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1. Old Ideas, New Models

Inflation has come full circle. Low before 1960, it rose during the 1960s and peaked
during the 1970s. From this peak, it fell during the 1980s, finally stabilizing during
the 1990s at levels similar to those prevailing before 1960. The same circular
pattern appears in data from virtually all of the major industrialized countries—
in North America, in Europe, and in Asia—as shown, for example, by Mussa
(2000, Table 1, p.1103).

Monetary economists and central bankers have also come full circle. Concerned
mainly with halting and reversing inflation’s upward trend during the 1970s and
1980s, analysts and policymakers have more recently rediscovered some of the
special problems that can arise under conditions of price stability. These problems
received much attention long ago but were ignored for more than a generation.
Now, they have taken center stage once again.

Chief among these problems are those associated with the liquidity trap, which
according to Hicks (1937) lies at the core of Keynes’ (1936) economics. Krugman
(1998) and Svensson (1999) reconsider the idea of the liquidity trap using state-of-
the-art monetary models in which optimizing agents have rational expectations.

In both Krugman’s cash-in-advance model and Svensson’s money-in-the-utility



function model, households view money and bonds as perfect substitutes when
the nominal interest rate reaches its lower bound of zero. Households then become
willing to hoard any additional money that the government chooses to supply. The
central bank loses control of the price level and perhaps other key variables as well.

Notably absent from these new models of the liquidity trap, however, is another
old idea: that of the real balance effect. First discussed by de Scitovszky (1941),
Haberler (1946), and Pigou (1943) and developed most extensively by Patinkin
(1965), the real balance effect describes a channel through which a change in
real money balances, caused either by a change in the nominal money supply or
a change in the nominal price level, impacts on household wealth and thereby
affects consumption and output. The real balance effect allows the central bank
to influence the economy even after the nominal interest rate hits its lower bound.
Yet this effect appears nowhere in Krugman and Svensson’s analyses. Why?

It has been widely appreciated, since the publication of Barro’s (1974) famous
paper on Ricardian equivalence, that government bonds will not be perceived as a
source of private-sector wealth if the households owning those bonds are the same
households that must pay all of the taxes that will eventually be used to retire the
government’s debt. Less widely appreciated, however, is a closely related finding,

presented most explicitly by Weil (1991) but also implicit in earlier work by Sachs



(1983) and Cohen (1985). These authors show that government-issued fiat money
will not be perceived as a source of private-sector wealth if the households owning
that money are the same households that, first, receive all of the transfers or
pay all of the taxes associated with changing the money stock over time and that,
second, incur all of the opportunity costs associated with carrying the money stock
between all future periods. In fact, the representative-agent models of Krugman
and Svensson describe environments in which money is not net wealth. In these
models, therefore, the real balance effect is inoperative.

This paper extends Krugman’s cash-in-advance framework by introducing
growth in the number of infinitely-lived households as modeled by Weil. The
paper shows that with a growing population, households alive in the present pay
only a fraction of the taxes levied in the future when the government wants to con-
tract the money supply. Money becomes net wealth, and an operative real balance
effect gives the central bank control over the price level even when the nominal
interest rate is zero. Only in the special case without population growth—the spe-
cial case in which the more general model developed here collapses to Krugman’s
original specification—does the liquidity trap survive.

Introducing population growth in the manner suggested by Weil also serves

to resolve a second puzzle that emerges out of Krugman and Svensson’s earlier



analyses. By associating the case of zero nominal interest rates with the Keynesian
liquidity trap, Krugman and Svensson conjure up images of terrible economic
outcomes: the Great Depression in the United States or the ongoing lengthy
and severe recession in Japan. As emphasized by Cole and Kocherlakota (1998),
however, zero nominal interest rates in models such as Krugman and Svensson’s
are actually associated with highly desirable resource allocations. In fact, zero
nominal interest rates in these models are more closely linked to Friedman’s (1969)
rule for the ”Optimum Quantity of Money” than to what Hicks (1937, p.155) calls
the ”Economics of Depression.” But are zero nominal interest rates always good
for the economy?

Once population growth is introduced into the cash-in-advance framework,
monetary policies can have important distributional effects across households of
different ages; these distributional effects, like the real balance effect itself, are
absent in models with a single representative agent. This paper also shows that
as a result of these distributional effects, some households are much worse off
under zero nominal interest rates than they are under positive nominal interest
rates. Curiously, therefore, the same mechanism that reintroduces the real balance
effect and eliminates the liquidity trap also works here to make a zero nominal

interest rate something to be avoided.



2. An Extended Cash-in-Advance Model

2.1. Overview

Here, Weil’s (1991) continuous-time, money-in-the-utility function model with a
growing number of infinitely-lived households is recast as a discrete-time, cash-
in-advance model. Weil’s original specification assigns to each household a utility
function that is strictly increasing in two arguments: consumption and real money
balances. Since households cannot be satiated by any finite stock of real balances,
equilibria in Weil’s original model exist only under strictly positive nominal inter-
est rates, ruling out an analysis of the case that Krugman (1998) associates with
the liquidity trap. Of course, one could also modify Weil’s model in a manner
consistent with Svensson (1999) by introducing a satiation point beyond which
the marginal utility of real balances equals zero. The cash-in-advance framework
used here, however, incorporates the satiation point for real balances in a way that
is more naturally linked to the volume of each household’s nominal expenditures.

