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1. Introduction

Trying to understand why mortality is so strongly related to socioeconomic status has been a

major concern in demography, epidemiology, and public health for many years, and is beginning

to attract the attention of economists. Data from the National Longitudinal Mortality Study

(NLMS) show that people aged 25 whose family income was $5,000 or less in 1980 (and in 1980

prices) could expect to live 10 years less than those whose family income was more than

$50,000, Rogot, Sorlie, Johnson, and Schmitt (1992). The concept of socioeconomic status is

more widely used outside of economics than within it, and one of the issues that remains to be

settled is the extent to which these income differences are caused by income, or by other factors

correlated with income, education being the most obvious, see for example Fuchs (1989, 1993)

and Garber (1989). Many writers believe that there is at least some direct protective effect of

income, and in a recent literature much identified with the work of Richard Wilkinson (1996), it

is argued that, while the first moment of income is protective, at least at the individual level, the

second moment is a health hazard, so that income inequality raises mortality, if not at the

individual level at least in populations  or large subpopulations. Wilkinson distinguishes his

hypothesis from the mechanical consequence of Jensen’s inequality, that a convex relationship

between mortality risk and dying means that aggregate mortality will be higher in more unequal

societies. Instead he postulates that inequality itself is a health hazard and that it is less healthy

for both rich and poor to live in a more unequal society. It is hardly necessary to emphasize the

importance of such a link, if it indeed exists, though economists are particularly likely to mourn

the loss of the Pareto criterion. The proponents of some changes, such as improvement in school

quality, or raising the return on social security, make a plausible case that such changes will
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make everyone better-off, though some more than others. If such changes increase inequality, as

almost certainly they would, the cost of lives lost would have to be offset against the economic

benefits.

The original empirical support for the Wilkinson hypotheses comes from Wilkinson’s cross-

country comparisons within the OECD, where some measures of inequality are much more

closely related to mortality levels and mortality changes than is either the level or rate of growth

of national income. There are also a number of studies in the United States that find a relation-

ship across states between income inequality and mortality, see Kaplan, Pamuk, Lynch, Cohen

and Balfour (1996), Kennedy, Kawachi, and Prothrow-Stith (1996). Although this work has been

challenged on a number of grounds, see for example Judge (1995), Fiscella and Franks (1997),

and Mellor and Milyo (1998), and in some cases substantially modified, see Judge, Mulligan, and

Benzeval (1998), McIsaac and Wilkinson (1997), and Lobmayer and Wilkinson (1999), what

was initially perceived as implausible seems most recently to be commanding acceptance from

careful and unbiased researchers in the field, see for example Marmot (1997) and the survey by

House and Roberts (1999). While we have reservations about the robustness of many of the

positive findings, our main purpose in this paper is not to try to come to judgement based on the

review of the evidence—we suspect that it is too early to try to do so—but to offer some new

evidence based on income, income inequality and mortality data for birth cohorts of Americans

observed over the two decades from 1975 to 1995. As far as we are aware, birth cohorts have not

previously been used in this context—as opposed to individual data, state data, or country

data—and unlike these other sources, they offer both a cross-sectional and time series-dimension

in the same data.
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The next section of the paper summarizes and substantially extends a simple model first

developed in an earlier paper by one of us, Deaton (1999). The model is designed to provide a

framework for empirical application, and provides a way of thinking about the effects of income

and income inequality in a framework in which causality runs from income to health, but where

it is not absolute income that matters for health, but income relative to the average of an

(unobservable) reference group. Although inequality has no direct effect on health, the fact that

reference groups are not observed means that the slope of the observed relationship between

health and income varies with the ratio of between- to within-group inequality. The model can be

readily extended to incorporate a direct effect of inequality by making health depend on the

absolute size of income differences within the reference group, but equally plausible specific-

ations give different results so that, according to the theory, income inequality can be either

protective or hazardous. We give detailed consideration to the aggregation of the relationship

between health and income, how it can be expected to change as it is examined with different

sources of data, such as individual records, averages of states or countries, or averages of birth

cohorts.

Section 3 presents our empirical evidence. Data on mortality for birth cohorts are combined

with data on income, income inequality, poverty, and education for 1975 through 1995 from

successive Current Population Surveys (CPS) from 1976 to 1996. Deaton (1999)’s preliminary 

analysis used the same general approach, but  worked with a shorter sample period (1981–93),

different timing, a more limited range of variables, and merged the mortality and CPS data on a

household basis, rather than on the much more satisfactory individual basis used here. He found

that income reduced the risk of mortality, and that while the slope of the gradient was steepened
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when inequality was higher, there was no direct effect of inequality at the mean. In the current

paper, we  again document the strongly protective effects of income, and we examine how those

effects vary at different points in the life-cycle. When we turn to inequality, we not only fail to

find that it increases the risk of mortality, but that there is actually a protective effect, in apparent

contradiction not only with the Wilkinson hypothesis, but with much of the theory developed in

this paper. The basis for the result is the fact that when mortality was falling the most rapidly, in

the late 1970s and early 1980s, years not included in the preliminary study, inequality of income

was also rising rapidly. Note that because the mortality and inequality changes affected so many

birth cohorts simultaneously, our results are based on more than a correlation for a few years of

data. It is hard to understand why, if income inequality is so important in explaining mortality

differences across states in the U.S., as well as differences between the U.S. and other developed

countries, mortality should have fallen most rapidly just when inequality was rising most rapidly.

We also give a good deal of attention to the role of education, whether income is a mask for

education, how income and education affect mortality in the cross-section and over time, and

whether the treatment of income and education affects our results on the role of inequality. In a

cross-section of birth cohorts, income and education are closely correlated so that, in order to

disentangle their effects, we rely on the time-series dimension of the cohort data, supplemented

by individual level data from the National Longitudinal Mortality Study. The individual level

data show that both income and education are separately protective against mortality and that

only some of the effect of income is removed when we attempt to allow for reverse causality

from nearing death to income. In the cohort data, by contrast, income appears to increase the risk 
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of mortality conditional on education, a result that we tentatively ascribe to the short-run or

business-cycle effects of income on mortality.

2. Income, health, and inequality

The public health and epidemiological literatures, although richly suggestive of mechanisms, do

not currently provide a precise characterization of the way in which inequality affects health. In

consequence, it is difficult to know how to test the model, or how to interpret results. In this

paper, we start from the framework in Deaton (1999), and show how it can be used as a basis for

empirical analysis of individual level as well as aggregated data. The model is one in which the

link runs from income to health though, in this context, there is nothing to stop “income” being

reinterpreted as years of schooling so that, for the moment, we are not addressing the issue of

whether it is income or education that is ultimately protective. However, we are not considering

reverse causation, from health to income, a link that undoubtedly plays a part, although only a

part, in accounting for the relationship between income and health. That income should cause

health through a health Engel curve is consistent with standard health capital approaches in

economics in which health is produced with health care and behavioral inputs that have to

compete with leisure and other expenditures for a limited budget of time and money. But identi-

fiable health behaviors appear to explain only about a quarter of the relationship between health

and income, Marmot (1994), Lantz et al (1998), and medical care probably a good deal less,

perhaps ten percent or so, Adler, Boyce, Chesney, Folkman, and Syme (1993), House and

Williams (1995), so that this approach does not seem very promising. Perhaps the most pro-

mising line of investigation implicates the biochemical effects of psychosocial stress as a risk
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E (h | y, z ) � α � β ( y � z) . (1)

E (h | y ) � α � β [ y � E (z | y) ] . (2)

factor, linking this stress to social status, see for example Sapolsky (1993), and Cohen, Tyrell,

and Smith (1991), Cohen et al, (1997) for some of the results, and Sapolsky (1996) and Adler et

al (1992) for reviews.

