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Convergence in per capita income depends on the degree of international technology diffusion.

Strong diffusion of technological knowledge favors convergence, while the absence of it can lead to

divergence if the domestic rate of technological change varies across countries. A case in point is

the faster implementation of recent advances in information technology in the United States (U.S.)

compared to other countries. This has been cited as major reason of why the U.S.�s lead in per

capita income over Japan has increased from 10% in 1990 to 20% by 1999 (e.g., McKinsey 2000,

Economist 2000). The scope of technology diffusion also matters for income convergence among the

world�s advanced (�North�) and less developed countries (�South�). For instance, the issue is widely

discussed in the context of the �digital divide� scenario�the widespread fear that the internet might

not lead to convergence, but instead to a further polarization of per capita income in the world.

This paper studies international technology diffusion among the world�s seven major industrial-

ized countries on a geographic basis. It is well-known, for instance, that foreign direct investment

(FDI) patterns are affected by spatial factors, and it is a stylized fact that the volume of bilateral

trade declines with distance (e.g., Caves 1996, Leamer and Levinsohn 1995, respectively). Because

trade and FDI patterns might determine a country�s access to embodied foreign technology in form

of advanced intermediate goods, these mechanisms are both plausible channels of technological dif-

fusion.1 Disembodied technology diffusion in form of direct communication could be another major

way of how technological knowledge moves between countries, and while distance affects the likeli-

hood of face-to-face interactions, it matters much less for communication via telephone or email.2

Rather, language and other cultural-historic factors play a relatively larger role for communication

ßows than for trade or FDI. At this time however, relatively little is known on how geographic and

other factors impact technology diffusion among countries.

1There are other ways through which FDI and trade might affect technology diffusion; see e.g. the discussion of
FDI in Blomstrom and Kokko (1996).

2For an analysis of the continuing importance of face-to-face interactions, though, see Gaspar and Glaeser (1996).
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My empirical analysis will Þrst address the question whether geographic distance affects the

degree of diffusion. In particular, do remotely located countries have a smaller stock of technological

knowledge at their disposal than more centrally located countries? Second, I will study whether

this relationship has changed over time. The analysis has major implications for economic policies

towards growth and innovation, because if technological knowledge diffuses fully as well as quickly,

such policies cannot raise a country�s relative welfare. Third, I will examine whether trade, FDI,

and communication matter as speciÞc channels of technology diffusion. Going beyond the analysis

of distance is important, because economic policy might be powerful in affecting trade, FDI, or

communication patterns, whereas it cannot, at least literally, affect a country�s geographic location

relative to other countries.

This paper builds on a substantial amount of work showing that the link between the research

and development (R&D) spending in one industry and productivity in another is best viewed as

a process of technology diffusion (Scherer 1984, Griliches 1995). It is based on data for two- and

three-digit manufacturing industries in Canada, France, Germany, Italy, Japan, the United Kingdom

(U.K.), and the U.S.�the so-called G-7 countries� during the years of 1970 to 1995. The G-7 countries

account for more than 90% of the world�s R&D spending, and also by most other measures, these

countries are among the technologically most-advanced in the world. I refer thus to the G-7 countries

collectively as the world�s technology frontier.

Recent contributions showing that strong technology diffusion favors convergence while divergence

is likely if technological knowledge remains local include Feenstra (1996) and Grossman and Helpman

(1991). In the empirical literature, Eaton and Kortum (1999, 1996) estimate models of technology

diffusion and productivity growth. The Eaton and Kortum (1996) estimates from an equation of

patenting activity suggest that technology diffusion declines with geographic distance, a Þnding that

is primarily identiÞed from variation of within- versus across-country patenting. Jaffe, Trajtenberg,
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and Henderson (1993) also emphasize that technology diffusion is affected by country borders by

showing that U.S. patents are more likely to be cited by other U.S. patents than by foreign patents.3

In contrast, Sjöholm (1996) Þnds that geographic distance does not signiÞcantly inßuence the number

of patent citations to the research output of a sample of Swedish Þrms.

Other work has studied international technology spillovers by relating R&D to productivity in a

production function framework (e.g., Coe and Helpman 1995). This literature often focuses on trade

as the primary mechanism of technology diffusion. However, if there are strong regional effects that

are unrelated to trade, or a number of channels of technology diffusion are at work simultaneously,

this could be problematic.4 Moreover, the earlier literature distinguishes only between domestic and

foreign sources of R&D, whereas here I exploit cross-sectional variation in the relative distance of

countries to their partner countries. In contrast to this paper, Keller (2000b) focuses on technology

diffusion from the technological frontier to other countries.

This paper also relates to recent work in international trade which has established that technology

differences across countries are important in explaining the comparative advantage and trade of

countries (e.g., Treßer 1995). Thus, a better understanding of technology diffusion will help to

explain the pattern and volume of international trade, and eventually, both how trade acts as a

channel of technology diffusion and how in turn the resulting differences in production technologies

shape international trade. Moreover, the analysis of embodied and disembodied forms of international

technology diffusion in this paper is relevant for the recent debate in macroeconomics that tries to

determine the degree to which technical change is disembodied rather than embodied in capital

goods.5

3See also Branstetter (2001) who shows that intranational spillovers in the U.S. and Japan are larger than spillovers
between these countries, as well as Jaffe and Trajtenberg (2000) who examine knowledge ßows using international
patent citation data.

4For instance, Eaton and Kortum (1996) Þnd a role for both geographic distance and trade in technology diffusion;
see also the analysis in Keller (1998, 2000a).

5See, e.g., Hulten (1992), Greenwood, Hercowitz, and Krusell (1997), and the open-economy analysis by Eaton and
Kortum (2000).
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By seeking to explain patterns of agglomeration and de-agglomeration through spatial trade

externalities, work in regional and urban economics such as Fujita, Krugman, and Venables (1999)

has had a similar focus recently as the trade and growth literature. In particular, Baldwin and

Forslid�s (2000) model incorporates both technology spillovers and trade externalities, showing that

while more technology spillovers favors income convergence, a lower level of transport costs for trade

might lead to divergence. Empirical work in this area includes Hanson (1998) as well as Redding and

Venables (2000). And even though this paper focuses on the world�s technology frontier, the role of

geography in economic development has recently also been emphasized for poorer nations (see, e.g.,

Gallup, Sachs, and Mellinger 1998).

I note as a caveat that while the following empirical analysis of the geography and channels

of technology diffusion gives some important insights, it cannot provide a complete picture of how

these factors matter. Geographic factors by themselves are not a good economic explanation, and

the impact of geography on trade, FDI, or direct communication, as well as the resulting levels of

technology diffusion will eventually have to be modelled explicitly. It is hoped that this analysis

of geography and speciÞc channels of diffusion will be an important input for future modelling and

estimation by shedding additional light on which mechanisms are particularly important.

The remainder of the paper is as follows. The next section provides an overview of the data.

Important econometric issues raised by the estimations are addressed in part two. All estimation

results and the discussion of their economic signiÞcance can be found in section three. Section four

concludes with a general assessment of the results and notes a number of issues that will have to be

addressed in the future.
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1 Empirical setting

This section examines the data in some detail, providing a context that shows how R&D expenditures,

productivity, geography, as well as trade, FDI, and communication links in the sample vary.

1.1 Major country and industry characteristics in terms of GDP and R&D

I use data on manufacturing industries in Canada, France, Germany, Italy, Japan, the United King-

dom (U.K.), and the United States (U.S.) for the years 1970-1995. All countries are members of the

Organization for Economic Co-operation and Development (OECD), and the OECD STAN database

is the primary source for the data on inputs, outputs, and prices (OECD 1999a). Manufacturing in-

dustries in these seven countries account for about 16% of world GDP and approximately two thirds

of world GDP in manufacturing in 1980. Moreover, these countries account for the majority of R&D

expenditures in the world: ninety-four percent of all business enterprise R&D that is recorded in

OECD statistics is conducted in the G-7 countries (source: OECD 1998).6

The analysis encompasses almost all of manufacturing, subdivided into twelve industries at the

two- to three-digit International Standard Industrial ClassiÞcation (ISIC) level.7 These are food,

beverages and tobacco (ISIC 31), textiles, apparel, and leather (ISIC 32), wood products and fur-

niture (ISIC 33), paper and printing (ISIC 34), chemicals and drugs (ISIC 351+352), rubber and

plastics (ISIC 355+356), non-metallic mineral products (ISIC 36), basic metals (ISIC 37), metal

products (ISIC 381), non-electrical machinery and instruments (ISIC 382+385), electrical machinery

(ISIC 383), and transportation equipment (ISIC 384). Table 1 provides summary statistics on the

relative size of the countries and industries. The size of the countries varies substantially in terms

6The remainder of 6% is R&D in the Netherlands, Sweden, South Korea, and other countries. After the R&D
expenditures in non-OECD countries are taken into account, it is plausible to assume that the G-7 countries conduct
at least 90% of all business enterprise R&D in the world.

