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ABSTRACT

This paper analyses the effects of open market operations on interest rates in a model in

which agents must pay a fixed cost to exchange assets and cash. Asset markets are endogenously

segmented in that some agents choose to pay the fixed cost and some do not. When the fixed cost

is zero, the model reduces to the standard one in which persistent money injections increase

interest rates, flatten the yield curve, and lead to a downward-sloping yield curve on average. In

contrast, if markets are sufficiently segmented, then persistent money injections decrease nominal

interest rates, steepen or even twist the yield curve, and lead to an upward-sloping yield curve on

average.
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We study the connection between money and interest rates in a model with endoge-

nously segmented markets. In the model, agents must pay a …xed cost to transfer money

between the asset market and the goods market. In equilibrium, in any period, some agents

choose to pay the …xed cost and thus, at the margin, freely trade bonds and money. Other

agents choose not to pay the …xed cost and, hence, do not make such trades. Thus the asset

market is segmented in the sense that when the government injects money through an open

market operation, only a fraction of the agents in the economy are on the other side of the

transaction. We use this model to study the response of interest rates to a money growth

shock and the implications of monetary policy for the average term structure of interest rates.

We focus on two features of money and interest rates that have been discussed ex-

tensively in the literature. First, at least since Friedman (1968), there has been a long-held

belief that open market operations have liquidity e¤ects: money injections lead initially to

a decline in short-term nominal interest rates. These liquidity e¤ects are thought to decay

over time, with short-term rates eventually returning to normal levels or even rising. Ac-

cordingly, money injections are thought to steepen the yield curve, lowering long-term rates

less than short-term rates or even raising long-term rates. Second is the widely documented

fact that the yield curve is upward-sloping on average. (See, for example, Campbell, Lo, and

MacKinlay 1997.)

Our model can produce both of these features while the standard model cannot. In

the standard model without segmented markets, persistent money injections increase interest

rates of all maturities, ‡atten the yield curve, and lead to a downward-sloping yield curve on

average. In contrast, in our model, if markets are su¢ciently segmented, there are liquidity

e¤ects: persistent money injections lower short-term nominal interest rates, steepen or even



twist the yield curve, and lead to an upward-sloping yield curve on average.

The basic idea that money injections have liquidity e¤ects because only a fraction of

agents participate in any given open market operation is familiar from Grossman and Weiss

(1983) and Rotemberg (1984). Their models are cash-in-advance models in which half the

agents can transfer money between the asset market and the goods market in even periods

and half can do so in odd periods. In these models, markets are segmented in the sense that

when the government injects money, only those agents currently in contact with the asset

market absorb the new money. In addition to these trading frictions, the Grossman-Weiss-

Rotemberg models exogenously limit asset trade to uncontingent bonds. Because of that

market incompleteness, in addition to the pure liquidity e¤ects from the trading frictions,

these models have complicated wealth e¤ects which e¤ectively limit these studies to one-time

unanticipated shocks in deterministic environments.

The subsequent literature, initiated by Lucas (1990), organizes agents in coalitions as

a simple device to abstract from wealth e¤ects. In a coalition, agents pool their resources and

choose consumption subject to a single budget constraint for the coalition as a whole, subject

to restrictions on the trading technology. Given the trading technology, then, markets are

complete. Thus, monetary injections have real e¤ects only because of the trading frictions

and not because of additional exogenous market incompleteness.

The models in this literature are distinguished by types of trading frictions. In Lucas

(1990), Fuerst (1992), Chari, Christiano and Eichenbaum (1995), and Christiano and Eichen-

baum (1995), the trading friction is that the coalition must divide its cash each period into

one portion to be used to purchase goods and another portion to be traded for bonds in

the asset market or used by …rms in production, before the size of the current open market
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operation is announced. Unfortunately, in simple versions of these models, liquidity e¤ects

last only one period.1 An alternative type of friction, used by Alvarez and Atkeson (1997),

permits agents to be in contact with asset markets only at exogenous times. This model can

generate persistent liquidity e¤ects, but only when velocity is extremely low.

Here we use a di¤erent friction: our trading technology requires that agents must pay

a …xed cost to transfer money between the goods market and the asset market. In addition,

trade in the goods market is subject to a cash-in-advance constraint. Here, as in Lucas (1990),

given the trading technology, markets are complete. In each period, it is optimal for agents

to follow a type of cuto¤ rule. Agents with high real balances pay the …xed cost to transfer

cash to the asset market, while those with low real balances pay the …xed cost to obtain cash

from the asset market. Agents with medium real balances do not pay the …xed cost and

simply consume their current cash holdings. The assumption of complete markets makes the

model tractable, because this assumption implies that all agents follow the same cuto¤ rule.

We refer to the agents who pay the …xed costs as traders and we refer to those who do not

as nontraders.

The …xed cost is the key di¤erence between our model and a standard cash-in-advance

model. If the …xed cost is zero, then all agents are traders and it reduces to a standard

model. Then money injections have no e¤ect on real interest rates and thus a¤ect nominal

interest rates only through their e¤ect on expected in‡ation. Since persistent money growth

shocks raise expectations of in‡ation, these shocks raise nominal interest rates. If the …xed

1In a variant on their basic model, Chari, Christiano and Eichenbaum (1995) and Christiano and Eichen-
baum (1995) show how introducing costs of portfolio adjustment can lead to longer lasting liquidity e¤ects.
Evans and Marshall (1997) use this model to analyze the response of interest rates of di¤erent maturities to
monetary shocks.
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cost is positive, however, when the government injects money by buying bonds, only the

fraction of agents who are traders are on the other side of the market. Money injections fall

disproportionately on these agents, who thus increase their current consumption, decrease

their current marginal utility, and, hence, decrease real interest rates. We refer to this

additional e¤ect of money injections on interest rates as the segmentation e¤ect. If this

segmentation e¤ect outweighs the standard expected in‡ation e¤ect, then a persistent increase

in money growth in the model has a persistent liquidity e¤ect on interest rates.

Our model’s implications for the average yield curve also di¤er from the standard

model. In the standard model, the …xed cost is zero and money growth shocks have only

standard expected in‡ation e¤ects which, by themselves, tend to make the average nominal

yield curve downward-sloping. In contrast, in our model, when the …xed cost is positive and

money shocks are mean-reverting, then the consumption of traders is mean-reverting because

of the segmentation e¤ect. Generally, if the consumption of agents in …nancial markets is

mean-reverting, then the yield curve for real interest rates is upward-sloping (Campbell 1986,

Backus, Gregory, and Zin 1989, 1998, and Labadie 1994). If this segmentation e¤ect outweighs

the standard expected in‡ation e¤ect, then the nominal yield curve is upward-sloping.

