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I. Introduction 

  Wall Street has long been interested in quantitative methods of speculation.  One popular

short-term speculation strategy is known as "pairs trading."  The strategy has at least a fifteen year

history on Wall Street and is among the proprietary "statistical arbitrage"  tools currently used by

hedge funds as well as investment banks.  The concept of pairs trading is disarmingly simple.  Find

two stocks whose prices have moved together historically.  When the spread between them widens,

short the winner and buy the loser.  If history repeats itself,  prices will converge and the arbitrageur

will profit.   It  is hard to believe that such a simple strategy, based solely on past price dynamics and

simple contrarian principles, could possibly make money.  If the U.S. equity market were efficient,

risk-adjusted returns from pairs trading should not be positive.

In this paper, we examine the risk and return characteristics of pairs trading with daily data

over the period 1962 through 1997.  Using a simple algorithm for choosing pairs, we test the

profitability of several straightforward, self-financing trading rules.  We find average annualized

excess return of about 12 percent for top-pairs portfolios.  We show that part of this may be due to

institutional factors. In particular, Jegadeesh and Titman (1995) find evidence that a significant

proportion of profits from short-term contrarian strategies may be due to asynchronous trading and

the bid-ask bounce. After the bid-ask bounce and transaction costs are taken into account, pairs

trading yields reduced -- but still positive and significant -- returns.   

Regardless of the magnitude of the profits from pairs trading, our results reveal something

about the mechanism and performance of actual relative-price arbitrage activities.  This is useful,

because, despite considerable theory about market efficiency, economists  have little empirical

information about how such efficiency is maintained.  Event studies show us that new information
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is rapidly impounded into stock prices, presumably through speculative activity, however by their

very nature event studies are conditional upon significant news releases that focus attention upon the

securities.   Studies about active speculators and institutional investors are tantalizing -- they suggest

some degree of herding behavior that may be motivated by opportunity for speculative gains,

however we do not yet really understand why certain stocks attract institutional attention.  In this

paper, we investigate the mechanisms and profits of relative pricing in a setting in which speculators

are trading in securities that are close economic substitutes for each other.   While pairs trading may

be only one of a number of "convergence" strategies employed by arbitrageurs, it has the attraction

of corresponding quite nicely to a model-free, but highly intuitive  "Law of One Price,"  in a way

that will be made clear below.

Our results fall in a gray area of profitability -- attractive enough to sustain low cost market

participants whose presence  maintains relative efficiency, but not attractive enough to support large

amounts of investor capital.  Our study explores  the statistical characteristics of pairs trader portfolio

returns, and thus helps understand one interesting mechanism of  market efficiency -- relative pricing

of close substitutes.

II. Background

II.1 History

In the mid-1980’s,  the Wall Street quant Nunzio Tartaglia assembled a team of physicists,

mathematicians and computer scientists to uncover  arbitrage opportunities in  the equities markets.

Tartaglia’s group of former academics used sophisticated statistical methods to develop high-tech

trading programs, executable through automated trading systems, that took the intuition and trader’s

"skill" out of arbitrage and replaced it with disciplined, consistent filter rules.   Among other things,
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Tartaglia’s  programs identified pairs of securities whose prices tended to move together.  They

traded these pairs with great success in 1987 -- a year when the  group reportedly made a  $50

million profit for the firm. Although the Morgan Stanley group disbanded in 1989 after a couple of

bad years of performance, pairs trading has  since become an increasingly popular "market-neutral"

investment strategy used by  institutional traders as well as  hedge fund managers.  The increased

popularity of quantitative-based statistical arbitrage strategies  has also apparently affected profits.

In a recent  New York Times interview, David Shaw,  head of one of the most successful modern

quant shops and himself an early Tartaglia’s protégé,  suggests that recent pickings for quant-shops

have become slim -- he attributes the success of his firm D.E. Shaw to early entry into the business.

Tartaglia's own explanation for pairs trading is psychological. He claims, that "<Human beings don't

like to trade against human nature, which wants to buy stocks after they go up not down."1  Could

pairs traders be the disciplined investors taking advantage of  the undisciplined over-reaction

displayed by individual investors?  This is at least one possible -- albeit psychological - explanation

for our results, which  is consistent with Jegadeesh and Titman's (1995) finding that  contrarian

profits are in part due to over-reaction to company-specific information shocks rather than price

reactions to common factors. 

II.2 Data Snooping

In our study we have not searched over a strategy space to identify successful trading rules,

but rather we have interpreted practitioner description of pairs trading as straightforwardly as

possible.  Our rules follow the general outline of first "find stocks that move together," and second
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"take a long-short position when they diverge."  A test requires that both of these steps must be

parameterized in some way.   How do you identify "stocks that move together?"  Need they be in

the same industry?  Should they only be liquid stocks?  How far do they have to diverge before a

position is put on?  When is a position unwound?   We have made some straightforward choices

about each of these questions.   We put positions on at a two-standard deviation spread, which might

not always cover transactions costs even when stock prices converge.   Although it is tempting to

try potentially more profitable schemes,  the danger in data-snooping refinements outweigh the

potential insights gained about the higher profits that could result from learning through testing.

As it stands now, data-snooping is a serious concern in our study.  Pairs trading is closely

related to a widely studied subject in the academic literature -- mean reversion in stock prices.2    We

consider the possibility that we have simply reformulated  a test of the previously documented

tendency of stocks to revert towards their mean at certain horizons. To address this  issue, we

develop a bootstrapping test based upon random pair choice.  If pairs-trading profits were simply due

to mean-reversion, then we should find that  randomly chosen pairs generate profits, i.e. that buying

losers and selling winners in general makes money.   This simple contrarian strategy is unprofitable

over the period that we study,  suggesting that mean reversion is not the whole story. 

