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particular, we find that differences across hospitds in short-term mortality rates following a heart attack,
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correlated with mortality rates that adjust more extensvely for patient severity. Thus, comparing quality
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1. Introduction

The lack of good information on performance or qudity is a core problem in many arees
of public policy and evdudtion today. The difficulty of deveoping rdiable information on the
qudity of hedth care providers for guiding public policies and individuad choices is perhaps the
most driking example. Many reforms in medicd financing and hedth plan choice have focused
on improving competition and efficiency in hedth care ddivery. While these reforms have
clearly affected medicd prices and expenditures, they have dso led to heightened concerns
about the qudity of medicd cae. Are managed care plans reducing costs by avoiding
providers and services that are more expensive yet worthwhile? How can hedth plans and
providers compete effectively in qudity if potentid enrollees and patients have little religble
information on quality to use as a basis of ther choices? How can providers hope to improve
qudity if they dso have little rdligble information?

The reason tha these questions are S0 difficult results from the limited availability of
useful information on the qudity of hedth care providers. The qudity information problem has
many sources. Frs, measurement is a problem because it is difficult to collect timey and
relevant data (often on long-term patient outcomes) for evauating providers. Even with good
data, multidimengondity is a problem. Qudity of medicd care has many dimengons --
outcomes, processes of care, and others — dl of which would idedly be integrated in a quaity
evaduation. A third obgtacle is the noise inherent in any hedth care qudity measure, due to the
andl sample of patients and large number of factors other than provider qudity that influence
quality measures for any individud provider. Findly, bias is a problem to the extent that

variaion in patient trestment or outcomes across providersis the result of systematic differences



in patient mix rather than differences in care. All of these problems have limited the vaue of
explicit information on hedth care qudity, particularly for important health outcomes.

In this paper, we describe and apply a framework for addressing dl of these issues in
the provison of qudity information. We develop measures of mgor hedth outcomes for
patients treated by different hospitals for their heart disease over time. Our andysis consders a
range of serious hedth outcome measures, including mortaity and serious complications that
have implications for qudity of life, for which the quality evauation problems are most dient.
We adapt vector autoregresson (VAR) methods for pand data to estimate the systematic
relationship across outcomes and over time, and then use this information to forecast future
outcomes and to filter out much of the noise in the observed outcome measures. The basic idea
isdmple. Any single outcome measure for a hedth care provider will be a noisy (often very
noisy) indicator of that provider's qudity. But dl of the dimensons of qudity that we consder —
multiple quaity measures, and multiple time periods — are likely to be related to each other, and
S0 can ad the extraction of the Sgnd from any particular measure.

This framework provides the basis for addressing dl of the four mgor problems which
have impeded the development and use of qudity measures. Our method is computationaly
feasble even for large datasets with many outcomes and many years. More importantly, this
method results in prediction accuracy that is much greater than is possble udng exiding
datistical methods for addressing the sgnd extraction problem. In addition, it provides a
quantitative basis for integrating a large number of dimensons of provider qudity, and for
limiting the often-substantid costs of data collection efforts to monitor quality. Our method

esdimates how highly corrdated the sgnds are from dternative quality measures, thereby



providing information on whether some qudity measures contain redundant information.  For
example, we find that outcomes measures based on the limited informetion in patient claims are
highly corrdated with measures tha control for far more extensve information on patient mix
available from patient charts. Thisresult provides an empirical basis for determining whether the

collection of additiond, potentidly expengve information on patient characterigtics is worthwhile

Our gpplication involves heart disease in dderly Americans. Heart disease isthe leading
cause of deeth in the United States, and is clearly a condition for which the qudity of medical
care provided may have a subgtantid impact on an individud’s hedth. Between 1970 and
1995, the degth rate from heart disease has falen by more than haf, and a number of studies
have documented that much of this improvement can be attributed to changes in medica
treatment (Goldman, 1984; Hunink et d., 1997; Heidenreich and McClellan, 1998).

The issues we address here are by no means unique to the hedth care industry. The
same problems of measuring quaity arise in fields as diverse as airline safety, school test scores,
and mutud fund performance. Our gpproach to addressng the problem of profiling
performance is applicable to dl of these contexts. In addition, the estimation and forecasting
methods we use are in principle goplicable in many other settings, from forecasting locd area
unemployment and wage growth based on survey data to estimating betas for individua stocks
based on weekly price data.

In Section 2, we review the issues and previous sudies relevant to our andyss. In
Section 3, we describe our empirical methods.  Section 4 describes the data on heart disease.

Section 5 presents our results, and Section 6 concludes.



2. Background

Information on provider qudity in any industry is useful for two broad purposes
forecasts and evauations. Forecast gpplications are forward-looking, to guide choices about
providers that may influence future outcomes. Which hospitals would be the best choices as
contractors for a managed care plan? If | have a heart attack, which hospital should | choose?
Information on past performance can guide these decisons, but perhaps in a complex way.
Relying smply on a provider’s performance in the previous year may lead to worse decisons
than consdering patterns in performance over severd years. Evadudion applications are
backward-looking, to provide ingghts into the consequences of dternative policy options or
practices in the past. What is the effect of hospita volume or experience on outcomes? What
are the consequences of changes in hospital ownership? Do hospitals with greater adherence to
standards of care have better outcomes? Policy and practice evauations generally do not occur
a the levd of specific providers. But understanding how variations across providers may
contribute to the outcome differences resulting from differencesin policies or practices may lead
to more appropriate inferences about their effects.

Many obstacles hamper the development of reliable forecasts and evduations. We
group these obstacles into four general categories. First, measurement is an obgtacle: it may
be difficult or cosly to collect rdlevant data for evauating providers in a timey way. For
example, the rlevant time period for measuring outcomes such as survival after a heart attack
may be weeks or longer; until this time has passed, the rdevant outcome measures are Smply

not available. Moreover, obtaining the relevant data may be expensve. For example, collecting



information on survival requires matching an individud's hospitdization records to desth
records, and collecting information on patient satisfaction requires locating and surveying
patients.

Second, the multidimensionality of qudity magnifies the problems associated with
collecting data on any particular measure. Patients are likely to care most about outcomes of
cae, and relevant outcomes include not only survivad but dso the occurrence of various
complications and functiona impairments. Many other factors, such as the processes of care,
may aso contribute to patients judgments about ther satisfaction with the qudity of care
received. In addition, the processes of care themsalves may be of some interest in evaluating
provider quality. For example, the extent to which hospitas apply trestments that have been
demondrated as effective may be useful indicators of quality. Patients and especidly hedth
plans may also be interested in resource use and costs of dternative providers. Many clinical
reasons suggest that these outcomes are related to each other, but the nature and magnitude of
the rdlaionshipsis generdly not obvious. For example, hospitals that perform better in terms of
heart attack surviva may aso do better in avoiding complications. But it is dso possble that
increased surviva is associated with a greater rate of qudity of life impairments.

To date, few systematic gpproaches have been developed to integrate dl of these
qudity measures. Exigting provider “report cards’ are either ad hoc, or rdy on dlinicad
congderations rather than empirical relaionships to describe “clusters’ of qudity messures.
Smilaly, the empiricd literature in this area generdly focuses on ether sngle measures chosen

onapriori grounds, or ad hoc aggregates across measures or years.



A third obgtacle is the substantial amount of noise associated with virtudly dl important
measures of provider quality. Most serious hedth problems, such as heart attacks, are rdatively
infrequent; many hospitals may treet only a few dozen patients or fewer over an entire year.
And mogt mgor outcomes, such as long-term mortdity, will be influenced by an enormous
number of factors other than the qudity of the provider. Asareault, it is unlikely to be feasible
to assess any single outcome measure for a particular provider with auseful degree of precison.

In response to this concern, the Nationd Center for Quality Assurance (NCQA), one
of the leading organizations in the development of quaity assessment measures, has focused on
the development of measures for which 411 cases per provider can reasonably be collected in a
gpecific time period (eg., Sx months or a year). As aresult, current NCQA measures focus
primarily on preventive care, for which the relevant denominator is the entire population treated
by aprovider or plan, or on outcomes for very common (and less serious) illnesses. None of the
current or proposed NCQA quality measures involve outcomes for conditions serious enough
to require hospita care.

A second response to the noise problem has been the development of hierarchichd
Bayesan modds of patient outcomes. The god of this gpproach is to estimate posterior
digributions for key provider-specific parameters tha influence patient outcomes.
Unfortunately, the complexity of this gpproach has limited its gpplication to sngle outcomes and
fairly smdl samples (see for example Normand, Glickman and Gatsonis, 1997). As we discuss
in section 3, our gpproach is closdly related to these empirica Bayes methods but represents a
subgtantial departure in how we manage the complexity of the estimation problem so as to

incorporate more outcomes and larger samples.



