




       The CAPM does have its erstwhile saviors.  For example, studies find that dynamic1

versions of the CAPM with time-varying parameters and/or broader specifications for the
market portfolio perform better than traditional formulations of the model.  Examples include
Harvey (1989), Ferson and Harvey (1991), Pannikkath (1993), Ferson and Korajczyk (1995),
Jagannathan and Wang (1996) and Carhart, et al. (1996).  See Ghysels (1998) for a recent
critique of conditional CAPMs.

1. Introduction                                                          

Empirical asset pricing is in a state of turmoil.  The Capital Asset Pricing Model [CAPM, Sharpe

(1964), Black (1972)] has long served as the backbone of academic finance and numerous

important applications.  However, studies have identified empirical deficiencies in the CAPM,

challenging its preeminence.  The most powerful challenges include market capitalization and

related financial ratios that can predict the cross-section of returns.  For example, the firm "size-

effect" drew attention as a challenge to the CAPM.  Ratios of stock market price to earnings or

the book value of equity are studied by Basu (1977), Banz (1981), Chan, Hamao and Lakonishok

(1991), and Fama and French (1992), among others.  

With the CAPM under such strenuous attack the field is hungry for a replacement

model.   There are some natural heirs waiting in the wings, including the intertemporal1

equilibrium models of Merton (1973) and Breeden (1979) and the Arbitrage Pricing Theory of

Ross (1976).  However, empirical implementations of these models have failed to produce much

confidence in their explanatory power [e.g. Chan, Chen and Hsieh (1985), Chen, Roll and Ross

(1986), Shanken and Weinstein (1990), Hansen and Singleton (1982), Connor and Korajczyk

(1988), Lehmann and Modest (1988), Roll (1995)].

One response to this hunger for a replacement for the CAPM has been to use the returns

of attribute-sorted portfolios of common stocks to represent the factors in a multi-beta model. 

For example, Fama and French (FF, 1993, 1995, 1996) advocate a three-factor "model," in
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which a market portfolio return is joined by a portfolio long in high book-to-market stocks and

short in low book-to-market stocks, (HML) and a portfolio that is long in small (i.e, low market

capitalization) firms and short large firms (SMB).  Fama and French (1997) use this model for

calculating the costs of equity capital for industry portfolios [see also Ibbotson Associates

(1998)].  Several recent studies use the FF three-factor model as an empirical asset pricing

model.  However, the model is controversial.

There is controversy over why the firm-specific attributes that are used to form the FF

factors should predict returns.  Some argue that such variables may be used to find securities that

are systematically mispriced by the market [e.g. Graham and Dodd (1934), Lakonishok, Shleifer

and Vishny (1994), Haugen and Baker (1996), Daniel and Titman (1997)].  Others argue that the

measures are proxies for exposure to underlying economic risk factors that are rationally priced

in the market [e.g. Fama and French (1993, 1995, 1996)].  A third view is that the observed

predictive relations are largely the result of data snooping and various biases in the data [e.g.

Black (1993), MacKinlay (1995), Breen and Korajczyk (1994), Kothari, Shanken and Sloan

(1995); see also Chan, et al. (1995)].

Berk (1995) emphasizes that because returns are related mechanically to price by a

present value relation, ratios which have price in the denominator are related to returns by

construction.  If the numerator of such a ratio can capture cross-sectional variation in the

expected cash flows, the ratio is likely to provide a proxy for the cross-section of expected

returns.  Ratios like the book-to-market are therefore likely to be related to the cross-section of

stock returns whether they are related to rationally priced economic risks or to mispricing effects. 

Ferson et. al. (1999) illustrate that spread portfolios like SMB or HML can appear to explain the
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      Fama and French (1993, 1996) find some nonzero alphas relative to the model, but2

interpreted them as economically insignificant.  Daniel and Titman (1997) find nonzero alphas
using the FF model against a "characteristics-based" alternative for average returns.  Berk
(1997) criticizes their sorting procedures and Davis, Fama and French (1998) question the out-
of-sample validity of their findings.  Brennan, Chordia and Subrahmanyam (1998) document
cross-sectional attributes such and trading volume and exchange membership, that also appear
to reject the FF three-factor model.

cross-section of stock returns even when the attributes used in the sort bear no relation to risk. 

Since the FF factors are not derived from a theoretical model, such concerns about their

interpretation are natural. 

Given the prominence of the Fama-French three-factor model, we believe that it is

interesting to test its empirical performance as an asset pricing model.  The model was developed

to explain unconditional mean (average) returns, and several studies explore its ability to explain

average returns.   In this paper we test the FF model on conditional expected returns.  Thus, we2

do not focus on alternative "factors" that may provide a better model of average returns.  We

concentrate instead on the ability of the model to capture common dynamic patterns in returns,

modelled using a set of lagged, economy-wide predictor variables.  Previous studies, including

Fama and French (1996), explore the ability of the FF model to capture dynamic patterns in

returns such as the momentum effect of Jegadeesh and Titman (1993).  We focus on common

dynamic patterns, captured by a standard set of economy-wide instruments.  These lagged

instruments are used in numerous previous studies, including some by Fama and French (1988,

89).  

We find that simple proxies for time variation in expected returns, based on common

lagged instruments, are also significant cross-sectional predictors of returns.  The ability of these
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       Conditional asset pricing studies use lagged instruments to model the time-series of3

returns, and then test cross-sectional restrictions on the conditional expected returns.  An early
example of this approach is the so-called "latent variable" tests, pioneered by Hansen and
Hodrick (1983) and Gibbons and Ferson (1985); see Ferson, Foerster and Keim (1993) for a
review of this literature.  Conversely, a few studies have observed that ratios such as book-to-
market, originally identified as a cross-sectional predictor, have some time-series predictive
power for aggregate returns [e.g. Pontiff and Schall (1997), Kothari and Shanken (1996)].  

variables to explain the cross-section of returns provides a powerful rejection of the FF model as

a conditional asset pricing model.  In some cases loadings on the lagged variables drive out the

individual FF variables in cross-sectional regressions.  The results are robust to variations in the

empirical methods and to a variety of portfolio grouping procedures.  We also reject the four

factor model advocated by Elton, Gruber and Blake (1995).  Our results raise a caution flag for

researchers who would use the FF and Elton, Gruber and Blake models to control for systematic

patterns in risk and expected return.  Our results carry implications for risk analysis, performance

measurement, cost-of-capital calculations and other applications.   

