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Introduction

Several previous studies have found, among women, a negative correlation between

body weight and wages.1 There exist three broad categories of explanations for this

phenomenon. First, obesity may cause lower wages. Examples of such explanations

are that obese women face discrimination in the labor market2 and that obese women

are less productive.

The second category of explanations is that low wages cause obesity. This may be

true if, for example, poor labor market outcomes lead to depression and depression

leads to weight gain.

The third category of explanations is that unobserved variables cause both obesity

and low wages. One example of such a variable is rate of time discount. If someone

assigns little value to future events, they may invest little in both their unobserved

human capital (and thus have low wages) and their health (and may therefore be

overweight).

This paper tests the first category of explanations, that high weight lowers wages,

using the method of instrumental variables. Specifically, the weight of a child is

used as an instrument for the weight of the child’s mother. This method, which

exploits the genetic variation in weight, is justified with reference to multidisciplinary

research that suggests that the weight of children is uncorrelated with their mother’s

wage residual.

This paper focuses on women for two reasons. First, previous studies of this ques-

tion (described in section 1 below) have consistently found a relationship between

weight and wages for women, but generally not men. Second, the method of instru-

1See, e.g., Register and Williams (1990), Averett and Korenman (1996), and Pagan and Davila

(1997).

2This is the conclusion of Averett and Korenman (1996).
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mental variables used in this paper exploits an instrument that is available in the

data only for women.

The question of whether there exists discrimination in the labor market against

obese persons is likely to become more important with time. Recent studies have

found dramatic increases in the prevalence of obesity in the United States during the

1980s3 and 1990s.4 This trend was similar across age, gender, and race-ethnic groups.

The prevalence of obesity in the U. S. is expected to continue to rise.5

The outline of this paper is as follows. Section 1 is devoted to a brief review

of related studies. The data used in this paper are described in section 2. The

relationship between weight and wages using the methods of ordinary least squares

and instrumental variables is estimated in section 3. Finally, in section 4, I test

whether weight is correlated with market employment or sector of employment.

1 Previous Studies of Women’s Weight and Wages

There have been several studies of women’s weight and their wages or income6, but

this section is devoted to the two that acknowledged the possibility that weight is

endogenous and have used techniques to generate consistent estimates of the effect

of weight on wages. Both of these studies use data from the National Longitudinal

Survey of Youth (NLSY), the data which is also used in this paper.

“The Economic Reality of The Beauty Myth” (1996), by Averett and Korenman,

3Flegal et al. (1998) find that the prevalence of obesity in the U. S. rose from 14.5% in 1976-80

to 22.5% in 1988-94. Their estimates are based on measured weight and height.
4Mokdad et al. (1999) find that the prevalence of obesity increased from 12.0% in 1991 to 17.9%

in 1998. These estimates are based on self-reported height and weight.

5Flegal et al. (1998).
6See, e.g. Register and Williams (1990), Gortmaker et al. (1993), Loh (1993), Hamermesh and

Biddle (1994), and Haskins and Ransford (1999).
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was the first to address the endogeneity of weight in this context. They attempt

to solve the problem by differencing between sisters, which will remove variance in

weight attributable to a shared family environment.

When they difference among sisters, they eliminate the portions of variance in

weight attributable to shared genes or a shared family environment. However, the

behavioral genetics literature consistently finds no effect of shared family environment

on weight.7 Moreover, after differencing they are still left with the variance in weight

attributable to environment unshared by sisters, which is endogenous. The strategy of

Averett and Korenman is flawed; the potential source of variance in weight that they

seek to remove (shared family environment) in fact explains a negligible proportion

of the variance in weight, and some of the variance that remains (due to unshared

environment) is endogenous.

Using the 1988 data of the NLSY, Averett and Korenman conclude that obese

women have a lower family income-to-needs ratio than women whose weight is in

the “recommended” range (based on actuarial tables). They find this to be true

before and after taking sister differences. They also examine log wages as an outcome

measure, and find that obesity is associated with lower wages in their cross-sectional

regressions. Estimating separately by race, they conclude that the wage penalty

associated with overweight is less for black than white women. However, when Averett

and Korenman estimate their wage model using the sister-differencing procedure, the

coefficients on obesity are not statistically significant, at least in part because the

sample of paired sisters is small.

The second related study to address the issue of endogeneity of weight is Pagan

and Davila (1997). This study finds that women who meet the clinical definition

of obese earn less than their more slender counterparts in the 1989 NLSY data.

7See footnote 23.
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Pagan and Davila acknowledge the possibility that weight is endogenous, and, using

a Hausman specification test, fail to reject the hypothesis that weight is uncorrelated

with the error term of the wage equation. However, their test is marred by the

fact that their instruments (family poverty level in 1988, health limitations, and

indicator variables about self-esteem) are also correlated with the error term in the

wage equation. Poverty level in the previous year could be correlated with both this

year’s wage residual and body weight. Health limitations could affect unobservable

aspects of productivity as well as weight. Self-esteem could be a reflection of workplace

success. Given that their IV estimation suffers the same kind of bias as their OLS

estimation, it is not surprising that, through their Hausman test, they fail to reject

the hypothesis that OLS and IV coefficients are equal.

Pagan and Davila also test for differences in occupation by weight classification.

They estimate models of occupation choice for a nonobese sample and multiply the

vector of estimated coefficients with the vector of characteristics of each person in the

obese sample to generate an estimate of the probability that the obese person would

have a given occupation were they nonobese. They find that there are fewer over-

weight women in managerial and professional occupations than their model predicts.