In the spirit of this work, suppose that health status (measured positively) is an increasing

function of income relative to the average income in the reference group to which the individual

belongs. Write h for health, y for (the logarithm of) individual income, and z for the mean

(logarithm of) income in the reference group. Once again, note that we are using income as a

measure of social status, which could just as well be thought of as education, or as any other

(absolute) measure of achievement. We assume that the relationship is linear, so that for β>0,

If we knew the reference group to which each individual belonged, we could estimate (1)

directly using individual level data. However, such information is rarely available, and there can

be no presumption that people relate to any clearly identifiable group, such as their neighbors,

their birth cohort, or members of their same educational or occupational group. Health may be

determined by status at work, status in the local (geographical) community, or status at church or

in some community organization. As a result, z must be treated as an unobservable, and health

conditioned only on (own) income, so that (1) becomes

The conditional expectation on the right-hand side of (2) can be calculated from knowledge of

the joint distribution of z and y. Given the linear structure, the most convenient assumptions are

that z and y are joint normally distributed (recall that incomes are measured in logarithms). We

write the marginal distribution of z as  and the distribution of y conditional on z asN (µ ,σ2
z ) ,
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E (h | y ) � α �
βσ2

ε

σ2
ε�σ

2
z

( y � µ) (3)

 so that  and  are measures of within reference group and between reference groupN (z ,σ2
ε ) , σ2

ε σ2
z

inequality respectively.

Given the normality assumptions and the linearity of the original expectation, the expectation

of health conditional on income takes the convenient form (see the Appendix for this and other

useful results on the normal distribution)

so that the slope of the “gradient,” the relationship between health and income, is a function of

the ratio of within-group to between-group inequality. When reference groups are internally

homogeneous relative to the disparity across groups, differences in individual income largely

reflect intergroup disparity, which is irrelevant for health, so that the effect of income is

attenuated. When inequality within reference groups is relatively high, individual income is a

good indicator of relative income, and a good predictor of health. Another useful way of thinking

about (3) is that income is an error-ridden estimate of relative income, so that the slope of the

regression function is attenuated in the usual way. Note however that the convenient form in (3)

depends, not only on the linearity of (1), but also the normality assumptions about reference

group and within reference-group incomes.

Equation (3) does not assign to inequality any direct role in the determination of health. To

the extent that changes in inequality change the relationship between intragroup and intergroup

inequality, the observed relationship between health and income will become more or less steep.

But even here, there is no structural effect of inequality on health. For example, if within group

inequality increases, some people in each group will become less healthy, and some more
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E (h | y, z ) � α � β ( y � z � θσε ) (4)

E (h | y ) � α �
βσ2

ε

σ2
ε�σ

2
z

( y � µ) � βθσε (5)

healthy, but the average health of each group will not change. If intergroup inequality changes,

leaving intragroup inequality the same, no one’s health changes, even though the relationship

between health and income changes. The gradient is driven, not by changes in health, but by

changes with inequality in the relative income composition of each absolute income group.

The relative income model can be extended to incorporate a direct role for inequality. In

some of the literature, there are suggestions that it the absolute income differences that matter, so

that each person’s health is determined (for example) by the difference between their income and

the income of the best-off person in the reference group. If the best-off person is θ standard

deviations from the group mean, health responds, not to the difference between y and z, but to the

difference between y and  so that (1) becomesz � θσε,

Following through the argument as before, and assuming that  is orthogonal to income, gives aσε

new version of (3),

so that inequality plays a direct negative role on health as well as the indirect role originally

assigned to it. This appears much closer to the kind of effect discussed by Wilkinson (1996) and

in much of the related literature.

However, this account of inequality and health contains no fundamental reason why the effect

must be negative. In the original model (1), individual health depends on relative income, so that

a mean preserving spread of income within the reference group hurts some but helps others, so

that average health is unaffected. In the modified model, people are hurt by their distance from
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p � prob (h @ h0 ) � Φ
h0� α̃� β̃y

σu
(6)

the top of their reference group, so that a mean preserving spread hurts everyone except the

person at the top, who is unaffected, and the healthiness of the group falls. But this is not the only

way of measuring relative income effects. Instead of looking to the top, people might look to the

bottom, and become healthier the further they are above the reference group floor. Just as in the

upward looking model, health is determined by relative standing, and both approaches seem

equally consistent with findings that people with higher social status are healthier. But the

downward looking specification gives exactly the opposite effect of inequality on health. A mean

preserving spread improves everyone’s health except that of the poorest person, which remains

unchanged, and the group becomes healthier. This model leads to exactly the same functional

form as (4) and (5), but with the sign on the last term reversed. Without more content, linking

health to relative economic status delivers no prediction for the direction of the effect of

inequality on health.

Ambiguous although it may be, (5) is a convenient basis for empirical estimation, at least on

individual level data. Health is linearly related to income, to inequality, and to an interaction term

between inequality and income. For the analysis of individual level data, (5) can be used directly,

for example as a probit or logit. Taking the former as an example, suppose that someone dies

when h falls below some critical level , then the probability of death ish0

where  is the cdf of the standard normal,  is the standard deviation of health conditional onΦ σu

income, see (15) below, and  and  are given byα̃ β̃
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α̃ � α �
βσ2

εµ

σ2
ε�σ

2
z

�βθσε (7)

β̃ �

βσ2
ε

σ2
ε�σ

2
z

. (8)

Note that the within-reference group inequality term  is being taken as a constant and absorbedσε

into the intercept; even though we do not know the reference groups, or their mean incomes, we

may have a proxy for reference group inequality—such as inequality over some observable

group—in which case  could be included as a variable.σε

Although there are a number of microeconomic data sets on which (6) might be estimated,

from one of which we will show results below, we are faced with the usual choice in work

linking health and economics, between data sets that are rich on economic measures, but poor on

health, and data sets that are strong on health, but weak on economics. One way of solving the

dilemma is to merge information from multiple data sets, not at the level of the individual, but at

the level of some group that is represented in more than one survey. In this paper, we group at the

level of birth-cohorts observed in a particular year, and we merge mortality data from the vital

registration system with income, income inequality, and education data from the Current

Population Surveys. Before discussing the empirical results, we therefore need to consider the

effects of cohort level aggregation on (5). We do this in a fairly general way, so as to allow other

kinds of aggregation, for example by occupation, or by region. Since some of the previous work

on inequality and health has used either state level or international aggregates, we need some

aggregation framework if we are to compare results.
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E (h | y, z ) � α � β ( y � z )� βθσε (9)

E (h | x ) � α � β 1 �

σzx

σ2
x

(x�µ) � βθσε (10)

Return to equation (4) in the form

and suppose that we observe neither y nor z, but some conditional average, denoted x. In our

empirical work, x is the average (log) income of a birth cohort in a particular year, but it might

just as well be an average conditioned on state or occupation. Conditional on x, y is soN (x,σ2
c ) ,

that if x is jointly normally distributed with both y and z, with common mean µ, then the

expectation of h conditional on x is given by (again using the normal formulas)

where  is the covariance of x and z, mean incomes in aggregation and reference groupsσzx

respectively. Once again, we have assumed that the within-reference group inequality  isσε

orthogonal to the aggregation group income. Equation (10) is analogous to (5) and both come

from projection of the fundamental behavioral relationship (1) on to different variables. They are

identical if each person is her or his own aggregation group, so that individual income y and

group income z coincide. But more generally, (10) and (5) are different; the bias to the slope now

depends, not on the ratio of within- to between reference group variance, but (negatively) on

, the slope of the regression of reference group on aggregation group income. Whenσzx /σ2
x

aggregation group income moves one for one with reference group income, as when the reference

and aggregation groups coincide, the relationship between health and group income is lost. To

get an unattenuated slope, we need to select aggregation groups whose average incomes are

uncorrelated with reference group incomes.
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E (h | x ) � α � β
σ2

a

σ2
t �σ

2
a

(x�µ) � βθσε (13)

y � µ � θa � ηt � γg � ε (11)

cov(x,z ) � σzx � σ2
a � σ

2
t � σ2

x � varx (12)

Some examples clarify the implications of (10). While in principle it is possible for health to

be negatively related to income at the aggregation group level, this seems unlikely in practice.

