, CPI to CPI inflation, PCOM to commodity price inflation, PPl to PP
inflation, HEL P refers to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment
rate, EMPLQY to the growth in employment. The sample period is 1952:06 to 2000:12.



Table 4. The Dependence of the Short Rate on Macro Variables
Panel A: y} on Constant, Inflation and Real activity
Coeff  Inflation Real Activity Constant  Adj R?
t 0.0143 0.1535 0.4250 0.4523
(0.0070)*  (0.0070)"  (0.007)
Panel B: y; on Constant, 12 lags of Inflation and Real activity

Coeff Inflation Red activity Constant  Adj R?

t 0.0037 0.0398 04296  0.5337
(0.0534)  (0.0065)"  (0.0306)
t—1  0.0659 0.0150
(0.0828)  (0.0452)
t—2  -0.0435 0.0105
(0.0830)  (0.0450)
t—3  0.0062 -0.0054
(0.0833)  (0.0444)
t—4 00233 -0.0172

(0.0828)  (0.0441)
t—5  -0.0088 0.0145
(0.0825)  (0.0442)

t—6  -0.0245 -0.0213
(0.0825)  (0.0438)
t—7 00175 0.0062
(0.0821)  (0.0435)
t—8  0.0080 0.0196

(0.0825)  (0.0438)
t—9  -0.0049 0.0121
(0.0821)  (0.0441)

t—10 -0.0079 0.0005
(0.0820)  (0.0439)
t—11 01427 -0.0069

(0.0522)t  (0.0299)

In Panel A we regress the 1 month yield y} on a constant, the inflation factor and the real activity factor.
In Panel B we regress y; on a constant, inflation, real activity and 11 lags of inflation and real activity. We
report OL S standard errorsin parenthesis. Standard errors significant at the 5% (1%) level are denoted * ().
Sample period is 1952:01 to 2000:12.
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Table 5: Yields-Only Model Estimates

Companion Form ®

0.9924 0.0000 0.0000

(0.0039)

0.0000 0.9548 0.0000
(0.0062)

0.0000  -0.0021 0.7646
(0.0001) (0.0210)

Short Rate Parameters d; (x 100)
Unobsl Unobs2 Unobs3
0.0136 -0.0451 0.0237
(0.0020) (0.0005)  (0.0015)

Prices of Risk \g and \;
A1 matrix
Ao Unobsl Unobs2 Unobs3
Unobsl -0.0033 -0.0069 0.0000  0.0000
(0.0004)  (0.0040)
Unobs2  0.0000 0.0445 0.0000 -0.2585

(0.0050) (0.0197)
Unobs3 00000  -0.0049 0.0000  0.0241
(0.0090) (0.0026)

Measurement Error (x 100)
3month 36 month
0.0203 0.0090
(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the 3-factor Yields-Only model
X = ®X;_1+e, withe; ~ N(0, 1), ® lower triangular and the short rate equation given by r; = §p+ 67 X
All factors X, = f;* areunobservable. The coefficient § is set to the sample unconditional mean of the short
rate, 0.0513/12. Thepricesof risk \; aregivenby A; = Ao+ A1 X;. Thesystemisfirst estimated with Ay = 0
and \; unconstrained. In a second estimation, the insignificant coefficientsin A\, are set to zero. The sample
period is 1952:06 to 2000:12.
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Table 6: Macro Model Estimates

Companion Form @ for Latent Factors

0.9915 0.0000  0.0000

(0.0042)

0.0000 09392  0.0000
(0.0122)

0.0000 00125  0.7728

(0.0146)  (0.0217)

Short Rate Parameters 6, for Latent Factors (x 100)
Unobs 1 Unobs2 Unobs3
0.0138 -0.0487 0.0190
(0.0021) (0.0007)  (0.0022)

Prices of Risk \g and \;
Ao A1 matrix

Real

Inflation  Activity Unobsl Unobs2 Unobs3

Inflation  0.0000 -0.4263 0.1616 0.0000 0.0000  0.0000
(0.1331) (0.0146)

Real Activity ~ 0.0000 19322 -0.1015 0.0000 0.0000  0.0000
(0.3893) (0.0329)

Unobsl -0.0039 0.0000 0.0000 -0.0047 0.0000 0.0000

(0.0003) (0.0043)
Unobs2 00000 00000 00000 00459 0.0000 -0.2921
(0.0055) (0.0205)
Unobs3 00000 00000 00000 -0.0035 00000 0.0200
(0.0001) (0.0028)

