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If thou wouldst live long, live well. 
 

      Benj. Franklin, 
  Poor Richard's Almanack, 1739 
 

 

I. INTRODUCTION 

 For settings as diverse as large countries, memberships in 

sizable HMOs, small clinical trials, and local policy 

interventions, one finds increasing interest in quantifying the 

health status of the "population" of concern.  Kindig, 1997, 

argues compellingly that for many practical purposes it is useful 

to be able to reference a scalar summary measure of the health of 

a population at a point in time, much like GDP or CPI measures 

characterize the output or price levels of a nation's economy at 

points in time.  A recent report of the Institute of Medicine in 

the U.S. (Institute of Medicine, 1998), noted that "The 

development and application of summary measures of population 

health present complex and intriguing methodological, ethical, 

and political challenges."  The consideration of some central 

conceptual and empirical aspects of the pursuit of summary 

measures of population health is the main purpose of this paper. 

 

Some Recent Context 

 Recognition of heterogeneity in the health of broad 

populations' members has become widespread, with some consequent 

impetus for policy intervention (see Shepard and Zeckhauser, 

1982, for an early theoretical treatment).  With the stated 

objective of eliminating "disparities in six areas of health 

status experienced by racial and ethnic minority populations 

while continuing the progress we have made in improving the 

overall health of the American people," the U.S. National 

Institutes of Health have launched a formal Program to Address 

Health Disparities.  The NIH definition of "health disparities" 

is "differences in the incidence, prevalence, mortality, and 
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burden of diseases and other adverse health conditions that exist 

among specific population groups."  Of course, "disparities" 

amounts to the same thing as heterogeneity; the latter term is 

preferred here given its neutral rather than negative 

connotation. 

 In assessing the performance of the world's health care 

systems in delivering health product, WHO's recent World Health 

Report 2000 recognized that summarizing the health of 

heterogeneous populations in a single measure is problematic.  

Among other things, the WHO report notes that both "the overall 

level of health" as well as "the distribution of health in the 

population" must be measured to be able to assess the objectives 

of any given health system.  Moreover, the WHO report recognizes 

that for any given individual in a population health itself has a 

multiattribute character, and thus proceeds to characterize 

health status in terms of disability-adjusted life 

years/expectancy. 

 In a similar vein, the much-publicized Healthy People 2010 

initiative of the U.S. Department of Health and Human Services is 

designed to achieve two overarching goals: (1) increase quality 

and years of healthy life; and (2) eliminate health disparities 

among different segments of the population.  While interesting 

(and controversial; see Kenkel, 2000, for instance) in their own 

right, these HP2010 goals jointly serve to highlight key aspects 

of the subsequent analysis.  Specifically, the main concern here 

is with quantification of health measures that have a 

multiattribute character -- e.g. goal #1, regarding longevity 

("live long") and quality of life ("live well") 

-- and that are simultaneously distributed heterogeneously in the 

population (e.g. goal #2, regarding disparities of health status 

in the population).1  Indeed, a recent report by the U.S. 

                         
1 Aggregate measures like the "Years of Healthy Life" (YHL) 

(continued) 
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National Institute on Aging (NIA, 2000) confirms that Americans 

are living both longer and healthier lives than in past 

generations, as disabilities have become relatively less common 

among older Americans over time. 

 It should be emphasized that the conceptual and analytical 

frameworks presented here are applicable not just in situations 

where quantification of the health status of large populations is 

of concern but also are suitable when quantification or 

estimation of the health of more narrowly-defined "populations" 

is the objective.  A leading example of such narrower populations 

would be the treatment and control groups in a clinical trial 

within which one outcome of interest might be health status 

measured in some multiattribute manner -- for instance, quality 

of life and survival -- like the measures considered below (e.g. 

Lamas et al., 1998; Hlatky et al., 1997).  To be sure, 

measurement of inherently multiattribute health status has 

attracted increasing attention in the clinical literature (Testa 

and Simonson, 1996; Wright and Weinstein, 1998). 

 

The Issues and Plan for the Paper 

 A common feature of the work described above is its reliance 

on some summary measure or measures of the health status of the 

population in question.  Such efforts must thus confront directly 

the issue of how to "map" from a distribution of health that in 

almost any interesting exercise will be heterogeneous in this 

population and may also be multiattribute in its character into a 

summary (scalar) measure of the health of this population (see 

Wolfson, 1999, for an excellent and comprehensive discussion).  

                                                                               
measure (Erickson et al., 1995) have been designed to monitor in 
the aggregate these objectives in the United States (the YHL 
measure will the the focus of the empirical exploration 
undertaken in section V). 
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This paper sets out to develop an analytical framework for 

characterizing such summary measures and for assessing some 

properties of empirical strategies used to estimate or quantify 

these measures. 

 The roadmap for the remainder of the paper is as follows.  

Section II presents some fundamental conceptual and measurement 

issues, addressing the first-order question of what a summary 

measure of a population's health might entail when the health 

status of a population's members is simultaneously multiattribute 

in scope and heterogeneous in its distribution across the 

population.  Section III considers from an analytical perspective 

the implications of quantifying population health when its 

multiattribute constituents are both heterogeneous in a 

population and may themselves covary across this population.  It 

is suggested here that the concept of a statistical functional 

provides a conceptually useful typology for quantification of a 

population's health status.  Related discussion on univariate and 

multivariate stochastic dominance then points the way toward more 

practical implementation of health measures based on low-order 

moments, with particular focus on population health measures 

characterized by means or conditional means of scalar outcomes.  

In this light Section IV considers conceptually the special 

though leading case of health- or quality-adjusted life 

expectancy (HALE, QALE) and health- or quality-adjusted life year 

(HALY, QALY) type measures of health.  Key statistical properties 

of these measures are discussed, and the implications of some ad 

hoc approaches to estimation are demonstrated.  Section V 

examines empirically issues involving standard measurement and 

estimation strategies in the context of the YHL measure and 

implemented with data from the 1994 U.S. National Health 

Interview Survey and 1993 U.S. life table data.  Section VI 

concludes. 
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II. CONCEPTUAL AND MEASUREMENT ISSUES 

 Suppose the health status of each member of a defined 

population comprising N individuals at baseline2 can be 

characterized by an m-vector ai=[ai1,...,aim], i=1,...,N, of 

measurable health "attributes" aij.  (To fix ideas for the case 

of m=2, it may be that ai1 is functional status or quality of 

life, while ai2 might be life expectancy or survival.)  Neither 

the precise nature of each attribute nor the peculiar manner in 

which each is measured need be of concern at this juncture, 

although some particular measurement issues will be of concern 

later on. 

 A scalar summary measure of "health" at the individual level 

is given by the mapping (the "aggregator function") hi=h(ai), 

though it should be emphasized that there is no a priori reason 

that any particular hi should be more interesting than the 

constituent ai.  The discussion for the remainder of this section 

presumes that the hi are measurable (i.e. ai observed and 

functional form h(.) known), although much of what follows 

thereafter is devoted to assessing the problems that may arise 

when the hi are not directly measurable (e.g. not all elements of 

ai observable). 

 Suppose moreover that each individual in this baseline 

                         
2 The reason "baseline" is emphasized here is that any population 
whose health is monitored over time will experience attrition due 
to mortality, emigration, noncompliance, etc..  Accommodating 
such attrition in exercises like this is likely to be of some 
empirical importance.  For obvious reasons, restricting attention 
to populations and samples of "survivors" is likely to be 
problematic in situations where population health is of concern: 
One would be hard pressed to claim that a population of size N=3 
at baseline (t=0) having scalar health outcomes (say) {h1=.85, 

h2=.90, h3=.95} has worse health than a population of size N=1 

having health outcome {h1=.975} at t=1 when individuals 2 and 3 

died between periods 0 and 1. 
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population can be described by a two mutually-exclusive vectors 

of observable covariates -- xi and zi -- and by a vector of 

unobservables that can be summarized by the unobservable scalar 

Θi.  In essence, the particular identity of an individual member 

of the population is determined by the triple (xi,zi,Θi).  As 

will be discussed below, considerations of time will also be 

germane in some instances, so that the "i" subscripts might 

better be thought of as "i,t" subscripts, but this detail will be 

omitted unless needed for clarity.  The population joint 

distribution of (ai,xi,zi,Θi) is given by G(a,x,z,Θ), which has 

the corresponding conditional distribution G(a|x,z,Θ) (the 

unsubscripted (a,x,z,Θ) are typical elements).3 

 The remainder of this section sketches a variety of 

conceptual approaches to population health measurement based on 

these population distributions G(.) of health attributes (a) or 

health status (h).  Some of this discussion will be familiar to 

readers having exposure to the literature on economic inequality 

(see Litchfield, 1999, for a survey); yet despite the parallels, 

it should be emphasized that the main purposes of the inequality 

literature are in many regards different from the purposes of 

this exposition.   

