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ABSTRACT

We propose a method to measure the welfare cost of economic fluctuations that does not

require full specification of consumer preferences and instead uses asset prices. The method is based

on the marginal cost of consumption fluctuations, the per unit benefit of a marginal reduction in

consumption fluctuations expressed as a percentage of consumption. We show that this measure is

an upper bound for the benefit of reducing all consumption fluctuations. We also clarify the link

between the cost of consumption uncertainty, the equity premium, and the slope of the real term

structure. To measure the marginal cost of fluctuations, we fit a variety of pricing kernels that

reproduce key asset pricing statistics. We find that consumers would be willing to pay a very high

price for a reduction in overall consumption uncertainty. However, for consumption fluctuations

corresponding to business cycle frequencies, we estimate the marginal cost to be about 0.55% of

lifetime consumption based on the period 1889-1997 and about 0.30% based on 1954-97.
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1. Introduction

In a seminal contribution, Lucas (1987) proposes a measure of the welfare cost
of economic fluctuations. His measure is defined as the compensation required
to make the representative agent indifferent between consumption plans with and
without business cycle fluctuations. With this measure, Lucas finds a small cost of
business cycles. Subsequently, several studies have proposed estimates of this cost
of business cycles under alternative assumptions on preferences and the consump-
tion processes. Primarily as a function of the specification and parameterization of
preferences, these estimates vary widely across studies.1 In this paper, we measure
the welfare cost of business cycles without fully specifying consumer preferences;
instead, we directly use financial market data. We find that by directly measur-
ing the premia for aggregate risk, we circumvent some of the difficulties related
to specifying a utility function.

We start by generalizing Lucas' cost of business cycles along two dimensions.
First, we derive the marginal cost of consumption fluctuations. Lucas' cost of
business cycles measures the welfare gain from removing all the business cycle
risk; it can be thought of as a total cost. We define a cost that measures the
welfare benefits from reduced fluctuations at the margin. This definition has two
useful features: (1) Because it is a marginal cost, we can use asset prices to esti-
mate the cost of business cycles for a representative agent. (2) Given that most
economic policies would not be intended to eliminate business cycle fluctuations
entirely, knowing the potential benefits at the margin may be useful in itself. Our
second dimension of generalization concerns the type of consumption fluctuations
that one associates with business cycles. Lucas' consumption is subject to only
temporary deviations from a deterministic trend. Several later studies specify con-
sumption as a nonstationary process (for instance, Obstfeld (1994) and Campbell
and Cochrane (1995)), while the cost of business cycles continues to be measured
as the gain from eliminating consumption uncertainty entirely, including the risks

'Lucas' estimates are well below 1% of consumption. Obstfeld (1994) finds slightly higher
costs than Lucas when allowing for stochastic growth trends and preferences that distinguish
between risk aversion and intertemporal elasticity of substitution. Campbell and Cochrane
(1995) find larger costs of business cycles by using habit-formation preferences that are also able
to explain the equity premium. Atkeson and Phelan (1994) present an example of an incomplete
markets economy that can generate the equity premium, but nevertheless has only a small cost
of business cycles. Other examples include: Dolmas (1998); Hansen, Sargent, and Tallarini
(1999); Krusell and Smith (1999); Otrok (1998); Tallarini (2000); for related literature about
the welfare gains from international integration see Lewis (1996) and Van Wincoop (1999).
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associated with the permanent stochastic components. Our definition is general
enough to encompass this case, but also allows for business cycle fluctuations to be
defined differently, for instance, as the cyclical consumption volatility excluding
a possibly stochastic trend. We find this distinction useful because a priori one
may think that some policies affect primarily economic behavior at business cycle
frequencies without affecting the trend behavior of the economy. Even without
this distinction about the source of economic fluctuations, it may be interesting
to know the costs of the more short-lived cyclical fluctuations relative to the costs
of overall consumption uncertainty.

Before presenting estimates of our measure of the welfare cost of business
cycles, we derive some analytical results. Under general specification, we show
that the marginal cost of reducing fluctuations is higher than the total cost of these
fluctuations; hence, our estimates are upper bounds. For more specific cases, such
as expected discounted utility, we obtain a sharper bound where the marginal cost
of consumption uncertainty is twice the total cost. The marginal cost is also an
upper bound with consumption externalities of a general class that we label envy.

Several of the above-cited studies highlight the relationship between Lucas'
low cost of business cycles and the equity premium puzzle. In particular, studies
with preference specifications that can solve the equity premium puzzle usually
report a cost of business cycles larger than Lucas' original estimate. We show that
the marginal cost of consumption uncertainty is not equal to the (consumption)
equity premium in general. The equity premium is the excess return of equity
over a riskfree rate of return for a given holding period. In contrast, the marginal
cost of consumption uncertainty is equal to the excess in the price of a perpetual
bond with growing coupons over the price of a consumption equity claim. Two of
the factors that make the marginal cost of consumption uncertainty different from
the equity premium are the steepness of the term structure and the persistence
of the shocks. We clarify the link between the two and provide examples where
the quantitative differences are of first-order importance.

Motivated by our finding that the cost of consumption uncertainty can be
expressed as the ratio of the prices of two assets, we derive a simple formula for
the marginal cost. The marginal cost can be written as a function of long-term real
yields, aggregate dividend/price ratios, and an estimate of the economy's trend
growth rate. If consumption were equal to dividends, this formula could be used to
measure the cost of business cycles. Strictly speaking, however, it is a measure of
the cost associated with all the uncertainty about aggregate dividends. Measuring
the cost of dividend uncertainty in this way, we find that the cost amounts to 619%
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of the level of consumption based on a sample period of 1889—1997 and 173% for
the postwar period of 1954—97.

To relax the assumption of our simplified expression for the marginal cost and
to better measure the relevant prices, we estimate an asset pricing kernel. We
estimate a pricing kernel as a way to interpolate from the available asset prices
the prices for the assets that measure the cost of consumption fluctuations. Our
asset pricing kernel is consistent with U.S. historical returns on equity, the term
structure, and the price/dividend ratios, all features that we show, on theoretical
grounds, are important for measuring the cost of business cycles. In the state
space for the pricing kernel, we include variables that determine the market price
of risk in different popular models. Since consumption is an element of the state
space, our pricing kernel allows us to differentiate consumption from dividends.
We model consumption and the pricing kernel as non-stationary. This choice has
quantitative implications for some of our measures. Our choice is motivated by
a bound, in the spirit of the Hansen-Jagannathan bound, developed in Alvarez
and Jermann (2000). It implies that the pricing kernel cannot be stationary and
explain simultaneously the historical real term structure and the equity premium.

Our definition of business cycles is based on a frequency domain approach,
with business cycles corresponding to cycles of at most 8. Our preferred filter
is derived through an ad hoc adjustment to a one-sided band-pass filter so as
to match the volatility of the deviations from trend obtained with a more accu-
rate two-sided filter.2 Based on this, we estimate the marginal cost to be about
0.55% of lifetime consumption for the period 1889—1997 and about 0.30% for the
period 1954—97. We also estimate the cost of all consumption uncertainty, that
is, including cycles of any length. We find very large costs. With cointegrated
consumption and dividends, in many cases, costs are around 30% of lifetime con-
sumption; without cointegration, these costs amount in general to several hundred
percent. Finally, we link these estimates to the benefit of increasing growth—a
small modification of our framework allows us to do this in a consistent way. The
benefit from stabilization in terms of additional long-term growth is shown to
be equal to the marginal cost expressed as a percentage of consumption divided
by the duration of an equity claim with consumption as payouts. We find that
eliminating business cycle fluctuations is worth less than 1 basis point of addi-
tional growth. Eliminating all consumption uncertainty is valued at roughly 1%
of additional growth.

As a way to check our quantitative results, and to provide intuition, we also

2As becomes clear below, our approach requires the use of a one-sided filter.
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examine the special case where the logarithms of consumption and the pricing
kernel follow random walks. We derive a simple expression for the marginal cost
of consumption fluctuations. The marginal cost is approximately equal to the
excess return of an equity claim to consumption multiplied by a factor that is a
simple function of the moving-average coefficients used to define the business cycle
components. Estimates of this simplified expression, where the pricing kernel is
only required to fit the excess returns of different CRSP portfolios, yield findings
that are similar to the ones obtained with the more general specification.

The paper is organized as follows. Section 2 defines the marginal cost of
consumption fluctuations. Section 3 compares marginal and total costs. Section 4
studies the relationship between the marginal cost of consumption uncertainty and
the equity premium. Section 5 presents our empirical estimates of the marginal
cost of business cycles. Section 6 compares the cost of fluctuations with the
effects of growth. Section 7 concludes. Appendix A describes the data used, and
Appendix B contains the proofs of propositions.

2. Defining the Marginal Cost of Consumption Fluctuations

We start by defining our measures of the cost of business cycles. We general-
ize Lucas' definition along two dimensions. First, allowing for partial reduction
in consumption fluctuations, we define a total cost function, and as its derivative
evaluated at the point where the consumers bear all the consumption fluctuations,
we define the marginal cost of consumption fluctuations. As a second dimension
of generalization, we leave open for the moment which type of consumption fluc-
tuations are eliminated. As we discuss more in detail in the following sections, we
eliminate, for instance, all consumption uncertainty or only cyclical consumption
fluctuations for some frequencies.

The analysis is carried out under the assumptions of a representative agent
economy. In each period t, the economy experiences one of finitely many events
Zt e Z. We denote by z = (zo, z1, ..., z) the history of events up through and
including period t. We index consumption by histories, so we write C: Z —* R+,
where Z [l> Zt, or simply {C} = {C (zt) : V t 1, zt E Zt}.

Definition 2.1. We define the total cost of consumption fluctuations function
as the solution of

U ((1 + 2()) {C}) = U ((1 - a) {C} + a {}), (2.1)
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where a E [0,11, C: Z —÷ R+ denotes the process of consumption, and Q: Z —+

R÷ denotes the process for the trend starting in period 1. Here U (.) is a utility
function, mapping consumption processes into R.

The scalar a measures the fraction of risky consumption C that has been
replaced by the less risky trend consumption The total cost function gives the
total benefit from reducing consumption fluctuations as a function of the fraction
of the reduction in fluctuations. It is straightforward to see that 1(0) = 0, so that
no reduction in fluctuations generates no benefit.

The next definition serves mainly notational convenience. We define the total
cost of consumption fluctuations w, asw 11(1), or equivalently U((1 + w) {C}) =
U ({Q}). As a particular case, we define the trend consumption to be {Q} =
{E0 (C)}, that is where (z') = E0 (Ce) for all t and z. In this case, we have that

U((1 +w){C}) = U({E0(C)}), (2.2)

which is Lucas' definition of the cost of business cycles. Thus, Lucas' definition
can be seen as the total benefit associated with eliminating all the consumption
fluctuations, that is, a = 1, and where consumption fluctuations are defined as
consumption uncertainty, that is, resulting in the exchange of consumption for its
expected path. When we use this specification for we refer to Il as the cost of
consumption uncertainty, since ! is deterministic, to distinguish the specification
from the more general case, where we refer to Il as the cost of consumption
fluctuations.

Note that the specification in equation (2.2) differs slightly from Lucas' and
the literature's standard specification because we choose to begin compensation
as of t = 1; the standard has been to start compensation at t = 0. We choose this
departure because our definition is more consistent with the idea of ex-dividend
security prices, some of our qualitative results present themselves more tractably
with our definition, and the quantitative difference between the standard definition
and ours will be insignificant.

For the next definition we assume that U is differentiable with respect to
each C (zt) for all t and z. We denote the partial derivatives by Ut ({C})
OU ({C}) /öC (zt).

3Our use of the word trend does not imply any statistical statement. It is simply a label for
a consumption process that is different from actual consumption and presumably less risky.
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Definition 2.2. We define the marginal cost of consumption fluctuations wm as
the derivative of the total cost function Il evaluated at = 0, that is,

— 1(0) — ' a ut ({C}) [ (z) — c (zt)]
(2 3)w - -

Ut ({C}) C (zt)

Thus, Wm measures the per unit benefit of a marginal reduction in consumption
fluctuations expressed as a percentage of consumption. This measure can be
considered as the market price of consumption fluctuations.4

For any process X : Z —+ R, define V0 [{X}] as follows:

V0 [{X}] Ut ({C}) X (zt).
t=1 zt

This is the shadow price, for the representative agent, of an asset with payouts
given by {X}. Under this convention, it is immediately seen that

m_%"[{}Ii 24(.)
Thus, one can interpret the marginal cost of consumption fluctuations as a ratio
of the values of two securities: a claim to the consumption trend, V0 [{}], and a
claim to consumption, V0 [{C}], or equivalently, a consumption-equity claim.

These generalizations of Lucas' cost of business cycles have some attractive
features. First, focusing on a marginal cost, we can hope to measure this cost by
using information on the representative agent's marginal evaluation contained in
security prices. Second, we can now think of the benefits of partial reduction in
consumption fluctuations. Moreover, as our analysis in the next section shows,
we can use our measure of the marginal cost to bound the standard total cost of
business cycles for a large class of preference specifications, without the need to
fully parameterize these preferences.