The find obgtacle to measuring provider qudity is the possbility of bias due to
systematic differences across providers in the patients they treat (case-mix). The debate over
the bias of clams-based measured has been extensve, but the empiricd evidence for the
exisence of abiasis mixed (Landon et. a, 1996; Krakauer et. a, 1992; Park et. al, 1990).
One response to this problem has been to collect more detailed information on patient condition
a the time of admisson from patient charts. However chart review is costly enough that it is
unclear whether this is a feasble long-term solution. For example, HCFA collected chart
information on al Medicare hospital admissons for cardiac conditions in 1994-95 but the cost
was around $100 per case.' To the extent that such chart data provides the best case-mix
adjustment possible, outcome measures based on such data provide a“gold standard” to which
other measures may be compared. In section 5, we provide new evidence on the relationship

between such chart-based measures and the more commonly available claims-based measures.

! Jeffrey Newman, personal communication.



3. Empirical Methods

We now describe our method for multivariate Sgnd extraction using multiple measures
of hospitd qudity, including information from multiple years, multiple diagnoses, and multiple
outcomes. We begin by providing some notation, and laying out the basic gods of our empirica
work. We then describe our estimation method, first for the case in which we only use qudity
measures to form predictions, and then in the more generd case where we aso use other
hospitd characteridics. Findly, we discuss how our estimator is related to empirical Bayes

esimators.

A. Notation and Model

Suppose we observe data for a sample of hospitals (j=1,...N) on multiple dimensions of
qudity (k=1,...,K) over many years (t=1,...,T). For smplicity of notation we will assume that
each hospital has datafor al years, and within each year has data on dl outcomes, dthough the
methods can easly be extended to cases of missing observations. We are interested in the
hospital-specific effect mfrom a patient-level equation of the form:
1) YSi=nfi+ X PR ws
where Y is the qudity measure (e.g. death within 30 days of admisson), X is a set of patient
characterigtics (eg. age, gender and comorbidities), w is the error term, and i indexes the
individud patient. Thus, n’f,—t measures the true quality difference in dimension k across hospitds
J inyear t, controlling for patient characterigtics X.

We do not observe the true hospita-specific effects directly, but rather observe

estimates of these hospital-specific effects from a patient level regresson run separately by year



for each quality measure. In other words, for each hospital we observe a vector of K noisy
hospital quaity measuresfor T years. Let M; be a 1IXTK vector of observed quality measures
for hospital j, adjusted for differencesin X using patient-level regressions?® Then

2 M=m+eg

wherem isa IXTK vector of the true hospital effects for hospitd j, and g is the estimation error
(which is mean zero and uncorrelated with m). Note that the variance of e can be estimated
from the patient-level regressons, since this is smply the variance of the regresson estimates
M;. In particular, E(e;.%;;)=W: and E(e;:¢e;s)=0 for t s, where W; is the covariance meatrix of
the effect estimates for hospitd j in yeer t.

Our problem is how to use M; to predict m. More specificdly, we wish to create a
linear combination of each hospita’s observed measures in such a way that it minimizes the
mean squared error of our predictions. In other words, we would like to run the following
hypothetical regressons:

d  nfie=M;bS+nk
but cannot do this directly, snce mis unobserved and the optima b will vary by hospitd and
yedr.

Equation 3 highlights the key problem in predicting hospitd qudity. The problem is
andogous to classcd measurement error: the regressor M"jt is a noisy edimae of the
dependent variable, and therefore should not have a coefficient of one in this hypothetical

regresson. In other words, the estimated hospital-specific intercepts are not optimal predictors

2That is, M; isthe estimated hospital effect from aregression of Y on X with hospital fixed effects included.
Sincewe are only interested in relative rankings, and not the absolute level of the intercept, we construct M
so that it ismean zero in each year.



of the true hospita-gpecific intercepts in terms of minimizing mean squared error. Asis usudly
the case with measurement error, we can improve the predictions in equation 3 by attenuating
the coefficient towards zero, and this attenuation should be greatest for hospitas with
imprecisdly-estimated effects. This is the basc shrinkage or “smoothing” technique that has
been gpplied in the empiricd Bayes literature (eg., Morris, 1983). Moreover, if the true
hospital-specific effects from other quaity equations (other years, other types of patients) are
corrdlated with the effect we are trying to predict, then using their estimated values can further

improve prediction.

B. Estimation
While we cannot estimate equation (3) directly, it is possible to estimate the parameters

for this hypotheticd regresson.  The minimum mean squared error linear predictor is given by
E(m| M;) =M; b , whereb =[E(M;'M;)] "E(M;'m). This bet linear predictor depends on
two moment matrices:
(41) EM;M)) =EMmm) +E(g'e)
(42)  EM;m) = E(mm)
We can egtimate these required moment matrices directly as follows.
1) Weestimate E(g;'ej) usng the patient-level OLS estimate of the covariance matrix for the

parameter estimates M;. Cdl thisestimate §. Note that § varies across hospitals.
2) Weegimate E(m'm) by noting that E(M;'M; - §) = E(mym). If we assume that E(my'm) is

the same for al hospitals, then it can be estimated by the sample average of M'M; - S. Itis

10



essy to relax the assumption that E(m'm) is the same for dl hospitals by calculating M;'M; —
S for subgroups of hospitals.

With estimates of E(m'm) and E(g;'e;), we can form least squares estimates of the
parameters in equation 3 which minimize the mean squared error. Andogousto smple
regression, our prediction of a hospitd’ s true effect is given by:

(5 =M E(M/M))* E(M;'m) = M; [E(m'm) + E(e/'e))] ™ E(n'm)

where we use estimates of E(ny'm) and E(e;'e)) in place of their true values. We can use the
estimated moments to calculate other statistics of interest as well, such as the standard error of
the prediction and the R-squared for equation 3, based on the usud least squares formulas.

Equation 5 in combination with estimates of the required moment matrices provides the
basisfor our estimates of hospital quality. Such estimates of hospita quality have a number of
attractive properties. First, they incorporate information in a systemetic way from many
outcome measures and many years into the predictions of any one outcome. Moreover, our
edimates of hospital quality are optimal linear predictors for amean squared error criterion.
Finaly, these esimates are far Smpler to congtruct than those derived from existing Bayesian
approaches (e.g Normand, Glickman and Gatsonis, 1997). The patient-level regressons are
somewhat computationally intensive, but can be performed with standard software for
edimating fixed effect models, and the required moment matrices for the hospital-level estimates
can be estimated in seconds even for large samples of hospitals. We will refer to estimates
based on equation (5) as “filtered” estimates, since the key advantage of such estimates is that

they optimaly filter out the estimation error in the observed qudity measures.
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In practice, there are a number of reasons to impose more structure on E(m'm). First,
in order to provide out-of-sample forecasts of these quality measures in future years, some
gtructure on the time-series behavior of these measuresisrequired. Moreover, if the assumed
time-series Sructure is correct, it will improve the precison of the estimated moments (and thus
of the estimated effects) by limiting the number of parameters that need to be estimated. Findly,
the correlaion in quaity measures over time and across outcomesis of direct interest, and will
be easier to interpret to the extent it can be adequatdy summarized by asmple time-series
modd.

Therefore, we assume that each hospitd’ s quality measures change over time according
to avector autoregressve (VAR) modd. The VAR mode has been applied successfully in
other time series and panel data contexts, when the god isto create aflexible modd for
forecasting and summarizing the data (Watson, 1994; Holtz-Eakin, Newey and Rosen, 1988).
The VAR modd isagenerdization of the usua autoregressve model, and assumes that each
hospitd’ s quaity measures in agiven year depend on the hospitd’ s quality measuresin past
years plus a contemporaneous shock that may be correlated across qudity measures. In most
of what follows, we assume a non-gtationary first-order VAR for my (1xK), where:

(6) M = MeF + U, WithV(y) =SandV(m) =G.

Thus, we need estimates of the lag coefficients (F ), the variance matrix of the innovations (S)
and the initid variance conditions (G), where S and G are symmetric KxK matrices of
parameters and F isagenerd KxK matrix of parameters.