 

Population Health Functionals 

 A most general summary scalar characterization (H) of the 

health -- or perhaps the social value associated with the health 

-- of this baseline population, conditional on its observed and 

its unobserved covariates, is given by the value of the 

functional H=F[G(a|x,z,Θ)] or H=F[G(h|x,z,Θ)] (see Allen, 1938, 
                         
3 A minor variation would be to view a as being determined 
nonstochastically once (x,z,Θ) are given, i.e. a=a(x,z,Θ), so 
that G(a|x,z,Θ) would be degenerate. 
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pp. 521-523, for a useful exposition of functionals).4  A 

functional "values" functions defined on the same domain in much 

the same way that a function "values" the arguments to a 

function. Allen, 1938, informally characterizes a functional as a 

limiting case of a function when the number of arguments in the 

function is permitted to go to infinity. 

 With reference to figure 1, the functional F[.] would value 

-- by assigning a larger and smaller value to population health H 

-- the two population distributions of the scalar health outcome 

h, G1(h) and G2(h).  Importantly, though, this mapping is not 

dependent per se on the mean, variance, order statistics, 

quantiles, or any other particular feature(s) of the Gi(h).  

Rather, it is based on the entirety of the respective probability 

distributions, i.e. the positions of all the points constituting 

G1 vs. all the points constituting G2.  How the valuation 

mechanism -- the functional -- is structured would depend on the 

analyst's or the policymaker's sense of what constitutes a scalar 

summary measure of the health of a population. 

 While conceptually an ideal setup for quantifying the health 

of a heterogeneous population, the formidable and obvious 

practical problem here is designing an operational way to rank 

alternative functions, i.e. what is the "functional" form?  

Nonetheless, while likely to be of little practical use, it is 

still of great conceptual utility to conceive of population 

health quantification in terms of mappings from the space of 

population health or health attribute distributions to scalar 

measures of health via the tool of a functional. 

  

 

                         
4 The functional is a concept used commonly, e.g., in expected 
and non-expected utility analysis (see, e.g., Machina, 1988, on 
"preference functionals"). 
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Stochastic Dominance 

 A more concrete way alternative distributions of population 

health can be compared is to invoke criteria of first- and 

second-order stochastic dominance in the scalar case -- i.e. 

pertaining to distributions G(h;.)-- and corresponding notions of 

multivariate stochastic dominance for considerations of 

distributions G(a;...).  Because the literature on stochastic 

dominance (at least for the univariate case) is rather well 

developed the discussion here will be brief.  The important point 

to carry away here is that a stochastic dominance approach to 

ordering population distributions of health or health attributes 

is in many respects a middle ground between the unstructured 

approach of population health functionals and the more 

restrictive (albeit more practical) approaches based on moments, 

quantiles, order statistics, and tail probabilities sketched out 

in the next section. 

 In comparing two distributions defined on a scalar variate 

(e.g. h), say G1(h) and G2(h), G1 exhibits first-order stochastic 

dominance over G2 if G2(h)≥G1(h) for all h, with G2(h)>G1(h) for 

at least some h, while G1 exhibits second-order stochastic 

dominance over G2 if ≤−∞ −∞∫ ∫
r r

G (h)dh G (h)dh1 2 , with strict 

inequality for at least some h.  In terms of these stochastic 

dominance measures, one distribution of population health would 

be judged "better" than an alternative if it exhibited an 

appropriate j-th order stochastic dominance. 

 Multivariate stochastic dominance is a much less well 

developed concept, but would be the appropriate concept in 

assessing the relative merits of competing distributions of 

health attributes, say G1(a|x,z,Θ) and G2(a|x,z,Θ).  Arguments 

fully paralleling those developed by Atkinson and Bourguignon, 

1982, in their analysis of multidimensioned distributions of 



 9 

economic status would be appropriate in this regard; indeed 

Atkinson and Bourguignon pursue an example that entails some 

considerations of health (life expectancy).  The analytics of 

multivariate stochastic dominance are more formidable than those 

applicable in the univariate setting, however. 

 

Functions of Moments, Quantiles, Order Statistics, etc. 

 Virtually any particular summary measure of population 

health that can be or that has been conceptualized will be a 

special case of the functional F[.], and will typically be 

represented by some function of the moments, quantiles, order 

statistics, or tail probabilities of Ga(a) or of Gh(h(a)).  

Ignoring for the moment conditioning on some set Ω, let µa and 

Σa=[σj] denote, respectively, the finite m-vector and m×m matrix 

of population means and covariances of the marginal distribution 

Ga(a), i.e. µa=EGa[a] and Σa=E[(a-µa)(a-µa)'].  Similarly let ξh 

and νh denote the scalar population mean and variance of the 

marginal distribution Gh(h(a)), and ξ(p)h  be the p-th raw moment 

of Gh(h(a)). 

 Then some particular characterizations would be, e.g., a 

general function defined on low-order moments of Gh(h(a)), 

 

 H = ϕ(ξh,ξ
(2)
h ,...,ξ(r)h );        (1) 

 

mean-variance measures 

 

 H = α'µa + β'Σaβ        (2) 

 

or 
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 H = γξh + δνh,         (3) 

 

where α and β are prespecified k-vectors and γ and δ are scalars 

to be specified; θ-quantiles,  

 

 H = �θ(Gh(h(a))),         (4) 

 

where θ = θ
−∞∫ dG (h( ))h a
�

; tail probabilities or "distiles", 

 

 H = Pr(h<h*) or Pr(h>h*)       (5) 

 

which are encountered in practice as, e.g., percentage of births 

that are low birthweight or percentage of adults that have BMI 

exceeding an obesity criterion; or Rawlsian maximin (order 

statistic) measures defined on the set of hi, 

 

 H = argmin{h(a1),...,h(aN)}.      (6) 

 

III. HETEROGENEITY, MEANS, AND COVARIANCES 

Decision Criteria Defined in Terms of Population Expectations 

 Much of what follows will be based on the working assumption 

that conditional or unconditional expectations (means) of some 

quantity are the main concern in the population health 

measurement exercise.  As noted above, this is by no means a 

necessary focus and may -- for both the reasons indicated above 

as well as for some additional reasons spelled out below -- 

distract attention from other aspects of the distribution of 

population health that may be of concern.  Without reference to a 

particular form of a social welfare function, there is no way to 

judge whether a mean or some other parameter is the "appropriate" 

parameter to summarize the health of a population. 
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 One prominent area where conditional and unconditional 

expectations play a key role is in medical technology evaluation, 

i.e. cost-effectiveness  or cost-utility analysis (CEA, CUA).   

It is common practice in assessing a new technology's (T) 

desirability relative to a standard or baseline practice (B) in 

terms of cost (c) and health effectiveness (e) to define 

parameters like the incremental cost-effectiveness ratio (ICER) 

or the incremental net benefit function (INHB; Stinnett and 

Mullahy, 1998) in terms of the underlying marginal population 

means of costs and health outcomes, e.g. ICER=[(µcT-µcB)/(µeT-

µeB)] and INHB=[(µeT-µeB)-(µcT-µcB)/λ] where µci
=E[ci|Ω] and 

µei
= E[ei|Ω], i∈{T,B}, λ represents the social value of the 

health increment, and Ω is some conditioning set involving 

[x,z].5  While it is by no means necessary to assert such a 

means-based definition, these definitions would appear to be the 

concepts referred to when most analysts consider statistical 

characterizations of ICERs and INHBs.  As such -- and despite the 

interesting intellectual debates surrounding alternative 

definitions (e.g. whether the ICER should be based on the ratio 

of means or on the means of the ratios (see Stinnett and Paltiel, 

1997, for discussion)) -- this paper will adopt the means-based 

approach as the analytical centerpiece.6 

 Of course, if interest is more in monitoring population 

health status/outcomes than in technology assessment per se, then 

the relevant comparison might simply be based on the differences 

                         
5 Phelps, 1997, is an excellent discussion of the importance of 
conducting conditional technology evaluation. 
6 While not a primary concern of this paper, it might be noted at 
this juncture that the statistical/inferential properties of the 
analogy estimators of ICER and INHB so defined have been assessed 
in a series of recent papers (e.g. Chaudhary and Stearns, 1996; 
Mullahy and Manning, 1995; Willan and O'Brien, 1996). 