7Two industries have been dropped from the sample: ISIC 353+354, Petroleum and ReÞneries, because of less
reliable data, and ISIC 39, Other Manufacturing, because it includes rather different products across countries.
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of GDP. Canada�s share of G-7 manufacturing is 3.15%, while the U.S. contributes 33.62%. By

industry, food manufacturing is largest in the G-7 countries, but also transportation equipment as

well as non-electrical machinery and instruments are industries that have a share of more than 10%

of manufacturing. In terms of R&D, country size varies even more, see the middle columns in Table

1. The U.S. conducts circa forty times as much R&D as Canada, and about four times as much as

Germany. Japan spends about half as much on R&D as does the United States. Also in the industry

dimension, R&D expenditures are more concentrated than GDP is. Most of the R&D is done in

chemicals, machinery, electronics, and transportation, accounting for a total of almost 90% of all

R&D in manufacturing.

The R&D expenditure ßows are transformed into stocks with the perpetual inventory method

(see Appendix A for details). Table 1, on the right, shows that the average annual growth rates of

R&D stocks vary substantially by country, from a high of 11.82% for Germany to a low of 5.72% for

the United Kingdom. Average R&D stock growth for the U.S. has been 7.36% per year.

1.2 Geographic features of the sample

The geographic distance between countries is measured as the smallest arc tan distance between the

capital cities of the countries, as the crow ßies (source: Haveman 1998). Table 2.1 allows to distinguish

several groups of countries: the European G-7 countries, which are about 6,000 kilometers from the

U.S. and Canada and 9,500 kilometers from Japan, while the latter is about 10,500 kilometers from

Canada and the United States. In consequence, the countries� average distance to their six partner

countries varies substantially: for the four European countries, it is around 4,000 kilometers, for the

U.S. and Canada, it is about 6,000 kilometer, and for the relatively isolated Japan, it is close to

10,000 kilometers.
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1.3 Bilateral Trade and Foreign Direct Investment Patterns and Data on Lan-

guage Skills

The data on bilateral language skills, FDI, and trade is shown in Tables 2.2 to 2.4. The source for

the bilateral import shares in Table 2.2 is the NBER�s Bilateral World Trade Database, see Feenstra,

Lipsey, and Bowen (1997). The FDI data come primarily from the OECD�s Activities of Foreign

Affiliates, OECD (1999c). Table 2.3 shows the share of employment of the outward FDI country in

the total manufacturing employment of the host country. For instance, line 2 in Table 2.3 indicates

that German-owned multinationals account for 2.40% of manufacturing employment in France, while

the share of U.S.-owned multinationals in France is, with 4.72%, about twice as large.

A number of considerations suggest to use caution in interpreting the results based on these

numbers. First, mainly due to availability reasons, the data I use is at the aggregate, not at the

industry level.8 While this implies losing the industry detail, it also means that these variables are

employed on par with distance, which does not have an industry dimension either. Second, each set of

bilateral relations is only for one year that is relatively late in or after the sample period.9 This could

mean that simultaneity afflicts the estimation results, because, e.g., changes in productivity inßuence

the patterns of trade just as trade leads to embodied technology diffusion. However, the bilateral

patterns are slow-changing over time, and the fact that the values are for total manufacturing (in the

case of trade and FDI) or the country as a whole (in the case of language skills, see below) suggests

that simultaneity is unlikely to be a major problem.10

The data on language skills in Table 2.4 shows the share of the population in the technology

recipient country that speaks the official language of the sender country. For instance, line 3 in

Table 2.4 states that 41% of the population in Germany speaks English, while only 11% speaks

8Trade shares could be obtained at the industry level, though; see e.g. the analysis in Keller (2000a).
9For FDI and import patterns, this is the year 1991, while for language skill data, it is 1996/1998.
10 I have conÞrmed this by using trade data for years other than 1991, which leads to similar results.
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French.11 Both due to estimation of some of the data and for conceptual reasons, the inferences that

can be made based on the language skills results below are those associated with the highest level

of uncertainty. Conceptually, language knowledge in the population might be a poor indicator for

the strength of communication links fostering technology diffusion among Þrms in two- to three-digit

manufacturing industries. Moreover, bilateral language knowledge, for instance, the share of people

in Italy that is able to speak German, might be of limited relevance for understanding disembodied

bilateral diffusion from Germany to Italy if communication is typically conducted in a third-country

language, such as English. However, the analysis in West, Edge, and Stokes (2000) suggests that

language knowledge in the population is correlated with business-relevant language skills. In addition,

the evidence on changes in language skills over time in EU (1999) and other evidence indicates that

the degree of coordination on one or a small number of languages is still limited. Overall, this suggests

that this data on language skills will be useful in studying the importance of communication ßows

for bilateral technology diffusion.

1.4 Multi-lateral total factor productivity indices

I will compare industry-level total factor productivity (TFP) for the seven countries in the sample.12

TFP calculations require real, internationally comparable data on outputs, inputs, and intermediate

goods. The OECD STAN database contains estimates of value added, labor, and capital inputs,

which I have used to construct TFP indices. The intermediate inputs data on which the value added

series are based is not fully internationally comparable, which is one important reason of why the

11 In the case of Canada, I simplify by taking English as the sole official language. The data for the European
countries comes from EU (1999) and the data for Canada comes from StatCan (2000). The EU (1999) survey asked
the following question: �Which languages can you speak well enough to take part in a conversation, apart from your
mother tongue?�. To arrive at the estimates for language knowledge in the U.S. and Japan, I have used information
on foreign nationals in these countries, in particular for Japan from JG (2000). I have conÞrmed that the results are
not sensitive to employing other plausible values for these data series.
12More details on the TFP index construction can be found in Appendix B. Other recent work that has examined

TFP indices for other purposes includes Harrigan (1997) and Griffith, Redding, and van Reenen (2000).
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TFP indices in this paper should be viewed as approximations to the true TFP measures.13 I use

the multi-lateral TFP index proposed by Caves, Christensen, and Diewert (1982a), which is deÞned

as

lnFcit =
³
lnZcit − lnZit

´
− σ̄cit

³
lnLcit − lnLit

´
− (1− σ̄cit)

³
lnKcit − lnKit

´
, ∀c, i, t, (1)

where c = 1, ..., C; i = 1, ..., I; t = 1, ..., T ; c indexes country, i indexes industry, and t is the

subscript for time. The variable Z is value-added, L is labor inputs, and K denotes capital inputs.

Further, lnZit is given by lnZit = 1
C

P
c lnZcit; correspondingly, lnLit =

1
C

P
c lnLcit and lnKit =

1
C

P
c lnKcit. The variable σ̄cit is an average of labor cost shares, σ̄cit =

1
2(αcit+ᾱit), where αcit,∀c, i, t,

is the cost share of labor, and ᾱit is its country average, ᾱit = 1
C

P
c αcit. This TFP index is superlative

in the sense that it is exact for the ßexible translog functional form. It is also transitive, so that

the choice of the base country does not matter. In equation (1), the reference point is the geometric

average of the seven countries.

The TFP index in equation (1) assumes that production is characterized by constant returns to

scale. Building on the work by Caves, Christensen, and Diewert (1982b) and Hall (1990), I have

also used cost-based instead of revenue-based factor shares to construct alternative TFP indices that

are appropriate in the presence of scale economies. This allows me to see whether the estimation

results are robust to deviations from the assumption of constant returns. Two other important

characteristics of the TFP data are: First, industry-speciÞc purchasing power parity- (PPP) exchange

rate estimates are used to convert the industry outputs into a common currency, because there is

evidence that PPP exchange rates vary substantially by industry (source: Pilat 1996).14 Second,

I have adjusted the OECD STAN data on labor inputs to take account for differences in annual

hours worked across countries, from OECD (1999b). This is important because annual hours worked

13As a robustness check I also report results based on TFP indices that are constructed with data on gross output
(i.e., where intermediate inputs have not been netted out).
14All-manufacturing PPP exchange rates from OECD (1999a) are also employed as a robustness check.
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in U.S. manufacturing, for example, were almost 40% higher than in certain European countries in

some years over the sample period. I have also corrected the physical capital inputs series to account

for cyclical determinants of factor demand. Figure 1 shows the adjusted and non-adjusted average

productivity levels for the U.S. (on top), Germany (middle), and Japan (bottom), relative to the

G-7 mean for each year.15 Without adjusting for differences in input usage, U.S. productivity would

be increasingly over- and German productivity increasingly under-estimated, while productivity in

Japan would be overestimated throughout. Clearly, these differences would not be appropriately

controlled for by using time-invariant country Þxed-effects.