The VAR dructureimpliesthat E(M;'M; - §) = E(m'm) = f(F ,S,G). Thus, the VAR

parameters can be estimated by Optima Minimum Distance (OMD) methods (Chamberlain,



1984), i.e. by choosing the VAR parameters so that the theoretical moment matrix, f(F ,S,G), is
as close as possible to the corresponding sample moments from the sample average of M;'M; -
S. More specifically, let d; be avector of the non-redundant (lower triangular) elements of
M;'M; - S§;, and let d be avector of the corresponding moments from the true moment matrix,
s0 that d=g(F ,S,G). Thenthe OMD estimates of (F ,S,G) minimize the following OMD

objective function:

7 q= NE- a(F.S, G)](E/-l[a- g(F ,S,G)]

where V isthe sample covariance matrix for d,, and d isthe samplemean of d,. If the VAR
modd is correct, the value of the objective function, g, will be distributed ¢ (p) where p isthe
degree of over-identification (the difference between the number of dementsin d and the
number of parameters being estimated). Thus, q provides a goodness of fit Satidtic that

indicates how well the VAR modd fitsthe actua covariancesin the data.

C. Incorporating known hospital characteristics into the estimates

Thusfar, we have assumed that the only data available are quality measures based on
patient outcomes. More generally, one would expect that easily observable provider
characterigtics, such as patient volume or teaching status, might provide additiona information
about quality. For example, if low patient volume is associated with poor patient outcomes,
then smdll hospitals would be expected to have poor outcomes even when thereislittle
information in their observed outcomes measures. Our approach is easily extended to dlow for

such a systematic relationship between hospital characteristics and patient outcomes.
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Suppose that for each hospital we have a set of hospita characteristics Z;, where Z; is
IXL. Notethat Z; may include time-specific characteristics (e.g. patient volume in year t) as
individud eements. Then equation 2 can be generdized s0 that hospital-specific qudity isa
linear function of observable hospital characteristics and a random effect:
(20 M;=m; + g ,where m;=Za+ m andEZm)=0.
As the sample of hospitds grows, the parameter a can be consgently estimated with a
weighted least squares regresson of M on Z (using estimates of the etimation error in M to
form weights), so the conditiond mean of the hospita-specific effects (Za) is known
asymptoticaly. Our gpproach can be used to generate estimates of the remaining random effect
by replacing M; with (M; - Z;a) in the proceeding discusson. The estimated random effect is

then added to the conditional mean (Z;a) to form the find estimate for each hospitd.

D. Relationship to empirical Bayes estimators and Kalman filters

Our gpproach is closdly reated to the literature on empiricd Bayes estimation (see
Morris, 1983). The reaionship is seen mos clearly by assuming normdity and rewriting
equations 2¢and 6 in terms of the digtributionsfor M and m
@  MjIm~Nm,S)
9 ml|a,F,S,G~N(Za,f(F,S,G))
Wetake S as known, and estimate the parameters (a, F, S, G) from the margina distribution:
(100 M;la,F,S,G~N(ga, S +f(F,S5,0Q)

With normdity assumptions for the digributions of (8) through (10), our OMD

esimates of the parameters are asymptoticaly equivaent to quas-maximum likelihood estimates
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(Chamberlain, 1984), but are computationdly much more efficient. Our proposed estimator for

mis equivadent to the posterior mean of mi.e. ﬁj1= E(m| M, a, F, S, G), where we replace

the unknown parameters with consstent estimates. If the normdity assumptions are correct,
and if the parameters were known, then this Bayes estimator would be the optima choice for
any symmetric loss function (Morris, 1983). Moreover, the posterior digtribution for mwould

adso be normal so that the estimate () aong with its standard error could be used to form

posterior probabilities, for example to caculate the probability that a hospitd’ s effect lies above
some vaue.

Formdly, equations (8)-(10) are smilar to the satistica assumptions used by Normand,
Glickman and Gatsonis (1997) with three key differences. First, Normand, Glickman, and
Gatsonis dlow for a hospital-specific dope parameter, which multiplies a univariate index of a
patient's risk.  Thus, the hospita-specific component of patient mortaity may vary
unidimensondly by type of patient, rather than being a Smple intercept shift as in our modd.
Second, they estimate a much smpler structure for (9), in that they do not alow for multiple
quality measures that are correlated.  Findly, they work with patient level digtributions and
thereby avoid making a normdity assumption in (8). Since equation (8) is characterizing the
digribution for regresson intercepts that typicaly involve a large number of patients, the
normality assumption does not seem unreasonable as an gpproximation.  Thus, our modd
appears to maintain many of the attractive aspects of the hierarchica Bayes approach, while

dramaticaly smplifying the complexity of the esimation.
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Findly, note that Equations 2¢and 6 are a linear state-space representation for M. The
predictions and forecasts we propose are smilar to those used in the time-series literature on
state-gpace models using the Kaman filter (see Hamilton, 1994). We are able to exploit pand
data for alarge number of hedth care providers and quality measures to estimate the modd’s
parameters, and therefore avoid many of the technical and computationd issues that are a the

heart of time-seriesliterature.

4. Data

Our application of these methods involves the quaity of care for heart disease in the
elderly. We congder two broad types of heart disease patients. patients with heart attack
(acute myocardid infarction, AMI) or with ischemic heart disease (IHD). A heart attack is an
acute blockage of an artery that provides blood to the heart muscle; it is a mgor hedth event
that amogt adways results in hospitaization. Ischemic heart disease hospitdizations involve
amilar symptoms but somewhat less severe illness, characterized by inadequate blood flow to
the heart that does not actudly cause deeth of heart muscle. For this condition, the hospital
treatment is intended to assure that a heart attack has not occurred, and especidly to try to
improve blood flow and reduce heart workload to prevent future heart attacks and recurrent
symptoms such as chest pain or breathing problems.

We used longitudina Medicare clams data to identify gpproximately 220,000 elderly
beneficiaries per year with new occurrences of AMI and approximately 360,000 patients per
year with new occurrences of IHD. We dso used hospitd clams, merged with death records,

to develop oneyear outcome information on mortaity and heart-rlated complications
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(rehospitdizations for heart falure, and recurrent AMI or IHD) for dl U.S. dderly patients
hospitalized with new occurrences of each of these conditions between 1984 and 1994.
Mortdity outcomes are based on whether a patient died within a given time (eg. 30 days) of the
initid admisson. Complication outcomes are based on whether a patient was rehospitdized
between 30 and 365 days following the initid admisson. Rehospitdizations within 30 days are
not counted because they are likely to reflect continuing treatment of the initid event, rather than
treatment of complications. The construction and content of these outcome data are described
in more detall dsewhere (eg., McCldlan, McNell, and Newhouse, 1994; Keder and
McCldlan; McClellan and Newhouse, 1997; McClellan and Noguchi, 1998ab). To congtruct
hospital-specific quality measures usng these outcome data, we grouped patients according to
their hospital of initid admission for heart disease trestment.>

Our sample is based on data from 1984 to 1994, and includes 3954 U.S. hospitals that
had at least three admissions for AMI and IHD in dl years of the 1984-1994 period. Table 1
provides some summary datigtics on dderly heart disease patients in the firs and last year of
thissample. Mortdity is substantia for both conditions — one-year AMI mortdity is 28 percent
and oneyear IHD mortdity is 11 percent in 1984 — and improved markedly over time.
Similarly, complications occurred in many cases, and aso declined to some extent over time
(heart failure has increased dightly over time; IHD and AMI recurrences have declined over

time). Despite the large number of patients, most hospitas treated relatively few cases. The

¥ Many patients are transferred or readmitted for care at other hospitals following their initial admission; for
some patients, such transfers may even occur on the same day. Thus, the bulk of care actually received by
some patients may have taken place at a hospital other than the hospital of their original admission. From
the standpoint of guiding provider choices, however, quality assessment from the perspective of theinitial
hospital choice seems most appropriate. It isalso least subject to selection biases.
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average hospitd in this population provided the initid care for 50-60 AMI patients per year,
and for gpproximately 80 IHD patients per year in 1984 and 95 IHD patients per year in 1994,
This rdativdy smdl sample sze, coupled with the large number of factors that may influence
heart disease mortdity, illusrates why sgnd extraction for particular quaity measures is a
difficult problem.

We used these patient-level data to construct hospital-level fixed effect measures M; for
each outcome in each year, by estimating patient-level linear regressions for each outcome that
included fully-interacted demographic covariates (five-year age groups, gender, black or
nonblack race, urban or rurd residence) and hospital effects. These adjusted M; estimates
provide the basis for the VAR andyses described in the next section. It is worth noting that the
clams data do not include rdiable information on comorbidity and severity, so tha our
adjusment methods will not remove biases in “case mix” that are not correlated with patient
demographics. Because these forms of heart disease are urgent hedth problems, patients are
highly likely to go quickly to nearby facilities for care, o that the magnitude of sdection biases
will be relativdy smdl. We provide further evidence on the bias question in our results and
discusson below, through detalled analyss of the reationships among outcome measures as

well asintegration of detailed chart-review datainto our estimation methods.