Consider a component model of income, written as

where, as always, µ is the grand mean, and the other components are zero-mean random terms

associated with the effects of age (a), time (t), occupational group (g), and an individual idio-

syncratic term. In case A, suppose that the reference group is people of the same age, in the same

occupation, today. In case B, the reference group is all members of the profession today, irres-

pective of age. In both cases, the aggregation groups are birth cohorts, people of the same age

today, so that the aggregation group income is  In case A, the reference income is theµ � θa � η t.

sum of the first four terms on the right-hand side of (11), so that  is simply the idiosyncraticy�z

residual  which, by assumption, is orthogonal to z, so that the coefficient on x in (10) is zero. Inε

terms of that equation, as is easily checked, we have

so that x has no effect in the regression and aggregation-group income does not predict aggrega-

tion-group health. Even though income predicts health in the micro data, only inequality predicts

health in the aggregate. Case B is different. Because the age component is included in aggrega-

tion-group income, but not in reference group income, the covariance of x and z is only  soσ2
t ,

that with the variance of x unchanged, (10) becomes
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so that aggregation-group income matters for aggregation-group health, albeit with an attenuated

effect. In this case, there will be attenuation except in the implausible case where  andσ2
t � 0

there are no common aggregate shocks to income.

In general, if the reference groups are more finely defined than the aggregation groups, for

example economists of the same age observed at the same time versus an age cohort, aggregation

will annihilate the relationship between income and health in the aggregated data. If neither

group is more finely defined—economists of all ages versus birth cohorts—or if the reference

group is less finely defined than the aggregation group—for example, the whole population

versus birth cohorts—income of the aggregation groups will predict average health in the

aggregation groups. Note that if the reference group is the whole population, so that reference

group income is the population mean, the covariance of x and z is zero so that, by (10), there is

no attenuation, and the microeconomic relationship carries through directly to the aggregate

relationship. Finally, if the aggregation groups are individuals, so that  it is easily checkedx � y,

that (10) reduces to the attenuated micro relationship (5). This kind of analysis seems to capture

some (although not all) of the discussion in Wilkinson (1997) who argues that looking across

small geographical areas, income will be more important than inequality, while the opposite will

be true in comparisons over aggregates for large areas, such a states or regions.

In applications such as the present, where health is measured only to the extent that it does or

does not fall beneath a threshold and results in death, the parameters in (5) or (10) can only be

estimated up to scale, where the scale is the standard deviation of health around the two regres-

sion lines (5) and (10). As was the case for the slopes, the residual variances come from standard
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σ2
� σ2

h � β
2 σ2

ε �
(σ2

x�σzx)
2

σ2
x

. (14)

σ2
u � σ2

h �

β2 σ2
ε σ

2
z

σ2
z �σ

2
ε

(15)

results on the normal distribution. If we write  for the variance of health conditional on both yσ2
h

and z in (1), then the residual variance of the regression function (10) is

When the model is estimated on group-aggregated data, here on age cohorts, the slope of the

income relationship should be the ratio of  to the square root of (14). In the microβ (1 � σzx /σ2
x)

data, corresponding to (4), (14) also holds but with  so that rearranging, we havex � y,

Unfortunately, without knowledge of the variances, there is no general inequality that holds

between (14) and (15), nor indeed between the coefficients on income in the micro and macro

regressions, (5) and (10). The theory does not deliver any general basis for comparing estimated

gradients at different levels of aggregation.

Nevertheless, there are two polar cases where the results are straightforward and which are

worth keeping in mind when interpreting the results. These are (a) when the reference groups are 

small, and are contained within the aggregation groups, and (b) when reference groups are

universal, so that reference income z is the same for all people and equal to mean income. Case

(b) would arise if health is a function of relative income, but all people are members of the same

reference group, or if health is simply a function of absolute income rather than relative income.

In these two cases the gradients from micro and macro data can be compared. In case (a), with

individual data, the gradient will be the ratio of (8) to the square root of (15), an attenuated but

still positive effect. In the same case, but with aggregation-group data, there will be no relation-
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β /σh. (16)

β

σh 1�β2σ2
c /σ2

h
(17)

ship between aggregation group income and mortality, so that only inequality matters. In case (b),

when z is common to everyone,  and  are both zero. In the individual-level data, byσ2
z σzx

substituting , the ratio of (8) to the square root of (15) reduces toσ2
z�0

By contrast, in the aggregation-group data, by substituting  we get, for the ratio of theσzx � 0,

slope in (10) to the square root of (14),

where  is the within aggregation-group variance  Probits run at the aggregation-groupσ2
c σ2

ε�σ
2
x.

level will therefore be attenuated compared with those run on the individual level data. In our

econometric analysis below,  from the micro data is around –0.3, while the mean within-β /σh

cohort variance of log income is about 0.6, so that the factor in the square root of the

denominator of (17) is 1.054, and the two sets of estimates should be close.

What can be said about the relationship between inequality and the probability of dying at the

cohort or other group-aggregate level? The formulas are sufficiently complex to permit a wide

variety of results. However, if all the variances (and covariances) were to increase in proportion,

which is one way in which inequality might increase, there would be two distinct effects. The

first acts through the last term on the right-hand side of (10); when people are less healthy when

they are lower in the reference group, average health declines with inequality, and this effect is

not altered by the aggregation. The second effect can be seen by noting that the slope in (10) is

unaffected by a proportionate change in variances, while the variance in (14) will move with the

other variances. This is an aggregation effect which, in the aggregate data, acts to attenuate
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further the estimate of slope but, provided the probability of death is less than a half, will raise

the probability of death. When mortality risk is small, we are on the convex portion of the

relationship between the probability of death and (log) income, so that Jensen’s inequality makes

the aggregate probability an increasing function of the variance. Of course, this effect could be

weakened (or strengthened) by relaxing the original linearity assumption between health and

income. The possibility remains that changes in inequality, by changing the ratio of  to σzx σ2
x,

will alter the slope itself, but the formulas are complicated enough to prevent further conjecture.