Whitesell (1988) presents a model that is quite similar to Weil’s and uses that
model to study the effects of money growth on the capital stock and welfare. In
fact, both Weil’s model and Whitesell’s can be viewed as extensions of Blanchard’s

(1985) model of finite horizons. In Blanchard’s model, each agent faces a constant



probability of death; meanwhile, newly-born agents arrive at a rate that keeps the
total population constant. Buiter (1988) generalizes Blanchard’s model so as to
break the tight link between birth and mortality rates. Buiter’s analysis reveals
that it is the arrival of newly-born agents, rather than the finite horizons of exist-
ing agents, that is essential in overturning Barro’s (1974) Ricardian equivalence
result—a result that, as noted above, relates closely to the presence or absence
of monetary wealth effects. Thus, the model used here, like the models used by
Weil and Whitesell, retains the essential feature of population growth in an envi-
ronment where all agents are infinitely lived. This more general model nests, as
the special case in which the population growth rate equals zero, the conventional
specification that features a single infinitely-lived representative agent.

Weil’s model, in which goods are received by each household in the form of a
constant endowment, is also extended here by allowing each household to produce
output with labor. Here, as in Wilson (1979), Cooley and Hansen (1989), Cole and
Kocherlakota (1998), and Ireland (2000), positive nominal interest rates distort
households’ labor supply decisions. Thus, the structure of production and trade
gives rise to a mechanism that might make the central bank want to follow the
Iriedman (1969) rule, which provides for zero nominal interest rates. And, indeed,

the Friedman rule is optimal in the special case where the population growth rate



equals zero. When the population grows at a positive rate, however, the taxes that
the government must levy to implement the Friedman rule generate distributional

effects that make zero nominal interest rates quite costly for some agents.

2.2. Demographic Structure

A new cohort of infinitely-lived households is born at the beginning of each period
t=0,1,2,.... Those households born in a particular period ¢ = s belong to cohort
s. The arrival of new cohorts causes the total number of households to grow at
the constant rate n > 0. Let N; denote the number of housecholds alive during

period ¢t. Then given Ny > 0,
Nt+1 = (1 —I— TL)Nt

forallt=0,1,2 ....
Households of a given cohort are identical, so that it is possible to consider a
representative household for each cohort. The representative household of cohort

s has preferences described by the utility function

iﬁ”ln[65 ()0, )



where 1 > 3 > 0, v > 1, ¢/ denotes the household’s consumption, and hj de-
notes the household’s hours worked during period ¢. This specification for utility,
borrowed from Greenwood, Hercowitz, and Huffman (1988), implies that the mar-
ginal rate of substitution between consumption and hours worked depends only
on hours worked; here, this special assumption facilitates the aggregation of quan-
tities chosen by households of different cohorts.

Thus, during any given period, the economy consists of many infinitely-lived
agents of varying ages. As suggested by Weil (1991) and Whitesell (1988), there-
fore, the population growth rate n serves as a measure of financial disconnected-
ness and heterogeneity in the economy as a whole. In the special case with n = 0,
however, the model collapses to the more familiar one in which there is a single

infinitely-lived representative agent.

2.3. Timing of Events

The representative household of cohort s enters each period t =s,s4+1,s+ 2, ...
with money M; and bonds B;. Only the initial cohort is endowed with money
at birth, and no cohort is endowed with bonds at birth, so that M > 0 but
M =0forall s=1,23,..and B =0 for all s =0,1,2,.... As emphasized by

Weil (1991) and Whitesell (1988), these initial conditions formalize the idea that



newly-born households are not linked financially to older dynasties.

Fach household that is alive during period ¢ receives the same lump-sum mon-
etary transfer T} from the central bank at the beginning of the period. Also at
the beginning of the period, existing bonds mature, providing the representative
household of cohort s with B; additional units of money. The household uses
some of its money to purchase By ; new bonds at the price of 1/(1 + ;) units of
money per bond, where r; denotes the net nominal interest rate between ¢ and
t + 1; the household carries the rest of its money into the goods market.

The description of goods production and trade builds on Lucas’ (1980) inter-
pretation of the cash-in-advance model. Each household consists of two members:
a shopper and a worker. The shopper from the representative household of cohort
s purchases ¢; units of output from workers from other households, subject to the

cash-1n-advance constraint

M+ Ty 4 B — By /(1 +14) > P, (2)

where P, denotes the nominal price of goods during period t. Meanwhile, the
worker from the representative household of cohort s uses hj units of labor to

produce y; units of output according to the constant-returns-to-scale technology



that yields one unit of output for every unit of labor input:

yi = hi.

The worker sells this output to shoppers from other households for Fh; units of
money. The representative household’s two members then reunite to consume the
shopper’s purchases. The household carries M7 ; units of money into period ¢+ 1;

its choices must satisfy the budget constraint

MP + T, + B + Bihi = Fiej + BYyy /(1 +74) + M7y (3)

In addition to the cash-in-advance and budget constraints (2) and (3), which
must hold for all t = 5,84+ 1,s+2, ..., the representative household’s choices must

satisfy a set of nonnegativity constraints:

hi 20, Mip, 20, ¢t = (1/9)(hf)" > 0 (4)

forallt = s,s+1,s+2,.... The first two constraints in (4) are standard; the third
must be imposed given the special form of the utility function (1).