3. Comparing Marginal Cost and Total Cost of Consump-
tion Fluctuations

The marginal cost defined in Section 2 can be measured using asset prices, while
the total cost requires a fully specified utility function. In this section, we show

4For a discussion about the thought experiment underlying this definition, see Section 3.3.,
where we discuss the cost of consumption fluctuations with consumption externalities.
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that under some assumptions, it is possible to gain information about the total
cost once we know the marginal cost. Alternatively, the marginal cost may be
interesting in itself, since some policies may only move partially in the direction
of eliminating fluctuations. For instance, if most of the benefits from stabilization
occur already for low values of a, then implementing a policy that moves in this
direction—even if it does not make consumption equal to the trend value—will
be worthwhile.

The main results of this section are the following. First, the concavity of
U implies that 11 is concave for small a, hence, the marginal cost Wm is an upper
bound for 11 (a) /a for small a. Second, if U is concave and homothetic, so that the
total cost does not depend on the scale of the economy, then the total cost 11(a)
is concave, so that the marginal cost is an upper bound for the total cost, that

= 11' (0) � = il (1). Many preference specifications used in quantitative
asset pricing studies satisfy this assumption, since many researchers impose the
same form of scale invariance. Third, we consider the case when U is given by the
expected value of a concave utility and the trend is given by the expected value of
consumption. In this case, Il is concave not only for a close to zero, but also for
a close to one. If in addition we have time-separable utility, we show that for small
variance, w = Wm, and the total cost is given by the insurance risk premium.

We make the following initial assumptions: U ({C}) is increasing and con-
cave in {C}. We also assume that the process {} is preferred to {C}, that
is, U ({}) > U ({C}). Under these conditions, it is straightforward to see that
11(a) � 0. Our first result is that Il is concave for small a.

Proposition 3.1. Let U be increasing, concave, and twice differentiable. Then
11" (0) <0.

This proposition implies for small a that wm 11' (0) � that is, the
marginal cost, 11' (0), is larger than the average cost,

3.1. Homothetic preferences and scale-free cost functions

If we require that the cost of fluctuations 11(a) be the same for the processes {C}
and {} as for the processes {AC} and {A}, where A is any positive scalar, then
we must impose some additional restrictions on the utility function U. This re-
quirement implies that the cost of consumption fluctuations will not differ merely
because economies are rich and poor. Specifically, we require U to be homothetic;
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that is, U is homogeneous of degree 1 — 'y, i.e., for any positive scalar A > 0, and
for A {C} defined as A {C} (zt) = AC (zt) for each zt, we have

U (A {C}) = A1U ({C}).

Under this assumption, we obtain that the marginal cost is higher than the total
cost.

Proposition 3.2. Assume that U is increasing, concave, and homothetic. Also
assume that {} is preferred to {C}, that is, U ({}) > U ({C}). Then 1(c) is
concave, and thus,

1l'(O) � 1(1) w.

Examples from the literature that satisfy this homogeneity property are the
preferences used in Abel (1999), Epstein and Zin (1991), Mehra and Prescott
(1985), and Tallarini (2000). Some utility functions with additive habit—such
as those in Campbell and Cochrane (1995), Constantinides (1990) and Jermann
(1998)—do not satisfy this property for a predetermined habit level.5

3.2. The cost of all uncertainty with expected utility

Now we present some implications for the total and marginal cost 11 and Il' when
the utility U is given by expected utility. We also assume that the trend {} is
given by the expected value of consumption; that is, we evaluate the elimination
of all uncertainty.

Let U be given by the expected value of a function u : —* R. This
specification allows time nonseparabilities, including habit formation or durability,
for instance. Notice that if u is concave, then U is concave; and hence, from
our previous proposition, 11 is concave for a close to zero. Now we obtain a
complementary result, by showing that 11 is concave for values of a close to 1.

Proposition 3.3. Let U be given by the expected value of a concave and differ-
entiable function u, and let t (zt) = E0 (Ce) for all z and t. Then 11' (1) = 0 and
11(a) is concave for a close to one.

51f the habit level is a function of only a few lags and when there is some separability across
time, such as in Jermarin (1998), it can be shown that a result similar to Proposition 3.2 holds
after a suitable restatement of the proposition.
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Now we further specialize u by eliminating time non-separabilities and by
considering the case where consumption fluctuations are small. We show that for
an approximation up to the order of the variance of consumption, the total cost
of uncertainty equals half of the marginal cost; that is, 1 (1) = 1/2 ' (0). In
this case, the marginal cost is given by a weighted average of the product of risk
aversion and the variance of consumption for different periods. We also consider
a higher order approximation to examine the role of skewness in consumption
fluctuations. We show that if the period utility function u displays prudence,
that is u" > 0, and if consumption fluctuations have negative skewness, then we
obtain a stronger inequality, that is (1) < 1' (0).

Consider first the one-period case, where consumption is given by

C=C(1 +aE)

for a zero-mean random variable e. The parameter a indexes the amount of risk.
The trend is given by the expected value, that is, = C E [C]. Notice that
the variance of C is proportional to a2—that is, var (C/C) = a2Ee2—and that
its third moment is proportional to a3. We include a as an argument of the total
and the marginal costs, which are given by

E[u(C(1+l(1,a)))] =E[u(C(1+aE)(1+l(1,a)))] =ud) , (3.1)

(0 a\ = E [u' (C) (C - C)] = -E [u' (C +CaE) Ca)]
(32)E[u'(C)C] E[u'(C+OaE)(C+daE)]

Proposition 3.4. If E [u" (C (1 + )) s4] is finite, then

1 Cu" (C) 1 C2u" (C)Q (1, a) =
[_

aEe2 —

() 3E3]
+ o (as),

Cu" (C) 1 C2u" (C)' (0,a) = — aEE —

?L
a3E3 + o (a3),

where h (a) = f (a) + o (aP) means that 1im0 [h (a) — f (a)] /uP 0.

6Rietz (1988) assumes that there is a small probability of a large drop in consumption,
motivated by the Great Depression, and he shows that this leads to a substantial increase in
the equity premium.
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Notice that these expressions imply that

32m ()c' (0, a) = 21 (1, a) — — — EE3 + o (a3)6 u'(C)
Thus, ignoring all the terms smaller than a2, the marginal cost is twice the total
cost, IZ' (0, a) = 2l (1, a). Furthermore, considering higher moments, and under
the assumptions that u" (C) > 0 and EE3 < 0, then we obtain that l' (0, a) >
2(1,a).

The next example illustrates these approximations for a distribution with an
approximately zero third moment.

Example 3.5. Let u be given by a utility with constant relative risk aversion -y,
that is u (C) = and let log C be distributed as N (,o2). Recall that if C
is log-normal, then

var (C/ö)
var (C) =

(e&2 — i)
= + o (&).

[E (C)]

Simple computations show that,

(1,a) = e2-1='y&2+o(&3),
cl'(o,a) = e2 —1

Note that, in this example, for small a, a log C, which is normally distributed,
and hence, it has a zero third moment.

Now we consider the multiperiod case, where

U ({C}) tEo [u (Ce)]

with C = O (1 + aEt), with t a random variable satisfying E0 [] = 0, and with
time-discount factor We keep the assumption that Q = Ct E0 [Ce]. The next
proposition says that expressions for the cost in the multiperiod case are equal to
a weighted average of those for the one-period case.
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Proposition 3.6. If

tE Ou" ( (1 + E))
/3 o

U'(C)
is finite, then

t { ittu11(Ot)
a2E0E — a3EoE} + o

=
{

— a2Eo — a3EØE } + o (as),

where the weights th are defined as

— ___________Wt — __________

Notice that this proposition implies that

T 3C2 m
Il' (O,a) = 2(1,a) - >t {- ,(O)E0Et}

(as).

Thus if we neglect the terms of order higher than a2, ' (0, a) = 2 (1, a). The
following example uses this approximation for a CRRA utility function.

Example 3.7. Let u be a utility function with constant relative risk aversion y,
so that u (C) = C'/ (1 — 'y). In this case, neglecting the terms of order higher
than a3, we see that

l' (0, a) = t {aoe — (1 + y) a3Eoet3}

(1,a) {ya2o
— y(1 +'Y)a3EoE}.

We end this section with a numerical example that illustrates the accuracy of
the approximation for small a2. In each panel of Figure 1, we plot the total cost,
Il (cr), and the marginal cost, Z' (cr), as a function of the fraction of risk removed,
c. In the three panels, the distribution of consumption has the same mean and
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variance, but the skewness is different. In particular, the standard deviation is
3.6%, the mean 1, and u is given by a CRRA function with risk aversion 'y = 10.
We introduce skewness by making downward moves four times as large a upward
moves for negative skewness and vice versa for positive skewness. Notice that,
as Proposition 3.4 says, the total costs are very close to half of the value of the
marginal costs—indicated by the dotted lines—that is, Wm = (0) c (1)
= w. Our general results about the impact of third moments are also clearly
illustrated. In particular, in the second panel, where skewness is negative, the
total cost is smaller than half of the marginal cost, which is what Proposition
3.4 says for utility functions, such as CRRA, for which u" > 0. Thus, negative
skewness of consumption makes the marginal cost larger relative to the total
cost The third panel shows that for positive skewness, the opposite holds. In
a related comparison, Hansen, Sargent, and Tallarini (1999) compute local and
global mean-risk trade-offs for consumers with risk-sensitive preferences; they find
their local measure to be between two and four times higher than the global one.

3.3. The cost of fluctuations with consumption externalities

Up to now, we have considered the case of a representative agent economy without
consumption externalities. Now we define aggregate consumption externalities
by including aggregate consumption {C} in the utility function as a separate
argument, together with the agent's consumption {C}, so that utility is given by
u({c},{O}).

With externalities, the interpretation of the compensation 1 depends on the
exact nature of the experiment. In particular, there are two ways of thinking
about reducing fluctuations in consumption. One experiment is to stabilize con-
sumption of only one agent, keeping aggregate consumption unchanged. Another
experiment is to stabilize consumption of all the agents. In the first experiment,
the total cost function is given by

U ((1 + (a)) {C} , {C}) = U (a {C} + (1 — a) {} ,{C}). (3.3)

Then the benefit of a small reduction in fluctuations can be measured by the
corresponding marginal cost. As explained above, the marginal cost Il' (0) equals
the ratio of the prices of two securities, as in (2.4). Here Ut ({C}) is replaced by

({C} , {}) defined as

({c} , {ö})
au ({O})

13



In the second experiment, the total cost function Il is defined as

((1 + (a)) {C} , {C}) = u (a {C} + (1- a) {} , a {C} + (1- a) {}).
- (3.4)

The function Il differs from Il, since it includes the effect of the externality. How-
ever, because market prices do not internalize the effect of aggregate consumption,
they do not equal 11' (0).

While consumption externalities can have various forms, the consumption ex-
ternalities used to account for the determinants of aggregate risk are of a particular
type. We call envy a general type of externality that is related to the ones used
in the literature, such as the "catching up with the Joneses" in Abel (1999), and
the "external habit" in Campbell and Cochrane (1995).

Definition 3.8. We say that the representative agent exhibits envy if, for any C
and C such that

u({O},{c}) �
then

u({O},{c}) �U({O},{â}).
The interpretation of this definition is that agents individually use the con-

sumption of the representative agent as a benchmark for their own consumption.
The next proposition shows that if the representative agent exhibits envy, then
the total benefits from stabilizing everybody's consumption are even smaller than
the benefits from stabilizing one person's consumption.

Proposition 3.9. Assume that the trend consumption {} is such that

U ({} , {C}) > U ({C} , {C}).
If U is increasing in its first argument and concave, and if Definition 3.8 holds,
then -

11(a) >11(a)
for a e [0, 11.

As a corollary of Proposition 3.9, if U {., C} has the properties of U (.) in
Proposition 3.2, then

Thus, the ratio of the market prices of the securities in equation (2.4) is an upper
bound for the total cost of fluctuations in both experiments, that is, whether
consumption is stabilized for one agent or for all agents.
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4. Comparing the Marginal Cost of Consumption Uncer-
tainty with the Equity Premium

It seems widely recognized that there is a relationship between the equity pre-
mium and the cost of consumption uncertainty. Indeed, both are measures of the
compensation required to bear aggregate risk. To our knowledge, however, no
detailed comparison of these measures has been made in the literature. In this
section, we make that comparison. To facilitate it, we select an equity which has
dividends equal to consumption; that is, we focus on consumption-equity. Our
analysis clearly exposes the differences, conceptually and quantitatively, between
the marginal cost of consumption uncertainty and the equity premium. Our analy-
sis also provides insights into how to extract information contained in the equity
premium to learn about the cost of business cycles.

We approach the comparison from two complementary angles. First, in Sec-
tion 4.1, we use a decomposition into the fundamental risk components inspired
by Campbell (1986) and Jermann (1998). This characterization has two impor-
tant implications for estimating the marginal cost using asset price data. One
implication is that the slope of the term structure is an important determinant
for the equity premium, but it is not a determinant for the marginal cost. The
steeper the term structure is, the larger the equity premium can be, relative to
the marginal cost of uncertainty. The other implication is that the degrees of
persistence of the pricing kernel and of the consumption processes have different
impacts on the marginal cost and on the equity premium. The more persistent
these processes are, the larger the marginal cost can be, relative to the equity
premium. As a second approach, in Section 4.2, we derive simple expressions for
the equity premium and the marginal cost as functions of three elements: the
dividend/price ratio, the real yield, and the expected growth rate of the economy.
We also present a first estimate of the benefits of eliminating all uncertainty in
U.S. corporate dividends, where we find very high costs.