3. Data and results

Our empirical analysis is based on merging data on all-cause mortality for the U.S. as a whole

with data on incomes from successive years 1975 through 1995 from the 1976 to 1996 Current

Population Survey (CPS). (Note that the March CPS collects data on the previous year’s income)

Merging is at the level of birth cohorts by sex so that, for example, we will be relating the

fraction of men or women born in year b who died in year t, to the incomes of that same cohort in

year t (or possibly earlier.) The data on mortality are taken from the Berkeley Mortality Database

(BMD); we use the 1 x 1 table, i.e. fractions dying by sex, by single year of age and in each year

from 1900, see Wilmoth (1999). The CPS data are used to attribute to each individual a family

income per adult equivalent, y say, and we then calculate various characteristics of the distribu-

tion of y over individuals for each birth cohort. In particular, we work with the cohort average of

lny, with the variance of the logarithm of y within the cohort, with the gini coefficient, and with

the proportion of people below the poverty line. Household income is the CPS measure of total

household income and adult equivalents are measured as the number of adults plus half the
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number of children, defined as those under 18 years of age. Note that, although y is family

income per adult equivalent, identical values of which are assigned to all members of each

household, the mean and other statistics will generally differ by sex if, for example, women on

average live in families with lower income. We also use data on education from the CPS,

calculating years of education for each person, as well as dummies for various attainment levels

so that, at the cohort level, we have data on average years of education as well as on the fraction

who have graduated from high school, college, and so on. After 1991, the CPS reports education

in bracketed intervals rather than in years. We use means within brackets from 1991 to attribute

years of education in the later surveys. With an age restriction from 25 to 85, and with CPS data

from 1975 through 1995, our data set consists of 1,281 age-year cohort averages.

Given that we have drawn a direct link from the theory at the individual level to its implica-

tions for birth cohorts, estimation at the cohort level is a viable alternative to estimation using

individual records. Cohort data also have some distinct advantages of their own, as well as some

disadvantages. On the positive side, because deaths are rare events, very large numbers of

individuals need to be sampled to make individual data useful. By contrast, the cohort data use

the data on all deaths in the U.S., eliminating the need for sampling. Cohort data also overcome

one of the major difficulties in linking mortality to socio-economic status, which is the lack of

individual level surveys that record adequate economic data together with information on deaths.

In this paper, we link mortality information from the vital registration system with the CPS,

which is probably the best source of data on incomes and education. It would be possible to

extend this principle further, bringing in information on risk factors, such as smoking, drinking,



1818

and obesity, from other sources, such as the Behavioral Risk Factor Surveillance System, some-

thing we plan to do in our future work.

There are also disadvantages of cohort data, primarily the impossibility of separating genuine

individual effects from those that result from aggregation. Using individual data that include

community characteristics, we could in principle test directly for effects of community means or

community inequality, as well as controlling for individual income. With aggregate data, we have

to face the problem of identifying the direct effects from the aggregation effects, and such identi-

fication will not always be possible. One of our (subsidiary) aims in this paper is to assess the

cohort approach, and to test whether it yields results that are similar to those from individual

record data. If so, we will have more confidence in using it in situations where individual data

cannot be used.

Figure 1 shows the log odds of dying by age for a selection of birth cohorts born from 1870

through to 1970. Although we can use only a fraction of this information in the analysis, the

long-run information is important for interpreting recent events. One immediate feature of the

patterns in Figure 1 is the age-profile of mortality. The risk of death is high immediately after

birth, falls to low levels in the mid-teens, and then rises with age thereafter. After about age 30,

the log odds of death is approximately linear in age, see also Elo and Preston (1996), albeit with

a time-dependent slope. Mortality has also been falling over time, so that the age-profiles for the

later born cohorts are below the profiles for those born earlier. But these two obvious features are

far from exhausting these data; the log odds are far from being completely “explained” by a sum

of age and cohort effects. For example, there are clear traces of specific events, such as the 1919

influenza pandemic on the cohort born in 1890. Note also that the proportional reduction in
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mortality is larger at younger ages—which in the limit must be true because everyone dies

eventually—but that the reductions differ by sex;  note for example the large reduction in female

mortality during child-bearing years. The reduction in mortality among young males is much less

than among young females, and for recent cohorts, there has been little or no reduction in the

mortality of males in their early 20s. As a result, for the cohort born in 1973, the ratio of mort-

ality rates for males to females in 1995, at age 22, is 3.25 to 1. For recent cohorts male mortality

rates fall with age from the early 20s to the mid 30s. The causes of these deaths—violence,

accidents, and AIDS—are quite different from those at higher ages, and it is implausible that a

single explanation in terms of income and income inequality will do for both.

Figures 2 show the mortality data in a way that is more immediately relevant to the task at

hand. The graphs show estimated year and cohort effects in the log odds of mortality for males

and females separately. These figures use only the birth cohorts that are observed in at least one

year between 1975 and 1995 inclusive, and which can therefore be matched to the CPS data. The

left-hand figure are the year effects estimated from a regression of the log odds of dying on a set

of year and age dummies, one for each year and each year of age. The right-hand figure is

obtained in the same way, but with cohort (date of birth) effects replacing year effects. The left-

hand figure corresponds to a fitted model in which the age-profile remains constant, but drifts

down with time, so that all people alive at any given date benefit from that year’s reduction in

mortality. It shows that the rate of mortality decline was relatively rapid from 1975 through to the

early 1980s, but has been a good deal slower since then. The timing of the increase in income

inequality is not identical to the timing of the slowdown in mortality decline; the largest increase

took place in the late 1970s and early 1980s, and the increase since then has been more modest.
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The cohort effects in the right-hand figure do not tell a picture of continuing progress. In

particular, males born since 1950 show sharply higher mortality rates than those born in the

1940s. Note that those born most recently are only observed in the early period of their lives, so

that these graphs give undue weight to the recent mortality experience among young adults,

where deaths are due to violence, accidents and AIDS, and which do not share the long-run

downward trend.

Table 1 presents a first set of results focusing on the relationship between income and

mortality. The dependent variable is the log odds of dying while the independent variables are

dummy variables for each age from 25 to 85 and the logarithm of income per adult equivalent.

Because the age effects are removed, identification comes from the relationship between cohort

(and interaction) components of mortality and income less its age profile. One hypothesis is that

all of the trend reduction in mortality is potentially attributable to income, but the historical and

international evidence suggest that this is not the case, see in particular Preston (1976). In

consequence, and in order to avoid the risk of spurious correlation between time trends, we

present results with and without the inclusion of a time trend. In the OLS regressions in the top

panel of the table, the coefficient on the logarithm of family income per equivalent is –0.559 for

men, and –0.528 for women; with the introduction of a time trend, these numbers become –0.281

and –0.125 respectively. Since the log odds is approximately the log probability when the

probability is small, these estimates can be thought of as elasticities. If the coefficient were –0.5,

a fourfold increase in income would cut the risk of death in half.

In order to compare the cohort results  with those from individual level data, we estimated

logits for the probability of dying using the National Longitudinal Mortality Study (NLMS). This
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is a survey of individuals originally sampled in CPS surveys and in the census around 1980 into

which death certificates have been retrospectively merged. For all individuals from age 25 to 85,

we constructed an indicator of whether the individual had died within 365 days of the interview,

and estimated a logit model in which the independent variables are a set of age dummies, one for

each age, and the logarithm of real family income per adult equivalent. (The public use version of

the NLMS provides only real income classes, not actual income, and we have used the classes to

construct a (rough) measure of the logarithm of total family income. We use the 1981 CPS to

calculate mean log income by age and sex within each of the NLMS income brackets, using the

results to impute log income to each person in the NLMS within their reported income bracket.

In practice, this gives very similar results to the simpler method of setting income to the middle

of the bracket. Adult equivalents were computed by linking individuals to households and

counting the numbers of adults and children.) Figure 3 shows the one year log odds of mortality

from the NLMS, computed from the fractions in the sample who died at each age, together with

the age-profile of the log odds of mortality from the BMD for 1982. NLMS mortality, which

excludes deaths among the institutionalized population, is somewhat lower among the elderly,

though the major effect is presumably beyond age 85, and is noisier, especially at young ages.