The representative household of cohort s can borrow by choosing negative

10



values for Bf ; but is not allowed to engage in Ponzi schemes through which it
borrows more than it can ever repay. To formalize the constraints that rule out

such Ponzi schemes, let Q9 = 1 and

Qt:ﬁ(lim)

u=0

for all t = 1,2,3,.... Then for any T > t > 0, Qr/@Q: measures the present
discounted value at the beginning of period ¢ of one unit of money received at the

beginning period T'. The no-Ponzi-scheme constraints are

Wi = My + Bl + Y (Qu/Qurd)(Tu + Puhy) > 0 (5)

u=t+1

for all t = s,s4+ 1,54+ 2,.... Part 1 of the appendix shows that these no-Ponzi-

scheme constraints imply that the infinite-horizon budget constraint

QUM+ B)) + 3 QuiT+ Rue) = 3 Qu | Pact + (5 ) Mz | (6)

1+r,

applies to the household’s choices from period ¢ forward. This infinite-horizon bud-
get constraint includes, as sources of funds, the household’s beginning-of-period

nominal balances M, as well as the present discounted value of the monetary
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transfers that the household receives from period ¢t forward. It also includes, as
uses of funds, the present discounted value of the opportunity costs that the house-
hold incurs when it carries money instead of bonds between all future periods.
Ultimately, a comparison between the values of these three items will determine

whether or not the real balance effect is operative in general equilibrium.

2.4. Household Optimization

Taking the initial conditions M7 and B¢ as given, the representative household of
cohort s chooses sequences {cf, hi, M?, |, Bf, | }72, to maximize the utility function
(1) subject to the constraints (2)-(5), each of which must hold for all t = s,s +
1,5+ 2,.... Equivalently, (3) and (5) can be replaced by (6) in this statement of
the household’s problem.

Define the real variables

mi = M{ /By, b) = B/ By, 7 = T/

and let 7m; denote the net inflation rate between ¢t — 1 and ¢:

l+7m=P/P 1.

12



In addition, let

1+ z = (1+7)/(1+ mei1) (7)

define the net real interest rate x; during period ¢, and let

0 = mi + b (8)

summarize the representative household’s real asset position at the beginning of

period t. Part 2 of the appendix demonstrates that in terms of these newly-defined

variables, the conditions

) 1\ VoD
n=(r) 8

1+Tt

(L +mep)miy >0, e >0, (1 4+ m0)miy — ] =0, (10)

1 1 v/ (v=1)
¢ = ~(=) (1)
vy \1+4 7

+H(1 - ) {ai +§ [Hl (1 +1x>] [T“ " (7; 1) <1 +1m>7/(“)] } |

=t

and

1 \V/O-1D
o= (bm [ eror () (12

13



forallt =s,s+1,s4+2,... and

AN
Jlim LHS <m>] gy =0 (13)

are both necessary and sufficient for a solution to the household’s problem.

Equation (9) confirms that positive nominal interest rates distort the house-
hold’s labor supply decisions, as discussed by Wilson (1979), Cooley and Hansen
(1989), Cole and Kocherlakota (1998), and Ireland (2000). Equation (10) restates
the cash-in-advance constraint. It reveals that when the nominal interest rate hits
its lower bound of zero, the household views money and bonds as perfect substi-
tutes, so that the cash-in-advance constraint no longer binds; this is the case that
Krugman (1998) associates with the liquidity trap.

Equation (11) defines the housechold’s consumption function, which according
to the permanent income hypothesis links consumption to total wealth. Embedded
into the right-hand side of (11) are the same three components of monetary wealth
identified in (6): the household’s current money balances, the present discounted
value of the future monetary transfers, and the present discounted value of the
opportunity costs associated with carrying money instead of bonds between future

periods. Once again, a comparison between the values of these three items will
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determine whether or not the real balance effect appears in equilibrium.
Equation (12) governs the evolution of the household’s financial wealth. It
shows that the household accumulates wealth as it earns interest on its existing
assets and as it receives monetary transfers from the government; the household
also accumulates wealth by working more and consuming less. Finally, (13) is the
household’s transversality condition. If the limit on the left-hand side of (13) was
negative, then the household would be violating the no-Ponzi-scheme constraints
in (5); if, on the other hand, the limit was positive, then the household could
achieve a preferred consumption profile, without violating any of its constraints,

by drawing down its stock of financial assets.

2.5. Aggregation

Define aggregate per-household financial wealth during period ¢ as

_ Noap + 3! (Ny — Ni_1)aj
N, ’

Qg

and define aggregate per-household real money balances my, real bond holdings

b, hours worked h;, and consumption ¢; similarly. In terms of these aggregates,

15



(8)-(12) become

ay = myg + bt; (]‘4>

. 1 \VO-D .
— 1

t (m) , (15)

(L4+n)(1 4+ mpp1)mepr > hy, 7 > 0, 7 [(1+n) (1 + mq)my — hy) =0, (16)

1 1 v/ (v=1)
¢ = — < > (17>

y\1+7m

el Bl () () )

and

14+ 1 v/ (v=1)
aty1 = < ajt) |flt + 7+ < ) — Ct (18>

1+n 1+ 7

for all t = 0,1,2,.... While (14)-(17) are straightforward analogs to (8)-(11),
a comparison of (18) to (12) reveals that aggregate per-capita financial wealth
grows at a slower rate than each individual household’s financial wealth, since

newly-born households start their lives without money and bonds.
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2.6. Steady States under Constant Money Growth

Equations (7) and (14)-(18) form a system of six equations in the nine aggregate
variables x;, Ty, i1, Gy, My, by, he, ¢, and T4 This system can be closed by

imposing the market-clearing condition for goods and labor,

ht = Ct; (]‘9>

and by making assumptions about the government’s supply of money and bonds.
Accordingly, suppose now that the government issues no bonds and expands

the total money supply at the constant rate . Then, in equilibrium,

and

Ty = omy (21)

must also hold for all ¢ = 0,1,2,.... Note that (20) only requires that aggregate
per-household bonds equal zero. Indeed, at the level of the individual household,
b7 will typically be nonzero in equilibrium. Older and wealthier households will

lend to—that is, buy bonds from—younger households; younger households will
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then use the borrowed money to finance their purchases of consumption.