4.1. Decomposition into the fundamental risk components

Recall that in (2.4) we have defined V0 [{X}] as the time-zero implicit price of an
asset that pays dividends {X}. Now define V0 [Xe] as the time-zero price of an
asset that pays a single dividend X at time t. In this section, we also consider
these prices at times different from zero; for instance V1 [Xe] denotes the price at
time t 1 of a security that pays X at time t. By a no-arbitrage argument,
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the price of a consumption-equity claim equals the value of a portfolio of claims
to a single dividend equal to the consumption in each period, which we call, by
analogy to the terms used for bonds, strips. Thus,

V0[{C}1]= Vo[C].

To use the same notation for the prices of bonds, we denote by i a dividend that
is equal to one at t for all z E Zt and zero otherwise. Define as R0, [Xe] the
time-zero return until maturity of an asset with a single payment X at t; that is,

V[X] X
R0, [Xe] =

V0 [X} V0 [XJ

Specializing the previous definition, denote the one-period holding return of an
asset with single payment X, at t as

- V1[X]
R0,1 [Xe] = ti r

V0

Using these definitions, denote by v0 the multiplicative (conditional) equity pre-
mium,

— E0 (R0,1 [{c}:11)
R0,1[i1J

Proposition 4.1. Define the weights, wo [Ce], as follows

V0 [Ce]w0[CJ (41)V0 [{C}1]

Then the multiplicative consumption-equity premium can be written as

i + VU = w0 [Ce] (E0tt1)), (4.2)

and the marginal cost of consumption uncertainty can be written as

i + g1 = o [Ce] (Eo(Rot[ct])) (4.3)
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Equation (4.3) says that the marginal cost of consumption uncertainty equals
a weighted sum of dividend strip return premia with holding period until maturity.
In contrast, the multiplicative equity premium to a share that pays aggregate
consumption, is equal to a weighted sum of dividend strip premia for one-period
holding returns. Note that the weights, wo [Ci], are indeed the same for the
marginal cost and for the equity premium.

When we compare the two expressions, (4.2) and (4.3), for the equity premium
and the marginal cost, respectively, another fundamental difference becomes ap-
parent. If the payouts are not random, then the holding returns until maturity,
that determine the marginal cost, are not random either; that is,

R0, [Xe] = R0, [ii] V0[l]

Thus, the multiplicative strip premium is zero,

E0 (Ro, [11)
E0 (Ro, [1}) =

[1]
= 1.

Therefore, the marginal cost is pure compensation for payout risk. This is in
contrast to the one-period holding returns that make up the equity premium.
Realized returns depend on the valuation at time 1,

Ro,i[XtI = R0,1 [ii]

so that premia are in general nonzero:

E0 (R01 [ii]) =
E0 (R01 [ii]) 1.

R0,1 [1k]

This comparison shows that the difference between the equity premium and the
marginal cost will be a function of the slope of the term structure, as we discuss
in more detail for the log-linear case that follows.

4.1.1. Log-linear environment

We introduce a log-linear environment for two reasons. First, this environment
allows us to sharpen the comparison just made between the equity premium and
the marginal cost. In particular, it helps to explain the different impact of the
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term structure risk and the payout uncertainty risk on the equity premium and
the marginal cost. While the distinction between term structure risk and payout
uncertainty risk is a general concept, in the log-linear environment, these risk
premia can be expressed in a separable way.7 Additionally, we will use the log-
linear environment later to estimate the marginal cost of business cycles.

As is well known, if there are no arbitrage opportunities, then under technical
regularity conditions, there must exists a non-negative process I3tM such that all
prices satisfy

V0 [{X}} [x]
We call the process I3tMt a stochastic pricing kernel. We assume that the logarithm
of the kernel and the logarithm of the dividends of the assets of interest can be
represented as linear functions of a linear VAR model. Specifically, let St be a
state vector following a multivariate, homoscedastic VAR

st = As,_1 + et, (4.4)

where Et is a multivariate normal vector, i.i.d. through time. The square matrix
A determines the dynamics of the system. We require the roots of A to be all
smaller than or equal to one, thus allowing for 1(1) nonstationarity. Assume that

ln(Ct) =
ln(Pvf) = St,

where the loadings, l and 1m are row vectors and g is the trend growth rate.
Following the calculations in Jermann (1998), we can separate the multiplica-

tive premium for one-period holding returns of a risky strip into two parts. One
part is the term premium, that is, the excess return of a long bond over the short
rate, and the other is a compensation for the riskiness of the payout. Thus, the
equity premium can be written as

1 + vo (Se) = w [Ct] (so) {
Eo (R0,1 [1])

exp (—coy0 (log M1, E1 log Ce)) },

(4.5)

7For studies that focus on the distinctions between these two types of risk, see Campbell
(1986), Jermann (1998), and Abel (1999)
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where we use the notation iio (so) and w [Ce] (SO) to indicate that the equity pre-
miurn and the weights depend on the current state vector Notice that the
equity premium is a weighted average of two terms. The first term is the expected
return of a t-period real zero-coupon bond over the short rate. This term is higher,
when the real term structure is steeper. The second term, —coy0 (log M1, E1 log Ce),
measures how undiversifiable is the risk about news on period t consumption.8

By similar calculations the marginal cost equals

1 + w (so) = wo {C] (so) exp (— coy0(log M, log Ce)) (4.6)

where — coy0(log M, log C) measures how undiversifiable consumption risk at
horizon t is. Notice that for the marginal cost of consumption uncertainty, there
is no term involving the real term structure.

In the case where log M and log C are very persistent, this covariance can be
much larger in absolute value than the covariance in the expression for the equity
premium.

Let us compare the covariances in the expressions for the marginal cost (4.5)
and the equity premium (4.6). By definition of the coefficient of correlation, Po (S),

coy0 (log M, log C) = Po (log M, log C) a0 (log M) a0 (log Ce),
coy0 (log M1, E1 log C) = Po (log M1, E1 log C) a0 (log M1) a0 (E1 log Ce).

The more persistent are the processes for log M, log C,, the bigger are the dif-
ferences a0 (log M) — ao (log M1) and o0 (log C) — a0 (E1 log Ce). Thus, the more
persistent these processes are, the larger the marginal cost is, relative to the
equity premium. For instance, if both log M and log C are I (1), then the stan-
dard deviations in the marginal cost, a0 (log M) and a0 (log Ce), grow without
bound, while the standard deviations for the equity premium, a0 (log M1) and
a0 (E1 log Ce), are bounded.

Example: Separable CRRA utility. We illustrate the difference between the
marginal cost of uncertainty and the equity premium using three specifications
of a well-understood economy. With time-separable expected discounted CRRA
utility, the kernel satisfies ln(Mt/Mo) = —'y ln(Ct/Co). The following results can
be shown by direct calculations.

8Given the assumptions of the log-linear, homoscedastic system, the covariance is indepen-
dent of the state s0 and depends only on the maturity of the strip.
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1. Assume that consumption follows a random walk. In this case, interest rates
are constant, thus there are no term premia. Payout uncertainty premia for
k-period holdings are related to the one-period return premia by

—coy0 (log M, log C) = — t cove, (log M1, E1 log C) = t yo
Clearly, in this case, the marginal cost, t 'ya, is bigger—likely substantially
so—than the consumption-equity premium, 'ya.

2. Assume that consumption growth rates follow an AR(1) with positive serial
correlation. It can then easily be shown that the term structure is downward-
sloping, so that

Eo(R0,1[i]) < 1,

and
—covo(logMt,logCt) > — tcovo(logMi,EilogC) >0,

so that there are even more reasons for which the marginal cost is bigger
than the consumption-equity premium.

3. The one case where the consumption-equity premium might actually be
bigger than the cost of consumption uncertainty is with an AR(1) in con-
sumption levels, with positive serial correlation; that is the growth rate of
consumption is negatively autocorrelated. In this case, the term structure
is upward-sloping,

E0 (R0,1 [1]) >
R0,1 (1k)

and
0< —covo(logMt,logC) <— tcovo(logMi,E1logC).

4.2. Decomposition into yields and growth rates

As shown in equation (2.4), the marginal cost of consumption uncertainty, can, by
definition, be viewed as the ratio of the prices of two securities. For the particular
case of comparing actual consumption to its expected growth path these two
securities have intuitive interpretation and close real-world counterparts. Indeed,
the appropriate version of equation (2.4) is

1 m_ V0({E0(C)})
+w0 -

V0({C})
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Here, the numerator Vo ({E0 (C)}) is a perpetual bond with coupons that are
growing at the expected consumption growth rate, and the denominator, V0 ({C})
is a consumption-equity claim. Dividing both the numerator and the denominator
of the fraction by C0, we have,

1 m_V0({E0(C')})/C10+ —

V0({C})/C0

which suggests that the marginal cost is a function of two price/dividend ratios, or
reciprocally, two yields. If we assume that aggregate consumption has a constant
expected trend growth rate, go, this can be written as

>:oo (i±V
1 + = i=1 1+ro)

= (1 + go) [
dpo

]
(47)

r0—g0

where r0 is the real yield of a bond with the duration of the growing perpetuity,
and dp0 is the dividend yield of the consumption-equity.

In general, the expected excess return of equity cannot be written as a function
of r0, dp0, and go. Nevertheless, if we make some simplifying assumptions, we
obtain an expression that depends on similar factors. If we assume that dividend
yields are constant, then we can write the expected return of equity as (1 + go)
(1 + dpo). By definition, the equity premium is the expected excess return of
equity over a riskfree investment yielding a known return of Yo Thus,

(1+go). (1 +dpo)
(l+yo) (4.8)

In general, y will be smaller than the yield of the long-term bond r0 used in

equation (4.7). These yields will be equal only in special cases, for instance, if
the term structure is flat. Clearly, the formula for the equity premium in (4.8)
is different from the one for the marginal cost in (4.7). Notice that the equity
premium v0 in (4.8) is approximately v0 go + dp0 — yo• Hence, it cannot
exceed a few percentage points. This is quite different from the marginal cost,
w, in equation (4.7), which is approximately w0 dpo/ (ro — go) and hence
could be much larger. Below we provide quantitative content to equation (4.7) by
measuring the marginal cost.
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4.2.1. A measure of the marginal cost of dividend uncertainty

For a first quantitative cut, we plug historical averages into the formula for the
marginal cost given by equation (4.7). Indeed, we can consider the dividend/price
ratio, dp, to be the historical dividend/price ratio of the value-weighted U.S. stock
market. Of course, we are thus looking at how dividend uncertainty reduces
the price of equity relative to a perpetual bond paying as coupons the expected
dividends; we will focus directly on consumption fluctuations in the Section 5•9

Combining the average historical dividend/price ratio with a historical long-
term real yield and the dividend growth rate, we report in Table 1 a marginal
cost for dividend uncertainty of 619% and 174% for the periods 1889—1997 and
1954—97, respectively. That is, for the long sample period, the buyers of an equity
claim would have to be given a more than seven times higher dividend to make
them value equity as much as a perpetual bond paying coupons growing at the
1.31% trend growth rate of dividends. Notice that the lower cost of dividend un-
certainty for the postwar period corresponds, indeed, to a period of lower volatility
as measured by the standard deviations of the growth rates of consumption and
dividends. If dividends were equal to aggregate consumption, we would have had
here our estimate of the marginal cost of consumption uncertainty. The addi-
tional statistics in Table 1 document some aspects of dividend and consumption
behavior.

5. Measuring the Marginal Cost of Business Cycles

The approach used to measure the cost of business cycles in Section 4.2.1 has the
advantage of being simple and intuitive, but it has several shortcomings. First, it
measures the elimination of all the uncertainty, as opposed to just that of busi-
ness cycle fluctuations. Second, the theory requires the use of an asset which has
dividends that are perfectly correlated with consumption. The measurement in
Section 4.2.1 uses a diversified equity portfolio, which has dividends that display
positive correlation with consumption, but a correlation much smaller than one.
Third, the calculation of the marginal cost can be very sensitive to small inconsis-
tencies in the measurement of the different yields and growth rates. This is due to

9To be precise, the expected marginal cost should be estimated by the average of the cor-
responding marginal costs. Here we compute the marginal cost for the average yields, average
dividend/price ratios, and average growth rates, since we only observe ex-post real yields and
growth rates.
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the nonlinearities in (4.7), where dp0 is divided by r0— go. For instance, the calcu-
lation of the duration-adjusted yield, r0, is not straightforward without specifying
jointly the term structure and the expected growth rate of consumption.