Although the effect we document is not merely an extension of previously known anomalies,

it is still not immune to the data-snooping argument.  Indeed we have explicitly "snooped" the data

to the extent that we are testing a strategy we know to have been actively exploited by risk-

arbitrageurs.  As a consequence we cannot be sure that past trading profits under our simple
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strategies will continue in the future.  This potential critique has another side, however.  The fact that

pairs trading is already well-known risk-arbitrage strategy means that we can simply test current

practice rather than develop our filter-rule ad hoc.

II.3 Relative Pricing

Asset  pricing can be viewed in absolute and relative terms.  Absolute pricing values

securities from  fundamentals such as discounted future cash flow.  This is a notoriously difficult

process with wide margin for error.  Recent papers by Bakshi and Chen (1997) and Lee, Myers and

Swaminathan (1997) are heroic attempts to build quantitative value investing models. Relative

pricing is only slightly easier.  Relative pricing means that two securities that are close substitutes

for each other should sell for the same price -- it does not say what that price will be.  Thus, relative

pricing allows for bubbles in the economy, but not necessarily arbitrage or profitable speculation.

The Law of One Price [LOP] -- and a "near-LOP"  is applicable to relative pricing -- even if that

price is wrong.

Ingersoll (1987) defines the LOP as the "proposition ... that two investments with the same

payoff in every state of nature must have the same current value."   In other words, two securities

with the same prices in all states of the world should sell for the same thing.  Chen and Knez ( 1995)

extend this to argue that "closely integrated markets should assign to similar payoffs prices that are

close."   They argue that two securities with similar, but not necessarily matching payoffs across

states should have similar prices.  This is of course a weaker condition, and subject to bounds on

prices for unusual states, however it allows the examination of "near-efficient" economies, or in

Chen and Knez’ case, near integrated markets.   Notice that this theory corresponds to the desire to
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find two stocks whose prices "move together" as long as we can define states of nature as the time-

series of observed historical trading days.

We use an algorithm to choose pairs based on the criterion that they have had the same or

nearly the same state prices historically.   We then trade pairs whose prices closely match in

historical state-space, since the LOP suggests that in an efficient market, their prices should be nearly

identical.  In this framework, the current study can be viewed as a test of the LOP and near-LOP in

the U.S. equity markets, under certain stationarity conditions.  We are effectively testing the

integration of very local markets -- the markets for specific individual securities.  This is similar in

spirit to Bossaerts (1988) test of co-integration of security prices at the portfolio level.  We further

conjecture that the marginal profits to be had from risk arbitrage of these temporary deviations is

crucial to the maintenance of  first-order efficiency.  We could not have the first effect without the

second.

III. Methodology

Our implementation of  pairs trading has two stages.  We form pairs over a twelve month period

(formation period) trade them in the next six-month period (trading period).   Both twelve months

and six months are chosen arbitrarily and have remained our horizons throughout the study.

III.1 Pairs Formation

In each pairs-formation period, we screen out all stocks from the CRSP daily files that have

one or more days with no trade. This serves to identify relatively liquid stocks as well as to facilitate

pairs formation.   Next, we construct a cumulative total return index for each stock over the
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formation period.  We then choose a matching partner for each stock by finding the security that

minimizes the sum of squared deviations between the two normalized price series. Pairs are thus

formed by exhaustive matching in normalized daily "price" space, where price includes re-invested

dividends. 

We use this approach because it best approximates the description of how traders themselves

choose pairs.  Interviews with pair traders suggest that they try to find two stocks whose prices

"move together."   In addition to "unrestricted" pairs, we will also present results by sector, where

we restrict both stocks to belong to the same broad industry categories defined by Standard & Poors:

Utilities, Transportation, Financial and Industrials.  Each stock is assigned to one of these four

groups, based on the stock’s SIC code.  The minimum-distance criterion is then used to match stocks

within each of the groups.

III.2 Trading Period

Once we have paired up all liquid stocks in the formation period, we study the top 5 and 20

pairs with the smallest historical distance measure, in addition to the 20 pairs after the top 100 (pairs

101-120).   This last set  is valuable because most of the top pairs share certain characteristics which

will be described in detail below.   On the day following the last day of the pairs formation period,

we begin to trade according to a pre-specified rule. We chose rules based on the proposition that we

open a long-short position of  when the pair prices have diverged by a certain amount, and close the

position when the prices have reverted. Following practice, we base our rules for opening and

closing positions on a standard deviation metric. We open a position in a pair when prices diverge

by more than two historical standard deviations, as estimated during the pairs formation period.  We
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unwind the position at the next crossing of the prices. If prices do not cross before the end of the

trading interval, gains or losses are calculated at the end of the last trading day of the trading interval.

Since the positions are effectively self-financing portfolios, we report the payoffs by going one dollar

short in the higher-priced stock and one dollar long in the lower-priced stock.

Figure 1 provides illustrates the pairs trading strategy using two stocks, Kennecott and

Uniroyal in the six month period starting in August of 1962.  The top two lines represent the

normalized price paths with dividends re-invested, and the bottom line indicates the opening and

closing of the strategy on a daily basis.   It is clear why these two firms paired with each other.  They

generally tended to move together over the trading interval.    Notice that the position first opens in

the seventh trading day of the period and then remains open until day 36.  Over that interval, the

spread actually first increased significantly before convergence.  The pair remains close in price

during the period and  cross frequently.  The pair opens five times during the period, however not

always in the same direction.  Neither stock is the "leader."  In our example, convergence occurs in

the final day of the period, although this is not always the case. 