In summary, previous studies of wages and weight have found that heavy women

tend to suffer a wage or income penalty. This paper seeks to improve on this literature

in four ways, by: 1) using the entire panel, rather than just a single year, of the NLSY

data; 2) correcting for reporting error in weight and height; 3) correcting for selection

bias in the estimates of women’s wages; and most importantly, 4) conducting valid

tests of the exogeneity of weight and generating consistent estimates of the effect of

body weight on women’s wages.
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2 Data: NLSY

This section introduces the data used throughout this paper. The National Lon-

gitudinal Survey of Youth (NLSY), designed to represent the entire population of

American youth in 1979, consists of a randomly chosen sample of 6,111 U. S. civilian

youths, a supplemental sample of 5,295 randomly chosen minority and economically

disadvantaged civilian youths, and a sample of 1,280 youths on active duty in the

military.8 All youths were between fourteen and twenty-two years of age when the

first of annual interviews was conducted in 1979. Since 1994, interviews have been

conducted every two years. Retention rates for those NLSY respondents remaining

eligible for interview have remained close to 90 percent during the sixteen years of

interviews.

At the baseline of the NLSY, respondents were asked to report their race or

ethnicity, which the NLSY simplifed into three groups: black, hispanic, and non-

black/nonhispanic. I refer to nonblack nonhispanics as whites throughout this paper,

although it should be noted that this group is heterogeneous.

The NLSY recorded the self-reported weight of respondents in 1981, 1982, 1985,

1986, 1988, 1989, 1990, 1992, 1993, 1994, 1996, and 1998. Reported height was

recorded in 1981, 1982, and 1985; given the age of the respondents, the height in 1985

was assumed to be the respondents’ adult height.

These self reports of weight and height include some degree of reporting error,

which may bias coefficient estimates. Specifically, when only one regressor is measured

with error, there is attenuation bias in the OLS estimate of the coefficient associated

8Due to funding constraints, some members of the original sample are no longer being inter-

viewed. After the 1984 surveys, interviewing ceased for 1,079 members of the military subsample;

retained for continued interviewing were 201 respondents randomly selected from the entire military

sample. Beginning with the 1991 survey, 1,643 economically disadvantaged white respondents from

the supplemental sample are no longer being interviewed.
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with that regressor. However, if there are multiple regressors measured with error,

there is no consistent rule about the sign of the bias in the coefficients of the variables

measured with error.9 I correct the NLSY measures of weight and height for reporting

error in the method of Lee and Sepanski (1995) and Bound et al. (1999); see Appendix

A for details.10

This paper uses two measures of body weight: 1) weight in pounds (controlling

for height in inches); and 2) body mass index (BMI). BMI, the standard measure of

fatness and obesity in epidemiology and medicine, is defined as weight in kilograms

divided by height in meters squared.11

Weight tends to rise with age. In order to distinguish the effects of weight from

those of age and time, I include a linear measure of age and indicator variables for

time as regressors in my log wage regressions.

Weight may also be affected by current pregnancy. For this reason, women who

are pregnant at the time that they report their body weight are dropped from the

sample.12

This paper uses three dependent variables: 1) log of current hourly wage at pri-

mary job; 2) an indicator variable for whether occupation is coded as white collar

(as opposed to blue collar) using Census classifications; and 3) an indicator variable

9Judge et al. (1985).
10I have also estimated the models in this paper without correcting for reporting error in height

and weight and I find very similar results.
11The U. S. National Institutes of Health classifies BMI as follows: below 18.5 is underweight,

between 18.5 and 25 is healthy, between 25 and 30 is overweight and over 30 is obese. See U. S.

National Institutes of Health (1998) and Epstein and Higgins (1992).
12I use two questions in the NLSY to eliminate women who are pregnant at the time that they

report their weight. First, women were asked whether they were currently pregnant at the time

of interview. Second, in some years they were also asked whether they had, in retrospect, been

pregnant at the time of the last interview. I drop from the sample women who answered yes to

either of these questions.
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that equals one if the respondent is currently employed or currently active duty in the

military, and equals zero if the respondent is unemployed or out of the labor force.

In each year, the NLSY calculates the hourly wage earned by the respondent at

their primary job. I recode outliers; if the hourly wage is less than $1 an hour, I

recode it to $1 and if the hourly wage exceeds $500 an hour, I recode it to $500.13

I classify all occupations as either white collar or blue collar, using Census codes

for occupation. White collar workers are those working in sectors described by the

U. S. Census as Professional, Technical, or Kindred Workers, Non-Farm Managers

and Administrators, Sales Workers, and Clerical and Unskilled Workers. The only

unskilled workers in the last group are those in white-collar positions, such as cashiers,

file clerks, bill collectors, and messengers.

I include the following regressors in the log wage regressions: general intelligence

(which is a measure of cognitive ability derived from the ten Armed Services Vo-

cational Aptitude Battery tests)14, highest grade completed, years of actual work

experience (defined as weeks of reported actual work experience divided by fifty), job

tenure, age, and indicator variables for year, local unemployment rate, current school

enrollment15, region of residence, and black and hispanic. I also include indicator

variables for missing data associated with each regressor except the weight variables.

Table 1 provides summary statistics for the sample of women used in the log wage

regressions.

INSERT TABLE 1 HERE

The instrument used in the IV section of this paper is the BMI of a biological child

13After recoding, there are 109 women in the sample with bottom-coded wages and 7 women with

top-coded wages.