Our paper is related most closely to previous studies that have used the loadings of stock

portfolios on lagged economy-wide variables to explain the cross-section of expected returns. 

Jagannathan and Wang (1996) and Jagannathan, Kubota and Takehara (1998) show that asset

covariances with labor income can be a powerful cross-sectional predictor in the U.S. and Japan. 

We use loadings on a larger set of lagged variables from the literature modelling time-series

predictability.   The results show that size and book-to-market related factors leave out important3

cross-sectional information about expected returns, even in portfolios formed to maximize the

potential explanatory power of these variables.  The FF factors perform even less well in

alternative designs.  
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The paper is organized as follows.  Section 2 details the empirical methods.  Here we

propose a simple refinement of the standard Fama-MacBeth (1973) approach to cross-sectional

regressions designed to improve its efficiency.  Section 3 describes the data.  Our empirical

results are presented in the fourth section.  Section 5 explores some of the implications of the

results.  Section 6 discusses the robustness of the results to alternative portfolio grouping

procedures, errors-in-variables and other considerations.  Some concluding remarks are offered in

the final section. 

2. The Empirical Framework

2.1 Time-series Tests

We start with the null hypothesis that the FF three-factor model identifies the relevant risk in a

linear return generating process:

r  = E (r ) +  $ ' {r  - E (r )} + ,                             (1)i,t+1 t i,t+1 it p,t+1 t p,t+1 i,t+1

E (, )=0,t i,t+1

E (,  r )=0,t i,t+1 p,t+1

where r  is the return for any stock or portfolio i, net of the return to a one-month Treasuryi,t+1

bill.  r  is a vector of excess returns on the risk factor-mimicking portfolios.  In the FF three-p,t+1

factor model, r  is a 3 x 1 vector containing the market index excess return, HML and SMB. p

The notation E (.) indicates the conditional expectation, given a common public information set att

time-t.  The factor model expresses the unanticipated return, r -E (r ), as a linear regressioni,t+1 t i,t+1
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      The covariance matrix of these errors would be restricted to have bounded eigenvalues as4

the number of assets grows in the Arbitrage Pricing Theory [see, e.g. Chamberlain and
Rothschild (1983)].

on the unanticipated parts of the factors.  The coefficient vectors $  are the conditional betas ofit

the return r  on the factors (this is content of the third line of equation 1).  The error terms ,i i,t+1

may be correlated across assets.4

Equation (1) captures the idea that r  are risk factors, but it says nothing about thep,t+1

determination of expected returns.  We assume the following general model for the conditional

expected returns and the betas:

E (r ) = "  + $ ' E (r ),t i,t+1 it it t p,t+1

$  = b  + b ' Z ,                                                                      (2)it 0i 1i t

"  = "  + " ' Z ,it 0i 1i t

where Z  is an L x 1 vector of mean zero information variables known at time t and thet

parameters of the model are {b , b , " , and " }.  In the FF three-factor model, b  is 3x1, b  is0i 1i 0i 1i 0i 1i

3xL, "  is 1xL and "  is a scalar.   1i 0i

Since we find that the lagged instruments have explanatory power beyond the FF three-

factor model, we want to be sure that they do not simply proxy for time-variation in the FF factor

betas.  Given the evidence of time-varying conditional betas for stock portfolio returns [e.g.

Ferson and Harvey (1991), Ferson and Korajczyk (1995), Braun, et al. (1995)], it makes sense to

allow for time-variation in the conditional betas.  Thus, we allow the betas in equation (2) to
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depend on Z .  The betas are modelled as linear functions of the predetermined instruments,t

following Shanken (1990), Ferson and Schadt (1996) and other studies.  In equation (2), the

relation over time between the lagged instruments and the betas for a given portfolio is assumed

to be a fixed linear function, as b  is a fixed coefficient.  However, we examine models1i

estimated on rolling sample windows, an approach that allows b  to vary over time, thus relaxing1i

the assumption of a fixed linear relation.

The hypothesis that the FF model explains expected returns says that the "alpha" term,

"  in equation (2) is zero (that is, the parameters " , "  are zero).  Assuming that alpha is zero isit 0i 1i

equivalent to assuming that the error term ,  in equation (1) is not priced.  Testing for " =0i,t+1 1i

in system (2) asks whether the variables in Z  can predict returns over and above their role ast

linear instruments for the betas.  

Equation (2) follows previous empirical studies in which the alternative hypothesis

specifies an alpha that is linear in instrumental variables.  Examples include Fama and MacBeth

(1973), who used the square of beta and a residual risk; Rosenberg and Marathe (1979) who used

firm-specific accounting measures; and more recently Daniel and Titman (1997) who use

portfolio valuation ratios.  Our example provides an natural test of the FF model, where

mispricing related to the lagged, economy-wide instruments Z  is the alternative hypothesis. t

The models for both the betas and the alphas, as given by equation (2), are likely to be

imperfect.  The second and third equations of (2) may have independent error terms, reflecting

possible misspecification of the alphas and the betas.

Combining equations (1) and (2), we derive the following econometric model: 
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r  =  ("  + " 'Z ) + (b  + b 'Z ) r   +  , .                (3)it+1 0i 1i t 0i 1i t p,t+1 i,t+1

An advantage of the regression (3) is that it does not impose a functional form for the expected

premiums,  E (r ).  This allows us to address the question of whether the lagged markett pt+1

indicators enter as proxies for time-variation in the conditional betas for specific factors, without

concern about getting the right model for the expected returns on the factors. 

2.2 Cross-sectional Test Methodology 

The cross-sectional regression approach of Fama and MacBeth (1973) is widely used to study

asset pricing models and the cross-sectional structure of asset returns.  In this approach returns

are regressed each month, cross-sectionally, on a set of predetermined attributes of the firms or

portfolios.  The attributes may include estimates of "betas" from a prior time period, as in Fama

and MacBeth's study of the CAPM, or other variables such as the book-to-market ratio of the

portfolio may be used, as in Fama and French (1992).  

A cross-sectional regression using stock returns as the dependent variable is likely to

have heteroskedastic and correlated errors, the latter due to the substantial correlation across

stock returns in a given month.  The usual regression standard errors are therefore not reliable. 

To test the hypothesis that the expected coefficient is zero, Fama and MacBeth suggested forming

a t-ratio as the time series average of the monthly cross-sectional coefficients divided by the

standard error of the mean, where the latter is computed from the time-series of the coefficient

estimates.  Shanken (1992) provides an analysis of the properties of this widely used approach. 