5. Results
In this section we report the results of applying the methodology described in Section 2
to Medicare patient outcomes data. The results are divided into two sub-sections. The first

sub-section presents estimates of the VAR parameters for various models using 9 years of data
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from 1984 to 1992. These parameter estimates are of direct interest because they provide
ingght into fundamentd rdationships among the multiple dimensons of hospitd qudity: how
strongly are hospital outcomes correlated over time and across different measures? The second
sub-section presents evidence on the properties of the filtered estimates of hospita-specific
quaity. The key issue is whether these filtered estimates extract enough of the sgnd in hospital-
Specific outcomes measures to be of practical use. That is, are the measures precise enough to
dlow informaive comparisons across individud hospitds, and do they provide accurate

forecasts of hospital outcomesin 1993 and 19947

A. Vector Autoregression (VAR) estimates

Table 2 illugtrates our gpproach with estimates of the VAR parameters for two basic
models. Each column reports parameter estimates for a separate bivariate VAR(1) modd (see
equation 6), estimated by OMD (see section 3) for two different sets of quality measures for
each hospitd. The first column contains estimates for a modd with 30-day AMI mortality
effects (DTH30) and 365-day AMI complication effects (CMP365). The next column isfor a
model of 30-day AMI mortdity and 90-day IHD mortdity (IHD_DTH90). We use 90-day
mortdity for IHD because 30-day mortdity is quite low in IHD and very noisy (see Table 1 and
further discusson below). Each column reports the initid variance and correlation of the effects
in 1984 (G), the variance and corrdation for the innovations to each effect (S), and the lag
coefficients (F ). Recdl that each effect depends on lags of both effects, so that for the mode in
column one, we have:

E[ mDTHBO] - F 1 r.QI_DIHC%O + F 21, t(_:l;-/||3365 md E[ n;FMP%5] - F - r.QI_DIHC%O + F 1 nfhfPBBS )
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The parameter estimates for the modd of DTH30 and CMP365 suggest that both
dimensions of hospitd qudity are quite persstent, with coefficients on their own lags of 0.887
for DTH30 and 0.973 for CMP365. There is much more true (sgnd) variation in hospita
qudity for 30-day AMI mortdity. The variance of DTH30 in 1984 is .00175 and the variance
of the innovation to DTH30 is 0.00036; this corresponds to a sandard deviation in 30-day
AMI mortdity rates across hospitas of over 4 percentage points, and a standard deviation for
the annud innovations of nearly 2 percentage points. The variation in CMP365 is smdler,
corresponding to a standard deviation of just over two-and-a-half percentage points in 1984
and a standard deviation of innovations under 1 percentage point.

A further notable result from the VAR modd of DTH30 and CMP365 is that the two
measures are negatively corrdated. A priori, a postive correation might be expected, because
higher values represent worse outcomes.  The negative correlation probably reflects the fact that
the “margind” patients who survive if treated by higher qudity hospitas are likdy to have
relatively poor heart function. Thus, hospitds that have worse mortdity performance have
better rates of subsequent complications, since fewer severdy-ill patients survive to develop
complications. This negative correlation and the fact that thereis very little variation in CMP365
to begin with suggest that CMP365 may be a poor measure of hospitd qudity, at least when
condgdered in isolation. The negative corrdation dso suggedts that true qudity differences and
not patient selection are responsible for most of the variation in our hospital quaity measures. If
hedthier heart patients led to low mortdity a a hospital, we would aso expect complication

rates at the hospita to be lower, not higher.
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Reaults from a model of 30-day mortality for AMI and 90-day mortdity for IHD
admissions are reported in the second column of Table 2. Compared to AMI outcomes at
hospitds, 90-day mortdity for IHD is not very persstent, with a coefficient on its own lag of
only 0.606. As was the case with CMP365, the true variation in IHD 90-day mortality across
hospitds is much lower than for AMI, both in 1984 and in terms of the innovations. In contrast
to the CMP365 results, however, we estimate a postive corrdation in the AMI and IHD
mortdity rates both in 1984 and in the innovations. Thus, hospitals with low AMI mortaity so
have low IHD mortdity -- as would be expected if high-quaity hospitas tend to produce
Superior outcomes across many patient groups.

In the bottom panel of Table 2, we report p-vaues for a set of specification tests. The
first row reports the general goodness-of-fit test, which tests whether the VAR modd provides
an adequate fit of the data. Both modéls fit the data reasonably well, with p-vaues from the
GMM goodness-of-fit test of around 3%. If the two measuresin the VAR are not independent,
then combining information from both measures will improve prediction. As seen in the second
row of the bottom pand of Table 2, independence of the two messures is strongly rejected.’
Findly, inthe last row of Table 2, we test for the presence of a second lag in the VAR modd (a
VAR(2)). We can formaly rgect the VAR(1) specification in favor of the VAR(2)
gpecification in one of the models (AMI and IHD mortdity), and in this specification the
VAR(2) mode aso performs better on the goodness-of-fit test (p-vaue=0.24 for the VAR(2)).

Nevertheless, we will continue to focus on the VAR(1) specification because this specification is

* The test of independence is aWald test (4 d. f.) of the joint hypothesis that the correlation in 1984 is zero,
the correlationin the innovationsis zero, and the cross lag terms (F 1,,F »,) are zero.
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more parsmonious, easier to interpret, and fits the data reasonably well. Below, we compare
the VAR(1) and VAR(2) specificationsin terms of their forecasting ability.

The length of follow-up on the mortality measures used in Table 2 (30-day for AMI and
90-day for IHD) was chosen on a priori grounds, most studies of AMI outcomes focus on 30-
day mortaity. However, the optimad length of follow-up is an empiricd questiont isthere atime
(eg. 30 days) after which there is no substantia change in true mortality differences across
hospitals, that is, just added noise in outcomes? In Table 3, we explore this question for both
AMI (the firgt two columns) and IHD (the second two columns). Each column of the table
reports estimates of bivariate VAR parameters from models of a short-term and a long-term
mortality measure. To make the estimates eesier to interpret, we report the VAR coeffidents in
terms of (1) the effect for short-term mortdity, and (2) the difference between the effects for
long-term and short-term mortality. In this way, the parameter estimates for the second
outcome refer directly to the changes in hospital-associated mortality between the short-term
and the long-term.  For AMI, we report estimates for models of 7-day mortdity with the
change from 7-day to 30-day mortdity, and for modds of 30-day mortdity with the change
from 30-day to 365-day mortdity. For IHD, we report Smilar estimates using 90-day mortaity
as the intermediate measure.

For AMI, the estimates in Table 3 imply that essentidly dl of the variaion in outcomes
across hospitals arises in short-term mortdity. We estimate that the variance in 7-day mortaity
effects in 1984 is 0.00153, while the variance in the change from 7-day to 30-day is only
0.00005 (firgt column). Similarly, much more variation arises in the first 30 days than between

day 30 and 365 (second column). The variance in the innovations is much larger for 7-day



mortdity than for the changes in mortdity after 7-days. To the extent there are changes in
mortaity after 30 days, they appear to be negatively corrdated with 30-day mortdity. Thus,
nearly dl of the differences across hospitds in terms of AMI mortdity appear within the first
week, and over long horizons these differences may shrink. These edtimates suggest that
hospitd performance in the firs week of AMI care is the principd determinant of long-term
outcome differences. From a clinica standpoint, this empirica finding seems to reflect the fact
that many of the criticd medica interventions in AMI care take place within the first days of
care, and have their impact on survival a that time. From an evauation standpoint, the
empirica finding suggests that assessng outcomes soon after AMI is sufficient for detecting the
vast mgority of mortality-related qudity differences across hospitas.

Mortdity for IHD exhibits a different pattern. For IHD, there is very little mortdity
varidion at 7 days, with much of the variaion emerging in both the 7 to 90 day and 90 to 360
day periods. In 1984, 7-day mortaity was postively correlated with 7-90 day mortdity
(0.792) and 90-day mortality was pogtively correlated with 90-365 day mortdity (0.135).
Thus, hogpitals with low initid mortdity tended to have low mortaity in subsequent months,
athough this pattern is diminished by the negative corrdation in the innovations after 90 days.
Once again, our empiricd findings reflect the dinicd care for ischemic heart disease. While IHD
symptoms are an urgent problem, the treatments for IHD have more of a long-term focus on
preventing the progression of blockages and avoiding future heart attacks.  Thus, hospita
qudity may have little impact on short-term outcomes, yet till subgtantidly influence longer-term

complications and degth.
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The findings in Table 3 have important policy implications for a least two reasons.
Fird, they suggest that the first few days of trestment for AMI patients is the key period in
determining outcome differences across hospitals, but not for IHD patients. Thus, attempts to
improve patient outcomes should focus on treatment decisons in the first days after AMI,
whereas decisons with a longer-term focus and later trestment decisions are more important for
providing high-qudity IHD care. A second implication is that a mortdity-based quality measure
for AMI (but not IHD) should involve short-term mortality rather than longer-term mortdity,
gnce short-term mortdity rates capture nearly al of the sgna variation present in longer term
AMI mortdity but tend to have less noise.