 12 

E[eT-eB|Ω] or, in the previous notation, E[HT-HB|Ω] themselves, 

where HT and HB represent in such instances measures of health 

status in different populations, or in a given population at 

different points in time or under different imagined policy 

initiatives. 

 

Covariances of Health Attributes Across the Population  

 As a general matter it would be expected that the population 

variance-covariance of the health attributes a, Σa, will be 

nondiagonal.  That is, at least for some attributes in ai it 

would be unlikely if individuals having relatively high aij were 

not also found on average to have relatively high (or, possibly, 

low) aik for some (j,k) pairs. 

 Take for the moment aij to be a measure of quality of life 

and aik to be a measure of longevity.  Should it turn out that 

individuals having relatively high propensities to "live long" 

also have relatively high propensities to "live well," then 

consideration of such correlation is essential in properly 

characterizing the outcome measures.  This section describes some 

simple stochastic frameworks within which such considerations 

might be addressed formally, and then proceeds subsequently to 

present some central implications of these results for conducting 

empirical CEA/CUA,7 undertaking population health monitoring, or 

                         
7 Such an endeavor is warranted in part because of a potentially 
important friction between theoretical CEA and empirical CEA.  In 
particular, the use of QALY-type measures as von-Neumann-
Morgenstern utility functions has been shown to depend on a set 
of conditions that require inter alia a form of preference 
independence between quality of life and longevity (Pliskin et 
al., 1980; Bleichrodt and Johannesson, 1997).  QALY measures thus 
rationalized provide a relatively more solid basis for welfare 
analysis.  Yet regardless of whether individuals' utility 
functions are structured in accordance with these conditions, 
QALY measures will be used as outcome measures in CEA.  Assessing 

(continued) 
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formulating public policies involving health interventions. 

 Suppose k=2 so that hi=h(ai1,ai2), and suppose h(.,.) is 

continuously differentiable.  Consider a measure of population 

health akin to (3) with γ=1 and δ=0, i.e. H is expected or mean 

population health ξh.  In many practical applications, focus will 

be on such mean outcomes; not least in this regard are randomized 

trials in which differences in mean outcomes between treatment 

and control will often be the basis of regulatory efficacy claims 

(e.g. FDA NDAs) 

 To understand how the structure of H depends in this 

instance on the variance-covariance structure Ga(a), consider the 

second-order Taylor expansion of h(ai1,ai2) around the vector 

µa=[µa1,µa2]: 

 

 h(ai1,ai2) ≈ h(µa1,µa2) + 
− µ 

   ×   − µ
  

a1 a1h ,h1 2 a2 a2

 +  

   

− µ     − µ − µ × ×    − µ       

ah h 1 a1 11 12 1a ,a1 a 2 a h h a2 1 2 21 22 2 a2

, (7) 

 

where hj and hjk are the first- and second-order partial 

derivatives of h(.,.) evaluated at µa.  It follows that  

 

 

 

                                                                               
the empirical implications of how quality of life and longevity 
may be related in the population -- i.e. their lack of 
independence in the population -- is ultimately the major concern 
of this paper. 
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 ξh = EGa[h(ai1,ai2)] ≈ h(µa1,µa2) +  

       σ + σ 
1

h h11 11 22 222
 + h12σ12.      (8) 

 

Thus, to the extent that h(.,.) manifests nonlinearities in its 

arguments (hij nonzero), then H -- characterized thusly as mean 

population health -- will depend not just on the population means 

of the component health attributes µa1 and µa2 via the term 

h(µa1,µa2), but also on the variance-covariance structure of 

Ga(a), i.e. Σa.  The general result for m≥2 is 

 

  ξh ≈ h(µa1,...,µam) + σ=∑1 m hjj jjj 12
 + − σ= = +∑ ∑m 1 m hjk jkj 1 k j 1 .  (9) 

 

 Among other things (8) and (9) demonstrate that as a general 

matter, information on (e.g. estimates of) more than just the 

marginal means of the health attributes will be required to 

quantify H when the latter is defined in terms of mean population 

health. 

 Note that (8) and (9) are exact if h(.) is linear, 

quadratic, or multiplicative in the sense of containing only 

first-order interactions.  Specifically, for the case with m=2 

where h(ai1,ai2)=ai1×ai2 one has exactly 

 

 ξh = µa1×µa2 + σ12,         (10) 

 

which, upon inspection, is simply a restatement of the definition 

of a covariance, i.e. 

 

 cov(a1,a2|Ω) = E[a1×a2|Ω] - E[a1|Ω]×E[a2|Ω],  (11) 
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where Ω is some relevant conditioning information.  Yet equation 

(10) and variants thereon will be shown below to play a 

fundamentally important role in understanding the extent to which 

QALE- or QALY-type summary measures of health -- as commonly 

implemented -- in fact quantify a population's health as they are 

ostensibly designed to do.  Specifically, the remainder of the 

paper will focus largely on population health measures along the 

lines of E[a1×a2|Ω], where a1 will generally represent some 

measure of the quality of life at a point in time while a2 will 

be some measure of survival, life expectancy, longevity, etc., 

whose precise definition will be context-specific. 

 

Some Implications of Multiplicative Functional Forms 

 Suppose, thusly, one takes a1=q to be "quality of life" and 

a2=� to be some measure of "longevity" (defined suitably at the 

individual level). Instead of E[q×�|Ω], however, suppose one 

argued for E[q|Ω]×E[�|Ω] as a population health measure.  Then 

by definition this measure of health would be 

 

 E[q|Ω]×E[�|Ω] = E[q×�|Ω] - cov(q,�|Ω).    (12) 

 

There is nothing inherently incorrect about such a strategy.  Yet 

it is important to emphasize that such a "product of means" 

measure handles in a different way certain features of a 

population's joint distribution of health attributes that may be 

of interest from a welfare perspective than does the "mean 

product" measure. 

 For example, an Ω-population of size N=3 with (q,�) 

outcomes {(0.5,6),(0.9,10),(1.0,20)} would, by the standards of 
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(12), be judged to have the same level of population health 

(equal to 9.6) as would the population 

{(0.75,13),(0.8,12),(0.85,11)}, whereas the health of the former 

population would be judged to better than the health of the 

latter population (10.67 vs. 9.57) under the E[q×�|Ω] measure.  

For all practical purposes, only if q and � are independently 

distributed in the population (although zero correlation would in 

fact suffice) would these distinctions become irrelevant.  Since 

such independence would seem tenuous to maintain a priori for 

many measurement settings that can be imagined, allowance for the 

implications of nonzero correlation seems the prudent analytical 

course.8 

 The seemingly simple multiplicative functional form q×� in 

fact provides considerable structure (and, therefore, 

considerable restrictions) on the manner in which the various 

attributes combine to produce "health" in a heterogeneous 

population.  For given marginal means E[q|Ω] and E[�|Ω], 

expectations of the multiplicative form will reward (in terms of 

their measured population health status) populations having 

relatively high cov(q,�|Ω) relative to those having low or 

                         
8 To forestall potential confusion, a point regarding 
"independence" might be clarified at this juncture.  The issues 
described here are inherently statistical in nature.  As noted in 
the introduction and directly above, the concerns about issues 
such as independence between quality and longevity when using 
QALYs or related measures as utility or welfare measures are 
essentially concerns about the structures of individuals' utility 
functions (e.g. Pliskin et al., 1980; Bleichrodt and Johannesson, 
1997).  "Independence" used in such contexts connotes something 
potentially very different than would "independence" used, for 
instance, to characterize a population joint probability 

distribution (e.g. G(q,�)=G(q)×G(�)). 



 17 

negative cov(q,�|Ω).  More general and flexible forms (e.g. the 

second-order or quadratic form (8)) would allow one in principle 

to mitigate or offset the implications of such reward structures, 

but whether the available data would be up to the task of 

implementing such measures remains to be seen. 