III.3 Excess Return Computation

Because pairs may open and close at various points during the six-month trading period, the

calculation of the excess return on a portfolio of pairs is a non-trivial issue. Pairs that open and

converge during the trading interval will have positive cash flows. Because pairs can re-open after

initial convergence, pairs can have multiple positive cash flows during the trading interval. Pairs that

open but do not converge will only have cash flows on the last day of the trading interval when all

positions are closed out. Therefore, the payoffs to pairs trading strategies are a set of positive cash
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flows that are randomly distributed throughout the trading period, and a set of cash flows at the end

of the trading interval which can either be positive or negative. For each pair we can have multiple

cash flows during the trading interval, or we may have none in the case when prices never diverge

by more than two standard deviations during the trading interval. Because the trading gains and

losses are computed over long%short positions of one dollar, the payoffs have the interpretation of

excess returns. The excess return on a pair during a trading interval is computed as the sum of the

payoffs during the trading interval.3  

We consider two measures of excess return on a portfolio of pairs: the return on committed

capital and the return on actual employed capital. The excess return on committed capital takes the

sum of the payoffs over all pairs during the trading period, and divides it by the number of pairs in

the portfolio. This measure of excess return is clearly conservative % if a pair does not trade for the

whole of the trading period, we still include a dollar of committed capital in our calculation of excess

return. A hedge fund would presumably be more flexible in its sources and uses of funds. In such

case computing excess return relative to the actual capital employed may give a more realistic

measure of the trading profits. We calculate the excess return on employed capital as the sum of the

pair payoffs divided by the number of pairs that actually open during the trading period. For

example, if only one pair trades in the top 5 portfolio, then the excess return on employed capital

would be five times the excess return on committed capital. 
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III.4 Pairs Portfolios

We initiate the strategy, trading the pairs at the beginning of every month in the sample period, with

the exception of the first twelve months, which are needed to estimate pairs for the strategy starting

in the first month.  The one-month waiting period before rebalancing is an arbitrary choice. One way

to motivate the six-month trading period with one-month period between re-matching of pairs is to

think of a proprietary trading desk which delegates the management of the six portfolios to six

different traders whose evaluation periods are staggered by one month. At the end of a trading

period, the corresponding trader starts with a new portfolio whose pairs are formed over the prior

year. 

IV. Empirical Results

IV.1 Strategy Profits 

Table I summarizes the excess returns for the pairs portfolios that are unrestricted in the sense

that the matching stocks do not necessarily belong to the same broad industry categories. Panel A

shows the results when positions are opened at the end of the day that prices diverge, and closed at

the end of the day of price convergence.  Panel B reports the returns if we open and close the

positions at the end of the day following divergence and convergence.    Panel A indicates  that a

portfolio of the five best pairs earns an average excess return of 5.98  percent on committed capital

over a six-month period while the portfolio of all 1870 pairs yields 4.10 percent.  The corresponding

t-statistics of the mean, computed  using Newey-West standard errors, are 9.13 and 10.70

respectively.  The corresponding average six-month excess returns on employed capital are slightly

higher at 6.01 and 4.23 percent. These excess returns are large in a statistical sense, and seem to
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suggest that pairs trading is profitable.

The remainder of Panel A provides information about the return distributions of pairs

portfolios.  There are diversification benefits from combining multiple pairs in a portfolio. As the

number of pairs in a portfolio increases, the portfolio standard deviation falls, as does the range of

the realized returns and the frequency of negative portfolio excess return during a six-months period.

For example, during the full sample period of 34 years, a portfolio of 20 pairs has only 6 six-month

periods with negative payoffs, while a portfolio of 5 pairs returns negative profits in 11 trading

periods. The distribution of pairs payoffs is skewed right and peaked relative to the normal

distribution.

Since pairs-trading is in essence a contrarian investment strategy, the returns may be biased

upward due to the bid-ask bounce (Jegadeesh (1990), Jegadeesh and Titman (1995), Conrad and

Kaul (1989)). In particular, the strategy buys sells stocks that have done well relative to their match

and buys those that have done poorly. Part of any observed price divergence is potentially due to

price movements between bid and ask quotes: conditional on divergence the winner’s price is more

likely to be an ask quote and the loser’s price a bid quote. Since we have used these same prices for

the start of trading, our returns may be due to the fact that we are implicitly buying at bid quotes

(losers) and selling at ask quotes (winners). The opposite is true at the second crossing

(convergence): part of the drop in the winner’s price can reflect a bid quote, and part of the rise of

the loser’s price an ask quote.

To address this issue, we explore the effect of waiting a day before initiating a position.

Panel B of Table I gives the excess returns when we initiate positions in each pair on the day

following the divergence and liquidate on the day following the crossing. The average excess returns
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drop by about 200 basis points. While the excess returns are still significantly positive in a statistical

sense, the dramatic drop in the excess returns suggests that a non-trivial portion of the profits in

Panel A may be due to bid-ask bounce. It is difficult to quantify which portion of the profit reduction

is due to bid-ask bounce and which portion stems from true mean reversion in prices due to rapid

market adjustment.  None-the-less, this difference raises questions about the economic significance

of our results when we include transactions costs.  We will return to a detailed discussion of this

issue at a later point in the paper.