In this section, we address these three shortcomings. First, we isolate the cost
of consumption fluctuations corresponding to business cycle frequencies and com-
pare it to the cost of all consumption uncertainty that is usually computed in the
literature. Specifically, we isolate cyclical consumption movements correspond-
ing to cycles of at most 8 years by using a band-pass filter approach. Second,
we price an asset that pays aggregate consumption as opposed to aggregate div-
idends. Third, by explicitly modeling a pricing kernel, we make our estimates of
dividend yields and growth rates consistent with each other. As a way to check
our quantitative results, and to provide intuition, we also examine the special case
where the logarithms of consumption and the pricing kernel follow random walks.
We derive a simple expression for the marginal cost of consumption fluctuations,
and we provide an estimate with a pricing kernel that is required to fit the excess
returns of different CRSP portfolios.

Let us start here by overviewing the steps involved in our estimation proce-
dure. A more detailed step-by-step discussion follows. Based on the log-linear
environment defined in Section 4, we

1. Select state variables that determine marginal utility of consumption based
on popular models and estimate a linear autoregressive law of motion for
the logarithm of these state variables, St.

2. Estimate the loading vector for the pricing kernel, im, and the effective time
discount rate, i3, from a set of asset pricing moment conditions determined
by the theoretical considerations discussed above.

3. Specify the trend {T}T, compute Vt ({-}) (St) and 14 ({Cr}1) (St)
for every St of our dataset, and report the sample mean of the marginal
costs.

5.1. The state variables

We choose a multidimensional state vector to capture the dependence of mar-
ginal utility on noncontemporaneous consumption. This dependence has been
emphasized in the literature in models with habit formation and in models with
non-expected utility.
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The state variables include (1) aggregate consumption, (2) aggregate divi-
dends, (3) the dividend/price ratio, (4) the long-short government bond yield
spread, and (5) the value-weighted realized stock return. Our choice of these vari-
ables is motivated by empirical work on intertemporal asset pricing. For instance,
Campbell (1996) has used dividend/price ratios, yield spreads, realized stock re-
turns, and aggregate output as his state variables. We include consumption in
the state space since we need to estimate the price of an asset with payouts equal
to consumption.

We use annual time series covering the period 1889—1997. Data sources and
definitions are described in detail in Appendix A. We start by removing a linear
deterministic growth trend from consumption and dividends. Specifically, we
extract a drift that is computed as the mean of the (log) growth rates. We also
demean all variables. For instance, starting with raw consumption C,, we get
Ct = log (Ci) — co — t, where the drift and the mean are defined, respectively,
as i mean (log 1Ct) and mean (Ct; co) = 0. We then estimate by OLS a VAR
for growth rates for consumption and dividends and for levels for the remaining
variables. We estimate systems with and without an error-correction term that
forces cointegration between consumption and dividends. A system in levels,
as in equation (4.4), is then recovered. The variance-covariance matrix of the
innovations is obtained from the residuals of the estimated VAR.

By estimating the VAR in growth rates for consumption and dividends, we
have introduced one or two unit roots into the matrix A, depending on whether
we introduce an error-correction term. This decision to model consumption and
the pricing kernel as nonstationary has first-order quantitative implications for
the measurement of the cost of consumption uncertainty. It is certainly possible
to argue on statistical grounds that consumption or dividends or both can be
modeled as (trend) stationary processes. However, we select a nonstationary
representation for consumption due to the fact that a stationary pricing kernel
cannot possibly explain simultaneously the relatively flat historical term structure
of interest rates and the relatively large historical equity premium. Intuitively,
the reason is that a stationary pricing kernel that is volatile enough to generate
high equity risk premia has too much predictable movements to be consistent with
the relatively low term spread. This result, developed in Alvarez and Jermann
(2000), applies not only to the particular specification considered here, but to
any stationary pricing kernel. Given the requirement of a nonstationary pricing
kernel, we choose consumption and dividends to be nonstationary. We think that
specifying consumption to be stationary while having a nonstationary pricing
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kernel would be an a priori unappealing property of any representation.

5.2. Estimating the loading vector Im and the time discount factor /3

Once the law of motion of the state vector is estimated, we need to estimate the
various loading coefficients on the states, 1m plus the time discount factor, /3. We
will choose (Im, /3) in order to minimize = [9 f(lm, i3)J' W [9 f(lm, /3)], where
o is a vector of moments to match, f(lm, /3) contains the corresponding moments
generated by our asset pricing model, and W is a weighting matrix.

Our analysis in Section 4 of the fundamental components of the equity pre-
mium and of the marginal cost of consumption uncertainty suggests that we should
focus on a pricing kernel that is good at explaining historical aggregate stock price
behavior and the real term structure. Specifically, we choose the asset pricing ker-
nel to replicate the U.S. average dividend/price ratio and the U.S. equity premium.
We consider two ways of replicating the equity premium. First, by applying the
pricing kernel to the estimated process of dividends, our model generates a series
of conditional equity premia for which we compute the sample mean

f(1m,/3) = [1 +i4(st;lm,/3)],

where '4 (.) is defined as ii (.) in equation (4.5) except that here the payout process
represents aggregate dividends instead of aggregate consumption. Our second
moment condition relative to the equity premium applies the pricing kernel to
realized U.S. excess stock returns, VWR,+i — R(+1, so that

fj(lm,/3) = /3exp (im (St+i — St)) (vwR,+i —

with O = 0. In Table 2, we refer to these two conditions as E (Rd/RI) and
E (VWR — RI), respectively. We also make the kernel fit the average real return
on a riskfree short-term bond and the average real yield on a 20-year bond.1°

10Practically, we make the model fit the average yield of a zero-coupon bond of 13 years
maturity, given that this corresponds approximately to the duration of the 20-year government
coupon bond in our historical data set.
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5.3. Defining business cycles

We now describe how we specify the process corresponding to the consumption
trend {}. We choose two approaches. As our first approach, we specify the
logarithm of the consumption trend to be a one-sided moving-average of current
and past consumption, in (ci) = ak CT_k, for appropriate moving average
coefficients." As our second approach, we set trend consumption equal to its
conditional expectation, - = E, (Ci).

We define business cycles to be the cyclical movements that last 8 years or
less, so that our trend {} contains movements of more than 8 years. Assuming
business cycles to last up to 8 years is consistent with the definition of Burns and
Mitchell (1946) and with many recent studies describing business cycle properties.
This also corresponds approximately to the definition of business cycles implied by
the widely used Hodrick-Prescott filter for quarterly data with a smoothing para-
meter of 1600.12 For comparison, we also report results for trends with frequency
cutoffs at 12, 16, and 20 years.

We choose the moving-average coefficients {ak} so as to represent a band-
pass filter that lets pass frequencies that correspond to cycles of Y years and
more. Band-pass filters are represented in the time domain by infinite-order two-
sided moving averages. However, a requirement of our analysis is to have trend
consumption in time t be function of information available at time t, thus, our
choice of a one-sided moving average.

We choose the moving-average coefficients of our trend consumption using the
procedures presented by Baxter and King (1998, 1999). Let 3 (w) be the frequency
response function of the desired low-pass filter, which in our case is equal to one for
frequencies lower than Y years and zero otherwise. Let aK (w) be the frequency
response function associated with a set of moving-average coefficients {ak}1.
We select the moving-average coefficients {ak} so that aK approximates 3. In
particular, our choice of {ak} minimizes

I (w) - aK (2 f ()
where f (w) is a weighting function representing (an approximation to) the spectral
density of the series to be filtered. In this minimization, we impose the condition
aK (0) = 1, which implies that >ILIJ ak = 1.

"With this definition of the trend , Eo (Ce) Eo(), because is a nonlinear function of
C. Quantitatively, however, this discrepency is negligible, as we show in Appendix B.

"For a detailed analysis, see Baxter and King (1999).
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We fix the number of lagging moving-average coefficients at fifteen (that is,
K = 15), and we use the spectral density of an AR(1) with autocorrelation 0.99
for the weighting function f, because this matches approximately the spectral
density of consumption.

Unfortunately, one-sided filters are far from perfect low-pass filters. Being
one-sided, these filters cannot avoid introducing a phase shift; that is, the trend
and its associated deviations will be lagging the series. The objective function
displayed above is closely related to the variance of the difference of the desired
series and the implied filtered series. Thus, this objective function trades-off the
phase shift of the filtered series with the desired shape of the spectral density.'3
This can be seen by plotting the transfer function of the filter as in Figure 2
in the left panel. The transfer function should be one in-between the desired
frequencies and zero for higher frequencies. Instead, it tends to let pass up to
30% of the variance at higher frequencies, so that the computed trend contains a
substantial amount of cyclical variability. As shown in the right panel of Figure
2, the corresponding two-sided band-pass filter fits the ideal filter's step function
much closer—remember that a symmetric two-sided filter does not introduce a
phase shift. The corresponding time-domain representation is in Figure 3A in the
first panel. Clearly, the one-sided filter generates cyclical movements that are less
volatile than those from the corresponding two-sided filter shown by the thin line.
The second panel in Figure 3A and both panels in Figure 3B present consumption
deviations from trends corresponding to cutoffs of 12, 16, and 20 years, allowing
for comparisons with the deviations obtained with the two-sided filter for 8-year
cycles.

Based on these comparisons, we decide to make an ad hoc adjustment to the
one-sided filter so as to replicate the amount of business cycle volatility obtained

13This can be seen by rewriting the objective function as follows:

f I (w) -K ()12 f() =f (I(w)I - aK (w)D2 1(w) th

+ f 2 (w) aK (w)I [1- cos (K (w))] f (w) the,

where K (w) denotes the phase shift of the filter. Thus, the objective function can be written
as the square of the differences of the gains of the filters, (113(w)I — IOK (c4.J)I)2, plus a term that
depends on the phase shift. This second term is zero, if the filter has no phase shift. For instance,
a symmetric two-sided filter has no phase shift, so it also fits the gain of the approximate filter
(and thus the transfer function). Instead, a one-sided filter has to find the trade-off between
these two forces.
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from the more accurate two-sided ifiter. As shown in Figure 3A, the series gener-
ated by the one-sided filter is strongly correlated with the series from the two-sided
filter, but the series generated by the one-sided filter is less volatile. Thus, we
scale up the volatility by multiplying the cyclical deviations by a constant 0> 1.
This is achieved by defining the adjusted trend, c, as

= (l—O)ct+0c.

With 0 = 1.4, the standard deviation of the scaled one-sided ifiter is about equal
to the one from the two-sided filter. The implied transfer function of the adjusted
low-pass filter defining the trend is presented in Figure 4: the deviations from
the ideal ifiter are somewhat larger around the cutoff frequencies; for the business
cycle frequencies, the adjusted filter represents a significant improvement. As
we show below, the approximate marginal cost implied by the adjusted filter is
obtained by the same scaling, so that m' 9

We also report results based on some other popular moving-average filters. A
k+1 Kgeometric filter is specified so that ak = and >k—O ak = 1, for K = 5; thus,

= 0.5041. A linear filter is specified so that ak = (1
— and >IIJ ak = 1,

which gives a slope so that the next potential weight aK+1 = 0; thus, 6 = 0.2857
with K = 5. We choose a lag length of K = 5 because the one-sided frequency
domain filters with 15 lags that we use have moving-average coefficients that are
not too different from zero for lags larger than 5. Figure 3C shows the cyclical
consumption components in these cases.

5.4. Findings and discussion

In Tables 2A—2D, we report estimates for various state-space systems, various
loading states, and various moments to fit for the complete sample and for the
postwar period. We have chosen the following algorithm for minimizing the sum of
squares of the discrepancies between model-generated moments and the data, .
We start by estimating systems with as many coefficients as there are moments,
using a diagonal weighting matrix that assigns a weight of 1/5 to the moments
involving the equity premium and 1 for the remaining moments. As shown in
Tables 2A—2D in the last colunm entitled 'Fit,' for many systems we are able
to drive to 0. As a minimum requirement for fit, we impose a maximum
discrepancy of 1.5% for the moments involving the equity premium and 0.3%
for the others. In some cases, we are able to obtain a satisfactory fit only after
removing one of the forecasting variables or changing slightly the sample period.
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If this exactly identified approach fails to provide a satisfactory fit, we move to
an overidentified system marked by '01,' by adding one moment condition, and
we report the result with the lowest .

Overall, for fluctuations defined by the 8-year ifiter, we find on average a mar-
ginal cost of about 0.40% of lifetime consumption for the period 1889—1997 and
of about 0.20% for the period 1954—97. With our adjustment to the one-sided
ifiter, as explained in the previous section, with 0 = 1.4, we estimate the marginal
cost of business cycles to be about 0.55% based on the entire sample and about
0.30% for the postwar period. Imposing cointegration between consumption and
dividends yields an estimate of a few basis points higher than without cointegra-
tion.'4 For comparison, the linear and the geometric filters imply marginal costs
of about 0.75% and 1.75% of consumption for the entire sample period and the
postwar period, respectively.