14See Jensen (1987) for a full description of this measure of cognitive ability.
15I also experimented with dropping those currently enrolled from the sample and found very

similar results.
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aged six to nine.16 A single observation of child BMI is used as an instrument for

every (up to twelve) observations of mother’s weight.17 Although the instrument does

not vary with time, the mother’s weight does, so in each year a woman may have a

unique value for instrumented BMI. The data on child weight and height comes from

the Child Supplement to the NLSY, which consists of all children born to NLSY

female respondents who were living in their mother’s household at the time of a child

assessment interview and who completed an interview. All of the children in the

NLSY Child Sample are biological children, so they represent suitable instruments to

gauge the genetic variation in BMI.

The use of children to instrument for mother’s weight requires that the sample be

limited to women that have borne children. It is possible that the empirical results

found for this sample do not generalize to all women, but 82.65% of all women in the

NLSY had given birth by 1998, so the sample of women with at least one birth may

not differ significantly from the entire population of women.

NLSY sample weights are used in all estimations described in this paper. T statis-

tics reported in the tables of this paper reflect robust standard errors are calculated

with clustering by individual to account for correlations in the error terms of each

16Sorensen et al. (1992) find that the mother-child correlation in BMI has reached its adult level

by the child’s age 7.
17The single observation of child weight was chosen in the following manner. For each woman,

the eldest child aged 6 to 9 was examined in the most recent year. If the child’s height and weight

were measured, those values were chosen. Otherwise, the next most recent year’s observation on the

eldest child was examined. If the eldest child had no measured values of height and weight, the next

eldest child was examined, and so on. If no child of a given woman had measured weight and height

in any year, a mother’s report of the child’s height and weight were used. Of all of the observations

of child weight and height, 98.7% were measured and the remainder reported by the mother. In

models run with an added indicator variable for mother report of weight and height, the coefficient

on the indicator was not statistically significant.
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individual over time.

3 Weight and Wages

The goal of this paper is to generate a consistent estimate of the causal effect of body

weight on labor market outcomes. I assume that the relationship between wages w

and BMI b has the following form for individual i at time t:

wit = ebitβ+Xitγ+τt+uit

or

ln wit = bitβ + Xitγ + τt + uit (1)

where X is a vector of variables, τ is a time-specific effect and u is the residual, which

is assumed to be uncorrelated with b, X, and τ . If BMI were strictly exogenous, we

could interpret β as the true effect of BMI on log wages.

A Ramsey RESET test was used to test the assumption implicit in equation (1)

that log wages are linear in BMI (or weight in pounds).18 I cannot reject at the

5% significance level the hypothesis that log wages are linear in BMI or weight in

pounds.19

Assume that BMI has the following projection or reduced form:

bit = Zitπ + Xitδ + εit (2)

where X is a set of variables that affect both BMI and log wages, Z is a set of variables

that are correlated with BMI but not the error term in wages, and ε is the residual.
18Thursby and Schmidt (1977). While I use the Ramsey RESET to test for linearity of wages in

the weight variables, I acknowledge that no test can discriminate between unknown omitted variables

and an unknown functional form.
19In its use of linear measures of body weight instead of indicator variables for weight classification,

this paper differs from many of the studies cited in section 1.
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For now, I will assume that ε and u are uncorrelated, but I will relax that assumption

later in this section.

OLS coefficients and t statistics of equation (1) appear in Table 2.

INSERT TABLE 2 HERE

Table 2 indicates that both BMI and weight in pounds have negative and statis-

tically significant coefficients. The magnitude of the coefficient on weight in pounds

implies that if two otherwise identical women differed in weight by ten pounds, we

would expect the lighter one to enjoy 1% higher wages.

At the bottom of Table 2, I list the standard deviations of BMI and weight in

pounds in the sample. If weight is normally distributed, the standard deviations and

coefficients in Table 2 imply that if two otherwise identical women differed such that

one was at the median and one was at the 95th percentile for weight, we would expect

the lighter one to enjoy roughly 7% higher wages. For comparison, the coefficients on

height suggest that each inch in height is associated with 1.1% higher wages.

There is a large literature on the extent to which studies of women’s labor force

participation are influenced by sample selection bias due to the fact that many women

do not work for pay.20 Despite the fact that studies examining the wages of women are

likely to be affected by selection bias–since they attempt to make inferences about all

women using data only on working women–none of the studies of weight and women’s

wages reviewed in section 1 attempted to determine the degree of selection bias in

their estimates.

The method of Heckman (1979) is used to correct the log wage regression re-

sults for any selection bias. As instruments for the propensity to engage in market

employment, i.e. variables that affect labor force participation but not wages, this

20For a review, see Chapter 11 of Berndt (1991).
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paper follows the traditional literature on women’s labor force participation, and uses

marital status, number of children in the household, age of the youngest child in the

household, and family income that is not attributable to the wages of the respondent.

Listed alongside the OLS estimates in Table 2 are estimates corrected for selection.

At the bottom of the table are the t-statistics associated with the inverse Mills ratio,

which represent a test for the presence of selection bias. For the sample of all women,

the coefficient on the inverse Mills ratio is not statistically significant. However, I

do find evidence of selection bias for some subsets of the sample, so for all the log

wage regressions in this paper, results both uncorrected and corrected for selection

are presented for the sake of comparison.

These OLS estimates suggest that, in general, heavier women tend to earn less.