IV.2 Trading Statistics and Portfolio Composition

Table II provides detailed analysis of the trading statistics and composition of the pairs

portfolios. What are the characteristics of the stocks that are matched into pairs? How often does a

typical pair trade?  Because pairs trading is an active investment strategy, it is important to evaluate

the profitability relative to the trading intensity of the portfolios. An important question is whether

positions are opened too early, i.e. does the two standard deviation  trigger effectively limit the

profits to be made from the strategy, and how does the trigger relate to the bid-ask spread of the

stocks?  In the second line of panel A in Table II the average 2 standard deviation "open position"

trigger is reported.    For the top five pairs, the position typically opens when prices have diverged

by 4% or more.   This is a relatively narrow gap in prices.  The optimal trigger point in terms of

profitability may actually be much higher than 2 standard deviations, although we have not

experimented to find out.  The trigger spread increases for 20 pairs and all pairs because the standard

deviation of the pairs is increasing as the proximity of the securities in price space diverges.  Panel

A also shows that nearly all pairs open in the six-month trading period and that the average number
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of round-trips per pair in the trading interval, including closing out the position at the end of the six

months, is 2.4.  This means that most of the pairs open during the trading interval, and many pairs

open multiple times.  

Panel B of Table II describes the composition of the pairs in terms of market capitalization

and industry membership.  In terms of size, the average stock in the top 5 and top 20 pairs belongs

to the third decile from the top.  68% of the pairs’ stocks belong to the top three size deciles, and

87% come from the top five size deciles of the CRSP data.  Most pairs combine stocks from

different size deciles (i.e. size "mixed" pairs), and the average size differs by a single decile.

A breakdown of the pairs by industry composition is instructive.  On average, 82% of the

stocks in the top 20 pairs are utility stocks, despite the fact that utilities represent a fairly small

proportion of the stocks in the whole sample.  The "deeper" 20 pairs have a larger proportion of

industrials, and for this group, "cross-sector" pairs occur frequently: about 9 times out of 20.   These

break-downs raise the question whether the profitability of pairs trading is limited to the utility

sector, or whether pairs strategies are also profitable  in other sectors of the market. We will return

to this question at a later point in the paper. 

IV.3 Time-Series Characteristics of Performance 

Table III reports evidence about the risk of pairs trading.   We calculate the average daily

dollar change in the position value for the strategy across all pairs, under the assumption that these

positions are marked to market at the close of each day and them cumulate these to monthly excess

returns and compare them to the S&P 500 and treasury bills.  We report the excess returns to the

one-day wait trading strategy in annualized form and for comparison we report total returns to
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treasury bills and the S&P 500.  The top Panel of Table III shows that the pairs trading portfolios

are much less volatile than the S&P 500, with annualized standard deviations ranging from 4% to

6% per year.  The combination of low volatility and high average return explains that the annual

Sharpe ratios for the pairs portfolios are high relative to the S&P500.  Also, the excess returns tend

to be positively autocorrelated at the monthly horizon. This suggests that the profitability of pairs

position accrues gradually over time, and is not simply driven by short-term price reversals.

In order to explore the systematic risk exposure of the pairs portfolios, we regress their

monthly excess returns on the three factors of  Fama-French (1996). The exposures of pairs

portfolios to the market return are generally small, and not significantly different from zero. This is

not surprising because pairs formation matches stocks which are highly correlated, and therefore tend

to move together under all market conditions. Exposures to the other FF factors is generally positive

and significant. Pairs returns are positively correlated with the difference between small and big

stocks (SMB), and the difference between value and growth stocks (HML). However, these

exposures are not sufficient to explain their average returns: all of the 3-factor regression intercepts

are significantly different from zero. Exposure to the FF factors explains only about 100bp of the

average annual performance of the pairs returns.

The last panel of Table III shows the results of regressing the pairs returns on the Ibbotson

factors: the excess return on the S&P 500, a U.S. small stock premium, a U.S. bond default premium

and a U.S. bond  horizon premium.4 The risk exposure to the S&P 500  is slightly negative, the
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exposure to the small stock premium is significantly positive, the exposure to the default premium

is positive and the exposure to the horizon premium is positive.   Thus, when corporate bonds

increase in price relative to government bonds, the pairs portfolios make money.  There are a range

of possible explanations for this pattern.  Relatively cheaper borrowing rates by arbitrageurs may

force stock prices closer to equilibrium values, or common factors affecting convergence in both

stock and bond markets may be responsible.   The portfolios also appear to be sensitive to shifts in

the yield curve.   I.e. when long-term spreads decrease, pairs trading is more profitable.  At first

glance, the sensitivity to term-structure measures may be explained by the presence of interest rate

sensitive Utility stocks in many of the top pairs. However, interest rate movements also seem to

matter for the more broadly diversified pairs portfolios. In sum, the pairs portfolios seem to be

exposed to different sources of systematic risk.  While the R-squared is low, these portfolios are

evidently not factor-neutral, despite being constructed in a way that should essentially match up

economic substitutes.  

Value-at-risk is a potentially useful framework for evaluating pairs trading risk.    Table IV

reports both weekly and monthly VAR numbers by summarizing the quantiles of the empirical

distributions.  The worst week out of the entire period from 1962 through 1996 was an 11.18 % loss

below the riskless rate for the top five pair portfolio and an 8.85 % loss below the riskless rate for

the top 20 portfolio.   Only one per hundred weeks did these portfolios lose more than 2.55 % and

1.32 % respectively.   The worst month out of the entire period from 1962 through 1996 was a 15.93

% loss below the riskless rate for the top five pair portfolio and a 13.81 % loss below the riskless rate

for the top 20 portfolio.   Only one per hundred months did these portfolios lose more than 4.65 %

and 2.28 % respectively.
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The VAR is useful because it provides a gauge to the potential leverage that could be applied

to these strategies.   A five-to-one leverage ratio applied to the top 5 pairs would appear to have been

adequate to cover the worst monthly loss in the 35 year period.  Although the lessons of recent

history have taught us not to rely too heavily on historical VAR measures for gauging capital needs

for exploiting convergence strategies, the pairs portfolios seem to be exposed to  relatively little risk.