The colunm labeled 'inf,' reports the cost of all consumption uncertainty, that
is, including cycles of any length. Specifically, - = E (Cr). We find very large
costs. With cointegrated consumption and dividends, many systems yield costs
at around 30% of lifetime consumption; without cointegration, they amount in
general to several hundred percent. These numbers are consistent with theorders
of magnitudes we found for the cost of dividend uncertainty in Section (4.2.1).
These numbers are also consistent with the intuition provided by the log-linear
random walk case in section (4.1.1). Fundamentally, consumers very much dis-
like the possibility that consumption can wander off very far from its expected
path—consistent with this interpretation, the additional structure provided by
the cointegration restriction yields lower costs.15

Across the different specifications, our measures are robust for the different
moving-average filters, even though the loading coefficients on some statesdiffer,
sometimes substantially, across cases. There is more variability for measures of
consumption uncertainty. One reason for the variability in measuring the costs of
consumption uncertainty is that in some cases prices for the perpetual bonds with
growing coupons become very large. That is, long-term yields are low relative to
the trend growth rate.

14Taking an average over all reported estimates corresponding to the 8-year filter in Table
2, we have 0.35% and 0.42% for the period 1889—1997 without and with cointegration be-
tween consumption and dividends, 0.17% and 0.22% for the period 1954—97 without and with
Cointegration.

'5As explained in Section 5.2 we model consumption as nonstationary because a stationary
consumption process is not consistent with having a kernel that can simultaneously explain a
large equity risk premium and a relatively flat real term structure.
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5.5. The marginal cost of fluctuations in a simpler case

In this section, we specialize the kernel and the payoffs by assuming that they are
given by random walks. Under the random walk assumption, most of the dynamics
are eliminated: interest rates, dividend/price ratios, and expected excess returns
are all constant. For this reason, we can present the marginal cost in a simple
and intuitive form. The marginal cost of fluctuations is approximately equal to
the consumption-equity premium multiplied by a simple expression of {a2}, the
moving-average coefficients that define {} as a function of {C}. Specifically,
for the 8-, 12-, 16- and 20-year filters the marginal cost of fluctuations equals
approximately 0.38, 0.72, 0.77, and 0.88 times the consumption-equity premium.
We show that the consumption-equity premium equals the covariance between the
pricing kernel and the consumption growth rate, and we estimate this covariance
by fitting a pricing kernel to average excess returns. We find that the results are
similar to those obtained fitting a more general version of the pricing kernel in
Section 5.4. Additionally, we explore the consequences of introducing more assets,
namely, CRSP size-decile portfolios, into our analysis.

We start by specializing the log-linear framework to the following:

= Sj + Et+1,

where E4 is multivariate normal i.i.d through time with mean zero. In this case,
the pricing kernel can be written as

M+1
Zmt+i log M

= 1m t-4-1•

Notice that implicit in this specification of the state space is the assumption that
consumption and dividends of any asset included in the state space follow random
walks, possibly with correlated innovations. Let D be the dividend of any such
asset, and let Ld+i log Under these assumptions, we have the following
well-known results.

Proposition 5.1. If the log pricing kernel and the log dividends are random
wallcs with homoscedastic innovations, then interest rates, dividend/price ratios,
and expected returns of equities are all constant; moreover, the expected returns
of strips are all equal to the expected returns of the corresponding equity claims.
Furthermore, if the innovations are normal, then the ratio of the expected return
of a risky strip paying D+5 in period t + s to the one-period interest rate R1 and
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the excess return for equity paying dividends equal to the process {D} are given
by

E (R+1 [{D}]) E (R+1 [D+3])= =exp(—cov(rnt+i,dt+i)) for alls�1.
ill fLf

(5.la)
If E (R+1) is a vector of expected excess returns, then the loa4ing vector is given
by

log E (R1) = 1m E, (5.2)
where >I = [coy (st+i,, is the covariance matrix of the innovations in
the growth rate of state i with the innovations in the growth rate of the dividends
of stock j.

Under the assumptions used in the Proposition 5.1, dividend growth rates and
total returns are perfectly correlated, since dividend/price ratios are constant. In
our implementation, we use consumption or returns of broad indices as states.
With consumption as the dividend, Proposition 5.1 says that the multiplicative
excess return of consumption-equity equals the negative covariance of the kernel
with consumption growth:

1'ID hi—' 'tOO
U L,,lLt+1 Ll-'i+sfs=i = exp(—cov(z7nt+i,&t+i)).

flf
Now we present a proposition that links the multiplicative excess return of

consumption-equity to the moving-average coefficients of the trend {}.

Proposition 5.2. Let the trend be defined as

log t = r (t) +
K

a log C_

where r (t) are constant chosen so that

Eo(Q)=Eo(C).
Under the assumption of the log-linear system the ratio between the price of a
risky strip paying and a strip paying C is given by

Vo[] I
= exp COVj ( mt, ajct_j ) — coy0 (mt, ct)

votctj I3—0
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Furthermore, if the pricing kernel and consumption are random walks then for
the strips for which t > K,

V0 [] — (E(R1 [C})\El_aO+l_(a0+a1)+..l_(a0+a1.+aK)I
V0[Ct] R1 ) (.)

The role of the constants r (t) is to ensure that has the same conditional
expectation as C. This adjustment involves a Jensen's inequality correction,
due to our assumption that the logarithm of , as opposed to just its level, is
a moving-average of the logarithms of C. We show in Appendix B that this
adjustment is quantitatively negligible.

These propositions complement our earlier results. Proposition 5.1 explains
how we identify the consumption equity premium by using excess return on se-
curities. Proposition 5.2 explains how we use that information arid the values of
the moving-average coefficients to measure the marginal cost of fluctuations. In
particular, recall that the marginal cost of economic fluctuations is given by the
ratio of the prices of a claim paying trend consumption relative to a claim paying
consumption. The ratio of the prices of these long-lived securities can be written
as

V0[{}] V[]
Vo[{C}]_t[ t]V[C]

where Wt [Ce] =
V[{c}]• Thus, the marginal cost of economic fluctuations is given

by a weighted average of the ratio of strip prices. The ratio of these strip prices,
with the exception of the strips for the first K securities, is independent of the
period in which they pay and equal to the expression in (5.3). Therefore this
expression is also approximately equal to the marginal cost

(5.4)
where rce — r1 stands for the difference between the net expected return of con-
sumption equity and the net riskfree interest rate. The second approximation is
due to the first few strips for which j K. As we discuss in Appendix B, the
approximation error is negligible for our applications.

Equation (5.4) has the following interpretation: the difference Tee —r1 captures
the risk premium associated with consumption; the factor [1 — a0 + •] captures
the variability of the deviations from trend. To understand how this factor works,
consider the case of moving-average coefficients {a} that are positive and decreas-
ing in i and consider the following change: increase the values of a, corresponding
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to long lags (large i), and decrease those corresponding to earlier lags (small i).
This operation increases the factor and thus the marginal cost. This operation
also makes the trend smoother, since it distributes the weights more evenly. Con-
sequently, the deviations from trend are more volatile, and thus a higher marginal
cost makes sense.

In Table 3, we present computations for the expression (5.4) representing the
marginal cost. As states, we use consumption or returns to various CRSP portfo-
lios. The loading vector is fitted to the mean log excess returns of various CRSP
return portfolios. The table also contains summary statistics, such as standard
deviations and correlations of consumption growth rates and the market returns
that illustrate which factors are driving the estimates.

We would like to highlight three types of findings. First, estimates of the
consumption-equity premium lie between 0.22% and 1.66%, well below the pre-
mium for the market return, which is above 7%. The low estimate is due to the
relatively low consumption volatility and the correlation properties of consump-
tion, returns and the states. Second, results for the marginal cost of consumption
fluctuations are similar to our estimates obtained from the more general specifi-
cation in Section 5.4. And third, adding additional equity portfolios, such as the
CRSP size-decile portfolios, does not change the results much. This is due to the
fact that once a portfolio has been included, additional portfolios have small extra
power to explain the variance of the consumption growth rate.

In Section 5.3, we have proposed an ad hoc adjustment for the one-sided ifiter
that consists in scaling up the volatility of the cyclical component by the constant
0. The next proposition shows how this adjustment affects the implied marginal
cost.

Proposition 5.3. Let the trend be defined as

1og =
= y*(f) +(i — 0) log Ct +9a log C_

where the T* (t) are constant chosen so that

Eo()=E0(C).
Under the assumption of the log-linear system, the ratio between the price of a
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risky strip paying and a strip paying C is given by

Vo[tJ I '
V0 [C,]

= 0 exp coy0

a3ct_3)

— coy0 (mt, ct)

Jirthermore, if the pricing kernel and consumption are random walks then for
the strips for which t > K,

V0 [] — (E(R1
V0[C] Rf ) (.)

Given that the Jensen's inequality terms determining r (t) are of second-order
importance, the marginal cost with the adjusted trend is approximately equal to
the original marginal cost scaled by 0; that is,

0. wm. (5.6)

We end this section by illustrating the effect of a phase shift for the filter that
defines the trend consumption. Given that we have defined the trend as a one-
sided moving average, we have introduced a phase shift. The effect of such a phase
shift is to make the marginal cost larger. The intuition is that a phase shift makes
trend consumption more desirable since it becomes closer to the expected value.
To be precise, we show that if a trend—defined by moving average coefficients
{a2}—is lagged by one period, then the cost of fluctuations goes up by the value
of the consumption-equity premium.

Proposition 5.4. Let = {a}0 be the moving-average coefficients that de-
fine the consumption trend, and let m (aK) be the factor that multiplies the
consumption-equity premium giving the corresponding marginal cost of fluctua-
tions. Consider the moving-average coefficients a11 satisfying

K+1_ K+1_ Kç ._1 C)a0 — ,, an a2+1 — a or i —

Then m (a'<) = m (aK) + 1.

If we denote by w' (a) the marginal cost for a trend corresponding to moving-
average coefficients a, then Propositions 5.1 and 5.2 imply that

m (aK+l) — m (aK) — r1.

This means that with a phase shift of a year, the cost of business cycles increases
by an amount equal to the consumption-equity premium.
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6. Growth and Economic Fluctuations

In this section, we analyze the relationship between growth and economic fluctua-
tions. We consider this issue along two dimensions. First, we use our framework to
estimate the benefit from increasing growth. We find the benefit from an increase
in the annual growth rate of 1% to be substantial. It is about 50% of lifetime con-
sumption with cointegrated dividends and consumption and even larger without
cointegration. Second, we present a modified version of our framework that allows
us to directly estimate the trade-off between long-term growth and fluctuations.
We find that reducing business cycle fluctuations is valued at less than 1 basis
point increase in the per annum long-term growth rate of consumption.

6.1. The benefits from increasing growth

We can use our definition of Il to analyze the benefits of a permanent increase in
the growth rate of the economy, as in Lucas (1987). For that, we simply let {}
be defined as

t (zt) = [1 + x] C (t)
With x> 0, this is a special case of our framework and all the results derived in
Section 3 for the general case directly apply.

The marginal cost can be written as

— V0 [(1 + x)t C} — (1 + x)t V0 [Ci] — t c1 + (0) —
V0 [Ce]

— °° 0 — (1 + x) WO [ ],
where the weights

V0 [Ce]
wo[Ct]= 1V0[C]

are the same as in the equity premium and the cost of consumption uncertainty.
Based on our estimated pricing kernel, Table 3 reports the (marginal) benefits
of increasing the growth rate by 1%, that is, for x = 0.01. The estimates are
high, about 50% of lifetime consumption with cointegrated dividends and con-
sumption and higher without cointegration. These numbers are larger than the
one computed by Lucas, which is 17%.

To gain some intuition about these results, we consider again the random walk
specification, where

(1+r) x

=1 1+rce—(1+gc)(1+x) rce—gc—x
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with g E — 1 the net rate of consumption growth.16 In Section 5, we
estimated rce — r1 to be less than 1.5%. Thus if the riskfree rate is rf = 2.5% and
the growth rate of consumption gc = 2%, then 1' (0) = 0.01/(0.015+0.025—0.02—
0.01) equals 100%; with a smaller consumption-equity premium, the marginal cost
increases further.'7

6.2. The trade-off between fluctuations and growth

In order to directly measure the trade-off between fluctuations and growth, we
modify our framework. Instead of the cost of fluctuations being measured by the
uniform compensation , now the compensation for fluctuations is expressed in
terms of additional long-term growth. We find that eliminating business cycle
fluctuations is worth less than 1 basis point in additional growth.'8 Eliminating
all consumption uncertainty is valued at 1% in additional growth or more; or
equivalently, the cost of all consumption uncertainty represents about half the
value of long-term historical growth.

Define A (a) as the solution to

U ({[i + A (a)]t C}) = U ((1 — a) {C} + a {}), (6.1)

where {[i + A (a)]t C} is the process which has value [1 + A (a)]t Ct (zt) at time
t, for event z. Notice that by definition, A (0) = 0. Assuming that U (.) is
differentiable, differentiating both sides of (6.1), and evaluating them at a = 0,
we obtain

A' (0) > ({C}) C (zt) t = Ut ({C}) (zt) — Ct (zt)]
t�1 ztEZt ztcZt

Rearranging terms, we can write this expression as

A' (0) =
[C4'

(6.2)

where w0 are the strip weights as in equation (4.1). We call t wo [Ce] the
duration of the consumption-equity, by analogy with the definition of duration in

16Note that log-normality is not required for this derivation.
'7We select this high value for the riskfree rate r1 corresponding to the long-term yield because

in the random walk case, the term structure is flat.
'8We thank John Cochrane for suggesting this extension.
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the context of coupon bonds. Thus, the trade-off between growth and fluctuations
is given by the ratio of the marginal cost of fluctuations to the duration of the
consumption-equity. Before presenting estimates of A' (0), we notice that A is
concave for small a. In this case, A' (0) > A (a) /a for small a; that is, the
marginal cost is larger than the average cost.