Finally, our model is related to the Baumol (1952) and Tobin (1956) models in which

agents pay a …xed cost each time they trade bonds and money. Jovanovic (1982), Romer

(1986), and Chatterjee and Corbae (1992) develop general equilibrium versions of these mod-

els and use them to study how di¤erent constant in‡ation rates a¤ect the steady state. In

contrast to all of those studies, however, this one examines the dynamic response of interest

rates to money growth shocks.
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1. The Economy

Consider a cash-in-advance economy with an in…nite number of periods t = 0; 1; 2; : : : ;

a government, and a continuum of agents of measure 1. Trade in this economy occurs in two

separate locations: an asset market and a goods market. In the asset market, agents trade

cash and bonds which promise delivery of cash in the asset market in the next period, and

the government introduces cash via open market operations. In the goods market, agents use

cash to buy goods subject to a cash-in-advance constraint, and agents sell their endowments

for cash. Agents face a real …xed cost of ° for each transfer of cash between the asset market

and the goods market:

This economy has two sources of uncertainty: idiosyncratic shocks to agents’ endow-

ments and shocks to money growth. Each period t ¸ 1, each agent in the economy has an

endowment y which is independent and identically distributed with distribution F which has

density f: Let Y =
R
yf(y)dy be the constant aggregate endowment. In period 1 agents

also have y0=¹1 real balances in the goods market where y0 also has distribution F and ¹1

is the money growth shock at the beginning of period 1: In period 0; agents have ¹B units

of government debt, which is a claim on ¹B dollars in the asset market in period 0. Let

yt = (y0; y1; y2; : : : ; yt) denote a typical history of individual shocks up through period t and

f(yt) = f(y0)f (y1) : : : f(yt) the probability density over such histories. Let Mt denote the

aggregate stock of money in period t; and let ¹t = Mt=Mt¡1 denote the growth rate of that

money supply. Let ¹t = (¹1; : : : ; ¹t) denote the history of money growth shocks up through

period t; and let g(¹t) denote the probability density over such histories : Let g (¹tj¹t¡1)

denote the conditional density of ¹t given ¹t¡1:

The timing within each period t ¸ 1 is as follows. At the beginning of the period,
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money growth ¹t is realized, bonds and cash are exchanged in the asset market, and agents

pay cash in the asset market to a …rm that transfers cash between the asset and the goods

markets. Agents then use real balances in the goods market to purchase consumption before

learning the realization of their endowment, and then they sell their endowment yt for cash.

In period 0 there is no trade in goods and agents simply trade bonds.

The government issues one-period bonds contingent on the aggregate state ¹t. In

period t, given state ¹t; the government pays o¤ outstanding bonds B (¹t) in cash and issues

claims to cash in the next asset market of the form B(¹t; ¹t+1) at prices q(¹t; ¹t+1). The

government budget constraint in period t ¸ 1; given state ¹t is

B(¹t) =M
³
¹t

´ Ã
1¡ 1

¹t

!
+

Z

¹t+1

q(¹t; ¹t+1)B
³
¹t; ¹t+1

´
d¹t+1:(1)

In period 0; this constraint is ¹B =
R
¹1
q(¹1)B (¹1) d¹1:

In the asset market in each period and state, agents trade a set of one-period bonds

that have payo¤s next period which are contingent both on the aggregate event ¹t+1 and their

endowment realization yt. An agent in t with aggregate state ¹t and individual shock history

yt¡1 purchases B
³
¹t; ¹t+1; y

t¡1; yt
´

claims to cash that pay o¤ in the next period contingent

on the aggregate shock ¹t+1 and the agent’s endowment shock yt:We let q(¹t; ¹t+1; yt) be the

price of such a bond that pays one dollar in the asset market in period t + 1 contingent on

the relevant events. Because individual endowments are i.i.d. across individuals, we assume

that these bond prices do not depend on the name of the individual.

Instead of letting each agent trade in all possible claims contingent on other agents

endowments, we suppose that each agent trades only in claims contingent on the agent’s own

endowment with some intermediary. This intermediary buys government bonds and trades in
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the agent-speci…c contingent claims. This latter approach is much less cumbersome than the

former and yields the same outcomes. Speci…cally, the intermediary buys government bonds

B(¹t) and sells agent-speci…c claims of the form B (¹t; yt¡1) to all the agents to maximize

pro…ts

Z

¹t+1

Z

yt
q(¹t; ¹t+1; yt)B

³
¹t; ¹t+1; y

t¡1; yt
´
f (yt¡1) dytd¹t+1¡

Z

¹t+1

q(¹t; ¹t+1)B
³
¹t; ¹t+1

´
d¹t+1

subject to the constraint

B(¹t+1) =
Z

yt
B

³
¹t+1; yt

´
f(yt) dyt:(2)

Lack of arbitrage requires that the price functions q(¹t; yt¡1) and q(¹t) satisfy q(¹t; yt¡1) =

q(¹t)f(yt¡1). Notice that with these price functions the pro…ts of the intermediary are zero.

Consider now the problem of an individual agent. Let P (¹t) denote the price level in

the goods market in period t: In the goods market, in each period t ¸ 1; agents start with

real balances m(¹t; yt¡1). They then choose transfers of real balances between the goods

market and the asset market x(¹t; yt¡1); an indicator variable z(¹t; yt¡1) equal to zero if

these transfers are zero and one if they are not, consumption c(¹t; yt¡1); and unspent real

balances to carry over from goods shopping a(¹t; yt¡1) subject to the cash ‡ow constraints

a(¹t; yt¡1) = m(¹t; yt¡1) + x(¹t; yt¡1)z(¹t; yt¡1)¡ c(¹t; yt¡1);(3)

m
³
¹t+1; yt

´
=

P (¹t)

P (¹t+1)
[yt + a(¹

t; yt¡1)];(4)

and the cash-in-advance constraints

a(¹t; yt¡1) ¸ 0;(5)
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where in (3) at t = 1; the term m(¹t; yt¡1) is given by y0=¹1:

In the asset market, each period agents start with cash payments B (¹t; yt¡1) on their

bonds and N (¹t¡1; yt¡2) held over as cash from the previous asset market. They purchase

new bonds, make cash transfers to the goods market and hold N(¹t; yt¡1) over in cash to the

next asset market subject to the sequence of budget constraints for t ¸ 1

B
³
¹t; yt¡1

´
=

Z

¹t+1

Z

yt
q(¹t; ¹t+1)B

³
¹t; ¹t+1; y

t¡1; yt
´
f (yt) d¹t+1dyt+(6)

N (¹t; yt¡1)¡N(¹t¡1; yt¡2) + P (¹t)
h
x(¹t; yt¡1) + °

i
z(¹t; yt¡1);

withN(¹t; yt¡1) ¸ 0 andN (¹t¡1; yt¡2) = N0 in period t = 1: In period t = 0; this asset market

constraint is ¹B =
R
¹1

R
y0
q(¹1)B (¹1; y0) f (y0)dy0d¹1+N0: Assume that both consumption and

real bond holdings B(¹t; yt¡1)=P (¹t) are uniformly bounded by some large constants. Notice

that N(¹t; yt¡1) is cash that agents hold over in the asset market while P (¹t)a(¹t; yt¡1) is

cash that agents hold over in the goods market.

The problem of consumers is to maximize utility

1X

t=0

¯t
Z Z

U
³
c(¹t; yt¡1)

´
g(¹t)f(yt¡1) d¹tdyt¡1(7)

subject to the constraints (3) – (6).

The economy has a …rm that transfers cash between the asset market and the goods

market. Since each transfer of cash consumes ° units of goods, the total goods cost of carrying

out all transfers at t is °
R
z(¹t; yt¡1)f(yt¡1) dyt¡1:The …rm purchases these goods in the goods

market with cash obtained from consumers in that period’s asset market.