Figure 2 shows the monthly performance of the top 20 pairs, based upon the same-day

trading rule.  Pairs trading has declined in profitability dramatically from the 1970’s and 1980’s to

a low point at the end of our sample when the returns were sometimes negative.  Figure 3 compares

the cumulative excess returns of the  top 20 one-day-waiting strategy the cumulative excess returns

of investment in the S&P 500 index.   The smooth index of the pairs trading portfolio contrasts

dramatically with the volatility of the stock market.   Pairs trading performed well over difficult

times for U.S. stocks.  When the U.S. stock market suffered a dramatic real decline from 1969

through 1980, the pairs strategy had some of its best performance.  By contrast, for the last four years

in the sample, the market has performed exceptionally well, but pairs trading profits have been flat.

 Perhaps after its discovery in the early 1980’s by Tartaglia and others,  competition has decreased

opportunity.   On the other hand, pair trading might simply be more profitable in times when the

stock market performs poorly. 

IV.4 Pairs trading by industry group

The pairs formation process thus far has been entirely mechanical.   A computer stock has

the opportunity to match with a steel firm, and a utility with a bank. This does not mean that these

matches are likely. As shown in Table II, the fraction of mixed pairs it typically well below 50
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percent. Common factor exposures of stocks in the same industry will make it more likely to find

a match within the same sector. Also, firms that are in industries where cross-sectional differences

in factor exposures are small or return variances are low are more likely to end up among the top

ranking of pairs. For this reason it is perhaps not surprising that many of the top pairs thus far

contain utilities. Are the profits to pairs trading consistent across sectors? We also examine the

returns on pairs trading where stocks are matched only within the four large sector groupings used

by Standard and Poors: Utilities, Transportation, Financials, and Industrials. The results are given

in Table V. As in Table I, the pairs are traded with a one-day delay before opening and closing a

position in order to minimize the effect of trading on the bid-ask bounce. The six-month excess

returns are the largest in the Utilities sector, with 5.04 percent (t=10.70). The profits for the other

industry groups are somewhat lower, but all statistically significant, with the average Transportation,

Financials, and Industrials top 5 pairs earning 3.21 (t = 4.46), 3.74 (t = 5.67) respectively and 2.43

(t = 4.57) percent over a six-month period. 

Table VI gives a more detailed picture of the return distributions and trading characteristics

of the pairs trading strategies by sector.  It  shows that the excess return distributions of the

Transportation and Industrial pairs are skewed left, while pairs formed from Utilities and Financials

are skewed right.  With the exception of the top 5 pairs portfolio of Transportation all distributions

have negative excess kurtosis relative to a normal distribution. Table VI shows that the relatively

large excess returns for Utilities come at a cost: it is also the most trading intensive sector with

around 2.5 roundtrips per pair. Transportation pairs experience the least amount of trading with 1.6

roundtrips per pair. The conclusion from these Tables is that pairs trading is profitable in every broad

sector category, and not limited to a particular sector, although effects are most pronounced for
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Utilities.

IV.5  Pairs trading and contrarian investment

Because pairs trading bets on return reversals it is an example of a contrarian investment

strategy. Positive returns to contrarian investing have been documented in the at long horizons

(DeBondt and Thaler (1985,1987), Lakonishok, Shleifer and Vishny (1994)). For our study, which

examines convergence within a six-month period, the relevant studies are those which have explored

return reversals at short-term horizons between one week and one month: (Lehman (1990),

Jegadeesh (1990). Given the average length of time that our pairs positions stay open (1.5 months),

this raises the question whether our pairs trading strategies are merely a disguised way of exploiting

these previously negative autocorrelations. In an attempt to explore this possibility, we conduct a

bootstrap where we construct random pairs within sectors, and trade these pairs following the same

rules as our actual pairs. Based on the findings of Lehmann (1990) and Jegadeesh (1990), we expect

these random pairs to generate positive profits on average. To evaluate whether our strategies are

profitable beyond the documented short-term reversals, we compute the p-values of our pairs trading

profits under the bootstrapped distribution.  The results are in the last lines of each of the panels in

Table VI. Surprisingly, we find that the mean of the bootstrapped distribution is positive in only two

of four sectors.  However, in each instance the documented profits have a very low p-value under

the bootstrapped distribution.  
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transactions costs on fewer that 2.4 roundtrips, which leads to a larger estimate of the roundtrip
spread. 
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IV. 6 Transactions costs

Table I shows that the average excess return of unrestricted pairs strategies falls from 5.98

per cent to 3.99 per cent per month if we postpone the trades to the day following the crossing. This

drop in the excess returns implies an estimate of the lower bound of the average bid-ask spread and

hence the transactions costs of trading in the sample. While actual transactions costs may exceed this

lower bound, it is informative to know whether the trading profits are large enough to survive this

conservative estimate of transactions costs. 

Suppose the extreme case where the prices of the winner at the first crossing (divergence)

are ask prices and the loser are bid prices. If the next day prices are equally likely to be at bid or ask

the delaying trades by one day will reduce the excess returns on average by half the sum of the

spreads of the winner and the loser. If at the second crossing (convergence) of the pairs the winners

is trading at the bid, and the loser at the ask, waiting one day will reduce the excess returns on

average again by one half of the sum of the bid-ask spreads of both stocks. In this extreme case,

waiting a day before trading reduces the return on each pair by the roundtrip transactions costs in that

pair. Because we trade each pair on average 2.4 times during the trading interval, the drop in the

excess returns of 200 basis points by waiting one day reflects the cost of 2.4 roundtrips, which

implies a transactions costs of 83 bp per pair per roundtrip. This may be interpreted as an estimated

effective spread of 42 bp.  This is a conservative estimate (lower bound) of the transactions costs

because it assumes that postponing trading by one day leads to a price movement within the spread

for every trade. 5  It is also consistent with transactions costs estimated by Peterson and Fialkowski
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(1994), who find that the average effective spread for stocks in the CRSP database in 1991 was 37

basis points.  Indeed, since 86% of the stocks in the top 20 pairs were in the top 5 deciles of CRSP

stocks, we would expect the effective spread to be even lower that 37 bp.