Jagannathan and Wang (1998) provide a recent asymptotic analysis, and Ahn and Gadarowski
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(1998) extend the analysis under autocorrelation and heteroskedasticity, where a single cross-

sectional regression is used.

In the appendix of this paper we show that the approach of Fama and MacBeth, which

weights the monthly cross-sectional regression coefficients equally over time, can be easily

improved.  Under standard assumptions, the efficient GLS estimator of the pooled time-series and

cross-sectional regression can be written as a weighted average of the time-series of the Fama-

MacBeth coefficients.  The monthly estimates are weighted in inverse proportion to their

variances.  A measure of the total explanatory power of the system is also derived.  We present

results using the efficient-weighted estimators, as well as using the more traditional approach.

3.  The Data

We obtained monthly returns on U.S. common stock portfolios for the period July, 1963 to

December, 1994.  The portfolios are formed similar to Fama and French (1993).  Individual

common stocks are placed into five groups according to their prior equity market capitalization,

and independently on the basis of their ratios of book value to market value per share.  This 5 by

5 classification scheme results in a sample of 25 equity portfolio returns.  The appendix provides

a more detailed description.  Table 1 presents summary statistics for the returns.  The means and

standard deviations are annualized.

Our lagged instrumental variables, Z , follow from previous studies.  These are: (1) thet

difference between the one-month lagged returns of a three-month and a one-month Treasury bill

["hb3," see Campbell (1987), Harvey (1989), Ferson and Harvey (1991)], (2) the dividend yield

of the Standard and Poors 500 (S&P500) index ["div," see Fama and French (1988)], (3) the
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       Because of concerns about possible nonstationarity of the bill, we also examine results5

where the one-month yield is stochastically detrended by subtracting the lagged, twelve-month
moving average.

      The autocorrelations are estimated by regressing the fitted residual on its lagged value by6

OLS.  A White (1980) t-ratio is reported for the slope coefficient of this regression in Table 2.

spread between Moody's Baa and Aaa corporate bond yields ["junk," see Keim and Stambaugh

(1986) or Fama (1990)], (4) the spread between a ten-year and a one-year Treasury bond yield

["term," see Fama and French (1989)] and (5), the lagged value of a one-month Treasury bill

yield ["Tbill," see Fama and Schwert (1977), Ferson (1989) or Breen et al. (1989)].  5

Table 2 summarizes time-series regressions of the twenty five portfolios on the lagged

instruments.  The data are monthly for the July 1963 to December 1994 period.  The regressions

produce significant t-statistics for many of the variables.  The adjusted R-squares vary from about

6-14% across the 25 portfolios.  The residual autocorrelations are generally not large -- about 0.1

on average -- but there are some statistically significant autocorrelations for the small firm

portfolios.  These no doubt reflect the nonsynchronous trading of these small stocks.   6

The coefficients on the lagged variables show a great deal of spread across the

portfolios.  This is important, as cross-sectional dispersion in the coefficients is necessary to

provide explanatory power for the cross-section of stock returns.  

Table 2 also reports regressions for the FF factor portfolios on the lagged instruments. 

Two of the FF factors, MARKET and SMB produce similar R-squares to the 25 portfolios, but

the HML portfolio is remarkable, as its adjusted R-square is zero.  This foreshadows the result

that the HML portfolio does not help to explain time-varying conditional expected returns.  
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      Subsequent to an earlier version of this paper, Fama and French (1997) presented7

evidence of time-varying betas in their model, when applied to industry portfolios.  Eckbo et
al. (1998) provide evidence of time-varying betas for firms issuing new equity and their
matching firms.

      More details are available at http://www.duke.edu/~charvey/Research/inder.htm.8

4. Empirical Evidence

4.1 Are the Betas time-varying?

As we will show later, the lagged instruments track variation in expected returns that is not

captured by the FF three-factor model.  However, the lagged instruments may have explanatory

power because they pick up time-variation in the betas on the FF factors.  This would imply that

the FF model should be implemented in a conditional form, i.e. with time-varying betas, but it

would not indicate a fundamental shortcoming of the FF model.    7

To examine the issue of time-varying betas, we report regressions in which we allow the

lagged instruments to enter the models through the conditional betas.  Table 3 presents the results

of estimating the time-series regression (3) for each of the 25 portfolio returns.  Both one-factor

models, where the CRSP index is the market factor, and the FF three-factor model are examined;

to save space we focus on the three-factor model in Table 3.   The table reports the adjusted R-8

squares of the regressions and the right-tail p-values of F tests for the hypothesis that the

interaction terms between the factor-mimicking portfolios and the lagged variables may be

excluded from the regressions.  In the three-factor model, the F-tests for eleven of the 25

portfolios produce p-values below 0.05 when the alphas are allowed to be time varying, and

twelve cases reject constant betas on the assumption that the alphas are constant over time.  A

joint Bonferroni test strongly rejects the hypothesis that the betas are constant over time, in either
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specification.  The evidence of Table 3 suggests that even if the FF factors are useful to control

for "risk," it may be important to allow for the time-varying betas picked up by the lagged

instruments.

4.2  Time-series Evidence on the Three-factor Model

Table 4 presents further results from the time-series model (3).  For the first two columns we

regress the 25 size and book/market portfolio excess returns on a constant and the three FF

factors.  A t-test is conducted for the hypothesis that the intercept is equal to zero, similar to

Fama and French (1993, 1996), who found that the intercepts were close to zero.  The null

hypothesis is equivalent to the statement that a constant combination of the three FF factors is an

unconditional (fixed weight) minimum variance portfolio.  This says that the three factors explain

the unconditional expected returns of the 25 portfolios and therefore, of all fixed-weight

portfolios formed from them.  Similar to Fama and French, we find little evidence against this

hypothesis.  Only 4 of 25 p-values (second column) are less than 0.05.  The largest unconditional

alpha is for the small-firm/value portfolio; just over 6% per year, and the second largest alpha is

about 2.3% per year. 