Proposition 6.1. Let U be increasing, concave, and twice differentiable. Then
A" (0) < 0.

Using our estimated pricing kernels in Tables 2A—2D, we can see that the dura-
tion of consumption-equity is about 50 years. With cointegration, these numbers
are usually smaller; without cointegration, they are often larger. These durations
can be combined with the estimates of the marginal cost of fluctuations to arrive
at the trade-off between growth and cyclical variations. Based on this, eliminating
business cycle fluctuations is worth less than 1 basis point in additional growth.
Eliminating all consumption uncertainty is valued at 1% additional growth or
more; or equivalently, the cost of all consumption uncertainty represents about
half the value of long-term historical growth.

Under the random walk assumption for consumption and the pricing kernel,
the duration of consumption-equity also has a particularly simple form:

tw0[C] = ___

To get some quantitative feel for this expression, we plug in the same estimates
as in Section 6.1. We consider rcerf at 1.5%, the riskfree rater1 = 2.5%, and the
growth rate of consumption gc = 2%. In this case, the duration of consumption-
equity, >t wo [Ce], is about 50; that is, ,i; = 1.04/(0.04— 0.02) = 52. Thus,
with the marginal cost of business cycle fluctuations for the 8-year filter usually
less than 50 basis points in terms of the uniform compensation 1' (0), eliminating
business cycles is worth less than 1 basis point in terms of additional long-term
growth A' (0).

7. Summary and Conclusions

In this paper, we have measured the cost of business cycle fluctuations using
asset prices. We have used a new approach that focuses on the marginal cost of
consumption fluctuations, because asset prices correspond to marginal valuations
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of market participants. We have shown that the marginal cost of consumption
fluctuations corresponds to the ratio of two asset prices. We have established that
the marginal cost of consumption fluctuations provides an upper bound for the
benefits of reducing fluctuations completely. Our analysis shows that the equity
premium and the cost of consumption uncertainty are related, but clearly distinct,
both conceptually and quantitatively. The steepness of the term structure and the
persistence of the shocks are two of the features that make the equity premium
different from the marginal cost of consumption uncertainty.

We have estimated a pricing kernel as a way to interpolate from existing asset
prices the prices of the assets that measure the marginal cost of consumption fluc-
tuations. Our quantitative analysis highlights the importance of addressing more
precisely the issue of what business cycle fluctuations correspond to. Specifically,
we have estimated the marginal cost of all consumption uncertainty to be very
large. Nevertheless, when we define business cycles as fluctuations that last up
to 8 years, we have estimated the marginal cost of business cycles to be about
one-half of a percent of lifetime consumption or less. Alternatively, the benefits of
eliminating this type of fluctuation are smaller than the benefits of a permanent
increase in the growth rate of consumption of 1 basis point per year.
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Appendix A: Data
The data used in this paper are annual, cover the period 1889—1997 and come
mainly from two sources: Shiller (1998) and Ibbotson Associates (1998). The
breakdown by time series is given below.

Consumption is real per capita consumption for nondurables and services from
Shiller. We updated this series for the period after 1985 with national income
and product account data from the U.S. Bureau of Economic Analysis and
population data from the U.S. Bureau of the Census.

Stock prices and corresponding dividends are the Standard and Poor composite
stock price indexes from Shiller.

Short-term rates are one-year returns based on 6-month commercial paper re-
turns from Shiller, adjusted for a default premium for the period before
1926; after 1926, they are based on monthly holding periods for T-Bills
from Ibbotson Associates.

The long-short yield spreads for government bonds are from Campbell (1996) for
the period before 1926; after 1926, they are from Ibbotson Associates.

All series that have not been originally deflated were deflated by the producer
price index from Shiller for the period before 1926; after 1926, they were
deflated by the consumer price index reported in Ibbotson Associates.
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Appendix B: Proofs and Details of Approximation
Proposition 3.1. Regarding C = {C} as a vector on R°° let °) and
be the first and second derivatives evaluated at C. Define Ca (1 — a) Q + aC.
Then twice differentiating with respect to a the equation defining 12,

8212(a) DU([1 +12 (a)] C) C+ ((a)CV 82U([1 +12(a)]C) (812(a)
DaDa DC \ Da ) DCOC' \j2rr fr— Ia (\/L —

"%.— '—'1

Taking a .J. 0, since C0 = [1 + 12(0)] C C,

8212 (0) DU (C) C — ( 1+ (0) 32U (C) ( 1+ (0) <DaDa DC
—

Da ) DCDC' Da ) —

where the inequality follows from the concavity of U. Since U is increasing,
0. By concavity, 12(a) 12(0) + 12' (0) a for small a.

Proposition 3.2. If U is increasing and concave in {C}, there must exist a
utility function v that is homogeneous of degree one, positive, and quasiconcave,
and satisfies

U({C}) = ________

To start, we show that 12(a) is concave in a. By homogeneity of U,

(1+ 1l(a))' [v ({C})]1 = [v ((1 - a) {C} + a {})]
1—_y 1—.-y

Thus, after multiplying by (1 — 'y), taking the 1/(1 — -y) power, and dividing by
v ({C}) on both sides, we obtain that

1+12(a)=
v({C})

Since v (.) is positive, quasiconcave and homogeneous of degree one, it is concave.
With (1 — a) {C} + a {} linear in a, v(.) is also concave in a; thus, 12(a) is
concave. Now we use the concavity to obtain the desired relationships,

pl
12(1) = 12(0) + J 12'(a)da 12'(O),

0
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where the inequality uses Il (0) = 0, the concavity of Il, and that a 1.•
Proposition 3.3. From the concavity of u and the definition of Q,

U((1—a){C}+a{}) = E[u((1—a)Ci+ai,(1—a)C2+a2,...,(1—a)Ct+at,...)}

for any a. By the definition of and the monotonicity of U, has to reach a
maximum on a = 1. Thus ' (1) = 0, and Il (a) is concave for a close to 1. B
Proposition 3.4. To simplify the notation, denote f (0, a) by 1' (a) and 1 (0, a)
by �I (a). Consider the total cost (a). We use Taylor expansions for the right
and left hand side of the definition of the total cost to find an expression for I (a).
The utility u (C) can be approximated around C (1 + (a)) as

u(C) =u(C(1+1(a))) —u'(C)C1l(a),
where [C, C (1 + l (a))] and 1im0 C0. = C. The utility u (C (1 + aE) (1 + f (a))) can
be approximated around C (1 + ae) for each as

u(C(1+ae)(1+(a)))
= u(C(1+(a)))+u'(C(1+(a))) (1+(a))Ca

+u" (C (1+ (a))) ((1 + (a)) Ca)2

+u" (C (1+ (a))) ((1 + (a)) CaE)3 + u" ( (s)) (Ca)4,

where C0. (E) E [C (1 + as) , C (1 + a) (1 + (a))] for positive and -
[C (1 + aE) (1 + 1 (a)), C (1 + UE)] for negative E, and lim0 C0. () = C. Then
taking expected values,

E [u(C(1+aE)(1-i-l(a)))]
= u(C(1+(a)))+u"(C(1+(a))) E[(1+(a))Ca]2

+u" (C (1+ (a))) E [(1 + (a)) CaE]3 + o (as).

Using the definition of l (a), we now have

—u' (C0.) CI (a) (7.1)

= u" (C(1+(a))) E

E [(1+(a))Cas]3+o(a).
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As an intermediate step, we first show that

2 " (C)
tL'(C)

Ee2+o(a2)kcr2-f-o(a2)

which follows since (a) —* 0, and C —* C as a —* 0. Now we show that

tt' (Oa) C (a) = u' (C) C (a) + o (as)

which follows from

u' (ta) Cci (a) = u' (C) Cci (a) + u" (C (a)) Cci (a) (Ca — C)

for some C (a) E [C, CJ . Recall that by definition of Ca

Cci (a) (C — C) < (Cci H)2 = a4k + o (as),
for some constant k. Also, we show that

if' (C(i +ci(a))) (1 +ci(a))2
= u"(C) +o(a')

which follows from

u" (C(i +ci(a))) (1+ci(a))2
= u"(C(1+ci(a)))(1+2ka2+o(a2)+o(a4) +k2a4)

and from

if' (C (1 + ci (a))) = u" (C) + if" (C (a)) Cii (a)
= u" (C) + u" (C (a)) (ka2 + o (a2)).

Using these last two results we can write (7.1) as

-if (C) Cci (a) + o (as)

= if' (C) E [CaE]2 +
a2o(a)

E [CE]2 + u" (C (1 + ci (a))) E [CaE]3 + o (a3).
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Dividing by u' (C) C on both sides, we obtain that

a2 Cu" (C) 3 C2U'" (C)= — (C)
E2 — -- Ee + o (a3)

We apply similar arguments to the expression for the marginal cost Q' (a).
Proposition 3.6. The core of this proof is similar to the one-period case, so we
only provide a sketch here. Consider the total cost (a) defined as

tE [u(Ct(1+at) (1 +(a)))] = tu(C)
Using exactly the same arguments as for the one-period case, we can write u (Ce)
for each period t as

u (O) = u (C (1 + (a))) — u' (Cg) Cci (a),

where limao Ot,a = Ct for all t. Also for each t we can write E0 [u (C (1 + Il (a)))]
as

E0 [u(Ct(1+aet)(1+ci(a)))] = u(Ct(1+ci(a))) +u"(Ct(1+ci(a))) E0 [Ctaet]2

+u" (O (1 + ci (a))) E0 [Cta6t]3 + t (as).

Replacing the expansions in the definition of ci (a), yields that

— f u(Ot(1 +ci(a))) +u" (Ct(1+ci(a))) E0 [Ctaet]2 j—

f—j.' l,. +u" (C (1 + ci (a))) E0 [CtaEt]3 + 0 (a3) J
and simplifying yields that

ci (a) tuI (C,) C

= {_u" (C (1 + ci (a))) E0 [Ca]2 — u" (C (1 + ci(a))) E0 [Ctaet]3 + ot (a)}.
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By applying the same procedure as for the one-period case, we get that

c (ci) () Ot

= t { 'll (O) E0 [OtaE]2 — n"() E0 [tcit]+ ot
(a3) }.

Rearranging, we get that

T 'F 'II
(a) = iD

{—
a2E [Et]2

- aE
[E]3}

+o

where

— (O) Ot—

Analogous steps are applied for the marginal cost. U
Proposition 3.9. Notice that the left hand side of (3.3) and (3.4) are the same.

Consider any arbitrary a. By definition of envy, making {a} = (1 — a) {C} +
a {}, we obtain the desired result. U
Proposition 4.1. Using the definition of the weights w0 [Ce] in equation (4.1),
multiplying and dividing by E0 (Ce), and using the definitions of R0, [Ci] and
R0, [1], we have that

VOO TI 17' f,1
1 — L1t=i V0 [0 '—t

w0 —
V0 [C,]

(Vo[Eo(C)]= w0[C] v0[c]

(Eo(C) Eo(C)- wo[C]
V0[C] 'V0[E0(C)]

= W0 [Ce] (R0, [Ce] /Ro, [1]).
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Using the definition of the equity premium, the decomposition of the price of
equity as the sum of the strips, the definitions of w0 [Ce], and the definition of
excess one-period holding returns, we have that

Eo(V1[{C}]) 1=
V0[{C}] 'V0(11)

(E0(Ro,1[Ct])=
wo[c] R0,1[11]

Proposition 5.1. Notice that the random walk assumption implies that interest
rates are constant, since

(M+1\ _E(Mt+1EtM)
Hence, the term premium is zero. Then

E (±E IRS_iE (Rt+i [Dt+3]) E (R+i [Dt+s/DtI) Mt+i \ Dt t4 L' Mt+i Dt+i

ER+1 (1+)
=

ER+1 (1+)
= E ( M ) E [s±±±]/ / M+1 / D+5= exp —cov 1og M , E 1og D

= exp (—COVt (mt+l, d+1)) for all s > 1,

where the first inequality follows since D is known at t, the second from the
definition of returns and the pricing kernel, the third from the log-normality of D
and M as in (4.5) since the term premium is zero, and the fourth follows by the
random walk assumptions. From this we obtain that the excess expected return
of a stock paying {D+5} is

E (R+1 [{Dt+s}11) — D E (R+1 [D+8]) — E (R+1 [Dt+sI)
ER+1

— w ([ t+s]) ER+1 (1+)
—

ER+1 (1+)

where the weights w [D+5] = V [{D+8}] Iv [{D+}'i1] sum to one. For this
stock, the price/dividend ratio is given by

14 [{D+3}1] /D = >13E ['- D+3]
= >flEt

s=1 s=1 =1
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- / E[R±-±!
l'E M+1 D+1 ' L Mt Dt— s=ik M D ) 1_EjL]'

where the third inequality uses the random walk assumption. Finally, notice that
for each asset i we have that

logEt (R+1,) = —covt (zmt+i,d+i) = —coy (1. et+i,Ld+i).•

Proposition 5.2. We start by finding an expression for r (t). Notice that using
log-normality, we get

E0 () = exp () E0exp ( aicti) = exp (T (t)) exp ( a1E0 (ct_i) + var0 (aict_i))
and

E0 (Ce) = E0 exp (Ct) = exp
(Eoct + var0 (Ct)).