A practicd advantage of our VAR method is that it provides a systematic basis for
choosing among outcome measures that may be equdly valid on a priori grounds. In particular,
the VAR parameters provide estimates of how much sgnd variance there is in the origind
hospitd effect data We can use these estimates of the signd variance, in combination with
estimates of the amount of estimation error in each mesasure (S), to examine the signa-to-noise
ratio for any quaity measure.

Figure 1 plots estimates of the ratio of sgnd variance to total (Sgnd plus noise) variance
in the origina (observed) hospitd effects agangt the number of admissons on which the
measure was based. The sgnd ratio rises with sample Sze, as the variance of the estimation
eror declines. The estimates shown are for 1992, and are based on the VAR models from
Tables 2 and 3. Not surprisngly, AMI mortality measures perform the best in terms of sgnd
ratios because of the rdatively large variance across hospitas in the true effects. For AMI, the

ggnd ratio for 7-day mortdity is higher than for 30-day mortality, and much higher than for
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365-day mortdity. All three measures have roughly the same signd, but 7-day mortdity has
less estimation error because the overdl mortdity rate islower at 7 days, longer-term outcomes
largely add pure noise. The signd ratio for IHD mortdity shows the opposite pattern, with 7-
day IHD mortdity having the lowest 9gnd ratio and 365-day IHD mortdity having the highest
ggnd ratio — but ill wel below AMI mortdity measures. Thus, it gppears that short-term
mortaity measures are most useful for AMI, while long-term mortdity measures are more ussful
for IHD. Findly, the sgnd ratios for AMI complications are comparable to 1-year IHD
mortdity, and roughly haf as large as the Sgnd ratio in 7-day AMI mortdity for a hospitd with
100 admissions.

Figure 1 dso highlights how little Sgna there is in outcome measures for most hospitals.
In 1992 over hdf the hospitals in our sample admitted fewer than 40 AMI patients, and for
these hospitds the sgnd retio even in their AMI mortaity measures is under one-third. Thus,
for the mgority of hospitds, individud patient outcome measures for a sngle year provide
information on quality that is crude at best.

The dynamics of patient outcomes differ substantialy between smdl and large hospitas.
Table 4 contains VAR egtimates from models of mortdity for AMI and IHD, estimated on the
whole sample and then separately for low- and high-volume groups. We split the sample
roughly in hdf, with “high volume’ hospitals having at least 25 AMI admissons in every yedr,
and “low volume’ hospitds having a least one year with less than 25 AMI admissions. The
mogst driking difference between these two groups is tha there is much greater variance in
mortdity effects in the smal hospitds. The variance of both AMI and IHD mortdity is 2-3

times larger in the smdl hospitals, and the innovation variance (the variance of year-to-year
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changes in mortaity) is more than 3 times larger in the smdl hospitds. These reaults are
condstent with the notion thet there is less discipline on product qudity when qudity is difficult
to observe. In paticular, given the difficulty in observing a smdl hospitd’s true effect from the
patient outcomes data, smal hospitals with high mortdity might continue to attract patients (and,
therefore, survive) and might find it more difficult to detect and correct qudity problems as they
occur. It isdso consgent with qudity a smal hospitals being more dependent on idiosyncratic
changes in heart disease treatment, such asthe arrival or departure of an individud physcians or
other specific innovation, that would be expected to have rdatively smdler effects at larger
hospitas.

An important question is whether these patterns which we observe in the VAR
estimates are the result of quality differences that vary across providers, or differences in patient
mix which persst and are correlated across outcomes. Table 5 presents evidence on this
question. The table reports estimates of the correlaion between the AMI outcome measures
used in the previous tables, which are based on clams data and adjusted for demographic
differences across hospitds, and dternative measures of the same outcomes, which are based
on detailed medicd chart-review data and adjusted for a far more extensve list of patient
comorbidities and severity. The data for this comparison come from HCFA’s CCP project,
which collected information from patient charts for al Medicare patients admitted for AMI
during an 8-month period in 1994-95 measures (see the McClelan and Noguchi, 1998b, for
more details on the data and variables).

The comparison of clam- and chart-based data suggests thet there is very little bias in

the claims-based measures. In the first column of table 5, we report the correlation of the chart-
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basaed and claims-based measures. For al of the mesasures, we estimate a correlation of chart-
and clams-based measures of over 0.8, while the correlation for the complications measure and
for short term mortdity are over 0.95. The second column of table 5 shows the estimated sope
parameters from the hypothetical regressSons Myat = bMyam,” Which suggest thet the daim-
based measures introduce some measurement error relétive to the chart-based measures. The
parameter estimates are below one for al outcome measures, indicating that the claims-based
measures tend to overdtate differences among providers. Together, these results suggest that
some hospitals would be less likely to gppear as “outliers’ in terms of absolute deviations from
a mortdity sandard. However, the clamsbased measures are conveying very smilar
information about provider qudity to that obtained using chart-based data, particularly for the
AMI outcome measures that provide the most accurate Sgnds about qudity variations.

Overdl, five subgtantive findings emerge from the VAR estimates contained in Tables 2-
5. Firg, thereisasubstantial amount of correlation in outcomes over time and across measures.
Outcomes for AMI are particularly persistent over time, while mortality outcomes appear to be
positively correlated between AMI and IHD. In addition, we find that there is a substantial
amount of variaion across hospitas (especidly smdl hospitds) in outcomes, particularly for
AMI mortality. Nevertheless, commonly used risk-adjusted outcome measures have quite low
ggnd ratios for most hospitds. A third subgtantive finding is that most of the differences across
hospitds in AMI mortality emerge within the first week following admisson, while differences
emerge more gradudly for IHD mortdity. A fourth finding is that there is little evidence of

subgtantid bias in our cdlams-based outcome measures.  Findly, the VAR modd performs

®>With only one period of chart-review data, we cannot estimate a VAR.
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reasonably well in fitting and summarizing key festures of the data. We provide further evidence

on thisissue in the sub-sections that follow.

B. Properties of the filtered estimates

A main god of this paper isto develop outcomes-based measures of quality of care that
are of practica use a the levd of individud providers. In this sub-section, we present evidence
on the performance of our filtered estimates as indicators of hospitd quality. We begin with
smple plots comparing the filtered measures to more conventional outcomes-based estimates of
hospital qudity. We then turn to a more systematic evauation of the filtered estimates ability to
predict (in sample) and forecast (out of sample) variation in the true effects.

Figure 2 plots the observed (unfiltered) data for four hospitds. a smal hospitd (upper
left), alarge hospitd (lower right), and two midsize hospitals. These hospitals are not a random
sample, but rather chosen to represent a wide range of possibilities. Each pane in the figure
plots data for a single hospita from 1984 through 1992. Each line plots the estimated hospita-
specific effect from a linear probability mode (estimated separately by year) that controls for
age, race, gender and urban status. A vaue of 0.04 means that the hospital's mortality was 4
percentage points above the average hospitd in that year, with negative vaues indicating lower
mortality than average. Note that these are absolute mortdity differences  if the nationd
average is 19%, an estimate of 0.04 indicates mortdity of 23%. The solid line in each pand
plots the observed effects for desth within 30 days of admisson for AMI admissions. The
dashed line is for 90-day mortdity among IHD admissons. Estimates such as these are

commonly referred to as standardized, or risk-adjusted, mortdity rates.
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There are two gtriking features of Figure 2. Firg, there is condderable variation in
hospita outcome estimates both across hospitals and over time, particularly for AMI.  For
example, the 30-day AMI estimates range from over 15 percentage points below average (in
the bottom two panels) to more than 20 percentage points above average (the upper right
panel), with one hospitd's mortdity dropping over 30 percentage points between 1984 and
1990. These differences are particularly large consdering that the average hospital's 30-day
AMI mortality was 19 percent in 1984. A second striking feature of Figure 2 isthe large year-
to-year variation, with jumps of 5-10 percentage points not unusud.