The resource constraint is given by

Z h
c(¹t; yt¡1) + °z(¹t; yt¡1)

i
f (yt¡1) dyt¡1 = Y(8)
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for all t; ¹t, and the money market clearing condition is given by

M(¹t)=P (¹t) = N(¹t)¡N (¹t¡1) +(9)

Z ³
m(¹t; yt¡1) +

h
x(¹t; yt¡1) + °

i
z(¹t; yt¡1)

´
f (yt¡1) dyt¡1

for all ¹t with N(¹t) =
R
yt¡1 N(¹

t; yt¡1)f(yt¡1) dyt¡1: Let c denote the sequence of functions

c(¹t; yt¡1); and use similar notation for other variables.

Here, an equilibrium is a collection of bond and goods prices q and P; together with

bond holdings B and an allocation c; x; z; a;m such that the bond holdings and the allocation

solve the agent’s utility maximization problem, the intermediary maximizes pro…ts, the gov-

ernment budget constraint holds, and the resource constraint and the money market clearing

conditions are satis…ed.

2. Characterizing Equilibrium

Now we characterize equilibria in this economy in which agents never hold over cash

in either the goods market or the asset market, so that a and N are always zero. We do this

in several steps. We …rst characterize the optimal choice of c and x given prices and arbitrary

rules for m; a; and z, and we summarize these results in Proposition 1. We then characterize

the trading rule z; given an arbitrary rule for m; and a and the optimal rules for c and x;

and we summarize these results in Proposition 2. In Proposition 3, we solve for equilibrium

c; x; z; and money holdings m under the assumption that both a and N are always zero. In

Proposition 4, we characterize the equilibrium bond holdings. In Proposition 5, we provide

su¢cient conditions on the money growth process and the endowments process to ensure that

a and N are always zero.
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It simpli…es our analysis to use the sequence of budget constraints (6) to substitute

out for agent’s bond holdings and replace these constraints with a single period 0 constraint

on agents’ transfers of cash between the asset market and the goods market. To that end,

de…ne period 0 prices Q(¹t) for a unit of cash delivered in the asset market in period t in state

¹t as follows. Let Q(¹1) = q (¹1) and Q(¹t) = q(¹t¡1; ¹t)Q(¹
t¡1): Accordingly, any bounded

allocation and bond holdings that satisfy (6) also satisfy a period 0 budget constraint:

¹B ¸
1X

t=1

Z
Q(¹t)

Z

yt¡1

n
P (¹t)

h
x(¹t; yt¡1) + °

i
z(¹t; yt¡1)+(10)

N (¹t; yt¡1)¡N(¹t¡1; yt¡2)
o
f(yt¡1) dyt¡1d¹t:

Thus, the consumer’s problem can be restated as follows: choose real money holdings m and

a; trading rule z; consumption and transfers c and x and cash in the asset market N; subject

to constraints (3) – (5) and (10).

Consider …rst an agent’s optimal choice of consumption c(¹t; yt¡1) and transfers of

real balances x(¹t; yt¡1) given prices Q(¹t); P (¹t); arbitrary feasible choices of real money

holdings m (¹t; yt¡1) and a(¹t; yt¡1); and a trading rule z(¹t; yt¡1): These choices maximize

the Lagrangian corresponding to the consumer’s problem. Let º(¹t; yt¡1) be the multiplier

on (3), and ¸ be the multiplier on (10). The …rst-order condition corresponding to c is, then,

¯tU 0
³
c(¹t; yt¡1)

´
g(¹t)f (yt¡1) = º(¹t; yt¡1):

The …rst-order condition corresponding to x is

¸Q(¹t)P (¹t)z(¹t; yt¡1)f(yt¡1) = º(¹t; yt¡1)z(¹t; yt¡1):

For those states such that z(¹t; yt¡1) = 1; these two …rst-order conditions imply that

¯tU 0
³
c(¹t; yt¡1)

´
g(¹t) = ¸Q(¹t)P (¹t):(11)
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Since all agents are identical in period 0; the multipliers in the Lagrangian are the same for

all agents. In summary:

Proposition 1. All agents who choose to pay the …xed cost for a given aggregate state ¹t

have identical consumption c(¹t; yt¡1) = cT (¹t); for some function cT : Agents who choose not

to pay the …xed cost have zero transfers and consumption given by

c(¹t; yt¡1) = m(¹t; yt¡1) ¡ a(¹t; yt¡1):(12)

Next consider an agent’s optimal choice of whether to pay the …xed cost to trade given

prices Q(¹t) , P (¹t) and arbitrary feasible choices of real money holdings in the goods market

m(¹t; yt¡1); a(¹t; yt¡1): From Proposition 1, we have the form of the optimal consumption

and transfer rules corresponding to the choices of z = 1 and z = 0: Substituting these rules

into (7) and (10) gives the problem of choosing cT (¹t) and z(¹t; yt¡1) to maximize

1X

t=0

¯t
Z Z

U
³
cT (¹

t)
´
z(¹t; yt¡1)g(¹t)f (yt¡1) d¹tdyt¡1 +(13)

1X

t=0

¯t
Z Z

U
³
m(¹t; yt¡1)¡ a(¹t; yt¡1)

´ h
1¡ z(¹t; yt¡1)

i
g(¹t)f (yt¡1) d¹tdyt¡1

subject to the constraint

¹B ¸
1X

t=0

Z Z
Q(¹t)

h
N(¹t; yt¡1)¡N (¹t¡1; yt¡2)

i
f(yt¡1) d¹tdyt¡1 +(14)

1X

t=0

Z Z
Q(¹t)P (¹t)

n
cT (¹

t) + ° ¡
h
m(¹t; yt¡1)¡ a(¹t; yt¡1)

i
z(¹t; yt¡1)

o
f(yt¡1) d¹tdyt¡1:

Let ´ denote the Lagrange multiplier on (14), and consider the following variational argument.

Given a state (¹t; yt¡1); the increment to the Lagrangian of setting z(¹t; yt¡1) = 1 in this

state is

¯t U
³
cT (¹

t)
´
g(¹t)f(yt¡1) ¡(15)
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´Q(¹t)P (¹t)
n
cT (¹

t) + ° ¡
h
m(¹t; yt¡1) ¡ a(¹t; yt¡1)

io
f(yt¡1);

which is simply the direct utility gain U (cT (¹t)) minus the cost of the required transfers.