Measurement Error (x 100)
3 month 36 month
0.0207 0.0091
(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the Macro model with the short
rate equation specified with only current inflation and current real activity, as reported in Panel A of Table
4. The short rate equation is given by r; = §p + 67 X, where §; only picks up current inflation, current real
activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag VAR (not
reported). The model is X; = ®X; 1 + e, withe; ~ N(0,1). X, contains 12 lags of inflation and real
activity and threelatent variables, which areindependent at all lagsto the macro variables. In apre-estimation
we find the inflation and real activity VAR(12), and the coefficients on inflation and real activity in the short
rate equation. The coefficient §, is set to the sample unconditional mean of the short rate, 0.0513/12. We
first estimate the latent factor parameters and the prices of risk A\, = A\g + A1 X4, restricting A, to be block
diagonal and using the same form of the prices of risk for the latent factors as the Yields-Only estimation in
Table 5. In a second estimation, the insignificant coefficientsin Ao and \; are set to zero. The sample period
is 1952:06 to 2000:12.
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Table 7: Macro Lag Model Estimates

Companion Form & for Latent Factors

0.9922 0.0000  0.0000

(0.0039)

0.0000 0.9431  0.0000
(0.0118)

0.0000 -0.0189  0.8210

(0.0135)  (0.0216)

Short Rate Parameters 6, for Latent Factors (x 100)
Unobs 1 Unobs2 Unobs3
0.0130 -0.0438  0.0256
(0.0020) (0.0010)  (0.0025)

Prices of Risk \g and \;
Ao A1 matrix

Red

Inflation  Activity Unobsl Unobs2 Unobs3

Inflation  0.0000 -0.8442 -0.0017 0.0000 0.0000  0.0000
(0.2397) (0.0582)

Real Activity ~ 0.0000 11209 0.2102 0.0000 0.0000  0.0000
(0.1375) (0.0275)

Unobsl -0.0050 0.0000 0.0000 -0.0048 0.0000 0.0000

(0.0003) (0.0040)

Unobs2 00000 00000 00000 00483 00000 -0.2713
(0.0068) (0.0195)

Unobs3 00000 00000 00000 -0.0248 0.0000 0.1624
(0.0078) (0.0292)

Measurement Error (x 100)
3 month 36 month
0.0251 0.0107
(0.0005) (0.0003)

The table reports parameter estimates and standard errors in parenthesis for the Macro Lag model with the
short rate equation specified with 12 lags of inflation and current real activity, as reported in Panel B of Table
4. The short rate equation is given by v, = do + 07X+, where 6; only picks up 12 lags of inflation and real
activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag VAR (not
reported). The model is X; = ®X; 1 + e, withe; ~ N(0,71). X, contains 12 lags of inflation and real
activity and threelatent variables, which areindependent at all lagsto the macro variables. In apre-estimation
we find the inflation and real activity VAR(12), and the coefficients on inflation and real activity in the short
rate equation. The coefficient §, is set to the sample unconditional mean of the short rate, 0.0513/12. We
first estimate the latent factor parameters and the prices of risk A\, = A\g + A1 X4, restricting A; to be block
diagona and not picking up any lagged variables. We us the same form of the prices of risk for the latent
factors as the Yields-Only estimation in Table 5. In a second estimation, the insignificant coefficientsin A
and \; are set to zero. The sample period is 1952:06 to 2000:12.
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Table 8: Proportion of Variance Explained by Macro Factors in the Macro Model

Horizon h
Imth 12mth 60mth oo
shortend 50% 78% 85%  83%
middle 67% 79% 8%  73%
longend 61% 63% 48%  38%

We list the contribution of the macro factorsto the h-step ahead forecast variance of the 1 month yield (short

end), 12 month yield (middle) and 60 month yield (long end). These are the variance decompositions from
the Macro model outlined in more detail in Table 9.
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Table 9: Variance Decompositions

Macro Factors Latent Factors
Red
h Inflation Activity Unobsl Unobs2 Unobs3

1 month yield
1 0.1381 0.3303 0.5314
Yields-Only 12 0.3081 04342 0.2577
60 05579  0.3116  0.1305
e) 0.6771 02279  0.0950
1 04887 00074 0.0328 0.4088 0.0622
Macro 12 06860 0.0946 0.0251 0.1836  0.0108