Both of these features of figure 2 may reflect the fact that these hospital effects are not
very precisaly estimated. Figures 3a and 3b plot the AMI and IHD effects separately and add
95% confidence intervals around these estimates. For both AMI and IHD, the confidence
intervas on these etimates are quite large. For example, the confidence intervd on AMI
mortdity for the midsize hospitd in the lower left pand of figure 3aamos dwaysincdudes O (the
nationd average), despite the fact that its estimated mortdity ranges from 4 to 15 percentage
points below average. Thus, a clear limitation of these sandardized mortdity rates is their lack
of precigon.

Filtered etimates are meant to address this lack of precison. Figures 4a and 4b
overlay the filtered estimates (long dashes) and 95% confidence intervals (short dashes) on the
plot of the unfiltered estimates (solid line).  The filtered estimates in these figures are based on
equation (5), incorporating al of each hospitd’s data from 1984 through 1992 into each years
edimate. Edimates of E(m#r) are derived from the VAR parameter estimates for AMI and

IHD mortdity reported in Table 2.
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It is immediately gpparent that the confidence intervas for the filtered estimates are
much tighter. The intervas range from +/- 4% at the largest hospitd to +/- 6% at the smdlest
hospitdl for AMI mortdity and about hdf that for IHD mortdity. The tighter intervals are of
practicd importance in dlowing us to interpret these edtimates. For example, the midsize
hospitd in the lower left pand of Figure 4a has AMI mortality that is clearly better than average
based on filtered estimates. Another festure of the filtered data is that the estimates move
smoothly from year to year. Thus, dthough it is dill alarge decline, the decline in AMI mortaity
for the midsize hogpita in the upper right pand of Figure 4ais estimated to be less than half as
large with filtered estimates as compared to unfiltered estimates. Findly, one can see the clear
tendency of the filtered estimates to “shrink” towards average for the smallest hospitd, with the
filtered AMI estimates tending on average to be closer to zero than the unfiltered estimates.

Table 6 provides a more systematic evauation of the ability of the filtered estimates to
predict variaion in the true hospitd effects. The god of the filtered esimates is to minimize the
mean square error of this prediction. If true effects () were observed, a natura metric for

evauating these predictions would be the sample R-squared:

(1) R*= a / ean%

eJl

where 0= m 1 is the prediction error. Since mis not observed, we must congtruct an

edimate of this R-squared. For in-sample predictions, we condruct an estimate using our
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terms in the numerator (where this can be estimated from the estimated moment matrices in



equations 4.1-4.2). Findly, we report a weighted R-squared (weighting by the number of
admissions in each hospitd). Without weighting, the R-squared of our predictions tend to be
gmadller, but not dramaticaly so.

The expected R-squared of in-sample predictions is reported in Table 6 for sdected
years and outcomes. Each pand in the table reports the results based on different pairs of
outcomes. The first pand provides the prediction results based on a VAR mode of 30-day
AMI mortdity and 365-day AMI complications. The remaining pane reports results for a
model of 30-day AMI and 90-day IHD mortdity. We report the prediction R-squared for
each outcome in two representative years, 1988 and 1992. Each column reports the R-
squared for predictions using different amounts of data Predictions in the first column use dl
years of data for both outcomes and therefore should be most accurate. The second column
forms predictions with al years but does not use data on the other outcome. The next two
columns form predictions using only the three most recent years of data The find two columns
form predictions usng only data for the given year — S0 that the last column, which does not use
data on the other outcome, is a smple shrinkage estimator based on asingle year of data.

The filtered estimates are able to predict remarkably well. When we use dl the data to
form predictions (column one), the prediction R-squared ranges from a low of 0.51 for 90-day
IHD mortdity in 1988 to a high of 0.73 for 30-day AMI mortality in 1988. In other words, in
1988 the filtered estimates capture 73% of the true variation across hospitals in 30-day AMI
mortaity. Not surprisngly, thefiltered estimates ability to predict is directly related to the sgnd

ratio in the origind data, with AMI mortdity being predicted most accuratdly. In generd, the
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prediction accuracy declines somewhat in 1992 because there is less data in the surrounding
yearsto rely on for prediction.

The remaining columns of Table 6 report the impact on prediction accuracy from using a
limited set of outcome measures in forming the filtered estimate; nine years of data are unlikey
to be avalable in many applications. Provided at least severd years of data are available,
prediction accuracy is not much affected when prediction is based only on data observed for the
same outcome (e.g. only use the 30-day AMI mortdity data to predict the 30-day AMI
mortaity effects). With many years of data on a 30-day AMI mortdity, there is not much to be
learned about this outcome from other outcomes. Prediction accuracy remains high (R-squared
of a least 0.45) with 3 years of data, as seen in columns 3 and 4 of table 6. In particular,
prediction accuracy in 1992 (the last year of data being used) is not much reduced: Even with
al 9 years of data, the 1992 egtimates cannot use future years and so aready rely heavily on the
most recent years of data. However, when prediction rdies only on data from a single year, the
prediction R-squared fdls condderably, especidly when only using data on a single outcome.
Thus, the ability of the filtered estimates to incorporate information from many years, or from
many outcomesin asngle year, is very important in terms of improving prediction accuracy.

A second advantege of the filtered estimates is that the VAR structure alows for
forecasting out of sample. To evauate the performance of these out of sample forecasts, we
estimated models using the 1984-1992 data and congtruct 1-year (1993) and 2-year (1994)
ahead forecasts. The accuracy of these forecasts can be predicted as was donein Table 6, and
compared to the actua performance of the forecasts against the observed outcome measuresin

1993 and 1994. Since much of the observed variance in outcome measures in 1993-19%4 is
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estimation error, we congtruct a modified R-squared of the forecast that estimates the fraction of

the systematic (true) hospitd variation in the outcome measure (M) that was explained, i.e..

@ mov s /R s

where (= M - mis the forecast error, and S is the OLS egdtimate of the variance of the

esimate M;. This modified R-squared estimates the amount of variance in the true hospital
effects that has been forecasted. Note that because these are out-of-sample forecasts, the R-
squared can be negative: the forecast can perform worse than a naive forecast in which quality
is assumed to be equd to the nationd average at dl hospitas.

Table 7 contains the results of this forecasting exercise. As in Table 6, each pand
contains the forecast R-squareds for a different pair of outcomes. For each forecast, we report
two R-squared values. the modified R-squared based on evauating the actua performance
(equation 12), and the expected R-squared of the forecast. The expected R-squared of the
forecast was congtructed using data from 1984-1992 only, and is the prediction from the VAR
models of what the actud modified R-squared of the forecast should be. In each column we
report the results for a different forecasting method. The first two columns report the results
using forecasts based on filtered estimates from a VAR(1) specification and constructed from
(1) data on both outcomes, and (2) data on only the same outcome as being forecasted. The
next two columns report analogous results for a VAR(2) specification. The remaining three
columns consder dterndtive forecast methods. The fifth column uses the shrinkage estimator

from 1992 as aforecast for 1993 and 1994. The sixth column uses the obsarved effect in 1992



asaforecast. Thefina column uses the average effect observed between 1984 and 1992 as a
forecast.

Forecasts based on filtered estimates peform rdatively wel across a variety of
measures. For example, in the first column, we are able to forecast over 40% of the variation in
30-day AMI mortdity effects in 1993 and 1994 based on joint models of 30-day AMI
mortaity with either 365-day AMI complications or 90-day IHD mortdity. The worst
forecasting performance is for 90-day IHD mortdlity, presumably because the IHD effects were
not estimated to be very persstent. In each case, the expected R-squared of the forecast is
quite close to the actual vaues, suggesting that these expected R-squared vaues are an accurate
prediction of out-of-sample performance.

In generd, forecasts using both outcomes (column one) and usng only the same
outcome (column two) yied smilar results. Data on 30-day AMI mortaity seem to improve
forecasts dightly for 90-day IHD mortality. This may reflect the lack of perastence in the IHD
mortdity effects, which makes past vaues of other outcomes more useful in forecasting.
Smilaly, forecass usng VAR(2) specifications yidd dmogt identicd results to those using
VAR(1) specification. Thus, forecast performance does not appear to be senstive to the lag
choiceinthe VAR.

The dternative forecast methods reported in the last three columns of Table 7 do
uniformly worse than the VAR methods in terms of the actud forecast R-squared. Again, this
was predicted by our mode’s estimates of the expected R-squared for these dternative
forecasts. In particular, usng the 1992 measured effect as a forecast dways results in a

negative forecast R-squared. The shrinkage (standard Bayesian) estimator from 1992 and the



average outcome from 1984 through 1992 perform smilarly. Both generdly forecast less than
haf the variation being forecast by the filtered estimates, and both do particularly poorly at
forecasting effects that are not so perastent (e.g. 90-day IHD mortdity).