1.4.1 Industry-level productivity and average productivity over time

There is a substantial amount of within-country heterogeneity across industries. For instance, a

country is frequently among the top performers in one industry while ranking near the bottom

in another industry. This suggests that studying productivity at the industry level might have

important advantages compared to an analysis at a more aggregate level. There are also differences

of how variation in with-in country productivity levels has changed over time. For instance, in the

U.S., the dispersion of productivity levels has fallen, whereas in Canada, the opposite has occurred..

For the G-7 countries as a whole, a picture of slightly converging within-country productivity levels

emerges, as indicated by the dashed line in Figure 2.

On average across industries, the U.S. has been the productivity leader throughout most of the

sample period according to these estimates, even though the U.S.�s productivity advantage has gen-

erally been shrinking over time.16 The solid line in Figure 2, which is more substantially downward-

sloping, shows the standard deviation of the seven country averages of productivity over time. Clearly,

15These are unweighted averages across industries. Size-weighted averages behave similar.
16Canada started out in second place in 1970, but has lost ground since, especially to Italy and France. Relative

productivity in Germany was rising until about 1980 but fell subsequently, and by 1995 German productivity is
approximately equal to the mean in the sample. In Japan and the U.K., productivity was below the sample average
throughout the sample period according to my estimates.
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the period of 1970-95 has been one of productivity convergence among the G-7 countries, albeit with

a noticeable reversal towards divergence since the year 1990. These Þndings are consistent with a

relatively high degree of technology diffusion among the countries at the world�s technology frontier.

However, if the trend towards productivity divergence after 1990 will be sustained, this could mean

that the number of countries at the world�s technology frontier will be smaller in the future than it

is today.17

To investigate this further I will now turn to the formal econometric analysis.

2 Estimation equation and econometric issues

Geographic factors might affect the degree of technology diffusion for various reasons. For instance,

according to many trade-and-growth models, technology moves across country borders when inter-

mediate goods embodying new technological knowledge are traded (see, e.g., Grossman and Helpman

1991). It is plausible to assume that it is easier to ship technology-carrying intermediate goods to

near-by locations than to more remote locations, so that the scope of technology diffusion is related

to geographic distance.18 The equilibrium in these models typically relates productivity in an im-

porting country both to domestic R&D and to foreign R&D, conditional on bilateral distance. A

speciÞcation that captures this is

lnFcit = αci + αt + β ln

Scit +X
g 6=c
γSgit e

−δDcg
+ εcit,∀c, i, t, (2)

17One reason for this trend towards divergence is that the U.S. is increasing its productivity lead over the other
countries. It might be in part due to measurement issues, in particular the differential treatment of information
technology (IT) price indices (IT includes computers). IT equipment prices have fallen much more rapidly in the U.S.
than in other countries according to official numbers. This is largely due to the usage of hedonic price indices in the
U.S., whereas other sample countries continue to use non-hedonic price deßators; see Scarpetta, Bassanini, Pilat, and
Schreyer (2000). The extent to which this affects the estimation results below is limited, however, which is likely due
to the Þxed effects that are included in the speciÞcation; see section 2 below.
18The relationship can be formalized by assuming that commodity trade entails transport costs that are increasing

with geographic distance (as in Samuelson 1954).
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where c = 1, ..., C indexes country, i = 1, ..., I is an index for industry, and t = 1, ..., T is the subscript

for time. The variable Fcit is the TFP level, Scit is country c�s R&D stock, and Dcg is the geographic

distance between countries c and g. The αci,αt,β, γ, and δ are parameters to be estimated, and

εcit is an error term with properties that I discuss below. The α�s are Þxed effects that control

for unobserved heterogeneity, the parameter β measures the effect of R&D on productivity, while γ

captures the relative effect from foreign R&D.19

The role of geographic distance is captured by the parameter δ, which I will refer to as the dis-

tance parameter. It is identiÞed from variation of the productivity effects of R&D in other countries

conditional on bilateral distance, and thus reveals whether there is a geographic dimension to interna-

tional technology diffusion. Denote the term Sg e
−δDcg as country c�s effective R&D from country g;

positive estimates of δ mean that variation in productivity levels can be better explained by assuming

that effective R&D from countries located relatively far away is smaller than that of other countries

located more closely. For positive values of γ (foreign R&D raises productivity), estimating δ > 0

suggests that the beneÞts from foreign technology creation are decreasing with geographic distance.

In contrast, δ < 0 would mean that distant countries beneÞt more from a given country�s R&D than

near-by countries.

I will also present results based on a distance class speciÞcation that does not incorporate the

exponential functional form. It is given by

lnFcit = αci + αt + β ln

Scit +X
g 6=c
γ (1 + ηIcg)Sgit

+ εcit, ∀c, i, t, (3)

where Icg = 0 if countries c and g are between 2, 000 and 7, 500 kilometers apart; Icg = 1 for distances

19The parameter β captures both �true� knowledge spillovers as well as measurement spillovers. The latter do not
constitute an externality, as they might be due only to price indices that do not perfectly adjust for product quality,
for example (see Griliches 1995 for a discussion). The estimates should therefore be treated as an upper bound for the
magnitude of true external effects.
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below 2, 000 kilometers, and Icg = −1 for distances above 7, 500 kilometers. The distance parameter

η identiÞes the higher (lower) effect of R&D among bilateral relationships of less than 2, 000 (more

than 7, 500) kilometers, compared to the relative effect of foreign R&D of γ when Icg is equal to 0.

Positive estimates of η are consistent with less technology diffusion as bilateral distance increases.20

I will also augment the speciÞcations (2) and (3) in simple ways to examine whether the distance

parameters δ and η have changed over time. This would suggest a more or less localized pool of

technology among the G-7 countries. Moreover, to analyze the speciÞc channels of trade, FDI, and

communication, I will modify equation (2 ) to include bilateral trade and FDI patterns as well as

language skills data in ways that are analogous to the distance variable.

Major estimation issues that need to be addressed are as follows. First, the relatively narrow

focus on the countries at the world�s technology frontier implies that the number of bilateral relations

is small, with only C(C − 1) = 42, and half as many values for bilateral distance. Moreover, four

countries are located in Europe and two in North America, so that the qualitatively distinct ranges

that Dcg falls into is even more limited. This is part of what motivates the distance class analysis.

In contrast to distance, there is no symmetry in the import, FDI, and language skill patterns, but

generally, the relatively small number of bilateral relations will likely affect the precision with which

the parameters can be estimated.

Another concern is that the error term εcit is not orthogonal to the regressors, because this would

lead to inconsistent estimates. The disturbances capture idiosyncratic factors that affect measured

productivity. Some could be industry-speciÞc, such as receiving strong inter-industry spillovers, and

others might be common to all industries in a given country, such as shocks affecting the national

business cycle. Generally, this calls for instrumental-variable estimation; however, good instruments

20This higher and lower effect relative to distance class Icg = 0 need not be symmetric, as is assumed here; in the
estimations below, however, the gain in empirical Þt through allowing for an asymmetric effect is very small.
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for the R&D variables are unavailable.21 Instead, I will rely on speciÞcation choices in order to

minimize the effects of simultaneity. First, a considerable amount of structure has been imposed in

constructing the TFP indices (see Appendix B). Second, problems arising from the usage of common

deßators should not be a major problem, because the R&D Þgures are based on economy-wide

deßators while the TFP indices use industry-speciÞc price data. Third, the estimation equations

include time Þxed effects which control for shocks that affect the entire sample in a given year. I

will also provide separate estimates for the sample of low-R&D industries. Unlike transportation,

chemicals, and machinery�the industries that account for most of the R&D (see Table 1)�, the R&D

expenditures of the eight low-R&D industries are too small to signiÞcantly affect the economy-wide

innovative activity. Therefore, simultaneity problems�if present in the full sample�will be much-

reduced in this case, and the extent to which these estimates are similar to those obtained with the

full sample will shed light on whether simultaneity is likely to be a problem.

Lastly, country-by-industry Þxed effects control for time-invariant factors that generate a spurious

correlation between the regressors and the error term. These Þxed effects capture differences in

productivity levels which are due to factors other than R&D conditional on geographic, trade, FDI,

or language patterns. As an example, the composition of products within the two- to three-digit

industries of the sample might vary by country, and this could be correlated with distance. Then

an alternative to the geographically-limited-scope-of-technology-diffusion hypothesis is a technology

matching explanation: if the degree to which one country�s technology is suited to the needs of other

countries is inversely related to geographic distance, productivity in Japan, e.g.,�which is on average

further away from its G-7 partners than the other countries�could be relatively low just because

Japan�s G-7 partners generate technology that is relatively unproductive in Japan. Clearly, such

differences in productivity would not exist because of a geographically limited scope of technology

21See also Griliches and Mairesse (1998) who give an overview of a number of approaches whose main common goal
it is to identify production function parameters by avoiding simultaneity problems.
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diffusion. Analogous arguments can be made with respect to trade, FDI, and communication links.