The increment to the Lagrangian of setting z(¹t; yt¡1) = 0 in this state is

¯tU
³
m(¹t; yt¡1)¡ a(¹t; yt¡1)

´
g(¹t)f (yt¡1);(16)

which is simply the direct utility gain since there are no transfers. The …rst order condition

with respect to cT is

¯tU 0
³
cT (¹

t)
´
g(¹t) = ´Q(¹t)P (¹t):(17)

Subtracting (16) from (15) and using (17); we see that it is optimal to set z(¹t; yt¡1) = 1 if

h (m(¹t; yt¡1) ¡ a(¹t; yt¡1); cT (¹t)) > 0; where

h(m¡ a; cT ) = U (cT )¡ U 0(cT ) [(cT + °)¡ (m¡ a)]¡ U (m¡ a) :(18)

Note that h is strictly convex in the argument m¡ a; it attains its minimum at m¡ a = cT ;

and it is negative at this minimum if ° > 0: De…ne the cuto¤s yL (cT ; ¹) ; yH (cT ; ¹) as the

solutions to

h(
y

¹
; cT ) = 0;(19)

when both of these solutions exist. If (19) is negative for all y=¹ < cT ; then set yL (cT ; ¹) = 0;

if it is negative for all y=¹ > cT ; then set yH (cT ; ¹) = 1: Thus, an agent’s decision to trade

follows a cuto¤ rule as illustrated in Figure 1. In summary:

Proposition 2. Given traders’ consumption cT (¹
t); agents choose z(¹t; yt¡1) = 0 if

m(¹t; yt¡1)¡ a(¹t; yt¡1) 2
µ
yL(cT (¹t);¹t)

¹t
;
yH(cT (¹t);¹t)

¹t

¶
; and they choose z(¹t; yt¡1) = 1 other-

wise.
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Next, we suppose that do not carry over cash either in the asset market or in the goods

market so that N and a are always zero. We …rst characterize the rest of the equilibrium

given these suppositions and then provide su¢cient conditions for these suppositions to hold.

If agents never carry over cash in either the asset market or the goods market, (4), (8),

and (9) imply that P (¹t) =M(¹t)=Y;money holdings are given bym(¹t; yt¡1) = yt¡1=¹t; and

consumption of nontraders is c(¹t; yt¡1) = yt¡1=¹t: Substituting the nontraders’ consumption

into the resource constraint (8) and using the cuto¤ rules de…ned in (19) gives

(cT + °)[F (yL) + 1¡ F (yH)] +
1

¹t

Z yH

yL

yf (y) dy = Y;(20)

where we have suppressed explicit dependence of cT ; yH ; and yL on ¹t: Clearly, these cuto¤

points and the consumption levels of traders depend only on ¹t; while the consumption level

of nontraders depends only on (¹t; yt¡1): The equilibrium values of the cuto¤ points and

consumption of traders solve equations (19) and (20). Fix ¹t and use (19) to solve for yL

and yH as functions of cT ; then note that the left side of (20) is continuous and strictly

monotonic in cT and is less than Y for cT = 0 and greater than Y as cT becomes large. Thus,

these equations have a unique solution for the equilibrium values of traders’ consumption and

cuto¤s for any money growth rate ¹:

Note that if the …xed cost ° is zero, then from (19), yH = yL, all consumers are traders,

and their consumption c = Y is independent of the money injection. In contrast, if the …xed

cost is positive, then some consumers are nontraders and money injections have distributional

e¤ects. In summary:

Proposition 3. Under the suppositions that a and N are always 0, the equilibrium alloca-
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tions satisfy

c(yt¡1; ¹t) =

8
>>><
>>>:

yt¡1=¹t if yt¡1 2 (yL (¹t) ; yH (¹t))

cT (¹t) otherwise

where the functions yL (¹) ; yH (¹) ; cT (¹) are the solutions to (19) and (20).

The bond holdings in this equilibrium have a simple form. For each aggregate state

¹t; all agents purchase an identical portfolio of bonds. That is, B(¹t; ¹t+1; y
t¡1; yt) does not

depend on individual histories yt¡1: To see this, note that we can iterate on the sequence of

budget constraints (6) to get

B(¹t; ¹t+1; y
t¡1; yt) = P (¹

t+1)
h
x(¹t+1; yt) + °

i
z(¹t+1; yt)+(21)

1X

s=t+2

Z

¹sj¹t+1
Q(¹s)

Q(¹t+1)

Z

ys¡1
P (¹s) [x(¹s; ys¡1) + °] z(¹

s; ys¡1)f(ys¡1) dys¡1d¹
s:

Since the right side of (21) does not depend on yt¡1; neither does the left side. We know,

then, from (2) that each agent, regardless of individual history, buys an equal share of the

new government debt issued. Then, using (6) and (1), we have that in period t¡ 1 in state

¹t¡1; agents buy the following bonds to pay o¤ at t in state ¹t :

Proposition 4. For all realizations of ¹t and yt¡1 such that the agent would be a nontrader

in period t; namely those that satisfy yt¡1 2 (yL (¹t) ; yH(¹t)) ; the agent buys bonds providing

for a payo¤ that does not depend on the endowment shock:

B(¹t; yt¡1) =
Z

¹t+1

q(¹t+1)B(¹t+1) d¹t+1:(22)

14



For all realizations of yt¡1 such that the agent would be a trader, the agent buys bonds providing

for the same constant payo¤ as a nontrader plus the contingent payo¤ required to pay for the

appropriate transfer in period t; that is,

B
³
¹t; yt¡1

´
= P (¹t) [x(¹t; yt¡1) + °] +

Z

¹t+1

q(¹t+1)B(¹t+1) d¹t+1:(23)

In period t the government will be issuing new money M(¹t) ¡M(¹t¡1) to purchase

some of the outstanding government bonds B(¹t): In period t¡ 1; agents plan so that if they

are traders at t, they will have enough extra bonds to purchase both the amount of money

injection they need to carry out their desired transfer as well as the amount of the new

government debt issued. In the aggregate, these traders purchase the entire money injection

as well as the new government debt. At t ¡ 1, agents plan so that if they are nontraders

at t; they will only have enough bonds to purchase the new government debt issued. Thus,

agents plan their portfolios so that their endowment shocks do not a¤ect their overall wealth

positions. They use bonds to provide insurance against next period’s endowment shock.

We now develop conditions su¢cient to guarantee that our suppositions hold. The

condition for N to be zero, so that agents in the asset market prefer to save using nominal

bonds rather than money, is
R
q(¹t; ¹t+1)d¹t+1 < 1;which simply ensures that nominal interest

rates are positive for all periods t and states ¹t: In terms of marginal utilities, this condition

can be written as

U 0(cT (¹t)) > ¯
Z

¹t+1

U 0(cT (¹t+1))

¹t+1
g(¹t+1j¹t) d¹t+1:(24)

To develop the condition for a to be zero, we proceed as follows. Let Q(¹t) and

P (¹t) be the prices constructed above when a and N are always zero. Consider a class of
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potential deviations by a single agent when faced with these prices. In particular, consider

the problem of an agent from period t on, starting in state (¹t; yt¡1) with arbitrary bond

holdings ¹B(¹t; yt¡1) and money holdings ¹m(¹t; yt¡1); with budget constraints of the form

given in (6), taking these prices Q(¹t) and P (¹t) as given. Here, as before, we can turn the

sequence of budget constraints into a single budget constraint, except that now it starts in

period t instead of period 0:

The …rst-order conditions for the period t problem will be identical to those of the

period 0 problem, except for the multiplier on the single budget constraint; that will di¤er

because ¹B(¹t; yt¡1) and ¹m(¹t; yt¡1) are arbitrarily chosen and are not the equilibrium bond

and money holdings. The …rst-order conditions for the consumption of traders from the period

0 problem are given in (17), while the …rst-order conditions for cT in periods s ¸ t from the

period t problem with arbitrary asset holdings are of the same form with some new multiplier

which depends on ¹B(¹t; yt¡1) and ¹m(¹t; yt¡1): Hence, the consumption of this agent when

the agent trades is given by a function cT (¹s; ~́) that solves U 0(cT (¹s; ~́)) = ~́U
0(cT (¹s)) for

some ~́ ¸ 0, which should be thought of as the ratio of the original to the new multiplier.