Under government policies described by (20) and (21), steady-state equilibria
exist in which each of the nine aggregate variables is constant over time. In
particular, part 3 of the appendix boils the nine equations (7) and (14)-(21) down
to a smaller system of five equations that determine the steady-state values of

Ty =T, Ty =T, Ty =T, My =m, and ¢; = ¢:

l+z=0+r)/(14+mn), (22)

l+7=(14+0)/(1+n), (23)
1\

‘T <1—|—7"> 7 24)

(1+0)m>c,r>0,7[(1+0)m—c] =0, (25)

and

v/ (v—1)
‘- %(1—17") (26)

+(1—ﬂ){[1+ (11:1:) 0} - (7;1> <1;a¢> <1i7~>w(w)}-

Given these five steady-state values, (14) and (19)-(21) determine a; = m, h, = ¢,

18



by =0, and 7, = om.

Equation (22) defines the steady-state real interest rate as the difference be-
tween the nominal interest rate and the inflation rate; similarly, (23) determines
the steady-state inflation rate as the difference between the money growth rate and
the population growth rate. FEquation (24) goes beyond (9) and (15) by show-
ing that in equilibrium, higher nominal interest rates reduce consumption and
output as well as employment. Equation (25), derived {rom the cash-in-advance
constraint, describes the aggregate demand for money, while (26) is the aggregate

consumption function with the steady-state conditions imposed.

3. The Liquidity Trap and the Real Balance Effect

What do the steady-state conditions (22)-(26) imply about the behavior of the
economy and the efficacy of monetary policy under zero nominal interest rates?
To answer this question, it is helpful to consider two cases. The first case is the one
in which n = 0, so that there is no population growth. This first case is therefore
the special case in which the more general model developed above reduces to the
familiar specification, used by Krugman (1998) and many others, in which there
is a single representative agent. And, indeed, Krugman’s liquidity trap appears

in this special case: the central bank loses control over the price level when the
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nominal interest rate hits its lower bound of zero. In the second case with n > 0,
however, a real balance effect emerges, enabling the central bank to control the

price level even under a zero nominal interest rate.

3.1. The Liquidity Trap

When 7 = 0 and n = 0, so that both the nominal interest rate and the population

growth rate equal zero, (22)-(24) and (26) imply that

l40=14m=23, (27)
1+2=1/8, (28)

and
c=1 (29)

In this steady state, the central bank follows the Friedman (1969) rule, contracting
the money stock at the rate of time preference and generating a rate of deflation
that is consistent with the zero nominal interest rate. As in Sidrauski’s (1967)
famous model, the steady-state real interest rate is pinned down by the rate of

time preference; and as discussed below, consumption, output, and employment

20



are at their Pareto optimal levels.
But while (27)-(29) provide unique solutions for 7, z, and ¢, the cash-in-

advance constraint (25) requires only that

m>1/p. (30)

Since r = 0, the opportunity cost of holding money instead of bonds is zero.
Households are therefore willing to hoard arbitrarily large stocks of real money
balances. A continuum of steady-state equilibria exist, each corresponding to a
value of m that satisfies (30).

Thus, in this case without population growth, the model exhibits what Mc-
Callum (1986, p.137) refers to as solution ”multiplicity,” as opposed to the less
severe problem of price-level ”indeterminacy.” Multiple values of the real balance
variable m satisfy (30). Hence, even if the central bank chooses an initial value
My for the level of the nominal money supply in addition to the constant money
growth rate ¢, there are still many distinct time paths for the price level that are
consistent with all of the steady-state conditions.

One can, therefore, follow Krugman (1998) by associating this case with the

Keynesian liquidity trap. Here, variations in the government’s choice of My,
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holding the money growth rate ¢ fixed, need not be associated with movements
in the price level. With nominal interest rates frozen at their lower bound of zero,

the central bank loses the ability to influence the behavior of prices.

3.2. The Real Balance Effect

When r = 0 but n > 0, the nominal interest rate continues to equal zero but the

population grows at a positive rate. Equations (22)-(24) and (26) imply that

l+7m=140)/(1+n), (31)
l+x=(1+n)/(1+0), (32)
c=1, (33)

and

m = (7_1)[ﬂ<1+n>_<1+0)]7 (34>

(1= B)(1+0o)n

while (25) requires that the money growth rate satisfy

B +n)—n(l—75) (%) >1+o0. (35)

22



There is, in addition to (35), a second condition that places restrictions on the
money growth rate when n > 0: the condition ¢; — (1/7)(h;)” > 0 from the set of
nonnegativity constraints in (4). Part 4 of the appendix shows that in a steady

state, this additional condition holds if and only if

140> 8. (36)

Intuitively, (35) requires the money growth rate to be low enough to be consistent
with a zero nominal interest rate, while (36) guarantees that the lump-sum taxes
required to implement a policy of zero nominal interest rates do not become so
large that newly-born households cannot afford to pay them and still consume. So
long as 3 is sufficiently close to one or, more precisely, so long as 3 > v/(2vy — 1),
the upper bound in (35) exceeds the lower bound in (36), and there is a range of
values for o that satisfy both constraints.