 To close this section it is worth noting that with 

multiplicative mappings of attributes to health -- and for many 

other functional forms that might be imagined as well, as 

suggested by (9) -- it is intuitive that the population health 

measure would demonstrate some reliance on the variance-

covariance structure of the attributes, Σa.  If all the elements 

of a were perfectly correlated, then information on any single 

element would convey just as much information as would the entire 

vector.  Conversely, to work under a maintained assumption of a 

diagonal Σa -- i.e. all elements perfectly uncorrelated -- would 

be empirically unrealistic owing to the likely joint reliance of 

the aij on a deep set of individual biophysical characteristics 

("health capital").  As such, the prominence of Σa in many 

interesting measures of population health should be considered 

logical rather than surprising. 

 

IV. HALE/QALE- AND HALY/QALY-TYPE MEASURES 

 The last decade witnessed a burgeoning use of what will be 

referred to here generically as health-adjusted life year 

("HALY") or health-adjusted life expectancy ("HALE") measures in 

medical technology evaluation and population health monitoring.9  

                         
9 See Fryback, 1997, for an excellent comprehensive overview.  
The use of Quality-Adjusted Life Years (QALYs), Disability-
Adjusted Life Years (DALYs), Health-Adjusted Life Years (HALEs), 
Years of Healthy Life (YHLs), etc., as the central outcome 
measures in cost-effectiveness analysis (CEA) -- or, perhaps more 
accurately, cost-utility analysis (CUA) -- is both well-

(continued) 
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An enormous amount of intellectual energy has been dedicated to 

understanding the conceptual features of such measures, their 

relationships (or lack thereof) to welfare economics, etc.  

Moreover, much intellectual effort has been dedicated to 

developing sound empirical methods for estimating both components 

-- the health adjustment and the life year or life expectancy 

measure -- of HALYs or HALEs (see Johannesson et al., 1996, for a 

comprehensive survey).10 

Yet despite all this scholarly effort, remarkably little 

attention has been devoted to understanding the conceptual, 

empirical, and statistical properties of HALY or HALE measures 

themselves.  The "numbers" used in such enterprises to measure 

life's quality and length and their ultimate aggregation into the 

HALY/HALE measure necessarily derive from some source.  Either 

they are asserted from expert opinion -- thus rendering 

statistical analysis irrelevant -- or they are derived in some 

manner from some data source or sources, in which case their 

classical statistical properties (bias, consistency, efficiency, 

                                                                               
entrenched in practice and advocated formally by the recent 
report of the U.S. Panel on Cost-Effectiveness in Health and 
Medicine (PCEHM) (Gold et al., 1996). Quality-adjusted measures 
of longevity and life expectancy have also become a centerpiece 
of efforts to monitor the health status of large populations and, 
ultimately, to base policy recommendations thereon (Erikson et 
al., 1995; Cutler and Richardson, 1997). 
10 For the health- or quality-adjustment component, methods like 
the standard gamble (SG), time tradeoff (TT0), rating scale (RS), 
and others have been advocated and debated.  For the survival, 
life expectancy, or longevity component (the "LY" part of HALY), 
a substantial share of the research agenda has been devoted to 
developing statistical methods for estimating the appropriate 
hazard or survival models, with issues like whether proportional 
or additive hazard models may be more appropriate in particular 
circumstances occupying the center stage (see, for example, Beck 
et al., 1982a, 1982b).  There has also ensued a debate of 
considerable fervor about the merits, shortcoming, differences, 
and similarities of alternative HALY measures (e.g. QALYs vs. 
DALYs). 
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etc.) become pertinent considerations.  This section assumes the 

second perspective and develops a framework within which the 

properties of various HALE/QALE or HALY/QALY measures can be 

assessed. 

 The entire section works from two fundamental assumptions: 

first, that health at the individual level is a multiplicative 

function in attributes ai1 and ai2, i.e. hi=ai1×ai2; and second, 

that the summary measure of population health is a mean or 

conditional mean measure.  As noted above, while neither of these 

assumptions is necessary to pursue measurement of population 

health, they do characterize what would be more-or-less agreed to 

be "standard practice." 

 The key issue thus becomes the practical one of estimating 

population health measures on the basis of available data and 

assessing such estimates by classical statistical standards, bias 

being of greatest concern here.  That is, do the estimates tend 

on average to describe the population parameters they are 

supposed to mimic?  As will be suggested in what follows, the 

particulars of how data on both quality of life and 

longevity/survival/life expectancy are assembled and utilized -- 

given that data on one or both attributes are often not available 

at the individual level -- will play a key role in assessing the 

"bias" properties of the population health estimates so obtained. 

  

HALE/QALE-Type Measures 

 One aspect of population health measures based on "life 

expectancy" (�) is that they are inherently not measurable at the 

individual level.  "Life expectancy" is not observable at an 

individual level as are outcomes like survival or systolic blood 

pressure.  Rather, life expectancy, conditional on some set Ω 

(e.g. age, gender, race), is typically estimated actuarially on 

the basis of recent average mortality experiences of "like" 
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populations, with the resulting estimates often summarized in the 

form of life tables (e.g. Anderson, 1999).  Measures akin to 

Health- or Quality-Adjusted Life Expectancy (HALE, QALE) will -- 

even if ostensibly individual-level -- necessarily entail 

averages of one or more measures taken over some related 

population.  This holds true regardless of whether individual-

level measures of quality of life are available. 

 It may be that in some situations individual-level measures 

of quality of life are accessible in the data of interest, while 

in other instances it will be necessary to rely on like 

experiences, regression predictions, published results, etc. to 

obtain factors that provide for estimates of the "QA" or "HA" 

part of the QALE or HALE measure.  Rosenberg et al., 1998, note 

that: "Different approaches for calculating HALE use quality 

numbers based on an average of one measurement at one time-point 

over all individuals, an average over all individuals 

longitudinally over time, or perhaps, measurements taken from 

individuals at repeated time intervals."  As will be seen in the 

next section, the Years of Healthy Life (YHL) measure is an 

example of this type of measure: Life expectancy data are 

obtained from life tables, while quality adjustments are obtained 

on the basis of a large sample of individual-level responses to 

two survey items that map into the so-called HALex index, with 

the (estimated) parameters of the mapping themselves usefully 

conceived as arising from some averaging procedure. 

 The goal of this subsection is to present an analytical 

structure within which the merits of alternative 

computation/estimation strategies for HALE- or QALE-type measures 

can be assessed given a population heterogeneous in (q,�,x,z,Θ) 

and one for which conditional or unconditional covariance between 

q and � may be nonzero (cov(q,�|...)≠0).  It should be stressed 

that the effort here is to develop a framework that is quite 
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general.  Specific implementations will typically require 

additional considerations.11  

 The general result is as follows.  Suppose the population 

health measure that is the objective of estimation is 

 

 H = E{ E[q|Ωq] × E[�|Ω�] | Ω }     (13) 

   = E{ ζ(Ωq) × ψ(Ω�) | Ω }, 

 

where Ωq, Ω�, and Ω represent possibly different conditioning 

information, such that {Ωq∪Ω�∪Ω}⊆{x,z,Θ}.  (Whether this is the 

ideal measure or the measure that is necessarily specified owing 

to data restrictions is not essential here.)  In particular, Ωq 

and Ω� may be chosen such that q and/or � are completely 

                         
11 Indeed, it is instructive to read how one particular HALE 
measure is actually computed; the following excerpt from the 
Rosenberg-Fryback-Lawrence, 1998, study based on the Beaver Dam 
Health Outcomes Study data: 

The quality and mortality numbers are combined to form 
the age-specific HALE by the following method.  Assume 
that the HALE is desired for males aged 55.  One-year 
mortality rates at each age (q55,q56,...) would be 

estimated until a limiting age, that where the 
probability of death is equal to 1.  HRQOL numbers at 
each corresponding age (h55,h56,...) would also be 

determined.  Then: The mortality rates would be 
combined to form survival rates (1p55,2p55,...) to each 

age, where tpχ is the probability that a person aged χ 
will survive to age χ+t. 