Thus, r (t) solves E0 () = E0 (Ce). Therefore,

i- (t) = exp (Eoc — aE0 (c_) + var0 (Ct) — var0(aict_i))
Using the definition of the pricing kernel and lognormality

v0 [} E0 exp [ (t) + Eomt — m0 + act_j]
V0[C]

=
Eoexp[m—mo+c]

—
exp

[T (t) + E0 (mt — m0 + ajct_j) + var0 (mt)]—

exp [E0 (mt — m0 + Ct) + var0 (mt) + var0 (Ct) + coy0 (mt, Ct)]

x
exp [varo (aict_i)

+ coy0 (fllt
aict_i)]

— E0 (ct) +
= exp =o ajct_j) — var0 (Ct)

ajctj)
— coy0 (mt, Ct)
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By definition of T (t), we get that

V0[] ( K

0 [Ct]
= exp coy0

mt, aict_3)
— coy0 (mt, Ct)

By direct computation in the random walk case we get that

= exp
(mt aict_i) — coy0

(mt, Ct)]

= exp
(

,
aie.)

— coy0

(
e,

k=(t—K) k=(t—K) j=0 k=(t—K) k=(t—K)

covçj aoEc) — coy0 (, E) +
= exp Cm)Q (ao + ai) - — coy0 (EK_1, + +

coy0 (EK, (ao + a1 +••• + aK) EKl) — coy0 (ErK, E'_K)
= exp[cm[ao—1+(ao+al)—1+...+(ao+al+...+aK)—1]],

where and E are the innovations of the log of the pricing kernel and the log
of consumption. While the first step uses the fact that the first t —K shocks are
common to both covariances, the second separates the covariances, and the third
reorders and uses the result that for the last term the sum of all the a's equals 1.
Finally, by Proposition 5.1, we have that

E (R1 [C}) = exp (—c (Lmt, zc)) exp (7c,im),
£Lf

which, combined with the previous equality, finishes the proof. U
Proposition 5.3. This proof is a straightforward variation of the proof of Propo-
sition 5.2.
Proposition 5.4. Direct computation shows that

m (a1) = (a —
1) + (ar' + a — 1) + (a' + af + a — 1)

+. + (ar' + +••• + 4+ — 1)

=
= m(a')+1.U
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Proposition 6.1. Regarding C = {C} as a vector on R°°, let and
be its first and second derivatives evaluated at C. Define Ca = (1 —a) +
aC, and let (C [1 + A (a)]t) be the vector where each component consists of
C, (zt) [1 + A (a)]t Then twice differentiating with respect to a the equation defin-
ing A, we get that

DA (a) OU (([1 + A (a)]t Ce)) c 1 A t — (Ca) côa OC [ + (a)] ,, — —

ô2A(a) au(([1+A()]tC)) C 1 A -'
0C ( t [ + (a)] t) +

8A (a)1 2 DU (([1 + A ()]t Ce))
ôa j [1 + A (a)] t (t — 1)

+ (C [1+ A ()]t1 t))
2u (([i±A]tci)) (3 (C [1+ A (a)]t1 t))

= (c-C)' (c-C).
Taking a .J. 0 since Ca = C and A (0) = 0, we get that

a2A(o) U(C) C — IaA(a)12 OU(C) Caaaa t9C
( t) — — [ 9a j EIC ( tt (t — 1))

+ ( - C - (a) (C t)) gg) ( - C - (a) (C t)) �
where the inequality follows from the concavity of U and the monotoriicity of U.
Since U is increasing, then J
Details about approximations made with the log-linear system: Bias in
the trend
In Section 5.3, we define the trend as a one-sided moving average of current and
past consumption, in (Ct) = ak Ct_k. With this definition of the trend ,
E0 (Ce) 4 E (), because is a nonlinear function of C. We show here that this
bias is quantitatively negligible for our applications.

Assuming we want to impose as a constraint that the conditional means of the
trend and of consumption are equal, then we must do the following. Based on our
definition of the marginal cost we have

1 m - V0 [Xi] - V0 [Xe]+ W —
V0 [Ci]

— Wt
v0 [Ci]'
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where 'Wt V0 [Ce] / V0 [Ce]. Assume we waiit to adjust every strip of the
trend, so that

i+w Vo[XtJc(t)
If we want to make the conditional means equal, we need that

i E[C]'
E0 [X]

In this case, (t) is a state-dependent adjustment.
The random walk case can provide an idea of the order of magnitude of the

adjustment; it is easy to compute and close to the cases analyzed in the paper.
In this case, simple algebra gives that for t > K,

q (t)
E0C = e[1_0)2+1_0 1)2+1_(ao12)2+.+1_(cO+...+aJ)2]4 > 1
E0X -

In words, expected consumption is larger because consumption is more volatile
than the trend, given that the trend depends partially on earlier realizations that
have a lower variance. For the first few periods where t K, the terms are a bit
different. They will coincide if we take the expectations conditional on time —K,
so that the lags of the trend are not known; otherwise, they will depend on recent
realizations of consumption.

For the coefficient values implied by the 8-year filter in the paper, based on
= 0.03282 and o = 0.01152 corresponding to the variance of the consumption

growth rate for the period 1889—1997 and 1954—97 respectively, we have that

exp (o.57520.0282) = 1.000309,

and

exp (o.5m2O.0152) = 1.000038.

That is, the bias is barely 3 basis points with consumption for 1889—1997, and
about one third of a basis point with consumption for 1954—97.
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Table 2A

Marginal Cost of Consumption Fluctuations (1889-1997)

Standard deviation of consumption deviations from trend

Moments Dividend/price ratio: E(D/P) = 0.046
Equity premium: E(VWR-Rf) = 0.0677
Multiplicative equity premium: E(Rd/Rf- 1) = 0.0698
Riskiess rate: E(logY(1))= 0.0108
Yield spread: E(IogY(13)-logY(1))= 0.0059

States c = consumption
d = dividends

trm=long-short term spread
dip = dividend-price ratio
vwr = realized value weighted stock return

Moments the kernel fits: Coefficients on states:
C d trm dip vwr 13

1. E(D/P),E(VNR-Rf),Y(1),Y(13),

2. E(Rd/Rf),E(VWR-Rf),Y(1 ),Y(1 3),

3. E(D1P),E(Rd/Rf),Y(1 ),Y(1 3)

4. E(D/P),E(VWR-Rf),Y(1 ),Y(1 3),

5. E(Rd/Rf),E(VWR-Rf),Y(1 ),Y(1 3),

6. E(D1P),E(Rd/Rf),Y(1 ),Y(1 3),

7. E(DIP),E(Rd/Rf),Y(1 ),Y(1 3), E(VWR-Rf)

8. E(DIP),E(VWR-Rf),Y(1 ),Y(1 3),

9. E(RdIRf),E(VWR-Rf),Y(1),Y(13),

10. E(D/P),E(Rd/Rf),Y(1 ),Y(1 3),

11. E(D/P),E(VVVR-Rf),Y(1),Y(13),

12. E(Rd/Rf),E(VWR-Rf),Y(1 ),Y(1 3),

13. E(DIP),E(RdIRf),Y(1 ),Y(1 3), [Ol+E(VWR-Rf)]

14. E(D1P),E(Rd/Rf),Y(1 ),Y(1 3), E(VWR-Rf)

15. E(DIP),E(Rd/Rf),Y(1 ),Y(1 3), E(VWR-Rf)

-9.31 -1.56 8.05 0.90

-9.21 -1.58 8.19 0.90

-9.08 -1.59 8.31 0.90

-4.04 -2.37 9.64 0.91

-0.19 -3.31 10.09 0.90

-4.31 -2.57 10.22 0.90

-9.60 -1.53 8.19 -0.49 0.90

-6.53 -1.93 -0.53 0.90

0.06 -3.30 -0.70 0.89

-1.00 -2.88 -0.69 0.91

-7.18 -1.98 -0.40 0.90

-0.69 -3.24 -0.63 0.89

-5.36 -2.25 -0.49 0.91

0.06 -2.16 44.74 1.66 0.93

-13.44 -1.04 8.61 0.41 0.88



Table 2A, continued

Marginal Cost of Consumption Fluctuations (1889-1 997)

Marginal cost: Benefit Duration
Low pass filters Other Filters of 1% consumption

8 years l2years 16 years 20 years infinite geometric linear growth Equity Fit

0.43% 0.79% 0.89% 1.06% 353.26% 1.01% 1.85% 227.60% 70.19 0

0.43% 0.79% 0.89% 1.05% 347.07% 0.94% 1.73% 227.26% 70.16 0

0.42% 0.78% 0.88% 1.05% 341.72% 0.99% 1.83% 230.56% 70.47 0

0.32% 0.60% 0.67% 0.69% 543.28% 0.72% 1.41% 1560.88% 98.90 0

0.24% 0.48% 0.54% 0.64% 604.27% 0.61% 1.15% 780.47% 115.55 0

0.35% 0.65% 0.73% 0.86% 1956.35% 0.82% 1.52% 4141.52% 109.09 1.43E-05

0.43% 0.80% 0.90% 1.07% 362.85% 1.02% 1.88% 221.43% 69.59 0

0.40% 0.73% 0.80% 0.93% 2862.13% 0.93% 1.68% 1344.64% 97.20 0

0.26% 0.49% 0.54% 0.63% 1263.46% 0.63% 1.16% 16561.54% 123.50 0

0.27% 0.51% 0.55% 0.64% 6151.07% 0.64% 1.19% 154985.17% 151.48 2.62E-05

0.40% 0.71% 0.79% 0.93% 502.50% 0.90% 1.65% 571.11% 86.50 0

0.26% 0.49% 0.55% 0.65% 480.22% 0.63% 1.16% 8664.40% 116.65 0

0.36% 0.64% 0.72% 0.84% 605.66% 0.82% 1.49% 1498.99% 98.47 2.72E-06

0.20% 0.43% 0.54% 0.68% 39.70% 0.49% 0.95% 109.37% 52.82 0

0.50% 0.92% 1.06% 1.27% 206.03% 1.18% 2.17% 110.82% 53.17 5.78E-08

1.35% 1.68% 2.02% 2.36% 1.80% 2.92%

Forecasting 1.-7. c,d,trm,d/p
variables 8.-10.,14. c,d,dp,vwr

11.-13,15. c,d,trm,vwr

Fit stands for the sum of squared residuals from data moments



Table 2B

Marginal Cost of Consumption Fluctuations (1954-1997)

Standard deviation of consumption deviations from trend

Moments Dividend/price ratio: E(D/P) = 0.0363
Equity premium: E(VWR-Rf) = 0.0628
Multiplicative equity premium: E(Rd/Rf- 1) =0.0613
Riskless rate: E(logY(1))= 0.0121
Yield spread: E(IogY(13)-IogY(1))=0. 0123

States c = consumption
d = dividends

trm=long-short term spread
dip = dividend-price ratio
vwr = realized value weighted stock return

Moments the kernel fits: Coefficients on states:
c d tim dip vwr

1. E(D/P),E(VWR—Rf),Y(1),Y(13),

2. E(Rd/Rf),E(VWR-Rf),Y(1 ),Y(1 3),

3. E(D/P),E(Rd/Rf),Y(1),Y(13), [01 + E(VWR-Rf)]

4. E(D/P),E(VWR-Rf),Y(1),Y(13),

5. E(Rd/Rf),E(VWR-Rf),Y(1),Y(13), [no trm, 01 + E(VWR-Rf)]

6. E(D/P),E(Rd/Rf),Y(1),Y(13), [no tim state]

7. E(D/P),E(Rd/Rf),Y(1),Y(13), E(VWR-Rf)

8. E(D/P),E(VWR-Rf),Y(1),Y(13),

9. E(Rd/Rf),E(VWR-Rf),Y(1),Y(13),

10. E(D/P),E(Rd/Rf),Y(1 ),Y(13), (1947-1997)

11. E(D/P),E(VWR-Rf),Y(1 ),Y(1 3), (1947-1997)

12. E(Rd/Rf),E(VWR-Rf),Y(1),Y(13), [no trm, 01 + E(D/P)]

13. E(D/P),E(RdJRf),Y(1),Y(13), [notrm state]

14. E(D/P),E(RdJRf),Y(1 ),Y(1 3), E(VWR-Rf)

15. E(D/P),E(RdIRf),Y(1),Y(13), E(VWR-Rf)

-28.64 -2.82 23.95 0.89

-19.30 6.49 41.62 0.85

-12.61 -2.40 20.16 0.94

-10.94 -4.40 53.35 0.92

-15.96 -2.93 41.14 0.91

-7.19 -3.22 41.53 0.93

no fit

-11.85 -4.28 -2.02 0.89

-36.53 -5.93 -2.13 0.75

-23.70 -5.20 -1.88 0.84

-8.62 -4.99 -2.04 0.92

-0.95 -4.50 -1.90 0.92

-0.88 -3.84 -1.72 0.93

-40.57 5.40 94.47 1.16 0.71

no fit



Table 2B, continued

Marginal Cost of Consumption Fluctuations (1954-1997)