Equation (32) reveals that in this case with population growth, the steady-
state real interest rate is no longer tied to the rate of time preference; instead,
a Tobin (1965) effect arises through which the real interest rate falls when the
money growth rate rises. This Tobin effect also appears under positive nominal

interest rates, as discussed by Weil (1991) and, more extensively, Whitesell (1988).
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Equation (34), meanwhile, serves to uniquely determine the level of steady-
state real balances. Thus, by selecting the initial value Mg for the level of the
nominal money supply as well as the money growth rate o, the central bank can,
through its choice of policy, determine a unique path for the nominal price level.
This result—that when n > 0, m is uniquely determined, even when r = 0—
cannot be found in Weil (1991) or Whitesell (1988), since their money-in-the-
utility function specifications require the nominal interest rate to be positive. But
why does Krugman’s (1998) liquidity trap vanish when n becomes positive?

Sachs (1983), Cohen (1985), and Weil (1991) identify the three components of
the private sector’s monetary wealth that appear explicitly in the infinite-horizon
budget constraint (6) and implicitly in the consumption functions (11), (17), and
(26). First, there is the value of the current period’s money supply. Second, there
is the present discounted value of all future transfers or taxes that households
will receive or pay as the government expands or contracts the money supply
over time. Third, there is the present discounted value of the opportunity costs
that households incur as they carry money instead of bonds between all future
periods. When the nominal interest rate equals zero, only the first two of these

three components remain, so that aggregate per-household real monetary wealth
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during period ¢ is measured by

e

u=t Lv=t

In a steady state with constant money growth, (21) implies that Q; is constant

and equal to

Q:[1+<1+$>0} m. (37)

xT

In general, this measure of monetary wealth enters into the aggregate con-

sumption function (26). In the special case with n = 0 and r = 0, however, (27),

(28), and (37) imply that

Q- l1+(i> (ﬂ—l)]sz. (38)

Without population growth, the households owning the current period’s money
stock are exactly the same households that pay all of the taxes required to imple-
ment a policy of zero nominal interest rates. Thus, as noted by Weil, an argument
analogous to the one underlying Barro’s (1974) Ricardian equivalence theorem im-
plies that government-issued money, like government-issued bonds, will not be a

source of private net wealth.
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When n > 0, on the other hand, (32) and (37) imply that

1
an( +0>m>0.

n—o

In this case, households alive during any period ¢ pay only a fraction of the future
taxes required to keep the nominal interest rate at zero; households born in later
periods share the total tax burden. Hence, money is a component of private
net wealth. Since real balances enter nontrivially into the aggregate consumption
function (26), m is uniquely determined, even when the cash-in-advance constraint
(25) does not bind. The central bank retains control over the price level, even
when the nominal interest rate is zero.

de Scitovszky (1941), Haberler (1946), Pigou (1943), and Patinkin (1965) de-
scribe the real balance effect. According to these authors, real money balances
form a component of private-sector wealth and therefore enter into the aggregate
consumption function. As a result, a change in the level of real balances, brought
about either by a change in the nominal money supply or a change in the nomi-
nal price level, gives rise to changes in consumption and output. Thus, the real
balance effect allows the central bank to influence the economy even after the

nominal interest rate reaches its lower bound. Here, the real balance effect oper-
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ates in exactly this way, so long as the population grows at a positive rate. Only
in the special case without population growth, where money is not net wealth,

does the liquidity trap survive.

4. The Welfare Cost of Deflation

The results from above resolve one of the puzzles that emerges from Krugman
(1998) and Svensson’s (1999) recent analyses of the liquidity trap. These results
show that a real balance effect of the kind described by de Scitovszky (1941),
Haberler (1946), Pigou (1943), and Patinkin (1965) fails to appear in Krugman
and Svensson’s models because these models, which feature a single infinitely-lived
representative agent, describe economic environments in which government-issued
money is not a component of aggregate private-sector wealth. When population
growth is introduced into one of these models, in the manner suggested by Weil
(1991) and Whitesell (1988), money becomes net wealth. The real balance effect
appears, and the central bank retains control over the price level even when the
nominal interest rate equals zero. The real balance effect appears because mone-
tary policies have distributional consequences: the households owning the current
period’s money supply pay only some of the taxes or receive only some of the

transfers associated with future changes in the money supply.

27



The same distributional consequences help resolve a second puzzle emerging
from Krugman and Svensson’s analyses. By associating the case of zero nominal
interest rates with the Keynesian liquidity trap, Krugman and Svensson conjure up
images of economic depression. But in fact, Wilson (1979), Cole and Kocherlakota
(1998), and Ireland (2000) derive results associating zero nominal interest rates
with Pareto optimal resource allocations in representative-agent models such as
Krugman and Svensson’s. These optimality results can be rederived for the cash-
in-advance model developed here in the special case without population growth.

When n = 0 in the model from above, there is a single representative household
that lives from the beginning of period ¢ = 0 forward. In equilibrium, this house-
hold’s consumption and hours worked coincide with the per-household aggregates,

so that according to (15) and (19),

0_ 1o 1 \YVO-1) 29
G =1y = <1 ‘|‘7"t> (39)
for all t = 0,1,2,.... Now consider a social planner, who chooses {c? h?}2°, to

maximize the representative household’s utility

iﬂﬁt In[e? — (1/7)(h)"),
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subject only to the aggregate resource constraints

e >

for all t = 0,1,2,.... The solution to this planning problem, which describes the

unique symmetric Pareto optimal allocation, sets

A =hn)=1 (40)

forallt=0,1,2 ....