Given cT (¹s; ~́), let yL(¹; ~́) and yH(¹; ~́) be the associated solutions to (19).

For this agent to choose a(¹t; yt¡1) = 0; when a is constrained to be zero in all future

periods, it is su¢cient that, for all ¹t; ~́; and a;

U 0(yH(¹t; ~́)) > ¯
Z

¹t+1

Z yH(¹t+1;~́)¡a

yL(¹t+1;~́)¡a
U 0

Ã
a+ yt
¹t+1

!
f(yt)

¹t+1
g(¹t+1j¹t) dytd¹t+1+(25)

¯
Z

¹t+1

U 0(cT (¹t+1; ~́))

¹t+1
[F (yL(¹t+1; ~́)¡ a) + 1¡ F (yH(¹t+1; ~́)¡ a)]g(¹t+1j¹t) d¹t+1:

Notice that (25) simply requires that the shadow nominal interest rate for each individual be

positive, regardless of the shock ¹; individual’s wealth as re‡ected in ~́; or the individual’s

16



choice of a in the current period. Finally, we get

Proposition 5. It is optimal for an agent never to hold over cash in the asset market if

(24) holds for all values of ¹t: It is optimal for an agent to never hold over cash in the goods

market if (25) holds:

Proof. When (24) holds, nominal interest rates in the asset market are positive, so agents

hold over no cash in the asset market. To see that a is identically equal to zero, suppose to

the contrary that there is a plan with a > 0 for at least one state that gives higher utility.

Consider, …rst, a plan in which a > 0 in at most a …nite set of periods. Let t be the last such

period, and suppose that a(¹t; yt¡1) > 0: In that period, the highest consumption that an

agent with wealth level indexed by ~́ would choose is yH(¹t; ~́) [since yH(¹t; ~́) > cT (¹t; ~́)]:

Hence, the lowest an agent’s shadow nominal interest rate could be is the level at which

current consumption is yH(¹t; ~́). Since t is the last period in which a is positive, (25) implies

that lowering a to zero is optimal. Hence we have a contradiction. If no …nite deviations

raise utility, and, since consumption is bounded and ¯ < 1; no plan in which a > 0 for an

in…nite set of periods gives higher utility than the one with a identically equal to zero.

The following is a simpler condition su¢cient to ensure that (25) holds. Let

U 0(yH(¹t; ~́)) > ¯
Z

¹t+1

U 0(yL(¹t+1; ~́))
1

¹t+1
g(st+1jst)dst+1

for all st and ~́: This condition clearly holds for small ° and ¯Et1=¹t+1 small.

3. Asset prices

Now we develop the links between money injections and asset prices. The link that

is introduced with market segmentation is how a trader’s consumption responds to a money
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injection. We start with this link and then develop formulas for asset prices.

Recall from (17) that date zero nominal asset prices are given by the traders’ marginal

utility of a dollar. Since P (¹t) = M(¹t)=Y; in order to characterize the response of asset

prices to money injections, we need to determine how a trader’s consumption responds to a

money injection, namely, how cT (¹t) varies with ¹t:

Consider a simple example in which y takes on three values y0 < y1 < y2; with

probabilities f0; f1; f2; respectively. We conjecture an equilibrium in which, when money

growth is ¹¹; agents with the central value of the endowment y1 choose not to trade and those

with low and high endowments y0 and y2 choose to trade. Under this conjecture, for money

growth shocks ¹ close to ¹¹; from the resource constraint, traders each consume an equal share

of traders’ aggregate endowment plus the in‡ation tax levied on nontraders minus the …xed

cost, or

cT (¹) =
y0f0 + y2f2
f0 + f2

+ (1¡ 1

¹
)
y1f1
f0 + f2

¡ °:(26)

The corresponding cuto¤s yL (cT (¹) ; ¹) ; yH (cT (¹) ; ¹) are found from (19). This conjecture

is valid as long as y0 < yL (cT (¹¹) ; ¹¹) < y1 < yH (cT (¹¹) ; ¹¹) < y2: Su¢cient conditions for this

conjecture to hold are that traders’ consumption as de…ned in (26) satis…es cT (¹¹) = y1=¹¹;

and ° is su¢ciently small. Under these conditions, the consumption of traders when ¹ = ¹¹ is

y1=¹¹; while that of nontraders is also y1=¹¹: As ° gets small the cuto¤s yL (cT (¹¹) ; ¹¹) =¹¹ and

yH (cT (¹¹) ; ¹¹) =¹¹ approach cT so that the above inequalities hold.

Clearly, an increase in the money growth rate ¹ raises the in‡ation tax levied on

nontraders’ real balances. In equilibrium, asset prices adjust to redistribute these in‡ation

tax revenues to traders. In this example, the number of traders does not vary with the money
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injection, so the consumption of each trader increases. Speci…cally,

d log cT
d log ¹

=
(y1f1)=¹

cT (f0 + f2)
;(27)

which is the ratio of the total consumption of nontraders to that of traders.

In general, a money injection increases the total amount consumed by traders and

changes the number of agents who choose to become traders. If that number of agents

does not increase much, the consumption of each trader increases. Of course, if the number

increases enough, then the consumption of each trader can actually fall. In Appendix A we

elaborate this point.

Next we develop formulas for equilibrium asset prices. To get analytical results, we

make the following assumptions. Let the log of money growth in period t; log ¹t; be normally

distributed and have constant conditional variance over time. Let ¹¹ be de…ned by log ¹¹ =

E log ¹t; where E is the unconditional expectation. Let U (c) = c1¡¾=(1¡ ¾); where ¾ > 0:

Let ¹cT denote the consumption of traders when money growth is equal to ¹¹: To a …rst-order

approximation, the log of traders’ marginal utility is given by

logU 0 (cTt) = logU
0 (¹cT )¡ Á (log¹t ¡ log ¹¹) ;(28)

where Á = ¾
d log cT
d log¹

;(29)

evaluated at ¹ = ¹¹: The parameter Á is the elasticity of a trader’s marginal utility with

respect to a money injection.