 HALE55 = 
∞ ×+ −=∑ h   p55 t 1 t 55t 1  

The HALE for the community would involve a weighting of 
the age-adjusted HALEs over those in the community. 
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determined given Ωq and/or Ω�, i.e. "q"=E[q|Ωq] and/or 

"�"=E[�|Ω�] so that E[q×�|Ω] can be taken here to be one special 

case of (13) (see footnote 3 above).  

 Equation (13) can be reexpressed as 

 

 E{E[q|Ωq]×E[�|Ω�]|Ω} =       (14) 

   [E{Ωq∪Ω�|Ω}ζ(Ωq)]×[E{Ωq∪Ω�|Ω}ψ(Ω�)] + 

cov{Ωq∪Ω�|Ω}(ζ(Ωq),ψ(Ω�)), 

 

where E{ν}[.] denotes the expectation of [.] taken over the 

distribution of ν.  In words, the expectation of interest is the 

sum of two components: first is the product of the expectations 

of ζ(Ωq) and ψ(Ω�) taken over Ωq∪Ω� given Ω; second is the 

covariation between ζ(Ωq) and ψ(Ω�) that arises due to 

covariance between Ωq and Ω� in the Ω-population.  Note that if 

{Ωq∪Ω�}⊆Ω then E{E[q|Ωq]×E[�|Ω�]|Ω} reduces simply to 

ζ(Ωq)×ψ(Ω�). 

 Concrete examples may be useful.  First, suppose 

Ωq={x,z,Θ}, Ω�={x,z}, and Ω={x}.  Then (13) entails, inter alia, 

a consideration of how z and Θ covary in the x-population.  

Alternatively, suppose Ωq={x}, Ω�={z}, and Ω={x,z}.  Then there 

is clearly no covariation between ζ(x) and ψ(z) over {x,z} since 

conditioning is on {x,z} in the first place, so the expectation 

defining H in (13) is simply the product of the expectations ζ(x) 



 23 

and ψ(z). 

 Of course, the key issue here is that just because 

E{E[q|Ωq]×E[�|Ω�]|Ω} is the target measure, it is not 

necessarily feasible to implement it.  That is, measures or 

estimates of E[q|Ωq] and/or E[�|Ω�] may not be available.  What 

"biases" relative to the target measure E{E[q|Ωq]×E[�|Ω�]|Ω} 

would arise would clearly depend on the specific measures or 

averages used in computation.  Obviously if the measure computed 

was obtained as the product of the averages E{Ωq∪Ω�|Ω}ζ(Ωq) and 

E{Ωq∪Ω�|Ω}ψ(Ω�), then from (13) estimate would be biased owing 

to the covariance term:  

 

 [E{Ωq∪Ω�|Ω}ζ(Ωq)]×[E{Ωq∪Ω�|Ω}ψ(Ω�)] =    (15) 

   E{E[q|Ωq]×E[�|Ω�]|Ω} - cov{Ωq∪Ω�|Ω}(ζ(Ωq),ψ(Ω�)). 

 

For a more concrete example, take Ωq=Ω�={Θ} and Ω={x,z}, with x 

denoting age and z denoting sex.  Thus, the target measure 

amounts to E[q×�|x,z]= E[q|x,z]×E[�|x,z]+cov(q,�|x,z).  However, 

suppose as above that the estimate actually used is based on 

E{E[q|x]×E[�|z]|x,z}=E[q|x]×E[�|z], i.e. mean q given age 

(marginal over sex and Θ) times mean � given sex (marginal over 

age and Θ).  As a general matter, there is no reason to expect 

that E[q|x]×E[�|z] would approximate well E[q×�|x,z], with an 

intuition being that the over-averaging entailed in the former 
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would tend to mitigate variation in E[q×�|x,z] over {x,z}.  The 

following exhibit demonstrates this phenomenon by means of a 

simple example: 

 

Exhibit 1(a) 

x Cell triples are 

(q,����,Pr(x,z)) 0 1 

0 (.8,10,.25) (1,30,.25) 
z 

1 (.8,5,.25) (.9,20,.25) 
 

 

Exhibit 1(b) 

x Cell entries are 

E[q××××����|x,z] 0 1 

0 8 30 
z 

1 4 18 
 

 

Exhibit 1(c) 

x Cell entries are 

E[q|x]××××E[����|z] 0 1 

0 16 19 
z 

1 10 11.875 
 

 

 The upshot of the discussion in this subsection is that 

unless the analyst has access to precisely the kind of data on q 

and � that correspond to the particular measure of population 

health of interest, estimation or averaging methods used as 

proxies are in general unlikely to describe accurately the 

outcome of interest when populations are heterogeneous in their 

quality of life and in their life expectancy.  The covariation 

between q and � that one might expect to find in a population is 

ultimately the main source of such discrepancies. 
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HALY/QALY-Type Measures 

 At any time t, a "HALY" or "QALY" can appropriately be 

thought of a the product of a 0-1 individual-specific survival 

indicator at time t (st) and the individual's quality of life at 

period t (qt).  One imagines then a joint distribution 

G(q,s,x,z,Θ) where q and s are vectors of health outcome 

attributes comprising {qt} and {st} respectively.
12  It is common 

practice to normalize qt=0 as the quality of life equivalent to 

being dead so that st=0 is sufficient for qt to be zero, but is 

not necessary.  Conditional on some set Ω⊆{x,z}, the "expected 

QALY" measure (ignoring discounting for present purposes) for an 

individual whose quality of life and survival status would in 

principle be measured13 over T+1 time periods from baseline (t=0) 

to termination (t=T) is given by 

 

 E[QALY|Ω] =  × Ω=  ∑T
E q s |t tt 0      (16) 

           =  Ω=  ∑T
E q |tt 0 , 

 

with the second equality following from the normalization that 

"st=0"⇒"qt=0". A quantity akin to (16) is presumably what the 

U.S. Panel on Cost-Effectiveness in Health and Medicine 

contemplated when it defined the QALY measure as 

                         
12 A continuous-time setting where, e.g., survival time is 
measured as a continuous scalar variable can be captured here by 
imaging small time increments. 
13 "in principle" is noted here since QALY-type measures will 
typically be most useful in ex ante contexts where individual-
level survival is not known. 
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...the sum of the quality weights for the various 
health states...multiplied by the duration (in years or 
fractions of years) of each health state.  This is the 
number of QALYs gained without discounting.  (PCEHM, p. 
92) 

 

(See also Glasziou et al., 1990, and Zhao and Tsiatis, 1997.) 

 Ignoring "t" subscripts, the typical term in the summand 

(16) can be usefully decomposed as 

 

E[q×s|Ω] = E[q×s|Ω,s=1]×Pr(s=1|Ω) + E[q×s|Ω,s=0]×Pr(s=0|Ω) (17) 

     = E[q|Ω,s=1]×Pr(s=1|Ω).      (18) 

 

As such, and in particular owing to the 0-1 measurement of s and 

the "s=0"⇒"q=0" normalization, the "expected QALY" E[q×s|Ω] can 

be obtained as the product of the mean q among survivors with Ω 

(E[q|Ω,s=1]) and the probability of survival at time t for those 

with Ω (Pr(s=1|Ω)).  This, of course, is tantamount to how QALYs 

are measured when individual-level data are available in (say) 

clinical trials, i.e. as areas under quality-adjusted survivor 

curves (the thin curve in figure 2). 

 An enormous advantage of the normalizations leading to the 

result (18) is that separate (consistent) estimates of 

E[q|Ω,s=1] and Pr(s=1|Ω)=E[s|Ω] -- even though possibly obtained 

from different sources of data -- will suffice to estimate 

(consistently, owing to Slutsky's theorem) the proper conceptual 

measure, E[q×s|Ω].  Since researchers do not always have the 

luxury of access to data sources where both q and s are observed 

for individual subjects, this result is obviously of some 

practical importance.  As a general matter, combining separate 

estimates of component expectations will not afford such a 

solution.  Indeed, it must be emphasized that this result 
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requires estimation of E[q|Ω,s=1], not of E[q|Ω], in order to 

work. 