Thus, the country-by-industry Þxed effects are important to avoid obtaining inconsistent estimates

and spurious results in the analysis that follows.22

3 Estimation results

3.1 Geographic distance in international technology diffusion

The Þrst set of results addresses the question whether international technology diffusion is geographi-

cally localized or not (see Table 3). The dependent variable is the relative productivity level as deÞned

in equation (1). The regressors are Þxed effects for each year and for each country-by-industry com-

bination, the domestic R&D stock, and the R&D stocks of the partner countries interacted with

bilateral distance as described above. The estimation method is non-linear least squares.23

In the Þrst result column, I estimate the exponential speciÞcation of (2) shown earlier. The

productivity effect from R&D, β, is estimated with β = 0.039.24 This number is in the range of

values suggested by comparable studies.25 The parameter γ, which measures the relative potency of

distance-adjusted foreign R&D, is estimated to be γ = 1.111, and the parameter δ, which determines

the extent to which foreign R&D is effective in determining productivity, is estimated at 0.147. This

22Another concern is that the TFP variable might be stationary while the R&D stocks could be trending over time.
The theory of panel unit root and cointegration analysis that then would apply in the non-linear setting of this paper is
not fully developed to date. In that case, I would therefore rely primarily (and imperfectly) on the time Þxed effects αt
to address this issue. For an investigation of these time-series issues in the estimation of spillovers in linear regression
models, see Edmond (2000).
23 I have normalized the distance measure Dcg so that Dcg = 1 is equal to 341 kilometers, the shortest bilateral

distance in the sample (between Paris and London). This affects the size of the parameters, but not the size of the
other statistics discussed below.
24 I rely mainly on bootstrapped standard errors for inference. They seem to be preferred, and in any case, they

are often much larger than conventional asymptotic standard errors. The bootstrapped errors are heteroskedasticity-
consistent (through block-wise resampling for each country-by-industry combination) and relatively robust to serial
correlation (by resampling two consecutive errors at a time); see Andrews (1999) for references and further results. To
be conservative, I report asymptotic standard errors when they are clearly larger, which is sometimes the case especially
for the parameter γ. I have also examined whether spatial correlation remains in the residuals, without Þnding much
evidence for it.
25For studies at this level of aggregation, Griliches (1995) reports typically estimates that are somewhat higher;

however, many of the earlier studies do not consider productivity relative to the sample mean, as I do here.
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estimate suggests that effective R&D (the term γSgit e−δDcg) is falling with distance. In speciÞcation

(3.2), I allow for different R&D sender effects for the U.S., Japan, and Germany (the G-3-, or, the

three major R&D countries, with parameter γ2) on the one, and Canada, France, Italy, and the U.K.

(with parameter γ1) on the other hand. The G-3 technology sending effect appears to be somewhat

larger than that of the non-G-3 countries, but to constrain all γ�s to equal one, as in speciÞcation

(3.3), is actually marginally preferred according to Akaike�s Information Criterion.26

The distance parameter δ is estimated to be positive throughout. This Þnding is consistent with

the idea that technological knowledge is localized, because it implies that the R&D of countries that

are far away from a given country contributes less to its productivity than the R&D from near-by

countries. In speciÞcation (3.4), I estimate the distance class speciÞcation (3) to see whether this

result is robust. The parameter η is estimated to be positive, which conÞrms that the productivity

effects from foreign R&D are localized for the G-7 countries. Recall that the distance class breakpoints

are 2, 000 and 7, 500 kilometers. This means that η is identiÞed from the difference in R&D effects of

the European G-7 countries in Europe and the U.S.-Canada effect (less than 2, 000 kilometers), versus

technology diffusion between North America and Europe (between 2, 000 and 7, 500 kilometers),

versus technology diffusion to and from Japan. Together with the estimate of γ, the estimate of

η = 1.01 suggests that the value of a foreign G-7 dollar of R&D per domestic dollar is on average

seventy-four percent (i.e., γ(1+η) = 0.74) below 2, 000 kilometers, it is roughly 37% (i.e., γ = 0.368)

across the Atlantic, while to and from Japan, the average value of a dollar of foreign R&D is essentially

zero (i.e., γ(1− η) ≈ 0).

For the exponential functional form in columns (3.1) to (3.3), an interesting statistic to compute

is the half-life distance of R&D, that is, the distance at which half of the R&D sent out from a

technology-producing country has disappeared. This value D∗ is calculated from 1
2S = S e−δD∗

,

26Akaike�s Information Criterion (AIC) is deÞned as ln( e
0e
n
) + 2k/n, where e0e is the residual sum of squares, n is

the number of observations, and k is the number of estimated parameters. The table also reports the R2.
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leading with δ = 0.147 from (3.1) to D∗ = 4.72, or ca. 1,600 kilometers. Another measure of the

strength of international technology diffusion in a given bilateral relation is the value of one foreign

dollar of R&D per one dollar of domestic R&D, equal to γ exp(−δDcg). This is shown for all bilateral

relations in Figure 3. For instance, according to the estimates in (3.2), the average value of a dollar

of U.S. R&D in Canada is 78% of the value of a domestic dollar of Canadian R&D, and a dollar of

German R&D in Italy has 64% of the domestic-R&D effect. Clearly, the distance effects implied by

these estimates are quite strong, suggesting in particular little technology diffusion to and from Japan.

To compare the results of the exponential and the distance class speciÞcations, I have computed the

average relative foreign R&D value within North America and Europe, respectively, and the average

relative foreign R&D value for bilateral relationships involving Japan. For the former, one obtains

67% in the exponential speciÞcation, compared to 74% in the distance class speciÞcation, while the

average for relationships involving Japan is estimated to equal zero in both the exponential and

distance class speciÞcations. Thus, the two speciÞcations give broadly similar results. I now turn to

analyzing the robustness of these Þndings.

3.2 Sensitivity analysis

The results of this analysis are reported in Table 4. I use the exponential functional form for the

results presented in columns one to three, while the distance class speciÞcation is employed for the

remaining columns four and Þve. In the Þrst speciÞcation only the eight low-R&D industries are

included. I estimate β at 0.025�signiÞcantly larger than zero at a 12% level�, down from 0.040 in the

full sample, and the distance parameter δ is now also slightly lower.27 The second column presents

estimates when TFP indices are based on gross output instead of value added, which is an alternative

27Because the industry R&D elasticity εi is related to the return to R&D, ρi by εi = ρi
Si
Fi
,∀i, if arbitrage equalizes

the return to R&D across industries (ρi = ρ,∀i), then εi varies with Si. This could explain the drop of the coefficient
β (which is positively related to εi) when the sample contains the relatively low-R&D industries only.
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approximation to true productivity. The distance parameter is estimated somewhat higher and the

relative foreign R&D parameter is lower than before.

Using all-manufacturing PPP exchange rates instead of industry-speciÞc exchange rates leads

also to a stronger distance effect (δ = 0.273 in speciÞcation 4.3). The distance effect estimated with

TFP indices based on the assumption of increasing returns with a scale elasticity of 1.05 in (4.4)

are similar to the distance effect in the benchmark result of (3.4). Finally, when factor input data

is not adjusted for differences in input utilization, the R&D effect β is considerably higher than in

the corresponding speciÞcation with adjusted TFP data (compare (4.5) with (3.4)). This suggests

that one picks up a substantial amount of spurious correlation when cyclical effects that affect both

input utilization and R&D are not controlled for. Also here, though, one estimates a relatively large

difference in the strength of technology diffusion across distance (η = 0.716).

In unreported analysis, I have used other combinations of data samples and speciÞcations from

Table 3, as well as a number of other speciÞcations, such as lagged R&D. There is evidence that some

of the variation in productivity levels is explained only by the variables jointly.28 Overall though, I

estimate a robust and signiÞcant geographic localization effect in international technology diffusion.

In the exponential speciÞcation, the parameter β is about 0.04 to 0.07, varying in a reasonable

way across different samples and data constructions. The relative foreign R&D effects of the G-3

countries might be somewhat larger than for the other four countries, but this adds relatively little

in terms of regression Þt. In the distance class speciÞcation, the parameter β is of similar magnitude,

if somewhat less precisely estimated, and the estimates of η lead to the same qualitative Þnding

regarding the localization of international technology diffusion. Quantitatively, the magnitude of the

distance effect varies across speciÞcations. For the exponential functional form, the estimates of δ

range from 0.123 to 0.300, which corresponds to a half-life distance of about 800 to 1, 900 kilometers.