However, in the terminology of equations (1) and (2), OLS estimates of β are consis-

tent if and only if uit and εit are uncorrelated. As mentioned earlier, the errors terms

might be correlated if there is reverse causality (e.g. labor market failure causes

depression and subsequent weight gain) or if unobserved variables (e.g. relating to

lifestyle) cause both heaviness and adverse labor market outcomes.

If the error terms are correlated, one can still generate a consistent estimate of β

if one can identify a set of variables Z that are correlated with BMI but not the error

term in wages. Given Z, one can calculate an instrumental variables estimate of β.

In this paper, the instrument for a mother’s weight is the BMI of one of her children.

Specifically, the set of instruments consists of eight variables: the BMI of the child

interacted with the child’s gender and the child’s age, which ranges from six to nine.

A series of articles has been published outlining the harms of weak instruments.

Bound, Jaeger, and Baker (1993) point out two problems associated with weak instru-

ments. First, a weak correlation between the instrument and the endogenous variable

will exacerbate any problems associated with a correlation between the instrument

11



and the wage residual. Second, the magnitude of finite sample bias in IV estimates

approaches that of the OLS bias as the R2 between the endogenous explanatory vari-

able and the instruments approaches zero. They suggest that the R2 and F statistics

from the first stage of two-stage least squares be reported as approximate guides to

the quality of the IV estimates. Staiger and Stock (1997) argue that 10 is an accept-

able value of the F statistic associated with the hypothesis that the coefficients on the

instruments in the first-stage regression of two-stage least squares are jointly equal to

zero.

The set of instruments used in this paper appears to meet the standard of Staiger

and Stock. The hypothesis that all coefficients on instruments are jointly equal to

zero in the first stage of IV estimation is rejected; the F statistic is 10.47 when BMI

is the endogenous regressor, and 10.23 when weight in pounds is the endogenous

regressor.21 The marginal R2 associated with the instruments is .04 when BMI is the

endogenous regressor, and .11 when weight in pounds is the endogenous regressor.

However, there are additional requirements of an instrument. In particular, it is

imperative that the instrument be uncorrelated with the error term in the second

stage of instrumental variables estimation; if it is correlated, the IV procedure has

accomplished nothing (and may in fact have caused harm22) because the instrumented

variable is still endogenous. The identifying assumption of this paper is that the BMI

of a child is correlated with the weight of its mother and is uncorrelated with the

mother’s wage residual. The evidence in favor of this assumption is: 1) There is no

21It is not surprising that the correlation between mother and child BMI is high; heritability

studies suggest that genetics account for as much as 70% of the variance in weight across people;

see Yanovski and Yanovski (1999). Most estimates from U.S. data of the correlation between the

adult BMI of a mother, and the childhood or adolescent BMI of her child are in the range .21-.36.

The correlation does not differ by the gender of the child. See Maes et al. (1997), p. 334.

22Bound, Jaeger, and Baker (1993).
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consistent pattern between childhood obesity and socioeconomic status; see the review

in Sobal and Stunkard (1989). 2) There is no measurable effect of common household

environment on body weight; see Stunkard et al. (1986), Price and Gottesman (1991),

Sorensen et al. (1992, 1993), Vogler et al. (1995), and Maes et al. (1997).23 These

studies indicate that all of the similarity in weight between parents and children is

genetic in origin.

While it is impossible to confirm the null hypothesis that child BMI is uncorrelated

with the mother’s wage residual, it can be illustrative to test whether instruments are

correlated with observables that are believed to be correlated with the unobservables

that affect the second-stage residual. To this end, mother’s education and general

intelligence were regressed on the set of instruments and the other regressors in the

log wage regressions. The set of instruments was not statistically significant at the

10% level, which is suggestive evidence in favor of the identifying assumption.

The use of child’s BMI as an instrument has an added advantage. Instrumental

variables analysis only measures the effect of the endogenous regressor on the de-

pendent variable for the population “treated” by the natural experiment. In many

natural experiments, the treated population differs in important ways from the pop-

ulation, and the IV estimate for the treated population may differ dramatically from

the treatment effect on the entire population.24 Using the BMI of a child as an in-

strument for the weight of the child’s mother largely avoids this problem, because

genetics affects the body weight of every person and over 80% of the women in the

23Grilo and Pogue-Geile (1991), a comprehensive review of studies of the genetic and environmental

influences on weight and obesity, conclude that “...only environmental experiences that are not

shared among family members appear to be important. In contrast, experiences that are shared

among family members appear largely irrelevant in determining individual differences in weight and

obesity.” (p. 520).

24Angrist, Imbens, and Rubin (1996).
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NLSY have had children.

In first stage of 2SLS, I regress a measure of mother’s weight (corrected for re-

porting error)25 on eight interaction terms: the child’s BMI times indicator variables

for child gender and age. I interact the child’s BMI with the child’s age and gender

because I want to measure the extent to which the child is heavy for their age and

gender. The regressors from the second stage of 2SLS are also included in the first

stage. Coefficients from the first stage of two stage least squares are listed in Table

3.

INSERT TABLE 3 HERE

In Table 3, all the coefficients on the instruments are of the expected sign; a high

BMI child (relative to other children of the same age and gender) is associated with

higher weight mother, whether measured in BMI or pounds. Every child BMI-age-

gender interaction is significant at the 1% level in each regression. At the bottom of

each table are listed the F statistics and partial R2 of the instruments.

INSERT TABLE 4 HERE

Table 4 contains the two-stage least squares estimates of the effect of weight on

log wages for women. Although the standard errors are larger due to the IV method,

the point estimates of the coefficients generated by IV are similar to those generated

25Instrumental variables estimation is often proposed as a method of generating consistent esti-

mates of coefficients of variables measured with error. (See, e.g., Fuller (1987) or Greene (1993).)