But the two data sets are clearly measuring the same thing, so that the NLMS results are a useful

comparison. The coefficient on the (log) income term in the logit is –0.352 for men (161,472

observations, t=10.8) and –0.262 for women (177,953 observations, t=6.3), close to the estimates

in Elo and Preston (1996) using the same data but a different specification. As we have seen,

there are a number of reasons why these numbers should not be the same as those in Table 1. In

addition to the aggregation issues, note that the NLMS records only a single estimate of family
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income so that, if permanent income is a better predictor of mortality than current income, or if

income is measured with error, the NLMS estimate will be attenuated relative to the cohort based

estimates to the extent that averaging over cohorts limits measurement error or proxies perma-

nent income. Note also that the NLMS relates only to income in a few years around 1980, so that

the two sets of calculations cover quite different periods. Given this and the aggregation

differences, we find the estimates surprisingly similar!

Table 1 shows a number of other results, including breakdowns by age, and using two alter-

native instrumental variable strategies to estimate the income effect. In the four OLS columns,

with results for four age groups, we obtain the now standard results that income matters most for

health in middle-age, in the 40–54 age range, and the effect diminishes with age. Even so,

income is still protective for the oldest group of both men and women, though the result vanishes

(and indeed income becomes mildly hazardous for women) if time trends are included in the

regressions. Perhaps most striking is the positive effect of income on mortality among young

men; the effect is large and negative among young women. This result is associated with the

recent increase in mortality rates among young men, which appears to be greater among cohorts

with higher average incomes. Plausible arguments can be made for a positive association

between income and the specific causes of mortality in this age group—AIDS, violence, and

accidents—and there is good evidence from pooled state and time series evidence that gives very

similar results, Ruhm (1999).

The way in which the protective effect of income varies with age can also be assessed

directly, by entering age into the regressions not only in levels, but also interacted with income.

We have done this for both the cohort and NLMS data, in the latter by running a logit on age
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dummies, the log of income per adult equivalent, and on age dummies interacted with the income

term. The results are shown in graphical form in Figure 4, for males in the left-hand panel and for

females in the right-hand panel. These graphs are noisy, particularly for the NLMS, which is to

be expected given the very large number of age coefficients in the regressions. Nevertheless, for

women, we see the familiar pattern whereby protection increases with age to around age 45 and

decreases thereafter. For men, the two graphs are not the same. In particular, the cohort data

again show a positive association of mortality and income among young men, a phenomenon of

which there is no trace in the NLMS data. The obvious explanation here is the fact that the

NLMS measures mortality in the early 1980s, before the youth mortality phenomenon had

become so pronounced. More disappointing is the failure of the NLMS to show any other age

pattern; perhaps we are asking too much of single year mortality data.

The instrumental variable estimates in Table 1 are motivated by an attempt to replace current

income with a longer-term, or permanent measure. One strategy is to instrument income with

years of education, on the assumption that education does not affect health directly—a contro-

versial supposition that we shall investigate more directly below. Another is to use cohort

dummies as instruments; this would be correct if we wanted to measure lifetime resources, which

remain constant over time at the cohort level. These instrumentation schemes are likely to work

better for people of working ages than for the elderly, whose current income is less well predicted

by their education, and whose lifetime income will not be adequately captured by averaging over

the maximum of 20 years in our sample. Nevertheless, the estimated income effects move as

would be expected if long-run income is a better predictor of health than current income. In the

top half of the table, instrumentation of income by years of education moves the coefficient for
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men from –0.56 to –0.92, and for women from –0.53 to –0.84. Instrumentation also removes

much of the difference between the estimates with and without time trends. Most remarkably,

when years of education (but not education and cohort dummies) is used as an instrument, the

protective effect of income for young men is restored. If this result is accepted— and there are

reasons for not doing so, including the possible direct role of education, and the different result

when cohort dummies are added to the set of instruments—it indicates that mortality among

young men is procyclical, again in line with Ruhm’s result that unemployment is good for health.

Figure 5 shows one aspect of the partial correlation between lny and mortality. These graphs

show the residuals of regressions of mortality, years of education, and lny on a set of age

dummies, averaged over birth-cohorts in the top two panels, and over years in the bottom two

panels. The very clear inverse variation is clear for both men and women, as is the fact that

education is a very good predictor of income at the cohort level (though less so on the time

series) which helps in instrumentation, but which in our later tests, will also make it difficult to

separate out the roles of income and education on the cohort data. (Note that the regressions

contain more information than shown in the Figures, since the observations are cohort-year pairs,

with interactions, not cohort or year averages.)

Table 2 repeats the top panel of Table 1, but with the addition of two within-cohort inequality

measures, the variance of log income and the gini coefficient. (These regressions were also run

with time-trends, but the results are not much affected.) The introduction of either the variance of

log income or the gini coefficient produces an estimated protective effect of inequality on health.

To see the size of the coefficients, we note that, averaged over all cohorts, log odds of male

mortality declined by 0.20 from 1975 to 1995. The mean of the logarithm of income per adult
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income rose by 0.20, and its variance by 0.196 Using the coefficients for all age groups

combined, then the rise in income equal would be predicted to reduce the log odds by about half

of the actual decline, 0.10 (OLS) and 0.12 (IV). The rise in the variance would lead to a decline

in the log odds of death by 0.03 (OLS) and (an absurd) 0.12 (IV). The changes in mortality,

income, and inequality were much the same for females as for males, but the coefficients are

different. The predicted effect of the rise in income is a decline in the log odds of female

mortality of 0.08 (OLS) and 0.07 (IV), while the predicted declines from the increase in

inequality are 0.03 (OLS) and 0.11 (IV). In the four OLS regressions (men versus women,

variance of logs versus gini), the introduction of the inequality measure has very little effect on

the income coefficient, which remains protective as before, but in all cases the inequality

measure appears with a significant negative coefficient. The protective effect of inequality is

about the same for males and females, and is a good deal larger for people from 35–59 than for

those aged 60 and over. For the elderly, the estimated coefficient on the gini is insignificantly or

barely significantly different from zero. While the theory allows for the possibility that inequality

is protective—for example, if people look to the bottom of their reference group in assessing

their health, or if the covariance of mean cohort and mean reference group income is large

enough—the result remains implausible.

Figure 6 provides some insight into the source of these results, as well as an explanation for

the difference with Deaton (1999), whose similar regressions yielded essentially no effect. The

top two panels of the figure show the raw income inequality data, on the left for the gini

coefficient, and on the right for the variance of logarithms. Each of these has a “male” and

“female” variant because we use the CPS data to assign (the same) family income per equivalent
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to each person in the household, so that differences in inequality by sex reflect the distribution of

men and women across households. As far as trends are concerned, there is no important

difference by sex. Note also that the inequality measures are not the usual inequality measures for

the whole country, but the average over all the cohorts in a given year of the inequality measure

within the cohort. Such measures exclude the contribution of between cohort inequality to the

national aggregate. Even so, the trends are similar to the national trends. Family income

inequality rises rapidly from the late 1970s to the mid 1980s, with relatively little change

thereafter. (The sharp increase in the gini in 1995 is not mirrored in the variance of logs, because

it is associated with inequality at the very top of the distribution, and is probably distorted by

topcoding effects and by other changes in interview protocols.)