28 In the exponential speciÞcation, the bootstrap analysis reveals that the parameters β and δ are positively correlated,
for instance.
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In the distance class speciÞcation, η varies from about 0.7 to 1.0, which corresponds to a 70% to

100% premium (discount, respectively) for technology diffusion among countries that are below 2, 000

(above 7, 500, respectively) kilometers apart, relative to technology diffusion between North America

and Europe.

3.3 Technology diffusion over time

In this section I turn to changes in degree of international technology diffusion over time. The

exponential speciÞcation is extended to

lnFcit = αci + αt + β ln

Scit +X
g 6=c
γ
³
1 + γtiIt

´
Sgit e

−δ(1+δtiIt)Dcg

+ εcit, ∀c, i, t. (4)

Here, It is an indicator variable that is equal to one for the years 1983 to 1995 and zero otherwise,

and there are two additional parameters, γti and δti. The former picks up any change in the overall

effect from foreign R&D, whereas the latter indicates whether the degree of localization of technology

diffusion has changed. Values of δti < 0 are consistent with technological knowledge becoming more

global over time. See Table 5 for the results.

In speciÞcation (5.1), the parameter γti is constrained to zero. Relative to speciÞcation (3.1), the

estimate of β is now somewhat higher. More importantly, the distance estimate increases from 0.147

to 0.490, while δti is estimated to equal δti = −1.188. These estimates suggest a distance parameter

of 0.490 for the subperiod 1970-82, and of 0.490 × (1 + (−1.188)) = −0.092 for the subperiod of

1983-95. With a standard error for δti of 0.222, the distance effect in the second subperiod could be

equal to zero, suggesting that geographic distance plays no role anymore by the end of the sample

period. The next column in Table 5 indicates that the Þnding of less localization is independent of

the change in the value of foreign R&D: γti is estimated to equal 0.072, not signiÞcantly different

from zero, and the estimate of δti remains by and large unchanged.
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In the distance class speciÞcation, I estimate the parameter ηti in the expression η × (1 + ηtiIt),

analogously to δti. The point estimate of ηti in speciÞcation (5.3) is equal to −0.778, which suggests

that the strength of technology diffusion during the 1990s varied substantially less across classes than

it had during the early 1970s. In speciÞcation (5.4), the results for the exponential speciÞcation for

the sample of the eight relatively low R&D-intensive industries is shown. Relative to the value of

δ = 0.138 for the entire sample period (see 4.1), also δ here is higher for the years 1970-82, and lower

for the years 1983-95. In fact, one cannot reject the hypothesis that there is no distance effect during

the later subperiod, which conÞrms the patterns obtained for the entire sample.

Overall, these results suggest that international technology diffusion has become much less local-

ized over the sample period. In Figure 4, I show the total value of foreign G-7 country R&D received

by Japan, France, and Canada over time (based on 5.3). The Þgure highlights the fact that the total

value of foreign R&D received by these countries has been converging sharply over time according to

these estimates: while Japan received essentially zero in the early 1970s and France a total of about

four dollars per dollar of domestic R&D, by the 1990s the value of the technology received by France

was only about 30% higher than the corresponding value that beneÞted Japan.

Can this Þnding explain the dynamics of the productivity distribution across G-7 countries that

emerges from Figure 2? As noted earlier, ceteris paribus one expects productivity convergence as

technology becomes more global in the world. The overall downward trend in the variation of average

productivity between 1970-95 is broadly consistent with that. The period of productivity divergence

between 1990-95 is probably not being picked up by these over-time estimates yet as the subperiod

mid-points are the years 1976 and 1989. In general, however, one must use caution here, because

the link between the less-localization Þnding and convergence of productivity in Figure 2 is not a

tight one. The estimated decrease of localization is only an average effect after a substantial amount

of unobserved heterogeneity is controlled for, and as long as technology diffusion is not complete,
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immediate, as well as universal, less localization need not go hand in hand with convergence of

productivity.

The next section analyzes a number of speciÞc technology diffusion mechanisms.

3.4 Beyond Distance: Trade, Foreign Direct Investment, and Communication as

Channels of International Technology Diffusion

Table 6 shows the results of examining these three mechanisms of technology diffusion. I restrict

myself to the exponential speciÞcation and the TFP variable deÞned in (1) to keep the number of

regression results relatively low. The bilateral imports variable Mcg, as well as the FDI variable Vcg

and the language variable Bcg are introduced analogously to distance. For instance,

lnFcit = αci + αt + β ln

Scit +X
g 6=c
Sgit e

τMcg

+ εcit,∀c, i, t, (5)

is the imports speciÞcation, where τ is the parameter corresponding to the import share variable. A

positive value of τ is consistent with bilateral imports raising the level of technology diffusion.

SpeciÞcation (6.1) shows the basic geographic-distance result for comparison (see (3.3) in Table

3), while the second speciÞcation in Table 6 is equation (5).29 The estimate of β changes relatively

little, while the value of τ is positive, equal to τ = 0.403.30 In speciÞcation (6.3), I use the FDI

variable analogously and estimate the corresponding parameter at ψ = 0.377. Also the language

skills variable enters with a positive coefficient (speciÞcation 6.4). There is a major effect here on

29To facilitate the non-linear estimation, I have scaled the trade, FDI, and language shares as follows: Mcg is
multiplied by 102, Vcg by 103 and Bcg by 10.
30An estimate of τ larger than zero means that the relative effect from foreign R&D exceeds that from domestic

R&D in all bilateral relationships as long as γ is constrained to equal one. This is not very plausible, so that I have also
experimented with estimating γ and τ jointly. As expected, γ then tends to be lower than one. However, freeing up the
parameter γ makes the speciÞcation less robust. Because the emphasis here is on estimating the parameter τ (as well
as ψ and λ below, plus comparing them), I give a high priority to robustness and have therefore kept the parameter
γ constrained to one. If one sets a lower value for γ or estimates the parameter, this does not lead to qualitatively
different Þndings in the comparison of τ , ψ, and λ; instead, it primarily affects the Þxed effects estimates.
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the size of the R&D coefficient as well: β is estimated at 0.103, versus β = 0.055 in the distance

speciÞcation. These results suggest that each candidate channel might indeed have a positive effect

on international technology diffusion. Notice that to the extent that the differences in empirical Þt

between the Þrst four regressions in Table 6 are signiÞcant, that of the distance speciÞcation is lowest,

followed by the FDI and the language skills speciÞcation, while the bilateral imports speciÞcation

has the best Þt.

It is important to consider more than one channel of diffusion at a time to learn about their

relative strength, even though this makes the results less robust due to collinearity among the spillover

channels. The following results are obtained: When distance is introduced together with the import

shares in the exponential expression�as in exp (−δDcg + τMcg)�, this reduces the estimate of τ by

about two thirds, from 0.403 in (6.2) to τ = 0.130 in (6.5). Thus, differences in import patterns

account no better for a substantial amount of variation in bilateral technology diffusion than do

differences in distance. In equation (6.6), I have included the FDI variable together with distance.

This results in a much larger estimate of β and a higher value of δ, while the FDI parameter ψ stays

about the same relative to the FDI-only speciÞcation (6.3).

SpeciÞcation (6.7) introduces distance together with the language skills variable. The coeffi-

cient on the language variable remains positive, while the estimate of the distance parameter turns

negative, albeit not signiÞcantly different from zero.31 Equation (6.8) introduces import and FDI

patterns together with the language skills variable. All three variables enter with a positive coeffi-

cient. Finally, when I add the distance variable to this, the point estimate of δ is negative, while

the other three point estimates remain positive. The Þt of the regression is marginally improved

through the inclusion of distance, but in contrast to the trade, FDI, and language parameters, δ is

31One explanation for this is that the language variable picks up a relatively strong effect from U.S. R&D in Canada,
plus an effect from U.S. R&D in Europe that is stronger than one would think on the basis of distance. Also, the
language variable appears to identify stronger technology inßows in Japan from English-language countries than from
central European countries, all of which are roughly the same distance away from Japan.
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not signiÞcantly different from zero.32

I now turn to the absolute magnitude of inward technology diffusion, as well as the breakdown of

the total effect by spillover channel (based on the estimates of speciÞcation 6.8). Let Γc be the sum of

the three effects for a given technology recipient country, Γc ≡Pg (τMcg + ψVcg + λBcg) , ∀c.33 Also,

denote by sc the share of the total effect by recipient country, sc ≡ Γc/Γ, where Γ ≡ P
c Γc. First,

the estimation results suggest that Canada beneÞts by far the most from foreign G-7 technology,

with a share of sCAN = 0.256. This is primarily the result of Canada�s links to the U.S., from which

Canada imports a relatively high share, whose subsidiaries have a strong presence in Canada, and

the fact that in both countries, the English language is used. Canada is followed by the U.K., and

the U.S., with sUK = 0.154 and sUS = 0.151, respectively. France, Italy, and Germany are next

(sFRA = 0.137, sITA = 0.128, and sGER = 0.108), whereas Japan beneÞts least from foreign G-7

technology according to these estimates (sJP = 0.066).