In the third column of Table 4 we subject the FF model to a more stringent test, with a

specific alternative hypothesis.  We regress the portfolio excess returns over time on the three FF

factors and the vector of lagged instruments.  The F-test for the hypothesis that the lagged

variables may be excluded from the regression is reported.  This is implied by the hypothesis that

the FF three-factor model with constant betas can explain the dynamic behavior of the conditional

expected returns of the 25 portfolios, given the lagged instruments.  Now we find strong evidence
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       Conditional pricing implies that the intercepts and the slopes on the lagged instruments are9

zero, while we test the weaker implication that only the slopes are zero.  Including the intercept
would provide an even more powerful rejection of the FF model.

against the model.  All of the p-values are less than 0.10, and all except one of the 25 are less

than 0.05.9

Since we found evidence that conditional betas for the 25 portfolios on the FF variables

are time-varying, the instruments could enter the model through the betas.  In other words, by

holding the betas fixed the tests may be biased against the FF model.  In the fourth column of

Table 4 we allow the betas to be time-varying.  Each portfolio excess return is regressed on a

constant intercept, the lagged instruments, the FF factors and the products of the FF factors with

the lagged instruments.  This allows the FF factor betas to vary as a linear function of the lagged

instruments.  The null hypothesis that the alphas are constant (the lagged instruments may be

excluded from the model of alpha) is tested with an F-test.  Most of the p-values from this test

are again small.  We thus obtain a strong rejection of the FF three-factor model, even allowing

for time-varying betas that depend on the instruments.     

In summary, Fama and French (1993) found that the regression intercepts are close to

zero for their three-factor model.  However, conditional on the lagged instruments the alphas are

time-varying and thus, not zero.  This implies that the FF three-factor model does not explain the

conditional expected returns of these portfolios.  Even a conditional version of the FF model,

with time-varying betas, can be rejected.

4.3 Economic Significance of the Conditional Alphas
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While the time-series tests reject the FF model, the lagged instruments deliver only small

increments to the already large time-series R-squares provided by the contemporaneous factors. 

We therefore conduct experiments to assess the economic significance of the conditional alphas.  

In a first experiment we use the fitted conditional alphas in a step-ahead "trading

strategy" to assess the economic significance of the departures from the FF model.  Each month

we form portfolios using the estimated conditional alphas of equation (3) and trailing data.  Each

of the 25 size and book-to-market sorted portfolios is assigned an alpha rank, and an equally

weighted combination of the top seven and bottom seven alpha portfolios is formed and held for

one month.  The procedure is repeated each month, producing a time-series of trading strategy

returns for high and low-alpha portfolios.  The models are estimated using either an expanding

sample or a rolling, 60-month sample.  We find that the subsequent returns of the high

conditional alpha portfolios exceed those of the low conditional alpha portfolios by economically

significant amounts.  With the expanding sample, the difference in returns is more than 9% per

year.  With the rolling sample, it is more than 8% per year.  The standard deviations of the

returns are slightly smaller in the high alpha portfolios, which reinforces the economic

significance of the conditional alphas.

In a second experiment we use the fitted values of the alphas, "  + " 'Z ,  from0i 1i t

equation (3) in monthly cross-sectional regressions for r , where the equation (3) is estimatedi,t+1

using only trailing data.  The three-factor betas for time t are also included in the regression. 

This means that the cross-sectional regression coefficient on the fitted alphas is the return for the

month of a zero-net investment portfolio with three-factor betas equal to zero and a fitted alpha,

based on past data, of one percent per month.  If the FF model is correctly specified the expected
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      This occurs because the factors are simple combinations of the test assets, which implies10

that a weighted average of the alphas must be zero.  Consider the special case of a stacked
regression model:  r = " + r $ + u, where r =rW is a combination of the test assets withp p

weight given by the nxk matrix, W.  Using the definition $ = (W'VW) W'V, where V is the-1

covariance matrix of r, it is easy to show that "'V $' = 0.-1

return of such a portfolio and, therefore, of the time-series average of the coefficient, should be

zero.  

The results of the cross-sectional regressions using a number of specifications for the

fitted alphas and the FF factor betas may be found on the internet.  They show that the fitted

alphas are significant regressors in models with the three FF betas, producing t-ratios between

4.3 and 7.8, depending on the experiment.  Including the fitted alphas in the regressions does not

much affect the coefficients on the FF betas, because the fitted alphas are constructed to be

orthogonal to the FF betas in the cross-section.   Thus, the regressions further illustrate the10

economic significance of the conditional alphas.

4.4  The Cross-section of Expected Stock Returns Revisited

Fama and French (1992) use cross-sectional regressions of stock portfolio returns on size and

book-to-market to attack the CAPM.  In this section we use a similar approach to examine the FF

three-factor model in more detail.  Consider the cross-sectional regression 

r   =  (  +  ( ' $  + (  * 'Z  + Q   ; i = 1, ..., N,            (5) it+1 o,t+1 t+1 it 4,t+1 it t it+1

where (  is the intercept and  ( =(( ,( ( )'  and  (   are the slope coefficients. o,t+1 t+1 1,t+1 2,t+1 3,t+1 4,t+1



16

      The time-series regression is r  = * 'Z  + v , J=1,... t, so *  is estimated using data up11
iJ it J-1 iJ it

to time t for returns and up to time t-1 for the lagged instruments.

The $  are the betas on the three FF variables, formed using information up to time t.  The term it

* 'Z   denotes the fitted conditional expected return, formed by regressing the return i on theit t

lagged variables Z, using data up to date t, where *  is the time-series regression coefficient.  it
11

We will use fit  as a shorthand for this variable.  The dating convention thus indicates when ait

coefficient or variable would be public information.  The hypothesis that the FF factor betas

explain the cross-section of expected returns implies that the coefficient  (   is zero.  The4,t+1

alternative hypothesis is that the FF variables do not explain the conditional expected returns, as

captured by the lagged instruments. 

Jagannathan and Wang (1997) study the asymptotic properties of cross-sectional

regression models, allowing for heteroskedasticity in returns.  They show that if an asset pricing

model is misspecified, the coefficients are biased and, in some cases, the t-ratios do not conform

to a limiting t distribution.  Thus, the coefficients can not be used to select significant factors. 

They emphasize, however, that including additional cross-sectional predictors in the model, the t-

ratios for those variables provide a valid test of the null model.  Their analysis justifies our use of

the t-ratio on (  as a test of the FF three-factor model.4

Table 5 summarizes several versions of the cross-sectional regressions.  The time-series

averages of the cross-sectional regression coefficients are shown along with their Fama-MacBeth

t-ratios.  We examine one-factor models, where the CRSP value-weighted index is the factor and
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      Results for the one-factor models are available on the internet.  Consistent with Fama and12

French (1992), there is no significant relation between the returns on these portfolios and the
market index betas.  However, the fitted expected returns using the lagged market instruments are
highly significant, with t-ratios in excess of seven.

three-factor models, using the FF variables.  Table 5 concentrates on the FF three-factor model.  12

We estimate the betas using either an expanding sample or a rolling, 60 month prior estimation

period.  When conditional betas are used (panels C,D,G and H) they are assumed to be linear

functions of the lagged instruments.  We estimate each cross-sectional regression model with and

without the fitted expected returns in the regression, and we compare the results.  