The bottom panels of the figure are constructed by calculating the residuals of the regression

of the log odds of death on age effects and on the mean of log income per equivalent, averaging

by year, and plotting them against the similarly averaged residuals of the inequality measure on

age effects and the mean of log income per equivalent. Without the averaging, the regression of

the mortality residuals on the inequality residuals would reproduce the coefficients in Table 2,

and the averaging is used only to produce uncluttered graphs. The negative (partial) relationship

between inequality and mortality is transparent in both figures. When inequality was low,

mortality was high (and falling), and when inequality was high, mortality was low. The timing of

mortality change and income inequality in the U.S. is not supportive of the hypothesis that

inequality increases the risk of death in the aggregate. The estimated protective effect of

inequality is reduced if time trends are included in the regression, but neither the sign nor the
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statistical significance is altered. Nor are the results affected by introducing one or two period

lags between inequality and mortality.

Table 2 also shows the consequences of instrumenting both inequality and income, on the

same grounds as before, that it is possibly the long-term experience of high income and high

inequality, not their year to year variations, that conditions mortality. Also as before, we use

education as instruments, not only the mean years of education in the cohort, but also the

fractions of the cohort with various educational attainment levels. The inclusion of the latter

captures the distribution of educational attainment within the cohort, and generates excellent

instruments for income inequality. Generally, the results are what might be expected, that moving

to a long term basis reduces attenuation and makes the estimates absolutely larger, for both mean

income and inequality. There is one exception, for men aged 39 to 59, where the protective effect

of inequality is reversed, so that we get the (originally expected) positive coefficient, though for

neither the gini nor the variance of logs is the estimate significantly different from zero. (One line

of investigation that needs to be pursued with different data is the extent to which these results

reflect mortality among young men, and its relationship to the business cycle on the one hand,

and with income in the cross-section through AIDS, an effect that has almost certainly changed

sign over time.)

Table 3 investigates another possibility that is often raised in the literature, that the effects of

inequality might be a mistaken attribution of the effects of poverty. The first two rows of the

table show the OLS and IV results for men and women, first including only the fraction of people

below the official US poverty line, and in the next row, including both the fraction poor and the

variance of log income. These results merely serve to deepen the puzzle. Poverty, like inequality,
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is estimated to be protective of health, and when both poverty and inequality are included, both

are separately protective.

The last row of the table investigates whether the slope of the gradient between income and

mortality is affected by mortality. As we saw in the theoretical development, except when we

observe individual and reference group income, the effect of income on health is a function of

inequality, and is predicted to increase with general increases in inequality in the individual level

data if such changes increase within-group inequality more than between-group inequality. In the

cohort data, the same effect is caused by an increase in the variance of aggregation-group income

relative to reference-group income, which is itself a plausible consequence of an increase in

within-reference group inequality. (For example, see (11), and take  and z � µ�ηt x � µ�θa�ηt,

so that increases in the variance  will simultaneously increase the slope of the gradient as wellσ2
a

as the ratio of within-reference group to between reference group inequality.) The interaction

terms in the third panel of the table are estimated to be negative, so that the gradient of mortality

with income is steeper when inequality is larger. This is again a plausible result, but it does not

remove the implausible (and significant) protective effect of inequality at the mean, see the

derivatives at the bottom of the table.

In the results so far, we have adopted the position that the underlying determinant of health is

income rather than education, and have used education to instrument income and income

inequality. But this is a controversial position; many would argue that it is not income, but

education—or at least some personal attribute that is strongly related to education—that is the

ultimate determinant of health. It is also possible, in the immediate context, that our misspeci-

fication of the role of education is responsible for our unexpected results on the role of
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inequality. Americans have been becoming more educated on average, and the rate of return to

education has been rising, so that changes in income inequality are in part due to changes in the

relationship between income and education.

Before looking at the cohort data, it is worth using the individual level data in the NLMS to

give another assessment of the income versus education, and one that is not affected by the time-

series effects that are potentially important in the cohort data. Table 4 shows results from logit

estimation of the probability of death on men and women in the NLMS within a year of inter-

view. Age effects by single years of age were included but are not shown. In the first row are the

results already discussed, on the effects of the logarithm of income per adult equivalent on the

log odds of dying. The second row shows what happens if we replace income by years of

education; like income, education has a strong and significant effect on mortality; an additional

five years of education, from say high school to a masters, reduced the probability of death by

around 20 percent for men and about 25 percent for women. In the final row of the table, the

logits are run with both education and income. For men, the income coefficient is reduced hardly

at all, while the coefficient on education is reduced threefold, and is no longer significantly

different from zero. According to these estimates, to a first approximation, it is income, not

education, that is protective of health. These results are not replicated for women whose com-

bined regression shows effects of both income and education separately, each protective, and

each with a coefficient somewhat smaller than when they are included alone. 

Income is much less well predicted by education for women than for men, but this does not

explain why it is income, not education, that plays the dominant role in male mortality. Although

others in the literature have found that income drives out education—see Lantz et al (1998) who
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use the (much smaller) American Changing Lives Survey, which also allows controls for

behavioral factors—we find the result quite surprising. Even if it is ultimately income that

matters, it is astonishing that a single observation of a year’s income—with all the usual

measurement error—should predict mortality better than a longer term measure as predicted by

education, in which case both income and education should show up in the reduced form

regression. The obvious possibility is that there is causality running from health to income for

people about to die. There is some evidence for this in the results reported by Elo and Preston

(1996), who also find marked reductions in the education effects on five-year mortality when

income is introduced, with reductions larger for men. However, even after allowing for

income—and for a range of other covariates, but with age effects restricted to entering linearly—

male education is still significant, and twice as large as in Table 4.

Tables 5 (men) and 6 (women) report results from the NLMS is the same format as in Table

4, but using deaths in periods at various lengths after the interview; in the first panel for death in

the first year, as in Table 4, in the second panel for the second year, the third panel between two

to five years after the interview, and in the last panel, for deaths from five to nine years after the

interview. (For the results in the second, third, and fourth panels, the logits are estimated only

over the group of individuals who survived to the beginning of the period, so that the samples

become successively smaller across the panels.) Although moving forward in time will not

eliminate the effect of prospective death on income—some conditions will produce low income

for many years prior to death—it should certainly reduce the influence of reverse causality. And

indeed, the results in the table are supportive of such an interpretation. For men under 60, in the

last two lines of the top panel, the effects of education on the log odds hold fairly steady, but the
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effects of income are reduced. Some such effect is also to be expected from the increasing irrele-

vance of an increasingly remote measure of income, so it is not clear how much of the reduction

should be attributed to reverse causality. But for women, in Table 6, where the reverse causality

is weaker, the initial income estimates are lower, and are less affected as the mortality window is

moved forward. On this evidence, while the initial male estimate of –0.4 is probably too large (in

absolute value), a case can be made for defending an estimate of around –0.3. Even for the

elderly, and even five to nine years after interview, income exerts a protective effect against

mortality, and the effect is not removed by controlling for education.