However, such an approach requires one to find an instrument that is correlated with the true value

of the variable measured with error and yet is independent of the reporting error. Since, as shown in

Appendix A, reporting error in BMI is a function of level in BMI, it is not reasonable to assume that

an instrument correlated with true BMI is uncorrelated with the reporting error in BMI. For this

reason, I must still correct self-reported height and weight for reporting error before instrumental

variables estimation.
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by OLS. In fact, a Hausman test indicates that the hypothesis that the OLS and IV

coefficients are equal cannot be rejected. In other words, any endogeneity of weight

does not appreciably affect the OLS estimates and these should be preferred to the

IV estimates.

I next test for differences in these results by race. I test and reject at the 5%

significance level the hypothesis that the coefficients of equation (1) are equal for

black, white, and hispanic women.26 OLS and IV results are presented in Tables 5

and 6 for white females, Tables 7 and 8 for black females, and Tables 9 and 10 for

hispanic females.27

INSERT TABLES 5 THROUGH 10 HERE

These tables reveal considerable differences by race. Only for white females are

the OLS coefficients on weight variables statistically significant at the 5% level. The

OLS coefficients on weight for hispanics are statistically significant at the 10%, but

not the 5%, level. The OLS coefficients on weight for blacks are not statistically

significant at any reasonable significance level.

As for the entire sample, Hausman tests conducted separately by race indicate

that the hypothesis that the OLS and IV coefficients are equal cannot be rejected.

Collectively, the results presented in Tables 5 through 10 indicate that the evidence is

relatively strong that weight lowers the wages of women who are white, the evidence is

relatively weak that weight lowers the wages of women who are hispanic, and there is

no evidence that weight lowers the wages of women who are black. This is consistent

with the finding of Averett and Korenman (1996), who find in OLS regressions that

the wage “penalty” for overweight is smaller for black women than white women.

26I cannot reject at the 5% significance level the hypothesis that coefficients are equal across

occupation sector (white or blue collar) within race groups.

27Results by race of the first-stage regressions for IV are available upon request.
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It is reasonable to ask, how “large” is the wage penalty for body weight among

white women? If weight is normally distributed, the standard deviations and coef-

ficients in Table 5 imply that if two otherwise identical women differed such that

one was at the median and one was at the 95th percentile for weight (a difference

of roughly sixty-five pounds), the lighter one is expected to enjoy roughly 7% higher

wages. Judging by the estimated coefficients of other variables in the model, this is

equivalent in absolute value to the wage effect of roughly one year of education, two

years of job tenure, or three years of work experience.

4 Employment and Occupation

So far in this paper I have taken as given employment and sector of employment.

However, it is conceivable that while there may be no wage discrimination condi-

tional on employment, discrimination may exist at the hiring stage. This section is

devoted to estimating the correlation between weight and employment and sector of

occupation.

4.1 Weight and Employment

The dependent variable in this section is an indicator variable that equals one if the

woman is employed or on active duty in the military, and equals zero if the woman

is unemployed or out of the labor force. I estimate both probit and probit with

IV models using the same set of regressors as for the log wage regressions, minus

job tenure and the indicator for white collar job.28 In contrast to the log wage

regressions, I could not reject the hypothesis that coefficients in are equal across race

in the employment probit regressions. Table 11 reports the marginal probabilities

28The probit with instrumental variables estimation follows the strategy of Newey (1987).

16



associated with the probit coefficients and z scores.29

INSERT TABLE 11 HERE

The coefficients on BMI and weight in pounds are not statistically significant in the

employment probit regression. However, it may be that weight is correlated with the

error term in the probit regression for occupation choice. Just as in a linear regression,

a correlation between a regressor and the error term violates the assumptions behind

the nonlinear regression model.30 I use the same instruments in the probit with IV

regression as in the two-stage least squares regressions.

The probit with IV coefficient on each weight variable is statistically significant at

the 10%, but not the 5%, level. The magnitude of these coefficients implies that a gain

in weight of ten pounds is associated with a 1% higher probability of employment.

As a check of robustness, I re-estimated these models dropping from the sample

women who were out of the labor force and found no evidence that weight affected

the probability of employment.31

4.2 A Random Utility Model of Occupation Choice

This subsection is devoted to testing whether obesity is correlated with the probability

of employment in a white collar as opposed to a blue collar job. I assume that each

person derives utility based on their sector of occupation. People enjoy utility Uw if

they work in the white-collar sector or utility Ub if they work in the blue-collar sector.

29The z scores reflect standard errors for probit with IV corrected for estimation in the first stage;

see Murphy and Topel (1985).
30In nonlinear regression, if a regressor is correlated with the error term, it is expected that the

transformed regressor is also correlated with the error term; see Greene (1993).
31Tables of the results of the employment probit regression excluding from the sample those who

are out of the labor force are available upon request.
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The utility that they enjoy in each sector is a function of their characteristics X:

Uw = Xβw + εw

Ub = Xβb + εb

Let Y = 1 indicate that a NLSY respondent has a white-collar job and Y = 0 indicate

that they have a blue-collar job. The probability that a person has a white-collar job

is equal to the probability that their utility in the white-collar job is greater than the

utility that they would enjoy in a blue-collar job:

Pr[Y = 1|X] = Pr[UW > UB]

= Pr[Xβw + εw > Xβb + εb]

= Pr[X(βw − βb) + εw − εb > 0]

= Pr[Xβ + ε > 0]

= Pr[ε > −Xβ]

Assuming that ε follows a normal distribution, the probability of white-collar

employment as a function of characteristics X can be estimated with with a probit

model. Marginal probabilities and z scores for the probit regressions appear in Table

12. The probit and probit with IV results in Table 12 provide no evidence that weight

affects the probability of employment in a white-collar, as opposed to a blue-collar,

job.