The FF model implies that the intercepts of the cross-sectional regressions should be

zero.  Table 5 shows that when the three factor-betas are the only regressors the intercept has a t-

ratio of 0.80 using the expanding sample, as large as 1.9 in other cases.  The larger values may

be interpreted as weak evidence against the FF three-factor model, similar to Fama and French

(1993, 1996).

When the fitted expected returns using the lagged market instruments (the "fit") are

included in the cross-sectional regressions the results are dramatically different.  The t-ratios of

the fit are in excess of 5.7 in all of the panels.  The FF three-factor model thus fails miserably,

when confronted with this alternative hypothesis.  While the magnitudes of the coefficients are

difficult to interpret if the model is misspecified [Jagannathan and Wang (1997)], some of the

patterns are interesting.  With the fit in the regressions the coefficients on HML are consistently

smaller, and the t-ratios become individually insignificant in many of the cases.  The average

coefficient on the market beta, ( (mkt), is usually larger in the presence of the fit.  The intercepts1

are typically smaller and insignificant when the fit is included.  
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The coefficients and t-ratios in Table 5 show that the FF three-factor model is rejected. 

The fit thus provides a powerful alternative that allows us to detect patterns in the cross-section of

the conditional expected returns that the FF model does not capture.  The rejection can also be

turned around.  If the fit delivered a perfect proxy for E (r ).  Then in the cross section, thet i,t+1

coefficients on $  should have a mean of zero and the coefficient on the fit should be 1.0.  Theit

tests therefore reject the hypothesis that the fit completely captures expected returns.  Of course,

since the lagged instruments represent only a subset of publicly available information, and the

regressions that determine the fit have estimation error, we do not expect the fit to provide a

perfect proxy for expected returns.  We discuss errors-in-variables in separate section below.  

The t-ratios in Table 5 allow a convenient economic interpretation of the rejections, as

they are proportional to a portfolio's Sharpe ratio (average excess return divided by standard

deviation).  For example, with a sample of 378 months and a t-ratio for the HML premium of

3.65 in Panel A, the Sharpe ratio of the HML premium is 3.65/%378 = 0.188.  MacKinlay

(1995) argues that such a high Sharpe ratio for monthly stock returns is implausible.  With the fit

in the regression the Sharpe ratio for the HML premium is 1.58/%378 = 0.081, while that for the

premium, ( (fit), is 7.8/%378 = 0.401.  Applying MacKinlay's interpretation here, it suggests4

that if we accepted the FF three-factor as a model for both expected returns and risk control, then

the portfolio strategy implied by the fit is an attractive, near arbitrage opportunity.  Alternatively,

we interpret the evidence as a striking rejection of the FF three-factor model.

4.5 Are these "Useless" Factors?

While the results of the cross-sectional regressions are striking they should be interpreted with
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some caution.  Kan and Zhang (1999) provide an analysis of bias in cross-sectional regressions

when there is a "useless" factor that has a true beta in time series equal to zero.  They show that

such a useless factor beta may appear with a large t-ratio in a cross-sectional regression, as the

design matrix of the regression is ill-conditioned.  Jagannathan and Wang (1998) provide an

asymptotic analysis that includes a useless factor as a special case, and Ahn and Gadarowski

(1998) extend their results with more general assumptions about heteroskedasticity and

autocorrelation.  Given that the lagged instruments have relatively small R-squares in the time-

series, it is possible that our results reflect a bias as described by these studies.  

Kan and Zhang (1999) suggest using the stability of the cross-sectional coefficient in

subperiods as a diagnostic tool to indicate the useless factor bias, as the cross-sectional

coefficients should be unstable in the presence of a useless factor.  Our rolling estimators provide

an opportunity to look for instability.  We therefore examine time-series plots of our cross-

sectional coefficients.  Figure 1 shows an example.  The cross-sectional regression coefficients on

the fit are graphed over time.  Superimposed on the same graph are the monthly coefficients for a

factor which is as far from useless in the time-series regression as we can imagine; that is, the

coefficient for the beta on the market index.  Since the units of the regressors -- market beta

versus fit -- are different, we multiply the coefficient on the fit by the ratio of the time series

means of the coefficient values.  Scaled to the same means, the volatilities of the two time series

are very different.  The coefficients on the fit appear much more stable than those for the market

beta.  Indeed, to see variation in both series on the same graph we use different scales: The fit

coefficient is shown at a smaller scale than the market beta coefficient.  Given this striking

evidence, we do not believe that a useless factor story explains our results.
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4.6 Results using efficient-weighted Fama-MacBeth Regressions

Table 6 summarizes cross-sectional regression results using the efficient-weighted version of the

Fama-MacBeth coefficients, as derived in the appendix.  These essentially weight the coefficient

each month in inverse proportion to the variance of the estimator from that month.  A t-ratio for

each coefficient is constructed similar to Fama and MacBeth (1973), but where the months are

weighted to reflect the weighted estimator.  

The results in Table 6 confirm the finding that the fit allows us to reject the FF model in

cross-sectional regressions.  In three of the four cases, the fit t-ratio is significant given the FF

factor loadings.  Although the magnitudes should be interpreted with caution, as explained

before, many of the patterns in the regression results are similar to those of Table 5.  Only in one

of four cases does the coefficient on the HML loading produce a significant t-ratio when the fit is

in the regression, and in no case is SMB significant.  However, unlike the previous tables, the

weighted average slope coefficient for HML is larger when the fit is in the regression.   

We observed earlier that the increments to time-series regression R-squares, for the

portfolio returns regressed on the contemporaneous factors, are small when the lagged

instruments are included in the regressions.  Table 6 includes estimates of overall R-squares, as

derived in the appendix.  The overall R-squares combine the time-series and cross-sectional

dimensions of model explanatory power, where each return-month is weighted inversely to its

variance.  For the FF model, the R-squares vary between 0.2% and 0.42% across the

experiments.  These figures are much lower than the cross-sectional regression R-squares

reported in previous studies, reflecting the relatively poor fit of the FF three-factor betas to the
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time-series of the expected returns.  (Recall that the explanatory variables are predetermined

betas, not the contemporaneous factor values.)  When the predetermined value of the fit is in the

regressions, the R-squares range from 9.3% to 9.5%.  These figures are similar to those obtained

from time-series regressions of returns on the lagged instruments themselves.  The comparison

shows that the fit provides a dramatic improvement in the overall explanatory power, illustrating

that the FF three factor model is strongly rejected when we ask it to explain time-variation in

conditional expected returns.