The cohort data are perhaps less well suited to investigating the question of whether it is

income or education that matters for health. As we saw in Figure 5, the cohort average of the

mean of the logarithm of income per equivalent adult is closely related to the mean years of

education, even after removing age effects from both. As a result, attempts to include both vari-

ables in the cohort regressions lead to a good deal of instability in the results. Nevertheless, the

cohort data allow us to investigate the possibility that there are dynamic effects of income on

mortality, with differences in short and long-run responses. Table 7 shows the results of trying to

investigate education versus income, and the effects on the estimates of variance. The first two

rows, labeled “regression 1” shows the results of OLS regressions on age effects and on mean

income and mean years of education. For both men and women, and whether or not time trends

are included, income is either hazardous (or insignificant), and education is protective. The

absence of a protective role for income is in sharp contradiction to the cross-sectional results

from the NLMS, and for males, that education drives out income is exactly the opposite of the

NLMS result. That income might actually be harmful once education has been controlled for has
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been argued by Fuchs (1974, 1993) and by Garber (1989), but the studies cited either do not

support the conclusion, (Grossman, 1975, Leigh, 1983, and Newhouse and Friedlander, 1980), or

are unpersuasive, as in Auster, Leveson, and Sarachek (1969) which estimates regressions across

states in 1960 with results that are frequently statistically insignificant and that are not robust

across specifications. What is more plausible is the existence of dynamic effects, whereby

mortality is positively related to transitory income and (positively) follows the business cycle, but

is negatively related to permanent income. (There is a parallel here with the argument that “new”

causes of mortality—cigarette smoking, obesity, lack of exercise, AIDS—first affect the rich but

eventually settle down into the traditional pattern of differentially harming the poor. Income

brings health risks in the short run, but ultimately the also the ability to understand and overcome

them.) Even so, we must note that these results are not very robust; the correlation between the

two parameter estimates is –0.80 for men and –0.78 for women. Instrumental variable results

using cohort dummies as instruments (not shown here) show very different (and sometimes

bizarre) patterns. Clearly, much work remains to be done, perhaps with data that are less collinear

than those used here.

Table 7 also shows the results of entering education, not as average years of education, but as

the proportions of the population with various levels of educational attainment (“regression 2”).

These results do not differ in any major way from those in regression 1; the estimated effects of

income on mortality are still positive or insignificant, and education is strongly protective, es-

pecially years of education beyond high school. Interestingly, those with “some college,” shown

here as 13–15 years of school, are consistently at higher risk of mortality than those with only a

high-school diploma. (This effect, possibly attributable to selection, also reappears in the NLMS,
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albeit in a much weaker form, see Elo and Preston, 1996). Apart from this, there is no evidence

here that there is a problem with using mean years of education to predict mortality. In the final

regression in the table, regression 3, we repeat the first regression but with the addition of the

variance of the logarithm of income per adult equivalent. The coefficients on inequality are much

reduced compared with those in Table 2, typically by a factor of more than two, but the estimated

protective effect remains. Allowing for the possible separate effects of education and income

much reduces the size of the estimated protective effect of inequality, but it does not eliminate it.

4. Conclusions

Our original purpose was to use birth-cohort data to examine the links between mortality and

inequality. Controlling for income, we find that higher inequality is associated with lower

mortality, a conclusion that comes from negative association of mortality and inequality in the

United States in the late 1970s and early 1980s.  While it is possible that such a result has some

real basis—and there are theoretical mechanisms that could produce it—it is hardly  established

by these results. In particular, the sign of the effect is implausible, if only because of the expected

operation of Jensen’s inequality, and the  magnitude of the effect is quite sensitive to the way in

which other variables are introduced, particularly income and education. Indeed, we suspect that

the current priority should not be the investigation of the effects of inequality, but the unpacking

of “socio-economic status” into its components, particularly education and income, as well as the

disaggregation of mortality into its different components so as to allow them to respond to

income and education in different ways. The results reported here make it clear that this is no

easy task; the way in which education and income affect mortality is not the same for men and
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women, it is not the same for young adults as for older adults, it is different over long time

periods and over the business cycle, and it is different in the cross-section from over time. We

find evidence that short-term increases of income may raise the risk of mortality, particularly for

young men. But in the cohort data, the longer term effects of income, or of income linked to

education, are protective. Yet this evidence needs to be reconciled with the individual level data

from the follow-up studies which show that, especially for men, income plays as large or larger

role than education. Work on these issues has hardly begun.
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Appendix

In the text, we make repeated use of a standard result from the normal distribution, which is

stated here for convenience. In words, if two variable are jointly normally distributed, the

conditional expectation of one given the other—the regression function—is linear and

homoskedastic, with coefficients and residual variance equal to the coefficients and residual

variance of a large sample OLS regression. Formally, suppose that

then

and for the variance,

The same results hold for the expectation of  conditional on  with “1” and “2” transposed.x2 x1
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Table 2: Log odds of dying as a function of income and income inequality, by age group.

Men Women

OLS IV OLS IV

Inequality measure is variance of ln(y/ae)

All age groups
  mean ln(y/ae)
  var ln(y/ae)
Ages 35-59
  mean ln(y/ae)
  var ln(y/ae)
Ages 60-85
  mean ln(y/ae)
  var ln(y/ae)

–0.520
–0.157

–0.621
–0.236

–0.506
–0.123

(22.7)
(8.7)

(14.6)
(8.0)

(21.6)
(5.7)

–0.606
–0.655

–1.368
0.353

–0.594
–0.475

(8.1)
(4.9)

(4.9)
(1.0)

(9.4)
(3.3)

–0.479
–0.180

–0.726
–0.240

–0.298
–0.084

(26.2)
(13.6)

(26.2)
(11.4)

(15.9)
(5.7)

–0.417
–0.656

–0.307
–1.066

–0.380
–0.375

(4.5)
(5.1)

(1.5)
(3.9)

(5.7)
(3.0)

Inequality measure is gini coefficient of y/ae

All age groups
  mean ln(y/ae)
  gini y/ae
Ages 35-59
  mean ln(y/ae)
  gini y/ae
Ages 60-85
  mean ln(y/ae)
  gini y/ae

–0.505
–0.525

–0.504
–1.563

–0.518
–0.154

(20.3)
(5.5)

(10.6)
(8.3)

(20.3)
(1.5)

–0.596
–2.910

–1.370
1.476

–0.694
–0.870

(8.0) 
(5.1)

(6.6)
(1.4)

(15.3)
(2.4)

–0.440
–0.819

–0.625
–1.398

–0.308
–0.105

(21.7)
(10.5)

(18.9)
(9.8)

(15.1)
(1.2)

–0.631
–1.522

–0.588
–2.624

–0.435
–1.514

(12.4)
(5.2)

(3.4)
(2.8)

(7.0)
(2.2)

Notes: Each regression includes the mean of the logarithm of household income per adult equivalent (mean
ln(y/ae)), a set of age dummies, and an inequality measure. The IV estimates instrument mean ln(y/ae) and the
inequality measure with the mean years of schooling, and the fraction of people in education categories. The
education categories are years of schooling equal to 5-8, 9-11, 12, 13-15, and 16 or more. Years of education from 0
to 4 is the omitted category. 
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Table 3: Poverty; interactions between income and inequality

Men Women

OLS IV OLS IV

mean ln(y/ae)
fraction poor

–0.646
–0.825

(25.0)
(7.1)

–1.101
–1.774

(24.3)
(5.4)

–0.670
–1.181

(33.6)
(15.2)

–0.970
–1.447

(34.0)
(7.0)

mean ln(y/ae)
var ln(y/ae)
fraction poor

–0.580
–0.125
–0.490

(21.1)
(6.4)
(3.9)

–0.688
–0.552
–0.321

(2.9)
(1.8)
(0.4)

–0.603
–0.117
–0.884

(28.7)
(8.4)

(10.6)

–0.700
–0.333
–0.853

(4.9)
(1.9)
(2.3)

mean ln(y/ae)
var ln(y/ae)
mean*var

j/jmean ln(y/ae)
j/jvar ln(y/ae)

–0.263
4.165

–0.474

–0.539
–0.160

(5.5)
(5.9)
(6.1)

(23.6)
(9.0)

–0.274
8.191

–0.929

–0.815
-0.299

(1.8)
(2.3)
(6.1)

(7.7)
(1.6)

–0.215
3.769

–0.438

–0.485
–0.188

(5.2)
(6.7)
(7.0)

(27.0)
(14.3)

–0.261
3.215

–0.413

–0.515
–0.518

(2.4)
(1.7)
(7.0)

(5.6)
(4.0)

Notes: Each regression also includes a set of age dummies. The IV estimates instrument mean ln(y/ae), poverty and
inequality with the mean years of schooling, and the fraction of people in different education categories. The
education categories are years of schooling equal to 5-8, 9-11, 12, 13-15, and 16 or more. Years of education from 0
to 4 is the omitted category. The derivatives are evaluated at the sample means of var ln(y/ae) and mean ln(y/ae),
respectively. The means for var ln(y/ae) are 0.583 (mean) and 0.617 (women). The means for mean ln(y/ae) are
9.135 (men) and 9.039 (women).