The evidence in Tables 6 and 7 suggests that the filtered estimates are quite accurate,
and dominate other forecast methods in terms of prediction accuracy. The accurecy of the
filtered esimates may be improved il further by incorporaing additiona information into the
predictions, as discussed in Section 3. The volume of patients trested is one hospita
charecterigtic that has a well-documented association with patient outcomes (e.g., Luft et a.,
1990). It is clear in our data that higher volume hospitals have lower mortdity. Figure 5
illugtrates this relationship by plotting unfiltered and filtered hospitd effects for 30-day AMI
mortdity in 1992 againg the number of AMI admissions in 1992. There is a Sgnificant (but
amdl) negative association between mortdity and volume in each plot, dthough the rdationship
is most eadly seen udng the filtered effects. Thus, information on patient volume should be
useful in predicting mortdity. Understanding the volume-outcome relaionship more precisdy
may have important policy implications as well.

Table 8 contains estimates of prediction accuracy for 1988, after incorporating the
effect of patient volume into the predictions. More specificaly, we dlow the hospitd effect for
each outcome in each year to depend linearly on patient volume for that outcome in that yeer.
We assume that the coefficient on patient volume does not change over time. The layout of
Table 8 is analogous to that of Table 6, except that now for each outcome we report the

prediction R-squared based on predictions including hospitd volume. The prediction R-



sguared without volume (from Table 6) is dso included for comparison. The last column of the
table reports the estimated coefficient on patient volume for each outcome,

In generd, usng patient volume leads to only a dight improvement in prediction
accuracy despite the fact that there is a very sgnificant relationship between volume and each
outcome. For example, for forecasts that use dl years of the same or both outcomes,
incorporating volume improves the prediction R-squared by no more than 0.01 in any case.
For these forecasts, the hospita-specific effects are being predicted so accurately from the
outcomes data that volume adds little new information. For 365-day AMI complications and
90-day IHD mortdity, the volume coefficient is too smal to contribute much to prediction
accuracy: an increase of 100 admissions is associated with a change in these outcomes of less
than 0.25 percentage points. Only for AMI mortdity, where volume has a rdatively large
coefficient, does volume meaningfully improve prediction accuracy for some of the wesker
forecasts.

These reaults further emphasize how wdl the filtered estimates are able to predict.
Patient volume has little impact on prediction accuracy because it can only explan a smdl
fraction of the totdl variation in the true hospital effects. The success of the filtered estimates in
predicting the true effects, especidly any part that perssts over time, is likdy to swamp the
contribution of other observed hospitd characterigtics. Thus, the results in Table 8 highlight the
vaue added of the filtered estimates over Smply evauating hospital quality based on hospita

characterigtics.

6. Conclusion



We have developed and applied a flexible, generd, and systematic gpproach for
asxessing hospitd qudity, for use in both evauation and forecasting. Compared to existing
methods for assessing the quality of medical providers, our approach gppears to have a number
of advantages. It limits measurement costs.  the method provides a foundetion for identifying
particular combinations of quality measures, out of the countless possible measures, that provide
atrue independent “signa” of important aspects of quality at a hospital. For this reason, it dso
avoids multidimensondity problems: rather than relying on ad hoc or possibly incorrect a priori
congderations, it provides a firm empiricd bass for the systematic integration of information on
qudity. Moreover, our method is far less computationdly intensve than recently-published
Bayesian gpproaches.

In addition, our method performs far better than aternative gpproaches for iminating
the noise problem that has plagued research on provider qudity in hedth care. We demongrate
this usng outcomes for serious illnesses, including mortaity and mgor disease complications,
that should complement the quality measures based on processes of care and less serious
outcomes that are under development in many hedth plans and provider groups today. Our
methods are able to extract 40 to 70 percent of the signd variance, and forecast 20 to 50
percent of sgnd variance one or two years ahead. The methods perform particularly well for
AMI outcomes, where the qudity of acute hospita care clearly has an important impact on
long-term outcomes.  We thus demondtrate thet it is feasible to collect and integrate outcome
information for reaively infrequent conditions, and thereby to evduate explicitly the qudity of

care provided for many types of seriousillness.
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Findly, our results suggest that measures which use much more detailed medica datato
account for differences in patient disease severity and comorbidity lead to quite Smilar
predictions regarding provider qudity, at least for patients with AMI. However, even if further
research demondtrates that better “risk adjustment” does have substantid effects on qudity
measures, our methods will remain applicable. The “first stage” patient-level regressons to
obtain the adjusted hospital measures would require use of more costly, detalled data, but the
same VAR framework can be applied. Indeed, our methods can be used to identify when
further risk adjusment has a substantia impact on evauating and forecasting *“risk-adjusted”
quality, and how measures based on detaled clinicd reviews can be integrated optimally with
measures based on lower-cost, less-detailed records. Taken together, our research suggests
that making reliable, precise predictions about provider quality in hedth care — and perhaps in

many other indudtries -- may be far more feasible than many now believe.
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Tablel
Summary statistics for selected years
Means and standard deviations (in parentheses)

AMI Petients IHD Patients

1984 1994 1984 1994
Number of 53.6 58.5 82.0 95.4
Admits (45.2) (56.2) (78.8) (119.4)
7-day 0.131 0.083 0.010 0.006
mortdity (0.085) (0.079) (0.020) (0.019)
30-day 0.187 0.124 0.028 0.016
mortdity (0.099) (0.095) (0.032) (0.034)
90-day 0.220 0.149 0.049 0.031
mortality (0.096) (0.099) (0.044) (0.044)
365-day 0.281 0.210 0.108 0.080
mortality (0.099) (0.107) (0.061) (0.065)
365-day 0.226 0.182 0.202 0.165
complications (0.081) (0.082) (0.077) (0.079)

Unweighted means and standard deviations computed from a sample of 3954 hospitals with at
least 3 admissions in each year for each diagnosis.

Mortality and complications variables are estimated intercepts from patient-level regressions run
separately by year and diagnosis, controlling for age, gender, race, MSA, and rural location.
Control variables were demeaned, so that the mean values reported in table represent the average
hospital’s mortality and complication rates and are not affected by the inclusion of control
variables.
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Table 2
Estimates of bivariate VAR(1) parameters for hospital-specific effects.
(Standard errors of estimates in parentheses).

Bivariate VAR(1) of DTH30 and:

CMP365 IHD_DTH90
Parameter estimates:

Lag coefficients

DTH30: Fu 0.887 0.920
(0.012) (0.014)

F -0.017 -0.177

(0.022) (0.066)

2 outcome,  F 0.973 0.606
(0.020) (0.044)

F 1 0.038 0.020

(0.009) (0.007)

Innovations

Variance of DTH30 innovation 0.00036 0.00034
(0.00004) (0.00004)

Variance of 2" innovation 0.00009 0.00012
(0.00003) (0.00002)

Correlation of the innovations -0.589 0.384
(0.104) (0.086)

Initid conditions

Variance of DTH30 in 1984 0.00175 0.00176
(0.00012) (0.00012)

Variance of 2" outcome in 1984 0.00067 0.00024
(0.00007) (0.00004)

Corrdation in 1984 -0.483 0.341
(0.047) (0.063)

Specification Tests:

P-value for GMM goodness-of -fit test 0.035 0.029

P-value for test of independence of 0.000 0.000

DTH30 and 2™ outcome

P-value for test of restrictions from 0.341 <0.001

VAR(2) to VAR(1)

DTH30 are the intercepts for mortdity within 30 days among AMI admissions.

CMP365 are the intercepts for readmission with complication between 30 and 365 days among
AMI admissions.

IHD_DTH9O0 are the intercepts for mortality within 90 days among IHD admissions.
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Table 3
Estimates of bivariate VAR(1) parameters for hospital-specific effects.
(Standard errors of estimates in parentheses).