Marginal cost: Benefit Duration
Low pass filters Other filters of 1% Consumption
8 years 12 years 16 years 20 years inf geometric linear growth Equity Fit

0.22% 0.42% 0.51% 0.62% 22.33% 0.51% 0.96% 6341.00% 39.28 0

0.15% 0.31% 0.35% 0.41% 302.10% 0.37% 0.70% 312531307.00% 211.65 0

0.11% 0.22% 0.27% 0.33% 11.54% 0.26% 0.48% 103.93% 51.5078 6.38E-05

0.14% 0.22% 0.24% 0.26% 17.86% 0.24% 0.41% 203949.00% 102.06 0

0.15% 0.27% 0.32% 0.39% 32.77% ,0036 0.66% 144.60% 59.76 6.63E-06

0.09% 0.16% 0.18% 0.23% 18.72% 0.21% 0.38% 217.64% 69.32 1.02E-06

0.18% 0.34% 0.36% 0.41% 115570.55% 0.44% 0.81% 290802426.00% 508.09 0

0.32% 0.57% 0.60% 0.69% 1156.26% 0.72% 1.29% 2530.00% 103.28 0

0.21% 0.34% 0.37% 0.42% 54.54% 0.43% 0.75% 23430.00% 70.94 7.66E-07

0.14% 0.21% 0.24% 0.28% 18.32% 0.25% 0.43% 2965341.00% 129.94 0

0.07% 0.12% 0.12% 0.14% 248.02% 0.16% 0.27% 141029900.00% 419.44 8.78E-06

0.07% 0.10% 0.11% 0.13% 38.50% 0.14% 0.23% 335717.05% 163.47 7.95E-06

0.42% 0.73% 0.90% 1.01% 35.57% 0.97% 1.79% 3149.00% 24.44 0

0.55% 0.69% 0.67% 0.70% 0.73% 1.21%

Forecasting 1.-7. c,d,trm,d/p
variables 8.-10.,14. c,d,dp,vwr

11.-13,15. c,d,trm,vwr

Fit stands for the sum of squared residuals from data moments



Standard deviation of consumption deviations from trend

Moments Dividend/price ratio: E(D/P) = 0.046
Equity premium: E(VWR-Rf) = 0.0677
Multiplicative equity premium: E(RdfRf-1) = 0.0698
Riskiess rate: E(logY(1))= 0.0108
Yield spread: E(logY(13)-logY(1))= 0.0059

States c = consumption
d = dividends

tim_—long-short term spread
dip = dividend-price ratio
vwr = realized value weighted stock return

Table 2C

Marginal Cost of Consumption Fluctuations: Dividends and
Consumption Cointegrated (1889-1997)

Moments the kemel fits: Coefficients on states:
c d tnui dID vwr B

1. E(D/P),E(VWR-Rf),Y(1 ),Y(1 3), [01 + E(RdIRf)

2. E(RdIRf),E(VWR-Rf),Y(1),Y(13), [01 + E(D/P)]

3. E(D/P),E(RdIRf),Y(1)Y(13), [01 + E(WVR-Rf)]

4. E(D/P),E(VWR-Rf),Y(1 ),Y(1 3),

5. E(Rd/Rf),E(VWR-Rf),Y(1 )Y(1 3), [01 + E(DIP)]

6. E(D/P),E(Rd/Rf),Y(1),Y(13), [01 + E(WVR-Rf)]

7. E(D/P),E(RdIRf),Y(1 ),Y(1 3), E(VWR-Rf)

8. E(D/P),E(VWR-Rf),V(1 ),Y(1 3),

9. E(Rd/Rf),E(VWR-Rf),Y(1 ),Y(13),

10. E(D/P),E(Rd/Rf),Y(1),V(13), [01 + E(WVR-Rf)J

11. E(D/P),E(VWR-Rf),Y(1 ),Y(13), [no trm state]

12. E(RdIRf),E(VWR-Rf),Y(1 ) ,Y(1 3),[no trm state]

13. E(D/P),E(Rd/Rf),Y(1 ),Y(1 3), [01 + E(VWR-Rf)]

14. E(D/P),E(Rd/Rf),Y(1 )Y(1 3), E(VWA-Rf)

15. E(D/P),E(Rd/Rf),Y(1),Y(13), E(VWR-Rf)

-11.55 -1.40 -8.19 0.90

-11.55 -1.40 -8.19 0.90

-11.55 -1.40 -8.19 0.90

-17.93 -3.47 -32.32 0.81

-16.40 -1.18 -10.29 0.86

-16.40 -1.18 -10.29 0.86

no fit

-10.28 -3.54 1.05 0.88

-20.06 0.23 0.41 0.83

-8.80 -2.44 0.40 0.91

-21.79 -3.54 3.17 0.75

-21.95 0.03 1.03 0.81

-10.94 -2.20 0.95 0.90

-10.50 1.79 75.51 3.09 0.90

no fit



Table 2C, continued

Marginal Cost of Consumption Fluctuations: Dividends and
Consumption Cointegrated (1889-1997)

Marginal cost: Benefit Duration
Low pass filters Other filters of 1% Consumption

8 years l2years 16 years 20 years infinite geometric linear growth Equity Fit

0.36% 0.66% 0.78% 0.96% 47.68% 0.88% 1.60% 45.98% 31.74 2.19E-04

0.36% 0.66% 0.78% 0.96% 47.68% 0.88% 1.60% 45.98% 31.74 2.19E-04

0.36% 0.66% 0.78% 0.96% 47.68% 0.88% 1.60% 45.98% 31.74 2.19E-04

0.37% 0.81% 0.98% 1.25% 196.30% 1.20% 2.29% 64.22% 39.12 O.OOE+00

0.49% 0.90% 1.07% 1.31% 88.99% 1.19% 2.20% 51.31% 34.09 1.91E-04

0.49% 0.90% 1.07% 1.31% 88.99% 1.19% 2.20% 51.31% 34.09 1.91E-04

0.23% 0.56% 0.71% 0.93% 55.17% 0.84% 1.65% 40.02% 28.94 0

0.67% 1.22% 1.37% 1.63% 367250.00% 1.59% 2.90% 231.55% 70.40 0

0.27% 0.55% 0.68% 0.86% 45.20% 0.75% 1.43% 44.36% 31.06 1.66E-04

0.43% 1.05% 1.23% 1.53% 560455113.38% 1.42% 0.0278 214.25% 66.59 0

0.66% 1.27% 1.39% 1.63% 1.17E+12 1.64% 3.02% 5.05E÷04 224.70 5.37E-05

0.28% 0.58% 0.70% 0.87% 61 .68% 0.77% 1.46% 55.90% 35.95 2.77E-04

0.51% 0.86% 1.08% 1.32% 19.94% 1.07% 1.96% 22.74% 18.86 0

1.35% 1.68% 2.02% 2.36% 1.80% 2.92%

Forecasting 1 .-7. c,d,trm,d/p
variables 8.-10.,14. c,d,dp,vwr

11.-13,15. c,d,trm,vwr

Fit stands for the sum of squared residuals from data moments



Standard deviations of consumption deviations from trend

Moments Dividend/price ratio: E(D/P) = 0.0363
Equity premium: E(VWR-Rf) = 0.0628
Multiplicative equity premium: E(Rd/Rf-1) =0.0613
Riskless rate: E(logY(1))= 0.0 121

Yield spread: E(logY(13)-logY(1))_—0.0123

States c = consumption
d = dividends

trm=long-short term spread
dip = dividend-price ratio
vwr = realized value weighted stock return

Table 2D
Marginal Cost of Consumption Fluctuations: Dividends and

Consumption Cointegrated (1954-1997)
Moments the kernel fits: Coefficients on states:

c d trm d/D vwr

1. E(D/P),E(VWR-Rf),Y(1),Y(13),

2. E(RdIRf),E(VWR-Rf),Y(1),Y(13), [no dip, 01 +E(DIP)1

3. E(0/P),E(Rd/Rf),Y(1),Y(13),[no dip, OP + E(lRdlRf)]

4. E(D/P)E(VWR-Rf),Y(1 ),Y(1 3),

5. E(RdlRf),E(VWR-Rf),Y(1 ),Y(13),

6. E(D/P),E(RdIRf),Y(1 ),Y(1 3)

7. E(D/P),E(Rd/Rf),Y(1 ),Y(1 3), E(VWR-Rf),

8. E(D/P),E(VWR-Rf),Y(1 ),Y(1 3),

9. E(RdlRf),E(VWR-Rf),Y(1 ),Y(1 3),

10. E(D/P),E(Rd/Rf),Y(1),Y(13),

11. E(D/P), E(VWR-Rf),Y(1 ),Y(1 3),

12. E(RdlRf),E(VWR-Rf),Y(1),Y(13), [01 + E(D/P)]

13. E(D/P),E(RdlRf),Y(1),Y(13), [01 + E(VWR-Rf)]

14. E(D/P),E(RdlRf),Y(1 ),Y(1 3), E(VWR-Rf),

15. E(D/P),E(RdlRf),Y(1 ),Y(1 3), E(VWR-Rf),

-17.62 -1.68 31.10 0.91

6.54 -4.95 22.05 0.95

6.54 -4.95 22.05 0.95

-5.92 -2.39 64.75 0.94

-9.89 -0.52 60.82 0.95

3.47 -3.07 57.59 0.95

0.83 -2.97 1.72 56.73 0.95

-13.95 -4.61 -1.89 0.88

-18.46 -2.94 -1.97 0.88

-6.54 -4.50 -1.46 0.93

-13.34 -4.58 -1.92 0.91

-10.18 -4.45 -1.64 0.91

-10.18 -4.45 -1.64 0.91

-4.73 -4.84 -1.61 -2.78 0.94

-12.87 -3.42 31.18 -0.70 0.90



Table 2D, continued
Marginal Cost of Consumption Fluctuations: Dividends and

Consumption Cointegrated (1954-1997)
Marginal cost: Benefit Duration

Low pass filters Other filters of 1% Consumption
8 years 12 years 16 years 20 years mt geometric linear growth Equity Fit

0.22% 0.42% 0.52% 0.66% 25.55% 0.53% 1.00% 56.39% 36.66 0

0.11% 0.19% 0.30% 0.40% 0.26% 0.22% 0.42% 52.12% 3470 3.28E-05

0.11% 0.19% 0.30% 0.40% 0.26% 0.22% 0.42% 52.12% 34.70 3.28E-05

0.19% 0.28% 0.34% 0.42% 8.07% 0.33% 0.58% 45.07% 31.68 0

0.17% 0.25% 0.28% 0.33% 21.06% 0.31% 0.53% 137.86% 58.81 2.27E-06

0.12% 0.16% 0.21% 0.27% 0.16% 0.17% 0.29% 46.35% 32.23 5.97E-07

0.140% 0.190% 0.260% 0.320% 2.41% 0.23% 0.38% 45.34% 31.77 3.54E06

0.33% 0.59% 0.71% 0.87% 48.16% 0.77% 1.40% 57.17% 36.97 0

0.35% 0.67% 0.71% 0.82% 462789900.00% 0.86% 0.16% 89197900.00% 375.47 0

0.24% 0.41% 0.51% 0.65% 20.54% 0.53% 0.96% 46.22% 32.20 0

0.29% 0.48% 0.58% 0.70% 20.53% 0.59% 1.05% 49.25% 33.60 0

0.28% 0.49% 0.60% 0.75% 31.13% 0.64% 1.15% 50.85% 34.31 4.55E-06

0.28% 0.49% 0.60% 0.75% 31.13% 0.64% 1.15% 50.85% 34.31 4.55E-06

0.22% 0.34% 0.43% 0.53% 9.80% 0.41% 0.73% 45.30% 31.72 1.33E-05

0.28% 0.50% 0.60% 0.75% 38.05% 0.65% 1.19% 54.36% 35.90 5.53E-06

0.55% 0.69% 0.67% 0.70% 0.73% 1.21%

Forecasting 1-7. c,d,trm,cL/p
variables 8.-10.,14. c,d,dp,wvr

11-13,15. c,d,trm,vwr

Fit stands for sum of squared residuals from data moments
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Figure 1: Marginal and Total Cost Functions
x 1O Positive skewness

9

8

7-

6-

5.

4 1/
3 /

/
/

2 /
/
/

/
C
0 0.5

a: share of volatility removed

0 0.5 1 0.5



0
-2 0 2 -2 0 2

1.2

1

0.8

Figure 2 Transfer functions for low-pass filters, 8 year cutoff (15 lags)
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Figure 3A Consumption Deviations from Trend

8 year filter
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Figure3B Consumption Deviations from Trend

16 year filter

(The thin line is obtained with a two-sided, 8 year filter)
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Figure 3C Consumption Deviations from Trend

Geometrically declining filter weights
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Figure 4
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