Do our trading strategies survive these transactions costs? The profits on our trading

strategies in the top 5 % 20 pairs in Table I range from 368 to 288 basis points over a six-month

period. If the prices used to compute these excess returns are equally likely to be at bid or ask, which

seems a reasonable assumption, we have to correct these excess returns to reflect that in practice we

buy at ask and sell at bid prices. In other words, we have to subtract the roundtrip trading costs to

get an estimate of the profits after transactions costs. Our conservative estimate of transactions costs

of 83 bp times 2.4 rounds trips per pair results in an estimate of 200 bp transactions cost per pair per

six month period.  This gives average net profits ranging from 168 to 88 bp over each six-month

period. Comparing these profits to the reported standard errors, we conclude that they are both

economically and statistically significant. 

Further analysis is required to get more precise estimates of influence of transactions  costs

of pairs trading strategies. An important question in this context is whether the trading rule that we

have used to open and close pairs can be expected to generate economically significant profits even

if pairs trading works perfectly. Because we use a measure of historical standard deviation to trigger

the opening of pairs, and since this estimated standard deviation is the smallest among all pairs it is

likely to underestimate the true standard deviation of a pair. As a consequence, we may simply be

opening pairs "too soon" and at a point that we cannot expect it to compensate for transactions costs
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even if the pair subsequently converges. Preliminary and unreported results suggest that this is

indeed the case for some of our pairs.

There is a second reason why our trading strategies require "too much" trading. We open

pairs at any point during the trading period when the normalized prices diverge by two standard

deviations. This is not a sensible rule towards the end of a trading interval. For example, suppose

a divergence occurs at the next to last day of the trading interval. The convergence has to be

substantial in order to overcome the transactions cost that will be incurred when we close out the

position on the next day (the last day of the trading interval). Preliminary results suggest that this

is also an important source of excess trading.

V. Conclusion

 We examine contrarian strategies based on the notion of cointegrated prices in a reasonably

efficient market, known on Wall Street as Pairs Trading. We form pairs of stocks, which are close

substitutes according to a minimum distance criterion using a metric in price space. We find that

trading suitably formed pairs of stocks exhibits profits, with are robust to conservative estimates of

transaction costs.   These profits are uncorrelated to the S&P 500, however they do exhibit some

sensitivity to the spreads between small and large stocks and between value and growth stocks in

addition to the spread between high grade and intermediate grade corporate bonds and shifts in the

yield curve.   Because the strategies are trading intensive, the profitability of the strategy clearly

depends upon the price and the impact of execution.

Our findings are consistent with the hypothesis of  positive cross-autocorrelation in security

returns at the daily level.  And they appear not to be explained by simple mean reversion
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documented in the literature.  Whether or not pairs trading is consistently profitable, it may be an

important  mechanism of relative price equilibration by market participants.  It is not surprising that

few individual investors -- even day traders -- have heard about pairs trading.  Larger players such

as institutions are likely to have a relative advantage in their ability to command leverage to take

positions and there ability to execute trades cheaply.  On the other hand  competition in the industry

and the price impact of large trades may be important factors limiting the scale of pairs trading.
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Table I: Excess Returns on Unrestricted Pairs Trading Strategies

Summary statistics of the 6-month excess returns on equally-weighted portfolios of pairs.  We trade according to the rule that opens
a position in a pair when the prices of the stocks in the pair diverge by two historical standard deviations. The "top n" portfolios
include the n pairs with  least distance measures, and the portfolios "20 after top 100"  has the  pairs after the top 100 pairs.  The
average number of pairs in the all-pair portfolio is 1870.  There are 408 observations, from 2/1963 until 12/1997

Portfolio top 5  top 20 20 after top 100 All
Panel A: Excess Return Distribution (No Waiting)

Mean  (Committed capital) 0.0598 0.0601 0.0451 0.0410
Standard error (Newey-West) 0.0065 0.0055 0.0038 0.0038
t-statistic 9.1363 10.8866 11.8900 10.7022

Excess return distribution
     Median 0.0549 0.0543 0.0457 0.0325
     Standard deviation 0.0704 0.0526 0.0482 0.0354
     Kurtosis 0.7323 2.5906 0.2319 1.5074
     Skewness 0.4352 0.9781 0.1500 1.1730
     Minimum -0.1423 -0.0792 -0.0793 -0.0248
     Maximum 0.2972 0.3124 0.1946 0.1756
     Observations with excess return < 0 16% 9% 16% 7%

Mean excess return on employed capital 0.0601 0.0606 0.0456 0.0423

Panel B: Excess Return Distribution (1 day Waiting)

Mean  (Committed capital) 0.0368 0.0396 0.0354 0.0288
Standard Error  (Newey-West) 0.0051 0.0042 0.0034 0.0033
t-statistic 7.2635 9.3286 10.4686 8.6709

Excess return distribution
     Median 0.0297 0.0360 0.0357 0.0231
     Standard deviation 0.0581 0.0426 0.0453 0.0312
     Kurtosis 1.2998 3.2452 0.0950 0.9549
     Skewness 0.3509 0.9127 0.0426 0.9333
     Minimum -0.1402 -0.0976 -0.0827 -0.0335
     Maximum 0.2860 0.2478 0.1781 0.1479
     Observations with excess return < 0 24% 16% 22% 15%