60 07139 01372 0.0390 0.1050 0.0048

oo 0.698 01343 0.0597 0.1027  0.0047

1 00005 01081 0.0549 0.6235 0.2130

Macro 12 02242 03478 0.0446 03357 0.0477
with Lags 60 0.6885 01805 0.0315 0.0900 0.0095
co 06749 01768 0.0507 0.0882  0.0093

12 month yield
1 05972  0.3517 0.0511
Yields-Only 12 0.7116  0.2752  0.0132
60 0.8594 0.1361 0.0045
00 09103 0.0869 0.0028
1 06343 0.0332 00733 02112 0.0480
Macro 12 07066 0.0848 0.0709 0.1272  0.0105

60 0.6615 01208 0.1271 0.0851  0.0054

co 06173 01128 0.1854 0.0794  0.0051

1 00166 02107 0.2114 04659  0.0955

Macro 12 03268 0.1895 0.2001 0.2588  0.0249
with Lags 60 05879 01249 0.1905 0.0899  0.0067
oco 05237 01113 02790 0.0801  0.0060

60 month yield
1 0.7507 0.1963  0.0530
Yields-Only 12 0.8443 0.1427 0.0130
60 09319 0.0641 0.0040
00 09578 0.0397 0.0025
1 0590 00170 02756 0.0804 0.0319
Macro 12 05690 0.0615 0.3054 0.0561 0.0080

60 04027 0.0755 04848 0.0333 0.0037

co 03164 0.0593 05953 0.0262  0.0029

1 00021 0.0199 0.8060 01184 0.0535

Macro 12 00597 0.0170 0.8376 0.0703  0.0153
with Lags 60 00906 0.0169 08619 0.0262  0.0045
co 00582 0.0108 09112 0.0168  0.0029

The table lists the contribution of factor ¢ to the h-step ahead forecast of the 1 month yield. To interpret the
top row, for the Yields-Only model, 13.81% of the 1-step ahead forecast variance is explained by the first
unobserved factor, 33.03% by the second unobserved factor and 53.14% by the third unobserved factor. The
Yields-Only model only has three latent factors. The macro models have inflation, real activity and three
latent factors. The Macro model has no lags of inflation and real activity in the short rate equation, while the
Macro with Lags model does.
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Table 10: Comparison of Yields-Only and Macro Factors

Independent Variables
Dependent Red
Variable Inflation  Activity Unobs1l Unobs2 Unobs3 Adj R?

Panel A: Regressions on Macro Factors

Unobs1l 04625 -0.0726 0.2180
“level”  (0.0735) (0.0860)
Unobs2  -0.6707 -0.1890 0.4902
“spread”  (0.0716) (0.0611)
Unobs3  0.0498 -0.1794 0.0343

“curvature”  (0.0629) (0.0714)
Panel B: Regressions on Factors from Macro Model

Unobsl 01118 00307 09507 -0.0174 00038 0.9971
(0.0054) (0.0056) (0.0055) (0.0056) (0.0047)

Unobs2  -0.9364 -0.1026 00199 07624 00279 0.9981
(0.0037) (0.0037) (0.0042) (0.0032) (0.0029)

Unobs3 00427 -01238 01656 -0.1455 009071 0.9256
(0.0262) (0.0260) (0.0289) (0.0241) (0.0233)

Panel C: Regressions on Factors from Macro Lag Model

Unobsl  -0.0580 -0.0207 10248 00035 0.0058 0.9979
(0.0049) (0.0040) (0.0044) (0.0047) (0.0036)

Unobs2  -0.7069 -0.1132 -02955 05700 0.1306 0.8715
(0.0393) (0.0313) (0.0356) (0.0376) (0.0315)

Unobs3 01112 -00081 02059 00228 08119 0.7470
(0.0458) (0.0386) (0.0507) (0.0365) (0.0424)

Regressions of the latent factors from the Yields-Only model with only latent factors (dependent variables)
onto the macro factors and latent factors from the Macro and Macro Lag model (independent variables). All
factors are normalized, and standard errors, produced using 3 Newey-West (1987) lags, are in parentheses.
Panel A lists coefficients from aregression of the Yields-Only latent factors onto only macro factors. Panel
B lists coefficients from a regression of Yields-Only latent factors on the macro and latent factors from the
Macro model with only contemporaneous inflation and real activity in the short rate equation. Panel C lists
coefficients from a regression of Yields-Only latent factors on the macro and latent factors from the Macro
Lag model with contemporaneous inflation and real activity and 11 lags of inflation and real activity in the
short rate equation.
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Yield
(mths) RW
1 0.3160
3 0.1523
12 0.1991
36 0.2493
60 0.2546
Yield
(mths) RW
1 0.2252
3 0.1159
12 0.1639
36 0.1997
60 0.2054