INSERT TABLE 12 HERE

5 Summary

This paper seeks to improve on previous literature on the relationship between weight

and women’s wages in four ways: 1) by using a much larger dataset; 2) correcting for
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reporting error in weight and height; 3) correcting for selection bias in the estimates

of women’s wages; and most importantly, 4) conducting valid tests of the endogeneity

of weight and generating consistent estimates of the effect of body weight on women’s

wages.

This paper finds evidence that weight lowers wages for white women; among this

group, a difference in weight of two standard deviations (roughly sixty-five pounds)

is associated with a difference in wages of 7%. This difference in wages is equivalent

in absolute value to the wage effect of roughly one year of education, two years of

job tenure, or three years of work experience. The fact that weight lowers certain

women’s wages may become increasingly important over time, as the percentages of

Americans meeting the clinical definitions of overweight and obese are predicted to

continue to rise.32

It should be stressed that the finding that weight lowers wages is not conclusive

evidence of workplace discrimination. Another hypothesis also consistent with these

findings is that heavier workers are less productive at work. It has repeatedly been

found, for example, that obese workers are more likely to miss work due to illness.33

However, this explanation is complicated by the fact that this paper finds no evidence

that weight lowers wages for black women.

This paper also finds evidence of a wage premium for height among white women;

a difference of 3 inches in height is associated with a difference in wages of 4%. This

paper finds no effect of weight or height on the probability of employment or sector

of occupation.

32Flegal et al. (1998).
33Narbro et al. (1996) studied a sample of Swedish women and found that obese workers, relative

to healthy-weight workers, had 1.5 to 1.9 times more work days lost to illness. Wolf and Colditz

(1998) estimate that, in the U. S. in 1994, obesity-related illness resulted in 39.2 million missed work

days.
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Appendix A: Reporting Error in Weight and Height

Weight and height are self-reported in the NLSY; reporting error in these variables

has the potential to bias coefficient estimates. In this appendix, I assess the extent

of reporting error in weight and height in the NLSY, and correct for it, using the

Third National Health and Nutrition Examination Survey (NHANES III).34 NHANES

III, conducted in 1988-1994, was designed to obtain information on the health and

nutritional status of the U. S. population through interviews and direct physical

examinations. NHANES III surveyed a nationally representative sample of 33,994

persons aged 2 months and older; 31,311 of those respondents also underwent physical

examinations. NHANES III is useful for the purposes of this paper because it both

asked respondents to report their weight and height and then, within four weeks,

measured their weight and height. In order to assess the extent of reporting error in

the NLSY, I examined the reported and actual weight and height of NHANES III

respondents of the same age as the NLSY sample when they reported their weight

and height (aged 17-40). There were 3,854 female NHANES III respondents in the

NLSY age range.

In NHANES III, height and weight are reported such that NLSY-aged women

tend to underreport their BMI by 1.5%. Underreporting of weight varies positively

with actual weight; underweight women overreport, whereas overweight women un-

derreport, their weight. There is no clear pattern of misreporting of height by actual

height.

In order to correct for this reporting error, I predict true height and weight in the

NLSY using information on the relationship between true and reported values in the

NHANES III. This strategy is outlined in Lee and Sepanski (1995) and Bound et al.

(1999). If one has validation data, which in this case contains measures of true and

34U. S. Dept. of Health and Human Services, 1996.
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reported weight and height (and, therefore, BMI), one can regress the true value of

the variable on its noisy reported value. The OLS coefficient on the reported value is

then used in the primary dataset; specifically, it is multiplied by the reported value

to create an estimate of the true value. (This assumes “transportability,” i.e. that

the relationship between true and reported values are the same in both datasets.) I

then regress log wages on a set of regressors that includes transformed BMI, which is

constructed using the transformed values of reported height and weight.

Measured weight was regressed on actual weight for a sample of NLSY-aged (i.e.

17-40) respondents to NHANES III. I estimate the regression separately by race;

actual weight is regressed on reported weight and its square (in deviations about race

group-specific means); the intercept is suppressed.35 Reported weight and its square

are strong predictors of actual weight; judging by the extremely high R2 (each over

.995), this model fits the data very well.

This process was repeated for height. Regressions of actual on measured height

and its square (in deviations arbout race-specific means) were estimated separately by

race.36 Again, the extremely high R2 (equal to 1 to the third decimal place) suggest

that reported height and its square are outstanding predictors of actual height.