  
Mean excess return on employed capital 0.0370 0.0400 0.0358 0.0297
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Table II: Trading Statistics and Portfolio Composition

Trading statistics and portfolio composition for portfolios of  pairs formed over a 12 month period according to a minimum distance
criterion, and then traded over the subsequent 6 month period.  We trade according to the rule that opens a position in a pair when
the prices of the stocks in the pair diverge by two historical standard deviations. The "top n" portfolios include the n pairs with  least
distance measures, and the portfolios "20 after top 100"  has the  pairs after the top 100 pairs.  The average number of pairs in the
all-pair portfolio is 1870.  There are 408 observations, from 2/1963 until 12/1997

Portfolio top 5  top 20 20 after top 100 All
Panel A: Trading Statistics

Mean  (Committed capital) 0.0598 0.0601 0.0451 0.0410

Average 2 std dev ’open position’  trigger 0.0399 0.0449 0.0683 0.1518

Average number of pairs traded 4.97 19.81 19.77 1814.46
Mean round-trip trades per pair 2.4 2.2 1.9 1.7
Standard deviation of round-trips, per pair 0.8 0.5 0.3 0.2
Average time open, per pair, months               3.8               3.8               4.0               3.9
Std dev  of open position, per pair, months               0.7               0.5               0.4               0.2

Mean excess return on employed capital 0.0601 0.0606 0.0456 0.0423

Panel B: Pair Portfolio Composition

Average decile of a pair’s stock 3.1 3.2 4.0 5.8
Pairs’ stocks in top 3 size deciles 68% 63% 52% 29%
Pairs’ stocks in top 5 size deciles 87% 86% 72% 46%
Mixed size pairs 3.7 15.4 15.8 1494.9
Average decile difference for mixed pairs 1.0 1.0 1.0 1.0

Utilitiy stocks 81% 82% 33% 9%
Transportation stocks 1% 1% 2% 3%
Financial stocks 4% 4% 16% 12%
Industrial stocks 13% 13% 48% 76%
Mixed sector pairs 0.8 3.4 8.6 549.2
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Table III: Systematic Risk

This table reports the monthly risk profile for portfolios of  pairs formed and traded according to the "Wait One Day" rule discussed
in the text, over the period 8/1963 until 12/1997.  The "top n" portfolios include the n pairs with  least distance measures, and the
portfolios "20 after top 100"  has the  pairs after the top 100 pairs.  The average number of pairs in the all-pair portfolio is 1870.  The
U.S. Small stock premium is the monthly geometric difference between small company stock total returns and large company stock
total returns.  The Ibbotson factors are from the Ibbotson EnCorrr analyzer. U.S. bond default premium is the monthly  geometric
difference between total return to long-term corporate bonds and long term government bonds.  The U.S. bond horizon premium is
the monthly  geometric difference between investing in long term government bonds and U.S. treasury bills.  The Fama and French
Factors include HM:  the high book-to-market stock returns minus low book to market stock returns and SMB: small stock returns
minus large stock returns.  Returns for the portfolios are in excess of the riskless rate.  S&P 500 returns are calculated in excess of
treasury bill returns.

top 5  top 20 20 aft. 100 All Eq. Pre.

Wait One Day Portfolio Performance
Geometric Mean  Excess Return, annualized 0.0743 0.0802 0.0711 0.0580 0.0513

Standard deviation, annualized 0.0497 0.0380 0.0384 0.0359 0.1535
Annual Sharpe Ratio 1.5196 2.1260 1.8700 1.6314 0.4062

Monthly Serial Correlation 0.2252 0.3363 0.0803 0.1020 0.0028

Regression on Fama-French Factors
Intercept 0.0056 0.0061 0.0056 0.0044 0.0070
t-statistic 8.2853 11.849 10.709 9.0694 3.6298

U.S. Equity Risk Premium 0.0102 0.0080 -0.0067 -0.0167
t-statistic 0.5924  0.6149 -05057 -1.3612 

SMB: Small minus Big 0.0404 0.0511 0.0465 0.0688 0.2117
 t-statistic 1.7433 2.9192 -0.5057 4.1520 3.2089

HML: High minus Low Book to Market 0.0791 0.0210 0.0180 0.0689 -05847
t-statistic 2.8423 3.1582 0.8302 3.4620 -7.8073
R-square 0.0254 0.0412 0.0175 0.0728 0.1610

Durbin-Watson 1.546 1.314 1.805 1.999 2.086

Regression on Ibbotson Factors
Intercept 0.0059 0.0064 0.0057 0.0047 0.0035
t-statistic 9.0363 12.816 11.163 9.9775 1.8688

U.S. Equity Risk Premium -0.0296 -0.0259 -0.0206 -0.0408
t-statistic -1.6975 -1.9708 -1.5199 -3.2619

US. Small Stock Premium 0.0477 0.0494 0.0349 0.0496 0.1771
 t-statistic 2.7348 3.7614 2.5812 3.9670 3.6334

U.S. Bond Default Premium 0.1288 0.1266 0.1344 0.1680 0.7103
t-statistic 2.0496 2.6748 2.7578 3.7270 4.0631

U.S. Bond Horizon Premium 0.0815 0.0743 0.0440 0.0429 0.6805
t-statistic 2.9237 2.6748 2.0349 2.1458 9.5143
R-square 0.3622 0.0600 0.0358 0.0796 0.1975

Durbin-Watson 1.566 1.351 1.815 1.797 2.100
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Table IV.  Value at Risk

This table reports the daily and monthly Value-at-Risk percentiles based upon the strategies followed from 8/63
through 12/97

top 5  top 20 20 / 100 All Eq. Pre. T-bills

Monthly Value at Risk
1% -0.0227 -0.0151 -0.0198 -0.0133 -0.0961 0.0023
5% -0.0121 -0.0059 -0.0092 -0.0066 -0.0612 0.0026