We forecast over the last 60 months (the out-sample) of our sample and record the root mean sguare error
(RMSE) and the mean absolute deviation (MAD) of the forecast versus the actual values. Lower RMSE and
MAD values denote better forecasts. Forecasts are 1-step ahead. We first estimate models on the in-sample,
and update the estimations at each observation in the out-sample. RW denotes arandom walk forecast, VAR
Yields Only denotes a VAR(12) only with 5 yields, VAR with Macro denotes a VAR(12) fitted to the macro
factors and all 5 yields, Yields-Only denotes the 3 factor latent variable model without macro variables, the
Macro model has only contemporaneous inflation and real activity in the short rate equation, and the Macro
Lag model has contemporaneous and 11 lags of inflation and real activity in the short rate equation. The
first three of these models are thus unconstrained estimations, while the last three impose the cross-equation

Table 11: Forecast Comparisons

RMSE Criteria

Unconstrained VAR’s
VAR VAR with
Yields Only Macro
0.3905 0.3990
0.2495 0.2540
0.2776 0.2722
0.3730 0.3644
0.3793 0.3725
MAD Criteria

Unconstrained VAR’s

VAR
Yields Only
0.3076
0.1987
0.2176
0.2991
0.2957

VAR with
Macro
0.3242
0.2056
0.2204
0.2924
0.2930

restrictions derived from the absence of arbitrage.
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VAR's with Cross-Equation

Yields
Only
0.3012
0.1860
0.1914
0.2489
0.2497

Restrictions

Macro MacroLag
Model Model
0.2889 0.3906
0.2167 0.2876
0.1851 0.2274
0.2092 0.2665
0.2333 0.2530

VAR's with Cross-Equation

Yields
Only
0.2155
0.1442
0.1616
0.1974
0.2017

Restrictions

Macro MacrolLag
Model Model
0.2039 0.2981
0.1693 0.2344
0.1559 0.1870
0.1604 0.2111
0.1883 0.2064



Monthly Zero Coupon Bond Yields
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The top panel shows a plot of (annualized) monthly ZCB yields of maturity 1 month, 12 months and 60
months. The bottom panel plots the two macro factors representing inflation and real activity. The sample
period is 1952:06 to 2000:12.

Figure 1: Bond Yields and Macro Principal Components
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Inflation Factor versus Inflation Measures
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Real Activity Factor versus Real Activity Measures
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Thetop panel showsaplot of theinflation factor with CPI, PCOM and PPI measures of inflation. The bottom
panel shows a plot of the real activity factor with HELP, the negative of unemployment, employment and |P
measures of real activity. All variables are standardized to have zero mean and unit variance. The sample
period is 1952:01 to 2000:12.

Figure 2: Inflation and Real Activity



Response of Inflation from Inflation
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We fit a VAR(12) to the inflation and real activity macro factors. The plot shows the impulse responses to a
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Cholesky one standard deviation innovation to each variable. Timeisin months on the z-axis.

Figure 3: Impulse Responses from the VAR(12) on Macro Factors
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Residuals from Taylor Rule Specifications
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We show the residuals from the Taylor rule regressions, together with the de-meaned short rate (1 month
yield). We show the residuals from the Taylor rule with no lags, which have 0.9458 autocorrelation, and
the residuals from the Taylor rule with 11 lags, which have 0.9370 autocorrelation. For comparison, the
autocorrelation of the short rate is 0.9716.

Figure 4: Residuals from the Taylor Rule Regressions
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Level of Interest Rates versus Unobs 1 from Yields-Only Model Spread of Interest Rates versus Unobs 2 from Yields-Only Model
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Curvature of Interest Rates versus Unobs 3 from Yields-Only Model
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We show the unobserved yield factors from the Yields-Only model versus the level of interest rates (top left
plot), spread (top right plot) and curvature of interest rates (bottom plot). All variablesare normalized to have
zero mean and unit variance. The level of interest ratesis defined as 1/3(y } + v + y%°) where v}, yi2 and
yS0 are the one-month yield, 12-month yield and 60-month yield respectively. The spread of interest ratesis
defined as y%° — y}. The curvature of interest ratesis defined asy} — 2y;2 + y5°. The correlation between
the level of interest rates and Unobs 1 is 92%, the correlation between the spread and Unobs 2 is 58% and the
correlation between curvature and Unobs 3 is 77%.