With these assumptions, we will analyze the relation between money and interest

rates. These interest rates are calculated from nominal and real bond prices. In what follows,
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we suppress reference to the state ¹t and write the price of an n-period bond that costs qnt

dollars at t and pays one dollar in all states at t+ n as

qnt =
Z Q(¹t; ¹n)

Q(¹t)
d¹n = ¯

nEt
U 0(cT t+n)

U 0(cTt)

Pt
Pt+n

:(30)

Taking logs of (30) and using the result that for any lognormal variable x; logEx = E log x+

var log x=2, we write the log of bond prices as

log qnt = n log ¯+Et log
U 0(cTt+n)

Pt+n
¡ log U

0(cT t)

Pt
+
1

2
vart

Ã
log

U 0(cTt+n)

Pt+n
¡ log U

0(cTt)

Pt

!
:(31)

Since output is constant, in‡ation is given by logPt+n = log Pt +
Pn
j=1 ¹t+j; and, using the

approximation (28), we write the log of bond prices as

log qnt ¡ log ¹qn = ¡ÁEt
³
log¹t+n ¡ log¹t

´
¡ Et

nX

j=1

³
log¹t+j ¡ log ¹¹

´
;(32)

where log ¹qn = n (log ¯ ¡ log ¹¹) + E 1
2
vart

³
Á log ¹t+n +

Pn
j=1 log ¹t+j

´
:

We use these bond prices to de…ne yields and forward rates. The yield on an n-period

nominal bond is rnt = ¡ 1
n
log qnt : The forward interest rate between periods t+n and t+n+1

in period t is fnt = log(q
n
t =q

n+1
t ): Thus, the forward rate is the rate of return between periods

t+ n and t+ n+ 1 that can be guaranteed in period t: Clearly, then the yield is the average

of the forward rates: rnt =
1
n

Pn
j=1 f

j¡1
t :

4. Liquidity E¤ects

Now we present several examples to illustrate the impact of money injections on inter-

est rates under alternative assumptions about the stochastic process for money growth and

the degree of market segmentation:
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In the standard model, ° = 0; so Á = 0 and real interest rates are constant. From

(32), we know that nominal bond prices are given by

log qnt ¡ log ¹qn = ¡Et
0
@

nX

j=1

log¹t+j ¡ log ¹¹
1
A = Et log

Pt
Pt+n

¡ n log 1
¹¹
;

which is the deviation of cumulative expected in‡ation between period t and t + n from its

unconditional mean. We call this term the expected in‡ation e¤ect.

In our model with ° > 0; there is also a segmentation e¤ect. This e¤ect is the impact of

money injections on the real interest rate and is captured by the term ¡ÁEt
³
log ¹t+n ¡ log¹t

´

in (32). A money growth shock that increases ¹t also increases the consumption of traders at

t and drives down their marginal utility at t; this part of the e¤ect, by itself, raises all bond

prices by Á (log ¹t ¡ log ¹¹) : If the money growth shock raises expected money growth at t+n

as well, then it raises future consumption and lowers future marginal utility for traders; this

part of the e¤ect, by itself, lowers all bond prices by ÁEt
³
log ¹t+n ¡ log ¹¹

´
:

The overall magnitude of the segmentation e¤ect depends on two parameters: the elas-

ticity of the marginal utility of traders with respect to money growth Á and the persistence

of a money growth shock on expected future money growth Et
³
log¹t+n ¡ log ¹t

´
: The seg-

mentation e¤ect increases the higher is Á; that is, the more responsive is a trader’s marginal

utility to a money injection. This e¤ect is smaller the greater is the persistence of money

growth. If money growth is temporary, then a given money injection will lead to a temporary

increase in traders’ consumption and, hence, a relatively large drop in the real interest rate,

driving down the nominal interest rate. As the shock to money growth becomes more per-

sistent, a given money injection leads to a more permanent increase in traders’ consumption

and, hence, to a smaller drop in the real interest rate.
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Example 1. (Autoregressive money growth). Assume that monetary injections satisfy

log ¹t+1 = (1¡ ½) log ¹¹ + ½ log ¹t + "t+1;

where "t+1 is a normal, i.i.d. innovation with mean zero and variance ¾2² . The nominal bond

price in (32) then becomes

log qnt ¡ log ¹qn = 1¡ ½n
1¡ ½ [(1¡ ½)Á¡ ½] (log¹t ¡ log ¹¹) :(33)

Here the segmentation e¤ect is captured by the term (1¡ ½n)Á (log ¹t ¡ log ¹¹). The

sign of the segmentation e¤ect is positive, so with segmented markets, higher money growth

leads to higher real bond prices and, hence, lower real interest rates. Notice that if

Á >
½

1¡ ½;(34)

then the segmentation e¤ect dominates the expected in‡ation e¤ect, and a money injection

leads to a fall in nominal interest rates.

Consider now the impact e¤ects of the money shock on the forward rate curve and the

yield curve. From (33), fnt ¡ ¹fn = ½n [(½¡ 1)Á+ ½] (log ¹t ¡ log ¹¹) and

rnt ¡ ¹rn =
1

n

(1¡ ½n)
(1¡ ½) [(½¡ 1)Á+ ½] (log ¹t ¡ log ¹¹) :(35)

When (34) holds, so that the segmentation e¤ect dominates the expected in‡ation e¤ect, a

money injection lowers the shorter forward rates and yields by more than the longer forward

rates and yields and thus steepens both the forward rate curve and the yield curve.

Now consider the dynamics of interest rates of di¤erent maturities. The n-period yields

expected in period t+ k following a money injection at t are given by

Etr
n
t+k ¡ ¹rn = ½k (rnt ¡ ¹rn) :(36)
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Thus, each yield returns to its mean value at rate ½: As long as the segmentation e¤ect

dominates the expected in‡ation e¤ect, we have the following: transient money growth shocks

cause sharp but temporary declines in nominal rates while persistent money growth shocks

cause smaller but more persistent declines in nominal rates. Note that if the segmentation

e¤ect dominates the expected in‡ation e¤ect in (35) and (36), then a money injection lowers

interest rates of all maturities n at all horizons t + k: In the standard model, the expected

in‡ation e¤ect dominates, and a money injection raises nominal rates of all maturities at all

horizons.

So far, we have worked out relations between money injections and interest rates for

a simple money growth process. Now we develop these relations when money growth has a

general moving-average representation:

log ¹t ¡ log ¹¹ =
1X

j=0

µj"t¡j(37)

where "t¡j are independent and N(0; ¾2"): The basic building block for pricing nominal assets

is the pricing kernel, namely, the state-contingent marginal rate of substitution between a

dollar in period t and a dollar in period t+ 1: This pricing kernel is

mt+1 = ¯
U 0(cTt+1)

U 0(cT t)

Pt
Pt+1

(38)

and can be used to price any nominal asset. The price of a one-period nominal bond is given

by q1t = Etmt+1 and that of an n-period nominal bond by qnt = Etmt+1mt+2 : : :mt+n: Given

our approximation to the log of a trader’s marginal utility (28), we obtain

¡ logmt+1 = ± + (Á+ 1)
³
log¹t+1 ¡ log ¹¹

´
¡ Á (log¹t ¡ log ¹¹) ;(39)
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where ± = ¡ log ¯ + log ¹¹ and Á is given in (29). Equations (37) and (39) then imply that

the pricing kernel is log-normal with an in…nite moving-average representation

¡ logmt+1 = ± +
1X

j=0

®j"t+1¡j , with(40)

®0 = (Á+ 1) µ0; and for j ¸ 0; ®j+1 = Á(µj+1 ¡ µj) + µj+1:(41)

Notice that ®0 = ¡@ log [U 0(cTt)=Pt] =@"t is the impact of a money shock on the

marginal utility of a dollar in period t while ®j+1 =¡Et@ log [U 0(cT t+j+1)Pt=U 0(cTt+j)Pt+j+1] =@"t

is the impact of a money shock on the expected nominal interest rate between periods t+ j

and t + j + 1. This e¤ect can be decomposed into two pieces: µj+1 = Et@ log ¹t+j+1=@"t

is the e¤ect of the shock on expected in‡ation from period t + j to period t + j + 1; while

Á(µj+1¡ µj) = ¡Et@ log [U 0(cTt+j+1)=U 0(cTt+j)] =@"t is the e¤ect of the shock on the expected

one-period real interest rate from period t+ j to period t+ j+1: Clearly, Á(µj+1¡µj) re‡ects

the market segmentation e¤ect on this one-period real interest rate.