For the analysis of the relative strength of the diffusion mechanisms, let sτc be the share of the total

effect for country c due to the contribution of imports, sτc ≡
³P

g τMcg

´
/Γc, and let sψc and s

λ
c be the

shares due to FDI and language skills, deÞned analogously. Also, let sτ , sψ, and sλ be the average

shares for a given channel of technology diffusion across countries (for instance, sτ ≡ (Pc s
τ
c ) /C. I

estimate that the effect due to imports is highest on average, with sτ = 0.691, while the FDI and

language effects are equal to sψ = 0.148 and sλ = 0.161, respectively. This points to a relatively

strong effect due to embodied technology diffusion in form of imports. At the same time, the other

two channels are far from being negligible. Figure 5 shows, for instance, that the absolute effect from

32There might be important interactions between these channels of technology diffusion, for instance, the effect from
language skills could be higher, the greater is the bilateral geographic distance. In principle, one could test for this by
including an interaction variable, Dcg×Bcg, and estimate an additional coefficient in the exponential term. In practice
though, a comprehensive analysis of interaction terms appears to stretch the possibilities of the data to some extent,
so I do not include it here. Note, however, that the non-linear speciÞcation picks up some interaction effects already
as it is.
33This analysis of inward technology diffusion focuses on the term in the exponential part of

P
g
Sge

τMcg+ψVcg+λBcg .
I do this for ease of interpretation, but it should be kept in mind that differences in effective R&D from abroad are
also due to differences in Sg as well as the interaction of Sg with the exponential term.
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inward FDI in Canada exceeds that from imports in Japan. Moreover, the larger inward share of

foreign-owned subsidiaries in Canada versus the U.K. explains 41.9% of the difference in total inward

technology diffusion between these two countries. Another indication of the importance of FDI for

inward technology diffusion comes from comparing the European countries: here, the U.K. attracts

the largest share of FDI, and 36.2% of the U.K. advantage over Germany in terms of total inward

technology diffusion is due to the U.K.�s higher level effect through FDI.

Language skills have the highest contribution to inward technology diffusion in the U.K. and the

lowest in Japan: 43.4% of the higher level of inward technology diffusion in the U.K. versus Japan can

be attributed to the higher share of the population in the U.K. that speaks the languages of the G-7

technology source countries. Among the European countries, 76.8% of the higher level of technology

inßows in the U.K. relative to Italy are due to differences in language skills. And if language skills in

Germany would be the same as the (generally lower) language skills in Italy, Germany would beneÞt

about 6% less from G-7 technology diffusion than it actually does.

Figure 6, which is also based on the results in (6.8), allows to compare the strength of bilateral

technology diffusion across different country pairs by showing the share of a sender country in a

given technology recipient�s country total technology inßows (the sum of trade, FDI, and language

channels; this is denoted as the TFL-based measure). For instance, 69.1% of technology diffusion

to Canada originates from U.S. R&D, while the share of the U.K. in Canada is much lower, equal

to 13.5%. The estimates also suggest that the U.S. is the major source of all technology inßows to

Japan, with 63.0%. Germany accounts for more than a third of the technology inßows into Italy and

France, according to these estimates, but less than 20% of the inßows to the United Kingdom. Figure

7 indicates how these estimates differ from estimates simply based upon bilateral distance.34 On the

34 I have computed the distance-based shares underlying Figure 7 from the inverse of the bilateral distances reported
in Table 2.1�giving a measure of closeness�, before forming the share of a bilateral relation in the closeness total for a
given country.
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horizontal axis are listed forty-two bilateral relations, with the technology recipient mentioned Þrst,

followed by the technology sender. For instance, the left-most bilateral relation gives the importance

of French R&D in the United Kingdom. It says that on the basis of these estimates, the distance-

based shares overestimate the importance of France as a source of technology for the U.K. by circa

thirty-four percentage points relative to the TFL-based measure, or put differently, France appears

to be much less important for the U.K. than one would assume based on the close relative location.

It is not the case, however, that the importance of near-by countries is always estimated higher

with the distance-based measure. In particular, as a source of technology for Canada, the U.S.

is even more important according to the TFL-based measure than one would assume based on its

relatively close location to Canada (CAN/US is 11th from the right). The TFL-based measure also

gives a more plausible picture of the importance of Canada as a source of U.S. technology inßows

than the distance-based measure: the relation US/CAN is second from the left, and the associated

value suggests that the relative importance of Canada on the basis of distance is about twenty-

eight percentage points higher than according to the TFL-based measure. On the other end of the

spectrum, the four right-most bilateral pairs all include the U.S. as a technology sender. This result

conÞrms the notion that the U.S.�s importance for technology diffusion to G-7 countries other than

Canada would be underestimated if a simple distance-based criterion is used to predict bilateral

technology diffusion.

4 Summary and discussion

This analysis of technology diffusion among the seven major industrialized countries has produced a

number of interesting results. First, geographic distance appears to have a strongly limiting effect on

technology diffusion among these technology frontier-countries. While the estimates vary somewhat

depending on speciÞcation, typically they imply a technology half-life in terms of distance of 800
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to 1,900 kilometers. Second, the degree of localization of technology diffusion has substantially

declined over the sample period. Again, estimates vary somewhat, but it appears that the extent of

localization has fallen by at least two thirds from the 1970s to the 1990s. Third, I have presented a

number of Þndings on the importance of trade, FDI, and language skills for international technology

diffusion, to which I turn below.

The effect that distance has on the scope of international technology diffusion according to some

of my estimates is probably too high. One reason for this could be the fact that my analysis abstracts

from the value of technological knowledge being heterogeneous. It is well-known from analyses of

the value of patents that their distribution is very skewed. Because the technology that diffuses

Þrst is likely more valuable than the technology that diffuses later, my analysis underestimates the

value of small stocks of diffused technology relative to larger stocks. In particular, taking account of

heterogeneity might therefore raise technology diffusion to and from Japan. Caution is also needed to

interpret the results on changes in technology diffusion over time. While there are several mechanisms

which seem to be plausible a priori, the dramatic magnitude that I estimate, often eliminating the

localization effect completely over only twenty-Þve years, suggests that it might be overstated.

As data on a larger set of countries, especially outside Europe, becomes available, it will be

possible to re-examine the questions I have addressed. Moreover, it might be possible in the future

to compute productivity indices that consistently account for differences in human capital across

countries and industries. In terms of speciÞcation, I have focused on international within-industry

effects, while technology diffusion between industries�that is, across technology space�is likely to be

important as well. Further, the temporal dimension of technology diffusion has been collapsed into

one point in time in my analysis that focuses on contemporaneous effects.

For the time being, then, what explains the level and the change in the localization effect that

are estimated? I have considered the channels of trade, FDI, and direct communication, proxied by
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data on language skills, as alternatives to distance above. Recall that the interpretation of these

Þndings requires caution for the reasons discussed in section 1.3. From this analysis, it appears

that a substantial portion of the distance effect in technology diffusion, and may be all of it, can be

accounted for by differences in trade, FDI, and communication links across countries. To the extent

that this Þnding is conÞrmed by future research, this provides important information for areas where

economic policy might be effective in fostering international technology diffusion. Out of the three

channels, I estimate that trade is most important, with about two-thirds of the total diffusion effect,

while differences in FDI and language skills account for about one-sixth each.35 These Þndings are

to some extent speciÞc to this sample of major OECD countries, and it will be interesting to see by

how much the estimates change once the analysis is extended to a broader set of countries.