Comparing (39) and (40) reveals that equilibrium and optimal allocations coin-
cide when monetary policy provides for zero nominal interest rates. Since positive
nominal interest rates serve only to distort the representative household’s labor
supply decisions, zero nominal interest rates are good, not bad. They are more
appropriately associated with Friedman’s (1969) rule for the optimum quantity of
money than with Keynes’ (1936) theories of economic depression.

When n = 0, the representative household can always use its initial stock
of real balances to finance the lump-sum taxes required to contract the money

supply; this result follows directly from (38), which shows that in the case without
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population growth, the value of the stock of real balances exactly offsets the
present discounted value of the future taxes needed to implement a policy of zero
nominal interest rates. When n > 0, however, some of the taxes associated with
monetary contraction must be paid by households that are born without financial
assets. And as the money growth rate approaches its lower bound from (36), the
tax burden on newly-born households becomes heavier and heavier, to the point
where these households can scarcely afford to consume.

Thus, when the population grows, monetary policies have distributional con-
sequences that potentially make deflation quite costly for younger agents. On
the other hand, even when n > 0, (15) and (19) associate lower nominal interest
rates—brought about through deflation—with higher levels of aggregate consump-
tion and output. Thus, monetary contraction has both costs and benefits. The
key question becomes: how large are the costs, compared to the benefits?

To answer this question, consider adopting as a welfare criterion for monetary
policy the lifetime utility achieved by a representative household that is born
into the model’s steady state. Woodford (1990) vigorously defends this measure
of welfare in models, like the one used here, in which heterogeneous agents are
distinguished by their dates of birth. Whitesell (1988) finds that steady-state

utility is maximized under positive money growth rates and, indeed, Whitesell’s
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result carries over to the variant of his model developed here.

As an example, suppose that 5 = 0.99, so that each period in the model can
be identified as one quarter year. Let v = 1.6, the value used by Greenwood,
Hercowitz, and Huffman (1988) to match estimates of the labor supply elasticity
1/(v—1), and let n = 0.0025, corresponding to an annualized rate of population
growth of about one percent. With these parameter settings, numerical analy-
sis reveals that steady-state utility is maximized when o = 0.0046, so that the
nominal money stock grows at the annualized rate of 1.87 percent. This optimal
policy gives rise to an annualized inflation rate of (.85 percent and an annual-
ized nominal interest rate of 5.02 percent. The annualized real interest rate of
4.13 percent exceeds the annualized discount factor of 4.10 percent, so that each
individual household chooses a growing path for consumption. Aggregate con-
sumption in the optimal steady state is constant at 0.9798, more than 2 percent
below the level that, according to (33), is achieved in a steady state with a zero
nominal interest rate. But despite this reduction in aggregate consumption, the
representative household prefers the steady state with positive money growth.

More generally, the welfare effects of different money growth rates can be sum-
marized as follows. Let U® denote the lifetime utility achieved by a representative

household that is born into the model’s steady state when the money supply is
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held constant or, equivalently, when the money growth rate equals zero. Next, let
{ci(0)}2, and {h{ (o)}, denote the sequences of consumption and hours worked
chosen by this representative household in the alternative steady state in which

the money growth rate equals 0. Finally, let w(o) be defined implicitly by

0o = iﬁ”ln{[l T w(e)/100]e3 (o) — (1/7) [ ()]}

Then w(o) measures the permanent percentage increase in consumption that
makes the representative household as well off under the money growth rate o
as it is under the benchmark of zero money growth; Cooley and Hansen (1989)
and Lucas (2000) use similar measures of the welfare cost of inflation.

Table 1 summarizes the effects of changes in the steady-state money growth
rate ¢ and reports the value of w(o) for various choices of o when, as in the
example from above, 3 = 0.99, v = 1.6, and n = 0.0025. The function w takes
on negative values for annualized money growth rates as high as 3.65 percent,
indicating that the representative household prefers small but positive values of
o to the benchmark setting of ¢ = 0. The function w reaches its minimum at the
optimal setting of ¢ = 0.0046.

As o rises above 0.01, the negative effects of money growth on aggregate
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output begin to overwhelm the positive distributional effects, so that w turns
positive. The largest values of w, however, occur for negative values of o that
make the nominal interest rate equal to zero. A representative household born
into the steady state with 0 = —0.008 needs a permanent 5.25 percent increase
in consumption to be as well off as under a constant money supply. And as
the money growth rate approaches —0.010, the lower bound from (36), the tax
burden associated with the zero nominal interest rate becomes so heavy that the
household needs almost 60 percent more consumption to be as well off as under
a constant money supply.

Thus, in one way, the introduction of the real balance effect into an otherwise
conventional cash-in-advance model works exactly as promised by Pigou, Patinkin,
and others: it eliminates the liquidity trap, giving the central bank control over
the price level even when the nominal interest rate hits its lower bound of zero. Yet
here, the same distributional effects that allow the real balance effect to operate
also make zero nominal interest rates quite costly for some agents. Paradoxically,
a zero nominal interest rate is something to be achieved in the conventional model,
where the liquidity trap survives. With the introduction of the real balance effect,

a zero nominal interest rate becomes something to be avoided.
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5. Appendix

5.1. Deriving the Infinite-Horizon Budget Constraint

To derive the infinite-horizon budget constraint (6), multiply the single-period

budget constraint (3) by ¢ and rearrange to obtain
Qu(M; + BY) + Qu(Ty + Pohi) > QuPici + (Qr — Q) My + Quyr (M7, + Biy).
Sum from ¢ through T > ¢ to obtain

T
Qe(M; + BY) + > Qu(Ty + Puh)

u=t

T
T
> Y Q[P+ (75 v
2 1+ o

+ QT+1<MIS“+1 + B%H)-

Ty

Now use the no-Ponzi-scheme constraint (5) at t =T to obtain

QuME + B+ S QulTu + Puh) > szQu [Pucj + ( T ) M.

u=t u=t 1 + Ty

Finally, take the limit as 1" — oo to arrive at (6).