Self-reported height and weight in the NLSY are then multiplied by the coefficients

on the reported values associated with the correct race-gender group in the NHANES

III. The fitted value of BMI, corrected for reporting error, is used throughout the

35The hypothesis that the coefficients are equal across race was rejected. The hypothesis that these

coefficients are equal across age groups could not be rejected. The hypothesis that the coefficient

on the squared term is equal to zero was rejected, but the hypothesis that the coefficient on a cubic

term is zero could not be rejected.
36The hypothesis that the coefficients are equal across race was rejected. The hypothesis that these

coefficients are equal across age groups could not be rejected. The hypothesis that the coefficient

on the squared term is equal to zero was rejected, but the hypothesis that the coefficient on a cubic

term is zero could not be rejected.
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paper. All of the models in this paper have also been estimated using reported BMI,

with very similar results.
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TABLE 1
National Longitudinal Survey of Youth Females

Summary Statistics

Number of Standard
Variable Observations Mean Deviation Minimum Maximum

Log Wage 21391 1.87 .57 0 6.21
Body Mass Index (Corrected) 21391 25.42 5.81 7.71 65.66
Weight in Pounds (Corrected) 21391 148.63 35.52 48.82 415.82
Height in Inches (Corrected) 21391 64.09 2.33 50.76 72.76
Indicator: Black 21391 .3 .46 0 1
Indicator: Hispanic 21391 .19 .39 0 1
Indicator: White Collar Job 19786 .58 .49 0 1
General Intelligence 20767 0 .92 -3.62 2.97
Highest Grade Completed 21299 12.54 2.02 0 20
Enrolled in School 21391 .1 .3 0 1
Years of Actual Work Experience 20016 7.12 4.87 0 22.66
Years at Current Job 21148 2.9 3.48 .02 28.4
Age 21391 28.82 5.67 16 41
Indicator: Local UE Rate < 6% 20941 .4 .49 0 1
Indicator: Local UE Rate >= 9% 20941 .22 .42 0 1
Indicator: Northeast Region 21265 .14 .35 0 1
Indicator: North Central Region 21265 .25 .43 0 1
Indicator: West Region 21265 .18 .39 0 1
Year 21391 89.77 5.14 81 98
Indicator: Married, Spouse Present 21390 .55 .5 0 1
Indicator: Been Married, But Not M-SP 21390 .2 .4 0 1
Number of Children in Household 21389 1.64 1.16 0 9
Indicator: No Children in HH 21389 .19 .39 0 1
Age of Youngest Child 17100 5.1 4.13 0 23
Other Family Income 17867 23187.49 53354.21 0 1113846.4
BMI of Selected Child 21391 17.27 3.74 7.51 64.54
Age of Selected Child 21391 7.96 1.03 6 9



Table 2
Ordinary Least Squares

Relationship Between BMI and Log Wages
NLSY Females

Coefficients and (T Statistics)

OLS OLS Selection Corrected

BMI -.006 -.005
(-4.1) (-4.08)

Weight in Pounds -.001 -.001
(-4.1) (-4.07)

Height in Inches .011 .011
(3.34) (3.34)

N 21391 21391 29332 29332
R2 .27 .27
S.D. of Weight Variable 5.81 35.52
T Statistic of
Inverse Mills Ratio -1.47 -1.47

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year, local unemployment rates, region of residence, and black and hispanic.
NLSY sample weights are used. Robust standard errors are calculated with clustering by individual. Preg-
nant women are dropped from the sample.



Table 3
First Stage of 2SLS

NLSY Females
Coefficients and (T Statistics)

Dependent Variable
BMI Weight

in Lbs.

BMI of Daughter Aged 6 .39 2.29
(7.82) (7.75)

BMI of Son Aged 6 .39 2.3
(7.06) (6.84)

BMI of Daughter Aged 7 .35 2.08
(7.63) (7.59)

BMI of Son Aged 7 .34 2.04
(8.2) (8.14)

BMI of Daughter Aged 8 .34 2.05
(8.26) (8.23)

BMI of Son Aged 8 .33 1.98
(8.37) (8.34)

BMI of Daughter Aged 9 .33 1.92
(8.34) (8.14)

BMI of Son Aged 9 .35 2.08
(8.93) (8.79)

R2 .18 .24
∆R2 of instruments .04 .11
F Statistic of Instruments 10.47 10.23
Number of Observations 21391 21391

Aside from the variables reported here, the other regressors in the regression are: general intelligence (derived
from the ten ASVAB tests), highest grade completed, actual work experience, job tenure, age, and indicator
variables for white collar job, year local unemployment rates, region of residence, and black and hispanic.
NLSY sample weights are used. Robust standard errors are calculated with clustering by individual. Preg-
nant women are dropped from the sample. Instruments are interactions of child BMI with child age and gen-
der.



Table 4
Second Stage of 2SLS

Relationship Between BMI and Log Wages
NLSY Females

Coefficients and (T Statistics)

2SLS 2SLS Selection Corrected

BMI -.004 -.004
(-.62) (-.62)

Weight in Pounds -.001 -.001
(-.68) (-.68)

Height in Inches .01 .01
(1.81) (1.79)

N 21391 21391 29332 29332
T Statistic of
Inverse Mills Ratio -1.68 -1.68

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year local unemployment rates, region of residence, and black and hispanic.
NLSY sample weights are used. Robust standard errors are calculated with clustering by individual. Preg-
nant women are dropped from the sample.



Table 5
Ordinary Least Squares

Relationship Between BMI and Log Wages
NLSY White Females

Coefficients and (T Statistics)

OLS OLS Selection Corrected

BMI -.007 -.007
(-3.82) (-3.8)

Weight in Pounds -.001 -.001
(-3.82) (-3.8)

Height in Inches .013 .013
(3.17) (3.16)

N 10900 10900 14326 14326
R2 .27 .27
S.D. of Weight Variable 5.24 32.8
T Statistic of
Inverse Mills Ratio -1.54 -1.51

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year, local unemployment rates, and region of residence. NLSY sample weights
are used. Robust standard errors are calculated with clustering by individual. Pregnant women are dropped
from the sample.