10% -0.0078 -0.0034 -0.0063 -0.0043 -0.0445 0.0029
15% -0.0049 -0.0015 -0.0040 -0.0033 -0.0346 0.0031
20% -0.0031 -0.0004 -0.0022 -0.0021 -0.0244 0.0035

Probability below 0 28.70% 22.10% 25.60% 32.30% 43.10% 0.00%
Min. historical observation -0.1020 -0.0618 -0.0340 -0.0238 -0.2199 0.0021
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Table V: Industry Sector Pairs Trading

The Table gives summary statistics for the excess return distributions for pairs trading portfolios by sector. We trade according to
the rule which opens a position in a pair the day following the day that prices of the stocks in the pair diverge by two historical
standard deviations and closes the position the day following the next crossing of prices. 

Portfolio top 5 top 10 top 20 All
Panel A: Utilities

Mean Excess Return 0.0504 0.0489 0.0518 0.0478
Median 0.0471 0.0456 0.0484 0.0451
Standard Deviation 0.0545 0.0441 0.0378 0.0284
Kurtosis 0.8676 1.1015 1.3451 1.7417
Skewness 0.4187 0.6080 0.6548 0.7846
Minimum -0.1009 -0.0806 -0.0362 -0.0221
Maximum 0.2826 0.2322 0.2154 0.1816
Observations with excess return < 0 16 % 11 % 6 % 3 %

Panel B: Transportation
Mean Excess Return 0.0321 0.0318 0.0243 0.0223
Median 0.0335 0.0335 0.0225 0.0220
Standard Deviation 0.1029 0.0768 0.0600 0.0550
Kurtosis 4.2868 1.2467 0.8636 0.6279
Skewness -0.3311 -0.1195 -0.1952 0.1560
Minimum -0.5748 -0.2432 -0.2065 -0.1243
Maximum 0.4654 0.3158 0.2092 0.2081
Observations with excess return < 0 35 % 31 % 30 % 32 %

Panel C: Financials
Mean Excess Return 0.0374 0.0371 0.0371 0.0352
Median 0.0371 0.0360 0.0348 0.0312
Standard Deviation 0.0825 0.0643 0.0489 0.0401
Kurtosis 1.5977 1.0806 0.8480 0.7545
Skewness 0.0403 0.2103 0.1249 0.4996
Minimum -0.2737 -0.1527 -0.1391 -0.1015
Maximum 0.3729 0.3051 0.2316 0.1691
Observations with excess return < 0 32 % 27 % 21 % 18 %

Panel D: Industrial
Mean Excess Return 0.0243 0.0272 0.0270 0.0336
Median 0.0291 0.0295 0.0283 0.0268
Standard Deviation 0.0741 0.0566 0.0465 0.0341
Kurtosis 0.6015 0.0969 0.1107 0.5594
Skewness -0.3664 -0.0950 0.0058 0.8490
Minimum -0.2332 -0.1521 -0.1192 -0.0333
Maximum 0.2366 0.1735 0.1582 0.1396
Observations with excess return < 0 34 % 31 % 27 % 14 %
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Table VI.  Sector Pairs Trading and Random Pairs Bootstrap

The top half of each Panel gives summary statistics of the 6-month excess returns on equally-weighted portfolios of  the top n  pairs
formed by sector. We trade according to the rule which opens a position in a pair the day following the day that prices of the stocks in
the pair diverge by two historical standard deviations and closes the position the day following the next crossing of prices. The Newey-
West correction used to compute the standard errors uses six lags. The bottom half of each Panel summarizes the distribution of the
bootstrapped distribution of the mean excess return of random pairs formation by sector. The p-value corresponds to the probability
that bootstrapped profits exceed actual profits.

Portfolio top 5 top 10 top 20 All
Panel A: Utilities

Mean Excess Return 0.0504 0.0489 0.0518 0.0478
Standard Error (Newey-West) 0.0047 0.0041 0.0038 0.0031
t-statistic 10.70 11.93 13.70 15.43
Bootstrapped distribution of random pairs:
     mean 0.0009 0.0011 0.0014
     standard deviation 0.0071 0.0051 0.0035
     p-value actual profits 0.0000 0.0000 0.0000

Panel B: Transportation

Mean Excess Return 0.0321 0.0318 0.0243 0.0223
Standard Error (Newey-West) 0.0072 0.0059 0.0052 0.0050
t-statistic 4.4577 5.4085 4.6816 4.4797
Bootstrapped distribution of random pairs:
     mean 0.0008 0.0010 0.0011
     standard deviation 0.0075 0.0053 0.0036
     p-value actual profits 0.0000 0.0000 0.0000

Panel C: Financials

Mean Excess Return 0.0374 0.0371 0.0371 0.0352
Standard Error (Newey-West) 0.0066 0.0057 0.0046 0.0041
t-statistic 5.6737 6.4955 8.0168 8.6153
Bootstrapped distribution of random pairs:
     mean -0.0010 -0.0008 -0.0005
     standard deviation 0.0071 0.0050 0.0036
     p-value actual profits 0.0000 0.0000 0.0000

Panel D: Industrial

Mean Excess Return 0.0243 0.0272 0.0270 0.0336
Standard Error (Newey-West) 0.0053 0.0043 0.0037 0.0037
t-statistic 4.5681 6.3123 7.2620 8.9602
Bootstrapped distribution of random pairs:
     mean -0.0015 -0.0009 -0.0011
     standard deviation 0.0074 0.0052 0.0036
     p-value actual profits 0.0000 0.0000 0.0000
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