4.7  Digging deeper

Given that the time-series instruments deliver such a powerful cross-sectional predictor of stock

returns, it is interesting to know which of the lagged variables are relatively important in the

cross-sectional regressions.  We repeat the cross-sectional analysis of the preceding section,

replacing the fitted expected returns with the estimated regression coefficient, *,  on a single

lagged instrument, and we study the instruments one at a time in the presence of the FF three-

factor betas.  The results may be found on the internet.

The cross-sectional coefficients on the individual *'s show a number of interesting

patterns.  No individual coefficient drives the cross-sectional explanatory power.  However, the

coefficients for the lagged excess return of the three-month bill, * , and for the lagged one-HB3

month yield * , are consistently strongly significant cross-sectional predictors.  For example,Tbill

the t-ratios for the slope coefficient for *  are between 2.6 and 3.8 in all of the 48 differentHB3

specifications we examine.  For *  the t-ratios are all between 2.1 and 4.1.  This suggests thatTbill

the FF three-factor model leaves out important patterns in expected stock returns that are related
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      We are grateful to Chris Blake for providing data on the EGB factors.13

to cross-sectional differences in the portfolios' sensitivity to lagged interest rates.

4.8  Tests on a Four-factor Model 

The idea that the FF factor model may leave out important interest rate exposures is reflected in

the work of Elton, Gruber and Blake (EGB, 1995), who advocate a four-factor model.  The first

three factors are similar to FF, and the fourth factor is a low-grade bond portfolio excess return. 

We repeat the battery of tests described above using the EGB four-factor model as the null

hypothesis, with data over the February, 1979 - December 1993 period, a total of 180 monthly

observations.   The main results are summarized here, and are available by request or on the13

internet.

When we test for time-varying betas of the size and book/market sorted portfolios, as in

Table 3, we find evidence of time-varying betas in the four-factor model.  The F-tests produce 10

out of 25 p-values less than 0.05, and the Bonferroni inequality implies that the p-value of a joint

test across the 25 portfolios is less than 0.001.  There is also evidence of time-varying alphas in

this model, similar to Table 4.  As a prelude to the cross-sectional regressions we examine the

average cross-sectional correlations of the four factor-beta estimates and we find no strong

correlations.  This suggests that the (x'x) matrix in the cross-sectional regressions should not be

ill-conditioned due to colinearity of the regressors.

The cross-sectional regression analysis, similar to Table 5, reveals some interesting

results for the four-factor model.  In the presence of the bond-return factor, the betas on the EGB
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market, size and value-growth factors are seldom individually significant in the cross-sectional

regressions.  By itself, the fitted expected return produces t-ratios between 3.8-5.8 in experiments

corresponding to the eight panels of Table 5.  When the four factor-betas and the fit are in the

regression, the t-ratios for the fit are between 3.3-5.6.  No four-factor beta is individually

significant in the presence of the fit.  

In summary, the results for the EGB four-factor model are similar to the results for the

FF three factor model.  Conditional on the lagged instruments the alphas in either model are

time-varying and thus, not zero.  This implies that the models do not explain the conditional

expected returns of these portfolios.  Even conditional versions of the models, with time-varying

betas, do not capture the dynamic patterns of the expected returns.  The lagged instruments do

not explain much the time-series variance of the returns.  However, in cross-sectional regressions

the fit is a relatively powerful regressor.  Its Fama-MacBeth t-ratios are large even with the

factor-betas in the regression.

 

5.  Interpreting the evidence

The above evidence shows that variables used to proxy for expected returns over time in the

conditional asset pricing literature also provide a potent challenge for the Fama-French and Elton-

Gruber-Blake variables in explaining the cross-section of conditional expected returns.  These

results carry implications for risk analysis in market efficiency studies, performance

measurement, cost-of-capital calculations and other applications.

Factor models are frequently used to control for risk in studies of market efficiency. 

This is typically done by regressing returns on the factors and taking the residuals, perhaps added
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      Becker et. al (1998) find that, while hypothetical portfolios of value stocks return more14

than growth stocks, portfolios of value-investing mutual funds grouped on similar criteria in their

to the intercept, as a measure of risk-adjusted returns.  Alternatively, returns may be measured in

excess of the return on a matching portfolio, constructed to have similar market capitalization and

book/market ratio as the firm to be studied.  Such an approach is required in a situation such as a

study of initial public offerings (IPOs), as no prior returns data are available to estimate a

regression model.  If size and book/market are good proxies for risk, then the matching portfolio

provides a risk adjustment.  Our evidence casts serious doubt on the empirical validity of such a

procedure.  Matching the market, small firm and book/market exposure is expected to leave

predictable dynamic behavior in the "risk adjusted" returns.  When studying the performance of

portfolios based on a phenomenon that is correlated with aggregate economic activity, such as

IPOs, the risk of falsely detecting "market inefficiencies" is likely to be especially acute.  This is

because the lagged instruments are likely to be correlated with the event in question.

Another recent application of the FF and EGB factor models is in measuring the

performance of mutual funds.  Here, a regression of the fund on the factor excess returns

produces an intercept that is interpreted as a multi-beta version of Jensen's (1968) alpha. 

However, our evidence shows that even the hypothetical, mechanically-constructed portfolios in

our study have nonzero alphas in these models.  The alphas are time-varying and can be modelled

as simple functions of publicly available, lagged instruments.  Since these portfolios can in

principle be traded and the instruments are known, it should be a simple matter for a fund to

"game" a performance measure constructed using these models.  From this perspective, the

performance of funds in relation to such strategies remains an open puzzle.14
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equity holdings do not offer higher returns than growth mutual funds.  The difference is not
explained by higher expense ratios for growth funds.

Factor models for expected returns, and the CAPM in particular, have long been used in

corporate cost-of-capital calculations.  Here, the idea is to find an expected return commensurate

with the risk of a project, and to discount prospective cash flows at the risk-adjusted return to

determine its present value.  Studies such as Fama and French (1997) have put the FF factor

model to this application, and some have used it in practice.  Of course, the lack of theoretical

grounding for the FF model is a serious limitation in this context.  For example, taken literally

the model suggests that a firm could change its capital costs by altering its book value, other

things equal.  Our empirical evidence provides additional reasons to be suspicious of the FF

model as a source of risk-adjusted discount rates.