 Quite generally, it is useful to note that there is a 

nonzero covariance (given Ω) between q and s: 

 

 E[q|Ω]×E[s|Ω] =         (19) 

 {E[q|Ω,s=1]×Pr(s=1|Ω) + E[q|Ω,s=0]×Pr(s=0|Ω)} × Pr(s=1|Ω), 

 

implying 

 

  cov(q,s|Ω) = E[q|Ω,s=1] × Pr(s=1|Ω) × {1-Pr(s=1|Ω)} > 0.  (20) 

  

That the covariance is necessarily positive can be seen by 

examining the sample space depicted in figure 3.  A linear 

regression of q on s will obviously have a positive slope; 

recognizing that the sign of the slope of the linear regression 

of q on s has the same sign as cov(q,s), it follows that 

cov(q,s|Ω)>0.14 

 

V. AN EXAMPLE: MEASURING POPULATION HEALTH USING YEARS OF HEALTHY 

LIFE 

 The Years of Healthy Life (YHL) measure was developed and 

reported by researchers at the National Center for Health 

Statistics (Erikson et al., 1995, henceforth "the YHL report").  

Two heralded features of the YHL measure are its ability to 

monitor continually the health of the U.S. population (since its 

                         
14 That this covariance is necessarily positive at any point in 
time in the population is a matter separate from the fact that 
medical technology interventions may result in changes in both 
the survivor function as well as in its quality-adjusted 
counterpart such that increases in survival probabilities may 
arise either in lockstep with or at the expense of increases in 
quality of life. 
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empirical basis is a battery of unchanging questions from the 

annual National Health Interview Surveys (NHIS)) and its 

computational ease (since it is based on a small number of items 

from the NHIS in conjunction with standard life table 

information).  See Gold et al., 1997, for additional discussion. 

 An example of the output from the YHL measurement algorithm 

is presented in table 1 (excerpted and abridged from Erikson et 

al., 1995).  Columns 1, 2, and 3 display the five-year age 

increments, the number of individuals alive at the beginning of 

the age increment from an imaginary birth cohort of 100,000 

individuals, and the stationary population in the full five-year 

age range, respectively.  Columns 1-3 are derived from NCHS life 

tables.  Column 4 depicts the within-age-interval sample mean QOL 

index (the so-called Health and Limitations Index, or HALex), 

derived from two survey items on the NHIS sample regarding self-

perceived health status (EVGFP) and limitations due to disability 

(and supplemented with information on the institutionalized and 

military populations).  Column 5 is the product of columns 3 and 

4, and column 6 is the bottom-up cumulative of column 5 (i.e. 

C6j=C5j+ = +∑J C5kk j 1 ).  Column 7 is column 6 divided by column 1, 

and column 8 is taken from life tables. 

 The key issue here concerns the computation used to generate 

the figures in column 5 where the ostensible objective is to 

obtain the total number of healthy life years within each age 

interval.  That is, the QOL scores for each age interval are 

obtained as averages within the age interval of the individual 

QOL scores within the interval.  For example, for ages 0-5 the 

sample average QOL score of 0.94 accounts for a large percentage 

of young children in "perfect health" (QOL=1.0) and a small 

percentage in sub-perfect health. 
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An Analysis of Health-Adjusted Life Expectancy 

 Unfortunately the NHIS data do not permit a comparison with 

the YHL report's findings in light of the previous analyses since 

NHIS is a residential survey and the YHL made a series of 

modifications to accommodate institutionalized populations.  

Instead this subsection describes an illustrative analysis of the 

computation of health-adjusted life expectancy based on HALex 

data from the 1994 NHIS (sample size 47,719) combined with U.S. 

life table data from 1993.  The main thrust of this exercise is 

to demonstrate the sensitivity of estimates of population health 

summary measures (here HALE) to alternative strategies for 

obtaining HALex values (q) and life expectancy (�) measures.  

Specifically, different averaging strategies for both q and � 

across different subpopulations are considered.  The HALE 

measures developed here are purely illustrative; more 

sophisticated measures based on specific demographic 

considerations like mortality could be developed in extensions of 

this work. 

 As indicated above, life expectancy is not a variable 

"observed" at an individual level.  Rather, life expectancy 

measures are inherently population or sub-population averages 

based on recent mortality experiences of similar populations.  

The life expectancy measures used here from 1993 U.S. life tables 

are available for the 272 subpopulations defined by age (in 

years; 18-85 are used here), sex, and race (white vs. nonwhite).  

Conversely, the quality-adjustment measures (q) from the HALex 

are, in some sense, "observed" at an individual level, although 

as noted earlier the health state scores are based on parameters 

from the HUI Mark-I index, with these parameters themselves being 

summaries or averages.  So for purposes of this analysis q is 

treated as an individual-level measure, but in fact it may not be 

as "individual" in nature as would, say, a systolic blood 
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pressure readind or an FEV1 measure. 

 For purposes of this discussion, the conditioning 

information (x,z)={age,sex,race}; the particular 

characterizations of x and z will be specified below.  From the 

earlier discussion, the ideal measures of population health would 

be parameters like E[q×�|x] or E[q×�|x,z].  Of course, � is not 

observed at the individual level; the measures available from the 

life tables are E[�|x] or E[�|x,z].  As such, the full range of 

individual-level conditional variation in � and conditional 

covariation between q and � cannot be exploited.  For instance, 

were the objective estimation of E[q×�|x,z]=E[q×�|age,sex,race] 

and were the analysis based on the measures 

E[�|x,z]=E[�|age,sex,race], then the estimand would be 

 

 E[q×E[�|x,z]|x,z] = E[q|x,z]×E[�|x,z]    (21) 

                   = E[q×�|x,z]- cov(q,�|x,z), 

 

so that the ideal measure is over- or under-stated to the extent 

that the covariance between q and � in the sub-population defined 

by (x,z) -- owing to sub-population heterogeneity in Θ -- is 

negative or positive.  Such discrepancies might be taken as 

indicators of the "bias" resulting from the use of "average" or 

"proxy" information.  For purposes of this particular exercise, 

it is important to recognize that much of the population 

heterogeneity in life expectancy (were it in fact "measurable" at 

an individual level) is likely be attributable to factors beyond 
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{age,sex,race}, i.e. Θ.15  As such, the empirical results to be 

discussed now should be interpreted thusly. 

 Two sets of measures of population health are of concern.  

The objective of the first exercise is estimation of the age/sex-

specific mean QALE E[q×�|x], with x={age,sex} and z={race}.  For 

the reasons discussed above, the "best" one can do here to 

exploit heterogeneity in q×� beyond that owing to x is 

computation based on E[q×E[�|x,z]|x] since the life table data on 

� are available only at the {age,sex,race} level.  This exercise 

will illustrate how results based on this approach compare with 

those obtained when alternatives based on 

E{E[q|x]×E[�|x]|x}=E[q|x]×E[�|x] are used.  The second exercise 

is to estimate the unconditional population HALE/QALE, with the 

same basic considerations about alternative averaging approaches 

assessed as well. 

 The detailed age-sex results are presented in table 2.  It 

is seen here that for virtually all age-sex sub-populations the 

empirical covariance between q and E[�|x,z] is positive, as 

expected, but small in magnitude.  That these covariances are 

small -- with the corollary implication that the differences 

between E[q×E[�|x,z]|x] and E[q|x]×E[�|x] are small -- should not 

be surprising since the only heterogeneity and covariation that 

are effectively being exploited in the computation of 

E[q×E[�|x,z]|x] are those due to the fact that q and � covary by 

                         
15 Indeed, a linear regression of q on a quadratic in 

{age,sex,race} gives an R2 of only 0.11 in the full sample.  
Whether {age,sex,race} captures more or less of the variation in 

� than in q (so measured) is not known. 
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race within each {age,sex} subpopulation. 

 The second exercise, computation of the unconditional 

E[q×E[�|x,z]] vs. proxying by E[q]×E{E[�|x,z]} results in 

estimates E[q×E[�|x,z]]=28.63 and E[q]×E{E[�|x,z]}=27.73, with an 

implied cov(q,E[�|x,z])=0.9.  The covariance is obviously larger 

in this instance since covariation between q and � across age, 

sex, and race subpopulations influence the computations. 

 

A Simulation 

 This subsection provides a simulation exercise based on the 

specific information from the YHL report.  For simplicity of 

exposition, the focus here is on the particular measure "Years of 

Healthy Life for the Population Ages 85+."16  (Note the relevant 

conditioning x here is simply a single age category.)  The idea 

is to simulate under alternative correlation assumptions a set of 

individual-level samples of N=31,892 observations consistent with 

the marginals and averages appearing in the last row of table 1, 

and then to assess how the corresponding measures (averages, 

totals) of quality-adjusted life expectancies taken over the 

individuals in these pseudo-samples relate to the correlation 

assumptions. 