Figure 5: Unobserved Yield Factors versus Level, Slope and Curvature
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Bn Coefficients from the Yields—Only Model
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The top (bottom) plot displaysthe B,, yield weights as a function of maturity »n for the Yields-Only (Macro)
model. The weights have been scaled to correspond to one standard deviation movementsin the factors and

annualized by multiplying by 1200.

Figure 6. B,, Yield Weights for the Yields-Only and Macro Model
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Unrestricted VAR(12)

Macro Model

Macro Lag Model

Impuise Responses - 1 month yield Impuise Responses - 1 month yield Impuse Responses - 1 month yield
1 1 1
+ Tniation + Tniation + Tniation
O Real Activity ©_Real Activity O Real Activty
«
1 B it 1 ik * . B
e
*s
* *
08 B osf B osf * B
¥
g g g *
g s |« £ *
S o6 B Sost B Sost * B
g g g *
£ £ £ *
g g 8 © % o° *,
H H & % o %0 % "
04 B oaf B oaf oo ° * 1
oo
o Q0 M . A 0000,
o o 0000,
00000 0 Qe S s, o 0000000,
oz 077 9% 4 00000 otttk ey, B o2 R 02f® o Ty 000, x
° 00 S o, o .
ko C00005EEA S, o * *
o RS o %0000, " Fhe, ocoaurte
o 00000%;536 . 005
o 1 ol LLT! ol*
o 10 20 30 w0 50 60 o 10 20 30 w0 50 60 o 10 20 30 w0 50 60
Months Months Months
Impulse Responses ~ 12 month yield Impulse Responses ~ 12 month yield Impulse Responses ~ 12 month yield
+ infaton P * niaton + nfaton
O _Real Activity * O _Real Activity O _Real Activity
07 B 07 B 07 B
o6l B o6l B o6l B
ks
R
o5 B o5 B o5 * B
g g g * *
£ oaf 4 £ oaf 4 £ oaf *y 4
o o A * *
g g ) w
£ £ 0000200, £ « *x,
8 o3f 06 4 8 o3| o° 0o, 4 8 o3| *y 4
5 050 5 5 *
& O 5000 Ol Kk ppknn, & & |ooooget *
9° 000 “"*%Oogg ek, 0030000, *
o2 * 0000 i, 1 B o2} * B
° axt o 00000000000030&53**46666 * ©90000000000009900000,,,
53
et e 005, *
* * & *s
o1f, 3 01 0, B o1p C0g. HHy
* %, * 000, ¥
000000 ¥+, * 00000 41y,
000008 k8 ks, 9000,
ot B ot 22990993 oF +
«
ox . . . . . ox . . . . . ox . . . . .
o 10 20 30 w0 50 0 o 10 20 30 w0 50 0 o 10 20 30 w0 50 0
Months Months Months
Impulse Responses - 60 month yield Impulse Responses - 60 month yield Impulse Responses - 60 month yield
+ infaton + infaton + nfaton
O _Real Activity O _Real Activity O _Real Activity
04 B 04 B 04 R
03t B 03t 03t B
H B T a H
& oz2f e ALY . R & oz2f & oz2f R
£ + o Hay, £ £
g 02 JoooF 8L 0P0000TC000000 T R 8 g
5 o 00f o 5 5
& o W 0000000 00000, & 4 A
A% * e,
01f° ¥ 4 4 01 * b, 4
*er o~ Fk,
* * *s,
* o K,
¥ 3383000000050000000005000005000000000 54 140
« 005:
ok | ok ol LS B B
ox . . . . . ox . . . . . ox . . . . .
o 10 20 30 w0 50 0 o 10 20 30 w0 50 0 o 10 20 30 w0 50 0
Months Months Months

Impulse Responses (IR’s) for 1 month (top row), 12 month (middle row) and 60 month (bottom row) yields.
Thefirst column presents IR’s from an unrestricted VAR(12) fitted to macro variables and yields ; the middle
column presents IR’s from the Macro model; and the last column presents IR’s from the Macro Lag model.
The IR’s from the latent factors are drawn as lines, while the IR’s from inflation (real activity) are drawn as
stars (circles). All IR’s are from a one standard deviation shock.

Figure 7: Impulse Response Functions
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