34



5.2. Solving the Household’s Problem

Let A} and pf denote the nonnegative Lagrange multipliers on the household’s
budget and cash-in-advance constraints for period ¢. Since the household’s utility
function is increasing and concave, necessary conditions for optimality include the

usual first-order and complementary slackness conditions, which are given by

1
ci = (L/7)(hi)

== A+, (A.1)

(g !

=\ A2
a- o -
)‘_f — ﬂ(AiJrl + /J“erl) 7 (A3>
Pt Pt+1
(1+7r)P, Py
Mts + Tt + Bzf Blf+1 Mt5+1
——— LW =c A5
Pt + t Ct + (1 _I_ Tt)Pt + Pt ) ( >
M?+ T+ Bf Bl
— >l A6
Pt (1 + Tt)Pt - Ct? ( a)
pi =0, (A.6D)
and
My + 1T+ B? By
; — —c| =0 A6
/’Lt Pt (1 + Tt)Pt Ct ( C>
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forallt =s,s+1,s4+2,....

Necessary conditions also include the transversality condition

lim QWi = lim Q1 (My, + Bfy,) = 0. (A7)

To derive (A.7), note first that since the net nominal interest rate must always be

nonnegative, the sequence {Q;}:°, is nonincreasing, with

Qe = (1+7)Qu1 > Quia

for allt =0,1,2,.... Note also that {Q¢1 W }:2, is nonincreasing, since for any
t=s+4+1,5+2,5+3,.., the definition of W ,, the period ¢ budget constraint,

the fact that Q¢ > Q¢11, and the nonnegativity constraints {rom (4) imply

QeiWii — QWY = Qua(My + By 1) — Qu(M; + B) — Qu(Ti + Pihy)
< Qun(Mly + Biy) — QulPecf + BY i /(14 1) + M7 ]
= (Qt+1 - Qt)MtSH - QtPth

< 0.

Next, note that if {cf, hy, M7 |, By, }7°, are optimal choices for the represen-
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tative household of cohort s, the implied sequence {Q1 W}, }5, must satisfy

inf Wg, =0.
tsztH t+1

To see this, suppose to the contrary that there exists an € > 0 such that QW >

8 o0

gforallt=ss+1,s+2, ... and construct new sequences {¢;, ibf, MfH, BtH bl

as
5§:c§—l—ﬁ, ¢i=cilfort=s+1,54+2,5+3, ..,
ﬁf:hf fort=s,s+1,s+2,..,
MfH =M;  fort=s5+1,54+2 ..,
and

BfH:Bfﬂ—éfort:s,s—l—l,s—l—Q,....

These new sequences satisfy all of the household’s constraints: (2)-(5) for all
t=s,5+1,s4+2,.... Moreover, they provide the household with a higher level of
utility than the original sequences. But this contradicts the assumption that the
original sequences are optimal. Hence, inf,>, Q¢ W, = 0 must hold.

Together, {Qu1 Wi }2, nonincreasing and inf;>, Qi W, = 0 imply that
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(A.7) must hold at the optimum. This establishes that (A.1)-(A.7) are necessary
conditions for optimality.

To prove that (A.1)-(A.7) are also sufficient conditions for optimality, suppose
that {cf, by, M}, 1, By, 122, satisfy (A.1)-(A.7), but that the alternative sequences
{e, hf, ]\@‘ll,BtJrl oo, satisly (2)-(5) for allt = 5,5+ 1,5+ 2,... and provide the
household with a higher level of utility. Then

0 < lim Zﬂt {Infe; — (1/7)(h)"] = Inle; — (1/7)(h)"]}

T—o00

< E&Zﬁw{h—u%W@J“*””_Lﬂﬁﬂ%@whw_@%

= lim Zﬁt YIN(E = ) = XL (hy = ) + (& — )]

T—oo
Ms—MS BS—BS M, — M Bs , — B?
< 1 t— A2 ¢ £y 2t M +1  Dip1 t+1
= TE{LZﬂ l P, P P, (L +7)P,
Ms Bs _ Bs Bs _ Bs
X t—s 1 N t Pt t+1
Zﬁ l P, B (I+m) P
o B0~ ) | 70 (B, — )
T—oc0 PT (1 + TT)PT
As + #s
= ( O.F ) lim [QT+1<MT+1 + Bjyy) = Qroa (M, + B )
A+ s
= - ( Q ) lim QT+1(MT+1 +BT+1)
< 0

by the concavity of the utility function, by (A.1) and (A.2), by (2), (3), (A.5),
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and (A.6¢), by (A.3) and (A.4), by (A.3) and (A.4) again, by (A.7), and by (5).
But all of this contradicts the assumption that {&, ibf, Mf+1, Bf+1};ﬁs provide the
household with higher utility than {cj, h{, M?, |, By 1 }5°,. Hence, (A.1)-(A.7) are
both necessary and sufficient for a solution to the household’s problem.

Now let m$, bf, 74, 7, ¢, and af be as defined in the text. Substitute (A.4)
into (A.3) to obtain

/J“lf = Tt}‘f? (A8>

and combine this result with (A.l) and (A.2) to arrive at (9) from the text. Use
(A.5) and (A.8) to rewrite (A.6a)-(A.6¢c) as (10) from the text.