 Specifically, let ui1, i=1,...,31892, be pseudo-random 

N(0,1) variates and let ui2=αui1+ui3, where the ui3 are also 

N(0,1) pseudo-random variates independent of ui1.  The population 

correlation between the ui1 and ui2 is then given by 

                         
16 The arguments advanced here generalize, mutatis mutandis, to 
the YHL measure for the entire population as examined by Erikson 
et al., but are most easily exposited for a this particular 
category so that cumulation can be avoided. 
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ρ12=
α

α +2 1
.  (Note that ui1 and ui3 are drawn only once.)  

Assume now that life expectancy is generated off the ui1 as the 

lognormal variates Li=exp(µ1+ui1), where µ1 is chosen to make the 

mean of these lognormal variates square with the sample mean life 

expectancy 6.07=193,523÷31,892.  The corresponding quality-of-

life scores are generated off the ui2 as the probits 

Qi=Φ(µ2+ui2), where µ2 is chosen to force the mean of these 

probits to equal the sample mean quality-of-life score 0.51.  The 

sample correlation between the Qi and Li is denoted ρ̂QL.  

Finally, the individual-level YHLs are given by the product 

Qi×Li.  Three prototypical joint distributions for positive, 

zero, and negative ρ are displayed in figures 4-6. 

 The results of the simulation are summarized in table 3.  

Column 1 displays the population correlations ρ12.  Column 2 

reports the sample correlations ρ̂QL.  Columns 3, 4, and 5 report 

the sample means of the corresponding quality-of-life scores, 

life expectancies, and YHLs, respectively.  The row marked in 

boldface font corresponding to ρ12=0 provides a useful baseline 

reference.  Here are seen an empirical ρ̂QL correlation close to 

zero and sample means of Qi, Li, and YHLi virtually identical to 

those reported in (or implied by) the last row of table 1. 

 The findings of primary interest are displayed in the last 

column for the nonzero ρ12 correlations.  Even though the sample 

means of Qi (and, of course, Li) are essentially the same under 

each correlation structure, the means of YHLi vary impressively 

over the different assumed correlations.  Even empirical 

correlations ρ̂QL on the order of ±0.4 apparently result in 
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sizable divergences of the mean YHLs from the value obtained 

under the naive zero-correlation assumption. 

The bottom line is that (sub-)population heterogeneity in q 

and � in conjunction with nonnegligible covariance between q and 

� have potentially dramatic implications for health status 

measurement. 

 

VI. CONCLUSION 

 For cost-effectiveness analysis, population health 

monitoring, and other important practical pursuits, {H,Q,D}-AL-

{E,Y} measures have become the standard vehicles for quantifying 

outcomes.  As such, it is critical to work within a 

methodologically rigorous framework when such measures are used 

for evaluative purposes.  In the context of a very general 

stochastic framework, this paper has exposited a range of 

analytical tools for quantifying population health outcomes -- 

functionals, stochastic dominance, and parametric functions of 

moments, order statistics, quantiles, and tail probabilities -- 

and pursued in detail various features of expectations-based 

methods.  Estimating such expectations, while conceptually 

straightforward, will often require in practice consideration of 

the covariance structures of G(.), thus rendering empirical 

implementation perhaps less straightforward than might meet the 

eye.  Moreover, as suggested above, whether multiplicative 

functional forms that map attributes into health status are 

desirable -- from the perspective of characterizing usefully the 

population distribution of health -- should be a paramount 

consideration in designing measures of population health.  

Finally, it should be emphasized that only a handful of 

approaches to definition and estimation have been presented and 

assessed here, and that other approaches might be considered 

under particular circumstances.  Whether or not the "covariance" 
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issues described above will pertain in such applications will 

depend on the particular definition and estimator, but before 

approaching any such alternative analytical structure, analysts 

might do well to consider the prospect that without due caution 

"lurking covariances" may ensnare empirical analyses.  At a 

minimum, it is hoped that the analysis undertaken here will point 

the way to further developments in the important field of 

empirical population health research. 
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Figure 1 
 

Prototypical Distributions (Densities) of a Scalar Health Measure 
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Figure 2 
 

Quality-Adjusted Survivor Curves 
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Figure 3 
 

Joint Sample Space for (q,s) in QALY Example 
 

 

    s 
 
  1 ************************ 
 
 
 
 
 
 
  0 *                         q 
    0                      1 

 



 44 

Figure 4 
 

g(q,�) with ρq� = +.42 
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Figure 5 
 

g(q,�) with ρq� = 0 
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Figure 6 
 

g(q,�) with ρq� = -.51 
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Table 1 
 

YHL for Selected Age Intervals 
(Excerpted and Abridged from Erikson et al., 1995) 

 

 
Quality-Adjusted 

Stationary Population���� 
 

Age 
Interval 

# Living at 
Beginning of 
Interval of 
100k Born 

Alive 

Stationary 
Population 
in Interval 

Average 
HRQOL of 

Persons in 
Interval 

����in 

Interval 

����in This 

and 
Subsequent 
Intervals 

YHL 
Remaining 

LY 
Remaining 

(1) (2) (3) (4) (5) (6) (7) (8) 

0-5 Years 100,000 495,073 0.94 465,369 6,403,748 64.0 75.4 

5-10 Years 98,890 494,150 0.93 459,560 5,938,379 60.1 75.1 

� � � � � � � �

80-85 Years 47,168 197,857 0.63 124,650 223,347 4.7 10.9 

85 Years 31,892 193,523 0.51 98,697 98,697 3.1 8.3 
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Table 2 
 

HALE/QALE Estimates from 1994 NHIS and 1993 U.S. Life Tables 
 

 

Age Sex 
E[q××××E[����|A,S, 
Race]|A,S] 

E[q|A,S]×××× 
E[����|A,S] 

cov(q,����|A,S) E[����|A,S] E[q|A,S] N. Obs. 

18 F 54.84 54.82 0.0270 61.40 0.89 241 

 M 49.98 50.00 -0.0122 55.18 0.91 149 

19 F 53.83 53.81 0.0252 60.41 0.89 313 

 M 49.81 49.79 0.0141 54.08 0.92 187 

20 F 53.06 53.04 0.0141 59.65 0.89 329 

 M 49.58 49.58 0.0054 53.38 0.93 195 

21 F 52.30 52.29 0.0038 58.65 0.89 360 

 M 48.18 48.18 0.0015 52.32 0.92 230 

22 F 51.30 51.27 0.0297 57.65 0.89 400 

 M 47.26 47.28 -0.0105 51.44 0.92 270 

23 F 50.62 50.62 0.0045 56.67 0.89 477 

 M 46.26 46.23 0.0332 50.41 0.92 285 

24 F 49.80 49.79 0.0143 55.79 0.89 500 

 M 45.56 45.53 0.0267 49.85 0.91 291 

25 F 48.95 48.94 0.0085 54.78 0.89 524 

 M 44.94 44.92 0.0164 48.72 0.92 315 

26 F 47.92 47.91 0.0130 53.88 0.89 531 

 M 43.51 43.49 0.0255 47.66 0.91 325 

27 F 47.58 47.56 0.0216 52.86 0.90 520 

 M 42.47 42.44 0.0293 46.97 0.90 359 

28 F 46.07 46.06 0.0085 51.91 0.89 560 

 M 41.78 41.79 -0.0102 46.08 0.91 327 

29 F 45.08 45.06 0.0122 50.99 0.88 606 

 M 41.09 41.06 0.0287 45.11 0.91 315 

30 F 43.96 43.95 0.0132 49.99 0.88 704 

 M 40.19 40.18 0.0123 44.14 0.91 430 

31 F 43.21 43.19 0.0220 48.95 0.88 664 

 M 38.86 38.84 0.0157 43.30 0.90 401 

32 F 42.15 42.13 0.0185 48.12 0.88 693 

 M 38.42 38.40 0.0184 42.49 0.90 390 

33 F 41.84 41.82 0.0167 47.15 0.89 682 

 M 37.05 37.04 0.0118 41.58 0.89 407 

34 F 40.67 40.65 0.0244 46.08 0.88 685 

 M 35.94 35.90 0.0439 40.48 0.89 402 

35 F 39.81 39.79 0.0164 45.28 0.88 687 

 M 35.42 35.41 0.0084 39.71 0.89 412 

36 F 39.16 39.15 0.0102 44.27 0.88 695 

 M 33.94 33.91 0.0308 38.80 0.87 421 
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Age Sex 
E[q××××E[����|A,S, 
Race]|A,S] 

E[q|A,S]×××× 
E[����|A,S] 

cov(q,����|A,S) E[����|A,S] E[q|A,S] N. Obs. 