Our empirical results may also be interpreted from a technical perspective, in view of

portfolio efficiency.  A portfolio is minimum-variance efficient if and only if expected returns in

the cross-section are a linear function of asset's covariances with the portfolio return [e.g. Roll

(1977)].  If betas on the FF factors provide a reasonable description of the cross-section of the

unconditional expected returns of these portfolios, then a combination of the factors is a fixed-

weight, unconditionally efficient portfolio.  If the lagged variables deliver a good proxy for the

conditional expected returns at each date, given the lagged instruments Z , the fit is proportionalt

in the cross-section to betas on a conditional minimum-variance portfolio given Z .  The Fama-t

MacBeth regressions use the actual future returns each month as the dependent variable.  These

may be viewed as equal to the unconditional expected returns plus noise, or as equal to the

conditional expected returns plus a noise which is, on average, smaller.  The covariances with a
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       We emphasize that the unconditional efficiency is defined here within the set of fixed15

weight portfolios of the test assets.  This is to distinguish from the notion of unconditional
efficiency in Hansen and Richard (1987), which is defined over the set of all dynamic trading
strategies that may depend on the conditioning information.  See Bansal and Harvey (1997) and
Ferson and Siegel (1997) for treatments of efficiency with dynamic trading strategies.

conditionally efficient portfolio should therefore provide a more powerful regressor in the Fama-

MacBeth approach, with smaller errors than would the covariances with an unconditionally

efficient, fixed weight portfolio.   15

Although the portfolio efficiency interpretation of our results does not require a risk-

based asset pricing model, if a risk-based model determines expected returns then the results

carry implications about the model.  These may provide direction for future research attempting

to identify better-specified asset pricing models.  In a risk-based asset pricing model expected

excess returns are proportional to securities covariances with a marginal utility of wealth.  In

essence, we should be looking for models in which the cross-section of the conditional

covariances with the marginal utility captures the cross-section of the fit. 

6. Robustness of the Results

We conduct a number of additional experiments to assess the sensitivity of our results to the

portfolio grouping procedures and the empirical methods.  The results of these experiments are

described in this section.  Tables of these results are available by request, or on the internet.  

6.1  Errors-in-variables

The cross-sectional regressions are likely to be affected by errors-in-variables when the first-pass
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time-series regression coefficients appear on the right-hand side.  If the factors are measured with

error, we may falsely reject a model by introducing an explanatory variable that is correlated

with the true factor betas.  Kim (1997) explores the possibility that the CAPM is rejected by a

book-to-market factor for this reason, and we can not rule out a similar explanation for our

rejections of the FF model.  Since it is not clear what risks the FF factors may represent, it is

hard to consider measuring those factors without error.

Errors in variables arises even when the first-pass regressions are unbiased, as a result of

the sampling error in the first-pass estimator.  This is the classic generated regressor problem,

known to bias the second pass, cross-sectional regression slopes in finite samples, and their

standard errors even in infinite samples [see Pagan (1984), Shanken (1992), Kim (1995, 1997)

and Kan and Zhang (1999) for recent analyses].  The first pass regression coefficients may also

be biased in finite samples even without measurement errors in the factors [e.g. Stambaugh

(1998), Kothari and Shanken (1997)].  

While measurement error problems are potentially complex, they are likely to be more

severe in the time-series coefficients of the fit than in the estimates of the FF factor betas,

because the explanatory power of a time-series regression on the contemporaneous FF factors is

much higher than on the lagged instruments.  Errors-in-variables therefore probably works

against our ability to find that the lagged instruments are significant, suggesting that our results

are conservative in view of measurement error.  However, when there is correlated measurement

error in a multiple regression the direction of the effect may be difficult to predict.  We wish to

be conservative about our evidence that the fit rejects the FF model.  Therefore, we conduct of

experiments to assess the likely robustness of our results to measurement errors.
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       These data are courtesy of Raymond Kan and Chu Zhang, to whom we are grateful.  The16

sorting criteria are somewhat different than in our first sample; see the appendix for details.

We repeat our analysis using the actual values of size and book/market in place of time-

series betas on the FF factor-portfolios.  As these attributes are likely to be measured more

precisely than the time-series regression coefficients, this skews the measurement error further in

favor of the FF model.  We use data on twenty five portfolios, sorted on the basis of

book/market and size, together with the actual values of the log of the market capitalization,

lnSize, and the log of the book/market ratio, lnB/M, measured similar to Fama and French

(1992).   The data cover the July 1964 to December 1992 period, a total of 342 observations.16

We repeat our previous tests for time-varying betas and alphas using this slightly

different sample of returns, and the results are similar to those reported above.  We find strong

evidence of time-varying betas and alphas.  Table 7 focusses on the cross-sectional regressions,

similar to Table 5 but using the actual lagged values of the attributes instead of the FF betas for

SMB and HML.  When the market betas, lnSize and lnB/M are used alone in the regressions, the

results are as expected from Fama and French (1992).  When the fit is included in the cross-

sectional regressions, its t-ratios are 4.3 or larger in every case we consider.  This is striking

evidence against the FF three-factor model, especially in view of the measurement error issue.

As an additional check, we run cross-sectional regressions using betas on the FF factors

and on the time-series of the fitted cross-sectional coefficients obtained from Table 5, treating the

latter as competing excess returns or "factors".  This approach should place the fit at a further

measurement error disadvantage, relative to the FF factors.  We find that the fit loadings produce

a Fama-MacBeth t-ratio larger than 1.95 in three of the four panels corresponding to Table 5.
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While these additional experiements increase our confidence that our results are robust to

measurment errors, it seems impossible to completely resolve the measurement error issue

without knowledge of the underlying "true" model of expected returns.

6.2 Results for Industry Portfolios

We replicate the tests of the previous sections using a sample of industry portfolio returns.  The

data are from Harvey and Kirby (1996) and are described in the appendix.  Industry portfolios

are interesting in view of the evidence in Fama and French (1997), who use the FF three-factor

model to estimate industry costs of capital.  Since the FF factors are designed to explain the

returns on size and book/market portfolios, we expect them to perform less well on portfolios

grouped by alternative criteria.

We find strong evidence that the lagged market indicators enter as instruments for time

varying betas on the industry portfolios.  The F-tests for 22 of the 25 portfolios produce p-values

below 0.05, and a joint Bonferroni test strongly rejects the hypothesis that the three factor-betas

are constant.  Compared with our tests in Table 3, this is consistent with the observation of Fama

and French (1997) that the betas of industries vary over time more dramatically than portfolios

sorted on size and book/market.  