While it is possible to account for a substantial part of the distance effect in terms of trade, FDI,

and communication links, much less can be said at this point on what has caused the decline in the

degree of localization of technology over the sample period. Have transport costs for goods declined

dramatically over the period of 1970-95? Direct evidence on this is scarce. Research in international

trade using so-called gravity equations has frequently shown that the volume of trade falls sharply

with geographic distance, but whether this effect has become substantially weaker during the sample

period is not settled yet.36 Thus, it cannot be ruled out that less localization of technology diffusion

is related to the higher level of economic integration through trade that has been observed in recent

years. As for foreign direct investment, the rate of growth in multinational activity over the last two

decades has been even higher than the rate of growth of world trade, which means that FDI might

also be in part what is behind the decrease in localization of technology. And of course the recent

35Given the strong negative correlation of trade with distance, trade is more likely to pick up any remaining spurious
regional effect that the econometric speciÞcation does not control for than the other two mechanisms. This suggests
that the share of two-thirds is likely to be an upper bound for the relative importance of trade in technology diffusion.
36The estimate of the elasticity of trade with respect to distance is often not substantially smaller for more recent

periods, but this appears to be due primarily to changes in the composition of goods trade that go unnoticed at the
relatively high levels of aggregation that are frequently analyzed.
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development of new communication technologies and the internet are strong prima facie reasons of

why technology might have become less localized. A deÞnitive answer in this regard, however, must

await the greater availability of relevant data, because to date, relatively little is available on the

extent to which FDI activity, communication ßows, and other indicators of channels of technology

diffusion have changed over time. This will allow to go further than this paper can towards addressing

the important question of what are the main causes, and implications, of the recent decline in the

localization of technological knowledge.
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Table 1: Summary Statistics

Relative size in terms of Relative size in terms of 
Country Symbol GDP in sample* R&D in sample** R&D Stock Growth***

(%) (%) (%)

Canada CAN 3.15 1.44 9.15
France FRA 12.89 7.03 8.01
Germany GER 15.15 11.78 11.82
Italy ITA 11.67 3.31 11.30
Japan JP 14.36 23.53 9.83
United Kingdom UK 9.16 5.71 5.72
United States US 33.62 47.19 7.36

100.00 100.00

Relative size in terms of Relative size in terms of R&D Stock Growth*
Industry ISIC output in sample**** R&D in sample***** All countries

(%) (%) (%)

Food 31 14.66 1.90 9.17
Textiles 32 8.62 0.56 7.59
Wood 33 4.73 0.36 13.77
Paper 34 9.79 1.03 7.29
Chemicals 351/2 8.21 19.75 9.00
Rubber 355/6 3.39 1.70 7.69
Non-met. Miner. 36 4.75 1.04 8.02
Basic Metals 37 7.13 2.63 7.83
Metal Products 381 8.19 1.52 10.41
Machinery, Instr. 382/5 12.79 17.22 9.78
El. Machinery 383 7.00 24.63 9.33
Transportation 384 10.73 27.67 8.41

100.00 100.00

*Shares computed from value of total manufacturing production in 1980
**Shares computed from total manufacturing R&D in 1990
***Average annual growth of R&D stocks; R&D depreciation rate = 0.1
****Shares computed from value added in 1980; simple average across countries
*****Computed from R&D expenditures in 1990; simple average across countries



Table 2.1 Bilateral distance between capital cities (kilometers)

CAN FRA GER ITA JP UK US
CAN 5652 5857 6735 10327 5367 734
FRA 400 1108 9723 341 6169
GER 1066 9357 511 6406
ITA 9867 1434 7222
JP 9570 10910
UK 5904
US

Table 2.2 Bilateral trade shares*

Exporter
CAN FRA GER ITA JP UK US

Importer CAN 0.0191 0.0253 0.0116 0.0685 0.0298 0.6945
FRA 0.0068 0.2182 0.1100 0.0348 0.0864 0.0864
GER 0.0068 0.1109 0.0979 0.0590 0.0749 0.0675
ITA 0.0062 0.1462 0.2237 0.0238 0.0652 0.0569
JP 0.0313 0.0214 0.0470 0.0182 0.0200 0.2286
UK 0.0153 0.0975 0.1602 0.0563 0.0556 0.1187
US 0.2005 0.0276 0.0513 0.0240 0.1892 0.0398

Table 2.3 Bilateral foreign direct investment shares**

Outward FDI country
CAN FRA GER ITA JP UK US

FDI host CAN 0.0186 0.0249 0.0049 0.0193 0.0594 0.1627
country FRA 0.0000 0.0240 0.0000 0.0020 0.0163 0.0472

GER 0.0009 0.0045 0.0017 0.0021 0.0031 0.0309
ITA 0.0012 0.0220 0.0120 0.0023 0.0073 0.0290
JP 0.0000 0.0001 0.0007 0.0000 0.0005 0.0068
UK 0.0105 0.0109 0.0072 0.0000 0.0110 0.0726
US 0.0163 0.0109 0.0135 0.0013 0.0169 0.0294

Table 2.4 Patterns of bilateral language knowledge***

Technology sender
CAN FRA GER ITA JP UK US

Technology CAN 0.3100 0.0200 0.0200 0.0020 0.8400 0.8400
Recipient FRA 0.3200 0.0900 0.0600 0.0007 0.3200 0.3200

GER 0.4100 0.1100 0.0200 0.0006 0.4100 0.4100
ITA 0.2700 0.1900 0.0300 0.0003 0.2700 0.2700
JP 0.0011 0.0001 0.0001 0.0000 0.0011 0.0011
UK 1.0000 0.1400 0.0500 0.0100 0.0020 1.0000
US 1.0000 0.0111 0.0210 0.0103 0.0022 1.0000

*Share of total manufacturing imports; Year 1991; source: Feenstra et al. (1997).
**Share of foreign-owned subsidiary employment in total employment; Year 1991; source OECD (1999c) and own estimates
***Share of population in recipient country that speaks the official language of the sender country
Year 1996/98; source: EU (1999), StatCan (2000), estimates based on JG (2000), and own estimates



Table 3: Geography and technology diffusion∗

Exponential

distance

eq. (2)

(3.1)

Exponential

distance

w/ γ1, γ2

(3.2)

Exponential

distance

γ̄ = 1

(3.3)

Distance

classes

eq. (3)

(3.4)

β 0.039

(0.010)

0.046

(0.010)

0.055

(0.014)

0.048§

(0.016)

γ 1.111

(0.186)

0.368

(0.095)

γ1 0.992

(0.068)

γ2 1.197

(0.067)

δ 0.147

(0.045)

0.199

(0.028)

0.123§

(0.030)

η
1.010

(0.139)

n 2184 2184 2184 2184

R2 (%) 85.07 85.08 85.06 85.03

AIC -4.645 -4.648 -4.649 -4.644

*Dependent variable: multilateral TFP index, as deÞned in the text. Standard errors are in parentheses; β

measures the effect of domestic R&D, γ the relative effect from foreign R&D (γ1 for CAN, FRA, ITA, and for the UK,

and γ2 for US, JP, and GER), and δ as well as η determine the distance effect (δ > 0 and η > 0 are consistent with

distance-limited technology diffusion); n = number of observations, AIC = Akaike�s Information Criterion, as deÞned

in the text; § coefficient is only signiÞcantly different from zero at a 5% level.



Table 4: Sensitivity analysis∗

Low R&D

industries

(4.1)

Output-

based TFP

(4.2)

All-manufact.

PPP exch. rates

(4.3)

TFP based

on IRS

(4.4)

Unadjusted

TFP

(4.5)

β 0.025⊗

(0.016)

0.045

(0.011)

0.045

(0.011)

0.044§

(0.017)

0.067§

(0.018)

γ 0.737

(0.067)

0.618

(0.155)

0.437

(0.066)

δ 0.138

(0.079)

0.300

(0.100)

0.273

(0.021)

η 1.077

(0.086)

0.716

(0.067)

n 1456 2184 2184 2184 2184

R2 (%) 85.37 83.43 83.09 85.48 80.97

AIC -4.676 -4.565 -4.668 -4.608 -4.431

*Dependent variable: multilateral TFP index, as deÞned in the text. Standard errors are in parentheses; β measures

the effect of domestic R&D, γ the relative effect from foreign R&D, and δ as well as η determine the distance effects

(δ > 0 and η > 0 means greater geographic distance is associated with less diffusion); n = number of observations,

AIC = Akaike�s Information Criterion, as deÞned in the text; ⊗coefficient is signiÞcantly larger than zero at a 12%

level; § coefficient is signiÞcantly different from zero only at a 5% level.



Table 5: The localization of technology diffusion over time∗

Exponential

w/ ∆ in

distance effect

(5.1)

Exponential

w/ ∆ in distance

and foreign effects

(5.2)

Distance class

w/ ∆ in

distance effect

(5.3)

Exponential w/ ∆ in

distance effect

Low R&D Industries

(5.4)

β 0.052

(0.010)

0.057

(0.010)

0.067

(0.012)

0.066

(0.013)

γ 1.127

(0.044)

1.104

(0.123)

0.498

(0.040)

δ 0.490

(0.091)

0.466

(0.073)

0.472

(0.069)

η 1.012

(0.124)

γti 0.072¢

(0.071)

δti −1.188

(0.222)

−1.193

(0.305)

−1.174

(0.304)

ηti −0.778

(0.079)

n 2184 2184 2184 1456

R2 (%) 86.65 86.70 85.35 86.75

AIC -4.752 -4.755 -4.666 -4.773

*Dependent variable: multilateral TFP index as deÞned in the text. Standard errors are in parentheses; β measures

the effect of domestic R&D, γ the relative effect from foreign R&D, and δ as well as η determine the distance effects

(δ > 0 and η > 0 says that greater distance is associated with a lower productivity effect). The parameters γti, δti,

and ηti estimate changes in the overall foreign (γti) and distance effects; n = number of observations, AIC = Akaike�s

Information Criterion, as deÞned in the text; ¢ not signiÞcantly different from zero at standard levels.