37 F 37.27 37.24 0.0320 43.30 0.86 717 

 M 34.03 34.02 0.0051 38.11 0.89 463 

38 F 36.66 36.63 0.0277 42.32 0.87 696 

 M 32.44 32.44 -0.0082 37.02 0.88 379 

39 F 35.61 35.59 0.0221 41.49 0.86 681 

 M 31.40 31.37 0.0330 36.16 0.87 349 

40 F 35.31 35.29 0.0204 40.52 0.87 624 

 M 30.49 30.49 -0.0009 35.30 0.86 403 

41 F 33.60 33.57 0.0266 39.51 0.85 604 

 M 29.30 29.27 0.0393 34.38 0.85 371 

42 F 33.12 33.09 0.0282 38.61 0.86 625 

 M 28.73 28.69 0.0471 33.62 0.85 363 

43 F 32.36 32.32 0.0365 37.60 0.86 599 

 M 27.45 27.44 0.0138 32.67 0.84 359 

44 F 31.19 31.17 0.0265 36.70 0.85 552 

 M 27.57 27.57 0.0075 31.77 0.87 342 

45 F 30.41 30.38 0.0370 35.88 0.85 559 

 M 26.05 25.99 0.0666 30.85 0.84 346 

46 F 29.75 29.72 0.0295 34.89 0.85 568 

 M 25.53 25.51 0.0160 30.04 0.85 320 

47 F 28.55 28.54 0.0124 34.06 0.84 564 

 M 24.85 24.83 0.0187 29.20 0.85 373 

48 F 27.68 27.67 0.0171 33.14 0.83 468 

 M 24.16 24.16 -0.0009 28.32 0.85 278 

49 F 26.07 26.04 0.0348 32.17 0.81 439 

 M 23.32 23.30 0.0124 27.56 0.85 290 

50 F 25.92 25.90 0.0235 31.35 0.83 470 

 M 22.57 22.53 0.0356 26.62 0.85 273 

51 F 24.52 24.49 0.0291 30.36 0.81 448 

 M 20.68 20.65 0.0247 25.81 0.80 311 

52 F 23.64 23.61 0.0360 29.52 0.80 396 

 M 20.45 20.46 -0.0089 24.86 0.82 270 

53 F 23.52 23.51 0.0083 28.65 0.82 376 

 M 19.67 19.64 0.0282 24.10 0.82 239 

54 F 21.95 21.91 0.0434 27.80 0.79 386 

 M 18.96 18.94 0.0216 23.26 0.81 233 

55 F 20.98 20.93 0.0514 26.91 0.78 345 

 M 17.69 17.68 0.0050 22.43 0.79 243 

56 F 20.55 20.52 0.0376 25.96 0.79 367 

 M 17.24 17.24 0.0039 21.72 0.79 242 

57 F 19.50 19.48 0.0255 25.23 0.77 354 

 M 16.58 16.57 0.0102 21.00 0.79 235 
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Age Sex 
E[q××××E[����|A,S, 
Race]|A,S] 

E[q|A,S]×××× 
E[����|A,S] 

cov(q,����|A,S) E[����|A,S] E[q|A,S] N. Obs. 

58 F 18.78 18.75 0.0345 24.28 0.77 380 

 M 16.18 16.16 0.0190 20.21 0.80 198 

59 F 18.56 18.53 0.0292 23.55 0.79 376 

 M 14.82 14.80 0.0186 19.42 0.76 243 

60 F 17.31 17.29 0.0202 22.78 0.76 352 

 M 14.34 14.32 0.0145 18.69 0.77 240 

61 F 16.52 16.49 0.0279 21.95 0.75 337 

 M 13.68 13.66 0.0212 17.93 0.76 214 

62 F 16.20 16.18 0.0232 21.17 0.76 364 

 M 12.52 12.50 0.0175 17.24 0.73 232 

63 F 15.23 15.21 0.0248 20.38 0.75 382 

 M 12.12 12.11 0.0089 16.61 0.73 231 

64 F 15.13 15.11 0.0179 19.65 0.77 360 

 M 11.73 11.72 0.0145 15.90 0.74 250 

65 F 14.27 14.25 0.0204 18.82 0.76 365 

 M 11.63 11.62 0.0117 15.29 0.76 261 

66 F 13.91 13.88 0.0220 18.10 0.77 406 

 M 11.17 11.16 0.0094 14.68 0.76 232 

67 F 13.46 13.45 0.0113 17.34 0.78 391 

 M 10.74 10.74 0.0004 14.02 0.77 259 

68 F 12.97 12.96 0.0115 16.64 0.78 387 

 M 10.19 10.18 0.0117 13.40 0.76 253 

69 F 11.92 11.91 0.0079 15.97 0.75 365 

 M 9.89 9.89 0.0022 12.80 0.77 223 

70 F 11.52 11.52 0.0064 15.18 0.76 383 

 M 9.42 9.41 0.0095 12.20 0.77 232 

71 F 11.09 11.09 0.0083 14.49 0.76 353 

 M 8.54 8.54 0.0039 11.60 0.74 230 

72 F 10.20 10.20 0.0015 13.89 0.73 359 

 M 8.34 8.33 0.0092 11.03 0.76 210 

73 F 9.74 9.73 0.0047 13.19 0.74 356 

 M 7.99 7.98 0.0047 10.54 0.76 221 

74 F 9.37 9.36 0.0077 12.51 0.75 344 

 M 7.52 7.52 0.0012 9.96 0.76 232 

75 F 8.70 8.69 0.0062 11.95 0.73 304 

 M 7.02 7.02 0.0018 9.44 0.74 159 

76 F 8.43 8.43 0.0025 11.25 0.75 282 

 M 6.71 6.71 0.0017 8.97 0.75 174 

77 F 7.46 7.46 0.0048 10.65 0.70 246 

 M 5.96 5.96 0.0016 8.46 0.70 163 

78 F 7.43 7.43 0.0019 10.07 0.74 271 

 M 5.92 5.92 0.0019 7.98 0.74 122 
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Age Sex 
E[q××××E[����|A,S, 
Race]|A,S] 

E[q|A,S]×××× 
E[����|A,S] 

cov(q,����|A,S) E[����|A,S] E[q|A,S] N. Obs. 

79 F 6.59 6.59 0.0016 9.45 0.70 250 

 M 5.70 5.70 0.0006 7.48 0.76 142 

80 F 6.44 6.44 0.0030 8.88 0.72 225 

 M 4.94 4.94 0.0016 7.09 0.70 99 

81 F 6.17 6.17 0.0009 8.38 0.74 221 

 M 4.53 4.53 0.0022 6.69 0.68 95 

82 F 5.40 5.40 0.0009 7.79 0.69 191 

 M 4.24 4.24 -0.0009 6.19 0.68 106 

83 F 4.74 4.74 0.0019 7.29 0.65 165 

 M 4.28 4.28 -0.0001 5.89 0.73 81 

84 F 4.44 4.44 0.0000 6.80 0.65 152 

 M 3.82 3.82 0.0007 5.50 0.70 61 

85 F 4.02 4.02 0.0009 6.39 0.63 124 

 M 3.58 3.58 0.0027 5.19 0.69 63 
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Table 3 
 

Simulation Results for YHL Example 
 

 
 Sample Means 

Population ρρρρ12 Empirical ρ̂QL  Qi Li YHLi=Qi××××Li 

(1) (2) (3) (4) (5) 
-0.9 -0.56 0.50 6.05 1.3 
-0.5 -0.35 0.51 6.05 2.2 
-0.1 -0.07 0.51 6.05 2.9 
0.0 .004 0.51 6.05 3.1 
+0.1 0.07 0.51 6.05 3.2 
+0.5 0.35 0.51 6.05 3.9 
+0.9 0.56 0.51 6.05 4.8 

 
 
 