Table 6
Second Stage of 2SLS

Relationship Between BMI and Log Wages
NLSY White Females

Coefficients and (T Statistics)

2SLS 2SLS Selection Corrected

BMI -.007 -.007
(-.84) (-.84)

Weight in Pounds -.001 -.001
(-.94) (-.95)

Height in Inches .014 .014
(1.88) (1.86)

N 10900 10900 14326 14326
T Statistic of
Inverse Mills Ratio -1.76 -1.72

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year local unemployment rates, and region of residence. NLSY sample weights
are used. Robust standard errors are calculated with clustering by individual. Pregnant women are dropped
from the sample.



Table 7
Ordinary Least Squares

Relationship Between BMI and Log Wages
NLSY Black Females

Coefficients and (T Statistics)

OLS OLS Selection Corrected

BMI -.002 -.002
(-1.49) (-1.5)

Weight in Pounds 0 0
(-1.46) (-1.47)

Height in Inches .004 .004
(.87) (.9)

N 6400 6400 9209 9209
R2 .32 .32
S.D. of Weight Variable 6.48 39.72
T Statistic of
Inverse Mills Ratio -.83 -.87

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year, local unemployment rates, and region of residence. NLSY sample weights
are used. Robust standard errors are calculated with clustering by individual. Pregnant women are dropped
from the sample.



Table 8
Second Stage of 2SLS

Relationship Between BMI and Log Wages
NLSY Black Females

Coefficients and (T Statistics)

2SLS 2SLS Selection Corrected

BMI .001 .001
(.2) (.19)

Weight in Pounds 0 0
(.27) (.27)

Height in Inches .001 .001
(.14) (.17)

N 6400 6400 9209 9209
T Statistic of
Inverse Mills Ratio -.83 -.87

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year local unemployment rates, and region of residence. NLSY sample weights
are used. Robust standard errors are calculated with clustering by individual. Pregnant women are dropped
from the sample.



Table 9
Ordinary Least Squares

Relationship Between BMI and Log Wages
NLSY Hispanic Females

Coefficients and (T Statistics)

OLS OLS Selection Corrected

BMI -.004 -.004
(-1.71) (-1.71)

Weight in Pounds -.001 -.001
(-1.75) (-1.76)

Height in Inches .001 .001
(.19) (.19)

N 4091 4091 5797 5797
R2 .29 .29
S.D. of Weight Variable 5.38 31.15
T Statistic of
Inverse Mills Ratio -.11 -.08

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year, local unemployment rates, and region of residence. NLSY sample weights
are used. Robust standard errors are calculated with clustering by individual. Pregnant women are dropped
from the sample.



Table 10
Second Stage of 2SLS

Relationship Between BMI and Log Wages
NLSY Hispanic Females

Coefficients and (T Statistics)

2SLS 2SLS Selection Corrected

BMI .003 .003
(.41) (.41)

Weight in Pounds .001 .001
(.38) (.38)

Height in Inches -.004 -.004
(-.47) (-.47)

N 4091 4091 5797 5797
T Statistic of
Inverse Mills Ratio -.22 -.2

The other regressors in the log wage regression are: general intelligence (derived from the ten ASVAB tests),
highest grade completed, actual work experience, job tenure, age, and indicator variables for white collar job,
currently enrolled in school, year local unemployment rates, and region of residence. NLSY sample weights
are used. Robust standard errors are calculated with clustering by individual. Pregnant women are dropped
from the sample.



Table 11
Probits and Probits with Instrumental Variables

Dependent Variable = 1 if Employed
NLSY Females

Marginal Probabilities and (Z Scores)

Probit Probit IV

BMI -.0008 .0057
(-.82) (1.79)

Weight in Lbs. -.0008 .001
(-.64) (1.79)

Height in Inches .0012 -.0036
(.48) (-1.08)

Number of Observations 29332 29332 29332 29332
Log Likelihood -16109.43 -16109.69 -16105.19 -16105.65

Other regressors include: general intelligence, highest grade completed, weeks of work experience, age, and
indicator variables for black, hispanic, local unemployment rate, currently enrolled in school, reg > ion, and
year. NLSY sample weights are used in all regressions. Robust standard errors are calculated with clustering
by individual. Pregnant women are dropped from the sample. Probit results reported are the marginal proba-
bilities associated with probit coefficients; z scores appear in parentheses. Probit with IV uses the method of
Newey (1987). Probit IV standard errors are corrected according to Murphy and Topel (1985). Instruments
are interactions of child BMI with child age and gender.



Table 12
Probits and Probits with Instrumental Variables
Dependent Variable = 1 if White Collar Worker

NLSY Females
Marginal Probabilities and (Z Scores)

Probit Probit IV

BMI -.0018 -.0049
(-1.21) (-.51)

Weight in Lbs. -.0018 -.0008
(-1.26) (-.49)

Height in Inches -.0007 .0015
(-.19) (.17)

Number of Observations 20467 20467 20467 20467
Log Likelihood -12189.41 -12188.17 -12188.85 -12187.67

Other regressors include: general intelligence, highest grade completed, weeks of work experience, age, and
indicator variables for black, hispanic, local unemployment rate, currently enrolled in school, reg > ion, and
year. NLSY sample weights are used in all regressions. Robust standard errors are calculated with clustering
by individual. Pregnant women are dropped from the sample. Probit results reported are the marginal proba-
bilities associated with probit coefficients; z scores appear in parentheses. Probit with IV uses the method of
Newey (1987). Probit IV standard errors are corrected according to Murphy and Topel (1985). Instruments
are interactions of child BMI with child age and gender.