With the assumed process for money growth (37), the bond price formulas (32) imply

that

fnt =
¹fn +

1X

j=1

®j+n"t+1¡j and(42)

rnt = ¹r
n +

1

n

1X

j=0

(An+j ¡ Aj) "t¡j;(43)

where Aj =
Pj
i=0 ®i and ¹fn and ¹rn are mean rates that we discuss later. Notice that with

n = 1; (43) reduces to r1t = ¹r
1 +

P1
j=1 ®j"t+1¡j:

Example 2. (Long memory processes). Now consider a fractionally integrated process for

money growth and in‡ation. We are motivated by the …ndings (surveyed in Baillie 1996) that
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a single-factor long-memory model can mimic the slow decay of the observed autocorrelations

of in‡ation. With such a process, we …nd that a persistent increase in the money growth

rate leads …rst to a decline in nominal interest rates and then eventually to an increase in

these rates. As a result, this increase in the money growth rate twists the forward rate curve,

lowering short-term forward rates and raising long-term ones. At least since Friedman (1968),

economists have argued that money injections have these e¤ects on interest rates.

Let money growth and in‡ation follow a fractionally integrated process of the form

(1 ¡ L)d¹t = "t; where ¡1=2 < d < 1=2: The …rst-order autocorrelation of this process is

d=(1 ¡ d): The coe¢cients of the moving-average representation of the money growth and

in‡ation process (37) satisfy the following recursion:

µj =

Ã
1¡ 1¡ d

j

!
µj¡1(44)

for j ¸ 1. The parameter d controls the rate of decay of the moving-average coe¢cients.

These coe¢cients decay at a rate (1¡ d)=j < 1: For large j; this rate approaches 0; which is

the source of the long memory.

A long-memory shock to money growth leads initially to lower short-term nominal

interest rates and then to higher ones, and it twists the forward rate curve as follows. From

(43) and (42), we know that the impact of a money growth shock at t on the expected one-

period interest rate in period t+ j and on the forward rate of maturity j in period t is given

by ®j: Using (41) and (44), we obtain

®j = ¡Á(1¡ d)
j

µj¡1 +

"
1¡ (1¡ d)

j

#
µj¡1;

where the …rst term is the segmentation e¤ect and the second is the expected in‡ation e¤ect.

Since the coe¢cients µj are all positive, for large enough j the expected in‡ation e¤ect must
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dominate the segmentation e¤ect and ®j must be positive. If Á > d=(1¡d); then for j = 1; the

segmentation e¤ect outweighs the expected in‡ation e¤ect, and so for small j; ®j is negative.

If we ignore integers, we see that ®j goes from negative to positive at j¤ = (1+Á)(1¡d): Notice

that the more segmented is the market, the longer is the period in which the segmentation

e¤ect outweighs the expected in‡ation e¤ect.

5. The Average Term Structure of Interest Rates

Finally, we consider the implications of monetary policy for the average yields of

bonds of di¤erent maturities in the segmented markets model. Two measures of the term

structure of interest rates are the forward rate curve and the yield curve. In the data, both

of these are upward-sloping, at least for maturities of up to seven years. (See for example,

Campbell, Lo, and MacKinlay 1997.) In the standard model, persistent money growth shocks

produce downward-sloping forward rate and yield curves on average. In contrast, if markets

are su¢ciently segmented, then these shocks produce upward-sloping forward rate and yield

curves on average.

From (31), we have that the average nominal bond price is

log ¹qn = n (log ¯ ¡ log ¹¹) + E 1
2
vart

Ã
log

U 0(cTt+n)

Pt+n
¡ log U

0(cTt)

Pt

!
:(45)

Thus, the average forward rate and yield curves are given, respectively, by

¹fn = log ¹¹¡ log ¯ +(46)

E
1

2
vart

Ã
log

U 0(cT t+n)

Pt+n
¡ log U

0(cT t)

Pt

!
¡ vart

Ã
log

U 0(cTt+n+1)

Pt+n+1
¡ log U

0(cT t)

Pt

!
;

and

¹rn = log ¹¹¡ log ¯ ¡ E 1

2n
vart

Ã
log

U 0(cTt+n)

Pt+n
¡ log U

0(cTt)

Pt

!
:(47)
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In Appendix B, we show that these simplify to

¹fn = log ¹¹¡ log ¯ ¡ 1

2
A2n¾

2
" and(48)

¹rn = log ¹¹¡ log ¯ ¡ 1

2n

n¡1X

j=0

A2j¾
2
";(49)

where Aj =
Pj
i=0 ®i and the coe¢cients ®i are the moving-average coe¢cients of the pricing

kernel (40).

The model we have considered has only one type of money shock. In such a one-factor

model, liquidity e¤ects and the average slope of the forward rate curve are closely connected,

as the following propositions show.

Proposition 6. If money growth shocks are persistent, so that µj ¸ 0 for all j = 0; : : : ; J;

then the forward rate curve is upward-sloping up to maturity J if and only if there are J-period

liquidity e¤ects in the sense that ®j � 0 for j = 1; : : : ; J:

Proof. Since Aj =
Pj
i=0 ®i; from (40) we have that Aj = Áµj +

Pj
i=0 µi: Thus, if µj ¸ 0 for

j = 0; : : : ; J; then Aj ¸ 0 for j = 0; : : : ; J . Clearly, if ®j � 0 for j = 1; : : : ; J; then Aj is

decreasing in j for j = 0; : : : ; J; so that A20 ¸ A21 ¸ A22 ¸ : : : ¸ A2J ; and, from (48); the

forward rate curve is upward-sloping. Conversely, if the forward rate curve is upward-sloping

for j = 1; : : : ; J, then A20 ¸ A21 ¸ A22 ¸ : : : ¸ A2J . Since Aj ¸ 0; ®j � 0 for j = 1; : : : ; J .

Proposition 7. If money injections have J-period liquidity e¤ects in the sense that ®j � 0

for j = 0; : : : ; J and money growth shocks are persistent and decay monotonically in the sense

that µj ¸ 0 and µj � µj¡1 for j = 0; : : : ; J; then the more segmented are markets, the steeper

is the forward rate curve.
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Proof. The slope of the forward rate curve between maturities j ¡ 1 and j is given by

(A2j¡1 ¡ A2j )=2: Clearly, (A2j¡1 ¡ A2j) = (Aj¡1 ¡ Aj)(Aj¡1 + Aj); which equals

¡ [Á(µj ¡ µj¡1) + µj]
2
4Á(µj + µj¡1) + µj + 2

j¡1X

i=0

µi

3
5 :

Given the conditions on µj ; this expression is increasing in the segmentation parameter Á:

To get some intuition for these results, observe from (47) that the average yield curve

is upward-sloping if, on average, the conditional variance of the log of the n-period pricing

kernel, written as

vart

Ã
log

U 0(cTt+n+1)

Pt+n+1
¡ log U

0(cT t)

Pt

!
;(50)

grows more slowly than n: Clearly, (50) is the variance of the long di¤erence of the marginal

utility of a dollar. Notice that if the marginal utility of a dollar follows a random walk, then

this variance grows linearly with n; and thus the average yield curve is ‡at. If the marginal

utility of a dollar has a large temporary component, then this variance will grow more slowly

than n and the yield curve is upward-sloping. In our model, shocks to money growth have a

permanent e¤ect on the price level, but only a temporary e¤ect on the consumption of traders.