Bivariate VAR(1) using: 1% AMI AMI IHD IHD
outcome: DTH7 DTH30 DTH7 DTH90
2" outcome: AMI AMI IHD IHD

DTH7-30 DTH30-365 DTH7-90 DTH90-365

Parameter estimates:
Lag coefficients

1% outcome.  F g4 0.813 0.898 0.856 0.578
(0.022) (0.0112) (0.056) (0.047)
F o 0434 0.137 -0.013 0.187
(0.146) (0.057) (0.024) (0.038)
2 outcome:.  F » 0.966 0.944 0.351 0.342
(0.082) (0.043) (0.065) (0.049)
F 1o 0.009 0.023 0.416 0.430
(0.011) (0.006) (0.156) (0.062)
Innovations
Variance of 1% innovation 0.00039 0.00040 0.00000 0.00011
(0.00005) (0.00005) (0.00000) (0.00002)
Variance of 2" innovation 0.00001 0.00004 0.00015 0.00024
(0.00001) (0.00002) (0.00002) (0.00003)
Correlation of the innovations -0.302 -0.779 0.295 -0.361
(0.202) (0.147) (0.204) (0.073)

Initid conditions
Variance of 1% outcome in 1984 0.00153 0.00173 0.00002 0.00021
(0.00014) (0.00013) (0.00000) (0.00004)

Variance of 2™ outcome in 1984 0.00005 0.00020 0.00008 0.00028
(0.00002) (0.00004) (0.00005) (0.00005)

Correlation in 1984 0.332 -0.299 0.792 0.135
(0.165) (0.082) (0.286) (0.129)
Specification Tests:
P-value for GMM goodness-of -fit 0.056 0.008 0.020 0.001
test
P-value for test of independence 0.000 0.000 0.000 0.000

of the two outcomes

DTH7, DTH30 and DTH90 are the intercepts for mortality within 7, 30 and 90 days.
DTH7-30 (DTH7-90) are the change in the mortaity intercepts between 7 and 30 (90) days.
DTH30-365 (DTH90-365) are the change in mortaity intercepts between 30 (90) and 365 days.



Table4
Comparison of VAR parametersin low and high volume hospitals.
Bivariate VAR(1) for AMI 30-day and IHD 90-day mortality.
(Standard errors of estimates in parentheses).

Full Sample Low Volume:  High Volume:
<25admitsin 325 admitsin
at least 1 year al years

Parameter estimates:
Lag coefficients

AMI_DTH30: F 14 0.920 0.911 0.912
(0.014) (0.020) (0.014)
Foa -0.177 -0.325 -0.055
(0.066) (0.095) (0.056)
IHD_DTH90: F » 0.606 0.531 0.813
(0.044) (0.061) (0.028)
F 2 0.020 0.013 0.005
(0.007) (0.010) (0.006)
Innovations
Var. of AMI_DTH30 innovation 0.00034 0.00057 0.00016
(0.00004) (0.00008) (0.00002)
Var. of IHD_DTH90 innovation 0.00012 0.00022 0.00003
(0.00002) (0.00004) (0.00000)
Corrélation of the innovations 0.384 0.476 0.555
(0.086) (0.1201) (0.098)
Initial conditions
Var. of AMI_DTH30in 1984 0.00176 0.00235 0.00109
(0.00012) (0.00024) (0.00008)
Var. of IHD_DTH90in 1984 0.00024 0.00035 0.00013
(0.00004) (0.00009) (0.00002)
Correlation in 1984 0.341 0.330 0.464
(0.063) (0.087) (0.063)
Specification Tests:
P-value for GMM goodness-of-fit 0.029 0.033 <0.001
test
P-value for test of independence of 0.000 0.000 0.000
AMI_DTH30 and IHD_DTH90
Sample size: 394 1943 2011

AMI_DTH30 are the intercepts for mortality within 30 days among AMI admissions.
IHD_DTH9O0 are the intercepts for mortality within 90 days among IHD admissions.



Table5
Comparison of claims-based outcomes measures to chart-based outcomes measures.
All comparisons based on data for AMI admissions from the CCP Project, 1994-95.
(Standard errors of estimates in parentheses).

Correlation of Edtimate of
claims-based outcome dope coefficient for
with Merart = D Myzim

chart-based outcome

DTH7 0.95 0.81
(0.01) (0.03)
DTH30 0.91 0.77
(0.01) (0.03)
DTH365 0.80 0.69
(0.04) (0.06)
CMP365 0.96 0.91
(0.02) (0.04)

Estimates computed from a sample of 3622 hospitals.

DTHY are intercepts for mortality within 7 days.

DTH30 are intercepts for mortality within 30 days.

DTH365 are intercepts for mortality within 365 days.

CMP365 are intercepts for readmission with complication between 30 and 365 days.



Table6
Summary of estimated prediction accuracy using aternative methods of signa extraction.
All estimates based on VAR(1) models from Table 2.

Expected R-squared of prediction based on:

All nine years of datafor: Three most recent years of data Concurrent year of data only for:
for:
Both outcomes  Same outcome Both outcomes  Same outcome Both outcomes  Same outcome

A. Based on model of AMI DTH30 and AMI CMP365

For AMI DTH30:

1988 0.71 0.71 0.58 0.58 0.42 0.34

1992 0.66 0.66 0.63 0.63 0.48 0.40
For AMI CMP365:

1988 0.65 0.64 0.46 0.45 0.28 0.20

1992 0.60 0.58 051 0.50 0.33 0.23

B. Based on model of AMI DTH30 and IHD DTH90

For AMI DTH30:

1988 0.73 0.72 0.60 0.59 044 0.35

1992 0.68 0.67 0.64 0.64 051 0.40
For IHD DTH90:

1988 0.51 0.50 0.46 0.45 0.38 0.27

1992 0.52 0.51 0.52 0.51 047 0.32

All expected R-squared values refer to a weighted R-squared, with weights proportional to the number of admissions at each hospital.
AMI DTH30 are the intercepts for mortality within 30 days among AMI admissions.

AMI CMP365 are the intercepts for complication within 365 days among AMI admissions.

IHD DTH9O0 are the intercepts for mortality within 90 days among IHD admissions.
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Table7
Summary of forecast accuracy using aternative forecasting models.
Forecasting 1993 and 1994 vaues using data from 1984 to 1992.

Modified R-squared of forecast based on:

VAR(L), forecasting with: VAR(2), forecasting with: Alternative forecast methods

Both Same Both Same Shrinkage Outcomein Average
outcomes, outcome, outcomes, Outcome, estimator, 1992 outcome,
84-92 data 84-92 data 84-92 data 84-92 data 1992 data 84-92 data

A. Based on model of AMI_DTH30 and AMI_CMP365
For AMI_DTH30:

1993 actual 0.46 0.47 0.47 047 0.19 <0 0.30
expected 0.52 0.52 0.51 0.50 0.31 <0 0.22
1994 actual 0.40 0.41 0.40 041 0.15 <0 0.21
expected 0.42 0.41 0.41 0.40 0.23 <0 0.10
For AMI_CMP365:
1993 actual 0.64 0.63 0.64 0.63 0.27 <0 0.31
expected 0.53 0.52 0.54 0.52 0.20 <0 0.24
1994 actual 0.57 0.57 0.57 0.57 0.25 <0 0.21
expected 0.47 0.46 0.49 0.47 0.18 <0 0.17

C. Based on model of AMI DTH30 and IHD DTH90
For AMI DTH30:

1993 actual 047 047 0.48 0.48 0.19 <0 0.30
expected 0.55 0.55 0.52 0.52 0.32 <0 0.28

1994 actual 041 041 041 041 0.15 <0 0.21
expected 0.45 0.45 0.44 0.44 0.25 <0 0.17

For IHD DTH9O0:

1993 actual 0.21 0.19 0.20 0.19 <0 <0 <0
expected 0.21 0.20 0.15 0.14 0.08 <0 <0

1994 actual 0.19 0.18 0.21 0.20 <0 <0 <0
expected 0.09 0.08 0.11 0.10 <0 <0 <0

See notesto Table 6.
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Table 8
Comparison of estimated prediction accuracy with and without controlling for patient volume.
All estimates based on VAR(1) models.

Expected R-squared of prediction based on:

All nine years of datafor: Concurrent year of data only for: Coefficient for
Both outcomes Same outcome Both outcomes Same outcome volume/100
(s.e)

A. Based on model of AMI DTH30 and AMI CMP365

For AMI DTH30, 1988:

covariates. None 0.71 0.71 042 0.34
Volume 0.72 0.72 0.50 0.39 -0.0188
(0.0005)
For AMI CMP365, 1988:
covariates. None 0.65 0.64 0.28 0.20
Volume 0.65 0.64 0.28 0.21 0.0024
(0.0002)
B. Based on model of AMI DTH30 and IHD DTH90
For AMI DTH30, 1988:
covariates. None 0.73 0.72 0.44 0.35
Volume 0.74 0.73 0.51 0.40 -0.0188
(0.0005)
For IHD DTH90, 1988:
covariates; None 0.51 0.50 0.38 0.27
Volume 0.52 0.51 0.39 0.30 -0.0013
(0.0001)

See notesto Table 6.
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Figure 2. Trendsin standardized 30-day mortality rates for AMI (solid line) and 90-day mortdity for IHD (dashed line)
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