Next, consider (A.4), which can be rewritten using (7) and (A.1) as

i — (UM(E)” = AL+ )y = (/) ()], (A9)

which is the Fuler equation linking the household’s intertemporal marginal rate
of substitution to the real interest rate. Multiply (A.5) by PQ: and, as above,

sum from ¢ through T" > ¢ and take the limit as T" — oo to obtain

(A.10)

I

QuM; + By) + > Qu(Tu+ Puhy) = 3 Qu [Puci + (1 o ) M3
u=t u=t u

39



which is just (6) with equality. Since

ch}% B [jl_[z <1 —I—latvﬂ

1
P,

(A.10) can be rewritten as

s lqu<1+1x>] (Tu + 1) (A.11)

-1 1 u 1 u K]
H < ) & 4 ru(l+7 )M
S \1+4x, 147,

Substitute (9), (10), and (A.9) into (A.11) to obtain the consumption function

(11) from the text.

Use (7) and (8) to recast (A.5) 1n real terms:

ai + T+ hi =i+ < ) (a7, 1 +7emi ). (A.12)

1+a’)t

Then use (9) and (10) to rewrite (A.12) as (12) from the text. Finally, use

% B Lfls <1 —I—laz,)] Pt1+1

and (8) to replace (A.7) with (13) from the text.
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5.3. Deriving the Steady-State Conditions

Equations (7) and (14)-(21) form a system of nine equations that describe the
behavior of the nine variables x;, ¢, T1 1, a¢, my, by, hy, ¢¢, and 7, in equilibria in
which the government issues no bonds and expands the money stock at a constant
rate. Equations (14) and (19)-(21) can be used to substitute out for as, hy, by, and
T¢. After making these substitutions and imposing the steady-state conditions
Ty =X, 1y =71, Ty =T, My = m, and ¢, = ¢, (7), (15), and (17) can be rewritten
as (22), (24), and (26).

In a steady state, (18) becomes

() b= (755)
m = m—+om — rel,
14+n 1+7r

or, using (16),

Divide both sides of this last equality by m and rearrange using (22) to obtain

(23); (23) then allows (16) to be rewritten as (25).
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5.4. Deriving the Lower Bound on Money Growth

In light of the Euler equation (A.9), ¢f —(1/v)(h)* > 0forallt =s,s+1,542, ...,
as required by (4), if and only if ¢2 — (1/7)(h?)” > 0. Combining (9), (11), and
(21) with the initial condition a® = 0, which applies to any household born into a

steady state with n > 0, reveals that

¢ — (1)) () =(1- ) (14;:) l"er (7; 1) (1 }rT)v/(w)]

in any steady state with n > 0. FEquivalently, using (26),

-y =L (F)"T 0 am

When r = 0, (33) and (34) imply that the right-hand side of this last equality is

strictly positive if and only if the money growth rate satisfies (36).
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Table 1. The Effects of Steady-State Money Growth

o T r x c m w(o)
—0.010 —0.0125 0.0000 0.0126 1.0000 37.5000 58.7945
—0.009 —0.0115 0.0000 0.0116 1.0000 22.3259 23.8144
—0.008 —0.0105 0.0000 0.0106 1.0000 7.1825 5.2543
—0.007 —0.0095 0.0006 0.0102 0.9990 1.0060 0.0096
—0.006 —0.0085 0.0016 0.0102 0.9973 1.0034 0.0077
—0.005 —0.0075 0.0026 0.0102 0.9957 1.0007 0.0060
—0.004 —0.0065 0.0036 0.0102 0.9940 0.9980 0.0045
—0.003 —0.0055 0.0046 0.0102 0.9923 0.9953 0.0031
—0.002 —0.0045 0.0056 0.0102 0.9907 0.9927 0.0019
—0.001 —0.0035 0.0066 0.0102 0.9890 0.9900 0.0009

0.000 —0.0025 0.0076 0.0102 0.9874 0.9874 0.0000
0.001 —0.0015 0.0087 0.0102 0.9857 0.9343 —0.0007
0.002 —0.0005 0.0097 0.0102 0.9841 0.9321 —0.0012
0.003 0.0005 0.0107 0.0102 0.9825 0.9795 —0.0016
0.004 0.0015 0.0117 0.0102 0.9808 0.9769 —0.0018
0.005 0.0025 0.0127 0.0102 0.9792 0.9743 —0.0018
0.006 0.0035 0.0137 0.0102 0.9776 0.9718 —0.0017
0.007 0.0045 0.0147 0.0102 0.9760 0.9692 —0.0013
0.008 0.0055 0.0157 0.0102 0.9744 0.9666 —0.0009
0.009 0.0065 0.0167 0.0102 0.9727 0.9641 —0.0002
0.010 0.0075 0.0177 0.0102 0.9711 0.9615 0.0006
0.020 0.0175 0.0278 0.0102 0.9553 0.9366 0.0176
0.030 0.0274 0.0379 0.0102 0.9399 0.9125 0.0506
0.040 0.0374 0.0479 0.0102 0.9249 0.8893 0.0994
0.050 0.0474 0.0580 0.0102 0.9103 0.8669 0.1635
0.100 0.0973 0.1084 0.0102 0.8424 0.7658 0.7031
0.150 0.1471 0.1588 0.0101 0.7822 0.6802 1.5812
0.200 0.1970 0.2092 0.0101 0.7287 0.6072 2.7662

Note: Figures listed for ¢ = —0.010 are the limits as ¢ approaches —0.010 from
above.