Table 6: Trade, FDI, and language skills as channels of technology diffusion∗

(6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) (6.8) (6.9)

β 0.055

(0.014)

0.057

(0.011)

0.053

(0.018)

0.103

(0.018)

0.081

(0.010)

0.125

(0.012)

0.087

(0.014)

0.082

(0.011)

0.068

(0.028)

δ 0.123

(0.030)

0.191

(0.111)

0.232

(0.082)

−0.180¢

(0.073)

−0.124¢

(0.159)

τ 0.403

(0.031)

0.130

(0.006)

0.578

(0.064)

0.765

(0.230)

ψ 0.377

(0.027)

0.370

(0.046)

0.081

(0.017)

0.073

(0.014)

λ
0.390

(0.029)

0.662

(0.100)

0.574⊕

(0.183)

0.975⊕

(0.555)

AIC -4.649 -4.668 -4.661 -4.664 -4.678 -4.689 -4.685 -4.694 -4.697

*Dependent variable: multilateral TFP index, as deÞned in the text. Standard errors are in parentheses; β measures

the effect of domestic R&D, δ the distance effect (δ > 0 is consistent with localized spillovers), τ is the parameter

on the import shares, ψ is the parameter on the FDI shares, and λ is the language parameter. If trade, FDI, or

language facilitate technology diffusion, then τ , ψ, or λ, respectively, are expected to be greater than zero; 2184

observations, AIC = Akaike�s Information Criterion, as deÞned in the text; ⊕ coefficient is only signiÞcant at the 10%

level, ¢ coefficient is not signiÞcantly different from zero at standard levels.



Figure 1

Comparing relative productivity with and without correcting for differences in input usage
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Figure 2

Productivity convergence or divergence: analysis within and between countries
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7

Comparison of a distance-based measure of the relative importance of foreign sources of 
technology with another based on trade, FDI, and language
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A Data on R&D Expenditures

The R&D expenditure data comes from OECD (1998). The data is in part estimated, because

not all countries conduct an annual R&D survey. I rely on the OECD estimates of missing R&D

expenditure data, which have been prepared using cubic spline interpolation techniques. The OECD

(1998) publication covers the years 1973-97; estimates for 1970-72 are based on data in hardcopy

versions of the OECD�s Basic Science and Technology Statistics. Expenditures qualify as R&D

according to the OECD�s Frascati Manual deÞnition.

R&D stocks are derived from expenditure data on total business enterprise intramural R&D

(denoted Ecit),37 which is available in constant 1990 $ U.S. using the OECD purchasing power parity

rates for conversion. I use the perpetual inventory method to construct stocks, assuming that

St = (1− δR)St−1 +Et−1, for t = 1971, ..., 1995

and

S1970 = E1970

(gRD+δR)
,

(6)

where the industry and country subscripts have been suppressed. The rate of depreciation of the

R&D stock, δR, is set at 0.1, and gRD is the average annual growth rate of S over the period of 1970-

1995. I have experimented with estimating the same speciÞcations based on R&D data constructed

with other plausible values for δR. These results are similar to what is reported above.

37The exception is Italy, where also extramural R&D expenditure is covered. The OECD code for this series is
BERD.



B Data on labor inputs, physical capital, value added and gross

production

The OECD (1999a) STAN database and Pilat (1996) are the sources for these variables. The for-

mer provides internationally comparable data on economic activity at the industry level for OECD

countries. The TFP index construction uses data on labor, physical capital, labor compensation

and industry deßators, together with value added and gross output data as output measures. The

number of workers variable is taken from the STAN database. This includes employees as well as

the self-employed, owner proprietors and unpaid family workers. These Þgures are adjusted by the

average annual hours per manufacturing worker in country c and time t to arrive at the labor input

measure, denoted L. The data on annual hours worked is from OECD (1999b); a relatively small

number of missing values has been interpolated.

The STAN database contains values on gross Þxed capital formation in current prices, which I

use to construct industry-level capital stocks. First, the investment ßows are converted into constant

1990 prices using country- and industry-speciÞc deßators that are derived from series of value added

in constant and current prices (in the STAN database). Second, the perpetual inventory method is

used to estimate the capital stocks, with

�Kct = (1− δk) �Kct−1 + invct−1, for t = 1971, ..., 1995, c = 1, ..., 7.

and

�Kc1970 = invi1
(gi+δ

k)
, c = 1, ..., 7,

(7)

where industry subscripts have been suppressed. The variable inv is gross Þxed capital formation in

constant prices (land, buildings, machinery and equipment), g is the average annual growth rate of

inv over the period 1970-1995, and δk is the rate of depreciation for capital, which I have estimated to



be 10%. The capital measures are adjusted for cyclical effects in capacity utilization by estimating a

smoothed gross output series d
ln �Zcit (from the regression ln �Zcit = ∂ci+ζt+ϕcit), and then forming

38

Kcit = �Kcit ∗ (1 + (dln �Zcit − ln �Zcit)),∀c, i, t.

With the labor and capital input variables in hand, let the parameter α be the share of the

labor in total production costs. Following the approach suggested by Hall (1990), the α�s are not

calculated as the ratio of total labor compensation to value added (the revenue-based factor shares),

but as cost-based factor shares which are robust in the presence of imperfect competition. For this

the framework of the integrated capital taxation model of King and Fullerton (see Jorgenson 1993,

Fullerton and Karayannis 1993) and data provided in Jorgenson and Landau (1993b) has been used.39

Having obtained the series on the user cost of capital and capital stock data, α is given by

α =
wL

wL+ pK
, (8)

where wL are the constant price labor costs. Labor and capital inputs together with the factor shares

allow to construct an index of relative total inputs ln Icit − lnIcit,

ln Icit − lnIcit = 1

2
∗ [αcit + αit][lnLcit − lnLit] + 1

2
∗ [(1− αcit) + (1− αit)][lnKcit − lnKit], (9)

38 I impose a maximum absolute value on the adjustment term Θcit = (dln �Zcit − ln �Zcit), mainly to avoid negative
capital stock estimates: when (dln �Zcit − ln �Zcit) > 0.8, I set Θcit = 0.8, and when (dln �Zcit − ln �Zcit) < −0.8, I set
Θcit = −0.8.
39The effective marginal corporate tax rate ω is given by the wedge between before-tax (p) and after-tax rate of return

(ρ̄), relative to the former: ω = p−ρ̄
p
. The variable p is the user cost of capital. It is a function of the statutory marginal

tax rate on corporate income, available investment tax credits, the rates of depreciation, and other determinants. In
the case of equity Þnancing, the after-tax rate of return will be ρ̄ = r + π, where r is the real interest rate and π is
the rate of inßation. Jorgenson (1993) tabulates the values for the marginal effective corporate tax rate in Table 1-1.
According to the �Þxed-r� strategy, one gives as an input a real interest rate r and deduces the tax rate. In this case,
I use a value of r = 0.1, which, together with the actual values of π allows, using the relationship ω = p−ρ̄

p
, to infer

the user cost of capital, p. From Jorgenson�s Table 1-1 on ω, I use the values on �manufacturing� (the 1980 values
given are used for 1970-1982 in the sample, the 1985 values for 1983-1986, and Jorgenson�s 1990 values are used for
1987-1991).



for all c, i, and t, where lnLit = 1
C

P
c lnLcit, lnKit =

1
C

P
c lnKcit, and ᾱit =

1
C

P
c αcit. The relative

TFP index is obtained by subtracting relative total input from relative output, see equation (1) in

the text.

I use two alternative sets of exchange rates to convert the countries� output series (generally,

this is value added, but gross output is used for speciÞcation 4.2) into the same currency: industry-

speciÞc PPP exchange rates based on Pilat (1996) and all-manufacturing PPP exchange rates from

the STAN database, OECD (1999a). Because Italy is not covered in Pilat�s paper, I have estimated

the Italian industry-speciÞc PPP rates as an average of those of France, the U.K., and Germany (the

other three European countries in the sample).

A more general TFP index which allows for increasing returns to scale is employed to investigate

the robustness of the results. It is based on work by Caves, Christensen, and Diewert (1982b):

ln ÿFcit = lnFcit + (1− ²)σ̄cit
³
lnLcit − lnLit

´
+ (1− ²)(1− σ̄cit)

³
lnKcit − lnKit

´
,∀c, i, t (10)

where lnFcit is the relative TFP index deÞned in equation (1) and ² is an indicator of the returns to

scale. With ² = 1, production is characterized by constant returns to scale, while increasing returns

to scale are present whenever ² > 1 : for given levels of outputs and inputs, productivity is lower if

there are scale economies than with constant returns. To examine the robustness of the analysis, the

results of assuming a relatively small degree of increasing returns (² = 1.05) are presented in Table

4.