For the yield curve to be upward-sloping, the temporary e¤ect, due to market segmentation,

must be large. (See Campbell and Mankiw 1987 and Cochrane 1988 for some discussion of

the statistical properties of long di¤erences.)

Consider again our two examples.

(Autoregressive money growth). With AR1 money growth rates, recall that µj = ½jµ0; so

that all the coe¢cients µj are positive and declining for all j; and hence the hypotheses of

Propositions 6 and 7 are satis…ed. In the standard model; all the coe¢cients ®j are positive,
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so that the forward rate and yield curves are downward-sloping. In the segmented markets

model, however, if Á is large enough to satisfy (34), then the forward rate and yield curves

are upward-sloping at all maturities.

(Long-memory money growth.) The moving-average coe¢cients of the long-memory money

growth process satisfy (44), so that µj ¸ 0 and µj < µj¡1 for all j; and hence, Propositions

6 and 7 apply. Recall that ®j � 0 for j = 1; : : : ; j¤; where j¤ = (1 + Á)(1 ¡ d): Thus, the

forward rate curve and the yield curve are upward-sloping for j = 1; : : : ; j¤: Notice that the

more segmented is the market, the longer are the maturities for which the forward rate and

yield curves are upward-sloping.

Propositions 6 and 7 do not directly apply to a model in which there are several types

of money shocks. Consider, for example, a process for money growth with two types of

shocks. Obviously, Propositions 6 and 7 do not apply directly here. However, the slopes

of the forward and yield curves for the two-factor model are the sum of the slopes of yield

curves corresponding to the two factors separately. In this sense, the propositions apply to

each factor separately. (See Zin 1998 for a discussion of two factor models.)

6. Conclusion

We have developed a tractable model that captures the idea that when a government

injects money through an open market operation, only a fraction of the agents in the economy

are on the other side of the transaction. We show that in such a model, money shocks can

generate both persistent liquidity e¤ects and twists in the forward rate curve. The model can

also produce-an upward sloping yield curve on average.
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Appendix A

Here we present two additional examples illustrating the e¤ect of money growth shocks

on a trader’s consumption.

First, let all agents have identical constant endowment y: In equilibrium, a fraction ®

of agents are traders and purchase the money injection from the government, and (1¡®) are

nontraders. Since agents must be indi¤erent between trading and not trading, the following

condition must hold:

U (cT )¡ U 0(cT )(cT + ° ¡ y=¹) = U(y=¹):(51)

This equation has two solutions for cT : one with cT + ° > y=¹ and one with cT + ° <

y=¹. When the money injection is positive, traders must purchase real balances from the

government, so the equilibrium solution satis…es cT + ° > y=¹: The fraction ® adjusts to

satisfy the resource constraint. Di¤erentiating (51) with respect to ¹ gives

dcT
d¹

=
[U 0(y=¹)¡ U 0(cT )]y=¹2
U 00(cT )[cT + ° ¡ (y=¹)] < 0:(52)

Again, an increase in the money growth rate ¹ redistributes in‡ation tax revenues from

nontraders to traders. Here, however, the number of traders increases so much that the

amount of consumption per trader actually falls.

Next, consider the case in which y has a continuous density. Di¤erentiating (19)–(20)

gives

(
[F (yL) + 1¡ F (yH)] + ¹f (yL)

Ã
cT + ° ¡ yL

¹

!
´L ¡ ¹f (yH)

Ã
cT + ° ¡ yH

¹

!
´H

)
dcT
d¹

(53)

=

Ã
yL
¹

¡ cT ¡ °
!
f (yL)

yL
¹
+

Ã
cT + ° ¡ yH

¹

!
f(yH)

yH
¹
+
1

¹

Z yH

yL

y

¹
f (y) dy;
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where

´i =
U 00(cT )(cT + ° ¡ yi=¹)
U 0(cT )¡ U 0(yi=¹)

:

From (19) it follows that yL=¹ < cT < yH=¹ ¡ °: Thus, ´H and ´L are positive and so is

the term in braces on the left side of (53). On the right side of (53), the …rst two terms are

negative and the last is positive, so without further restrictions, the sign of the right side of

(53) is ambiguous. In our example in the text in which there are three income levels, the

densities are f(yL) = f (yH) = 0; so that (53) reduces to

dcT
d¹

=
1

¹

R yH
yL

y
¹
f(y)dy

[F (yL) + 1¡ F (yH)]
> 0:

In our example above in which all agents have the same income, the densities are f (yL) = 1

and f(yH) = 0 so that, in the limit (53) reduces to (52).

Consider now a third example, in which y is uniform on [0; 1] and the utility function is

U(c) = c1¡¾=(1¡¾) with ¾ = 2. With these preferences, the cuto¤ rules yL (cT ; ¹) ; yH (cT ; ¹)

solving (19) are

yi (cT ; ¹) = ¹

0
@cT + °=2 § cT

"µ
1 +

°

2cT

¶2
¡ 1

#1=21
A :(54)

In this case, the side of (53) simpli…es to °(yH ¡yL)=2¹; which is positive. Thus, under these

restrictions dcT=d log ¹ is positive.
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Appendix B

Here we solve for the average forward rate and yield curves as a function of the pa-

rameters of the moving-average process for money growth. With our money growth process,

log
U 0(cTt+n)

Pt+n
¡ log U

0(cTt)

Pt
=

¡
1X

k=0

0
@Á (µn+k ¡ µk) +

nX

j=1

µj+k

1
A "t¡k ¡

n¡1X

k=0

(Áµk +Bk) "t+n¡k

where Bk = (µ0 + µ1 + : : :+ µk) : Thus,

Et log
U 0(cTt+n)

Pt+n
¡ log U

0(cTt)

Pt
= ¡

1X

k=0

0
@Á (µn+k ¡ µk) +

nX

j=1

µj+k

1
A "t¡k

and

vart

Ã
log

u0(cT t+n)

Pt+n
¡ log u

0(cTt)

Pt

!
=

n¡1X

k=0

(Áµk +Bk)
2 ¾2":

Average forward rates and yields are given by

¹fn = log ¹¹¡ log ¯ ¡ (Áµn +Bn)2 ¾2"=2;

and

¹rn = log ¹¹¡ log ¯ ¡ 1

n

n¡1X

k=0

(Áµk +Bk)
2 ¾2"=2:

Using (40) and letting An = (®0 + ®1 + : : :+ ®n) ; we see that average forward rates and

yields are given by (48) and (49).
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Figure 1: The Cutoff Rule for Trade
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