Table 4: The effects of education and income on mortality in the NLMS

Men Women

ln(y/ae) –0.3524 (10.8) –0.2620 (6.3)

years of education –0.0374 (6.2) –0.0483 (6.0)

ln(y/ae)
years of education

–0.3254
–0.0121

(9.1)
(1.8)

–0.1968
–0.0336

(4.3)
(3.8)

Notes: Coefficients from logit regressions in which dependent variable is whether or not the respondent died within
365 days of interview. A full set of age dummies, one for each year from 25 to 85, are included but not shown.
There are 161,472 males in the sample and 183,282 females. The income and education variables are entered
separately (the first two rows) and then together (last two rows.)
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Table 5: Effects of income and schooling on male mortality, NLMS (Logits)

Died in 0–1 years Died in 1–2 years Died in 2–5 years Died in 5–9 years

Men aged 25–59 at time of survey

ln(y/ae)

year school

ln(y/ae)
years school

–0.456

–0.072

–0.390
–0.035

(8.14)

(5.70)

(6.25)
(2.50)

–0.397

–0.054

–0.357
–0.021

(7.32)

(4.47)

(5.94)
(1.55)

–0.415

–0.076

–0.328
–0.045

(14.01)

(11.62)

(9.95) 
(6.27) 

–0.325

–0.063

–0.248
–0.040

(13.43)

(11.85)

(9.24) 
(6.81) 

observations
number of deaths

123,806
508

123,298
558

122,740
1,929

120,811
3,059

Men aged 60–85 at time of survey

ln(y/ae)

years school

ln(y/ae)
years school

–0.302

–0.028

–0.285
–0.007

(7.62)

(4.06)

(6.54)
(0.88)

–0.197

–0.034

–0.138
–0.024

(5.10)

(5.14)

(3.23)
(3.26)

–0.224

–0.028

–0.191
–0.013

(9.43)

(6.73)

(7.26)
(2.91)

–0.202

–0.026

–0.172
–0.012

(9.29)

(6.62)

(7.11)
(2.75)

observations
number of deaths

37,666
1,543

36,123
1,609

34,514
4,809

29,705
6,061

Notes: For men aged 25–59, age at the year of the survey was also included. For men aged 60–85, a complete set of age dummies were included. The sample for
each logit includes individuals who either died in the time period at the head of column or died later; individuals who died earlier than the time period specified
are excluded.
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Table 6: Effects of income and schooling on female mortality, NLMS (Logits)

Died in 0–1 years Died in 1–2 years Died in 2–5 years Died in 5–9 years

Women aged 25–59 at time of survey

ln(y/ae)

years school

ln(y/ae)
years school

–0.409

–0.076

–0.348
–0.037

(5.75)

(4.13)

(4.41)
(1.82)

–0.340

–0.060

–0.296
–0.027

(4.78)

(3.26)

(3.75)
(1.34)

–0.344

–0.066

–0.287
–0.035

(9.03)

(6.74)

(6.80)
(3.16)

–0.332

–0.065

–0.276
–0.035

(11.41)

(8.66) 

(8.54) 
(4.17) 

observations
number of deaths

134,355
314

134,041
320

133,721
1,140

132,581
1,995

Women aged 60–85 at time of survey

ln(y/ae)

years school

ln(y/ae)
years school

–0.190

–0.042

–0.118
–0.034

(3.75)

(4.67)

(2.16)
(3.50)

–0.074

–0.017

–0.044
–0.014

(1.52)

(1.96)

(0.84)
(1.49)

–0.174

–0.024

–0.145
–0.014

(6.50)

(4.95)

(5.01)
(2.64)

–0.133

–0.019

–0.111
–0.011

(6.01)

(4.56)

(4.60)
(2.37)

observations
number of deaths

48,927
1,027

47,900
1,111

46,789
4,000

42,789
6,202

Notes: For women aged 25–59, age at the year of the survey was also included. For women aged 60–85, a complete set of age dummies were included. The
sample for each logit includes individuals who either died in the time period at the head of column or died later; individuals who died earlier than the time period
specified are excluded.
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Table 7: Mortality, income and education: cohort data

Men Women

All ages Ages 35-59 Ages 60-85 All ages Ages 35-59 Ages 60-85

Regression 1:
mean ln(y/ae)
mean yrs education
Regression 2:
mean ln(y/ae)
5-8 years school
9-11 years school
12 years school
13-15 years school
16+ years school
Regression 3:
mean ln(y/ae)
mean yrs education
var ln(y/ae)

0.088
–0.117

0.079
0.205
0.142

–0.463
–0.107
–1.502 

0.077
–0.112
–0.061

(2.9)
(26.2)

(2.8)
(1.7)
(1.3)
(4.5)
(1.0)

(12.8)

(2.5)
(24.4)
(4.0)

0.285
–0.192

0.173
–0.236
–1.430
–2.029
–0.996
–2.911

0.267
–0.186
–0.027

(4.7)
(19.6)

(3.2)
(0.5)
(3.4)
(5.1)
(2.5)
(7.4)

(4.3)
(16.9)

(1.0)

0.002
–0.088

–0.018
0.330
0.245

–0.160
–0.483
–0.795

–0.003
–0.086
–0.051

(0.1)
(22.7)

(0.7)
(3.8)
(2.9)
(2.1)
(5.7)
(8.4)

(0.1)
(21.7)
(3.2)

–0.022
–0.097

0.065
–0.356
–0.003
–0.704
–0.513
–1.782

–0.053
–0.087
–0.079

(0.9)
(25.6)

(2.9)
(3.1)
(0.0)
(7.7)
(5.2)

(17.1)

(2.1)
(21.6)
(6.5)

–0.001
–0.159

0.019
–0.300
–0.319
–1.452
–0.779
–2.255

–0.043
–0.148
–0.052

(0.0)
(23.2)

(0.5)
(0.8)
(0.9)
(4.5)
(2.4)
(6.8)

(1.0)
(18.3)
(2.7)

0.090
–0.071

0.081
–0.402
–0.661
–0.749
–0.798
–1.045

0.087
–0.070
–0.011

(4.71)
(27.7)

(4.2)
(5.2)
(9.5)

(12.2)
(10.4)
(12.7)

(4.6)
(26.4)
(1.1)

Notes: Each regression includes the mean of the logarithm of household income per adult equivalent (mean ln(y/ae)), and a set of age dummies. The regressions
are estimated for the full sample, and for subsets of cohorts in different age groups.
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Figure 1: Log odds of mortality, every 20th cohort
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Figure 2: Year and cohort effects in log odds of mortality, from regressions of log odds on age and year effects, and on age and cohort
effects.
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