The portfolio excess returns are regressed on a constant and the three FF factors and a t-

test is conducted for the hypothesis that the intercept is equal to zero.  Similar to the size and

book/market portfolios, this test produces find little evidence against the hypothesis that the FF

variables can unconditionally price the 25 industry portfolios, and fixed-weight combinations of

their returns; only 5 of 25 p-values are less than 0.05.
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       These data are courtesy of Mark Carhart, to whom we are grateful.17

We regress the portfolio excess returns on the three FF factors and the vector of lagged

instruments.  The F-test for the hypothesis that the vector of instruments may be excluded from

the regression produces 25 p-values; all are less than 0.01.  When we allow for both time-varying

betas and time-varying alphas and test the hypothesis that the alphas are constant, we find 24 of

the 25 p-values are below 0.01.  In summary, the industry portfolio evidence against the FF

three-factor model is even more striking than is the evidence based on the book/market

portfolios.  

We repeated our tests of the EGB four-factor model using the industry portfolios in place

of the size and book/market sorted portfolios.  We find slightly weaker evidence of time-varying

betas and alphas here than in the other portfolio design.  Still, the tests reject the hypotheses of

constant betas or alphas.  The cross-sectional regression analysis produces generally similar

results to those we described before.

6.3  Size, book-to-market and momentum portfolios

Fama and French (1996) found that their three-factor model was most seriously challenged by the

"momentum" anomaly described by Jegadeesh and Titman (1993).  This is the observation that

portfolios of stocks with relatively high returns over the past year tend to have high future

returns.  To see if our results are sensitive to portfolios grouped on momentum, we obtained data

from Carhart, et al. (1996).   In each month, t, Carhart et al. (1996) group the common stocks17

on the CRSP tape into thirds according to three independent criteria, producing 27 individual
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portfolio return series.  The grouping criteria are (1) market equity capitalization, (2) the ratio of

book equity to market equity and (2) the past return for months t-2 to t-12.  The data are

available for the same sample period as our previous analysis, so we can conduct a controlled

experiment by using the same lagged instrument data.

Conducting the tests for time-varying betas as in Table 3, we find strong evidence that

the betas on the FF factors vary with the lagged instruments.  The largest of the 27 p-values from

the F-tests is 0.029.  Examining the alphas as in Table 4, we find that the unconditional alphas

are larger than in the original twenty five portfolios, consistent with the findings of Fama and

French (1996).  They range to -11% per year.  Testing for zero unconditional alphas using F

tests, 16 of the 27 p-values are less than 0.05 and the Bonferroni p-value is less than 0.001. 

Testing for constant alphas in conditional models with time-varying betas, the largest of the 27 p-

values is less than 0.001. 

We examine cross-sectional regressions, similar to Table 5, and find that the results are

consistent with those using the other portfolio designs.  When the fitted conditional expected

return is used alone in the cross-sectional regressions, its t-ratio varies between 7.9 and 8.3. 

When all four variables are used, the t-ratio for fitted expected return remains strong, between

7.5 and 8.4.  

6.4  Data Mining

The issue of data mining has been raised in previous studies, both in connection with the size and

book/market effects in the cross-section of stock returns and in connection with the lagged

instruments in the time series of returns [e.g. Lo and MacKinlay (1990), Black (1993), Breen and

Korajczyk (1994), Foster, Smith and Whaley (1997)].  With data mining, a chance correlation in
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the data may be "discovered" to be an interesting economic phenomenon.  An empirical

regularity that is dredged from the data by chance is not expected to hold up outside of the

sample that generated it.  Since many researchers use the same data in asset pricing studies, a

collective form of data mining is a severe risk.  Of particular concern here is the extent to which

our results may be an artifact of data mining.

While we can not rule out a potential data mining bias in our results, we have reasons to

suspect this is not a serious problem.  There have been out-of-sample studies that help to mitigate

concerns about data mining in the cross-sectional analysis of book/market.  For example, Chan,

Lakonishok and Hamao (1991) and Fama and French (1998) find book/market effects in the

cross-section of average returns in Japan and other countries.  Davis, Fama and French (1998)

extend the results in U.S. data, back to 1929.  Barber and Lyons (1997) find the effects in a

sample of U.S. firms that were not used by Fama and French in their original (1992) study.  

There is also out-of-sample evidence that helps to mitigate concerns about data mining in

the time-series predictive ability of the lagged instruments.  The lagged Treasury bill rate, for

example, was noted by Fama and Schwert (1977).  If its explanatory power was a statistical

fluke, it should not have remained a potent predictor, as it has, in more recent samples.  Pesaran

and Timmerman (1995) present an analysis of the ability of a set of lagged instruments, similar to

ours, to predict returns in periods after they were discovered and promoted in academic studies.

We have an additional reason to believe that our results are not an artifact of data

mining.  Even if the lagged instruments were dredged from the data in previous studies, they

were selected primarily for their ability to predict stock returns over time.  We can think of no

reason that a spurious time-series correlation with returns should produce a spurious ability to
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explain the cross-section of portfolio returns.

7. Concluding Remarks

Previous studies identify predetermined variables with some power to explain the time series of

stock and bond returns.  This paper shows that loadings on the same variables also provide

significant cross-sectional explanatory power for stock portfolio returns.  We use time-series

loadings on the lagged variables to conduct powerful tests of empirical models for the cross-

section of stock returns.  We reject the three-factor model advocated by Fama and French (FF,

1993) even in a sample of equity portfolios similar to the one used to derive their factors.  We

also reject the four factor model advocated by Elton, Gruber and Blake (EGB, 1995).  The results

are robust to variations in the empirical methods, and to a variety of portfolio grouping

procedures.  

Our focus is not to search for alternatives to the factors advocated by Fama and French

and Elton, Gruber and Blake.  Our evidence does suggest that applications of these factor models

should control for time-varying betas, and that doing so provides some improvement.  However,

even conditional versions of the models, with time-varying betas, appear to leave significant

predictable patterns in their pricing errors.

Loadings on lagged instruments reveal information that is not captured by these popular

factors for the cross-section of expected returns.  This should raise a caution flag for researchers

who would use the FF or EGB factors in an attempt to control for systematic patterns in risk and

expected return.  The results carry implications for risk analysis, performance measurement,

cost-of-capital calculations and other applications.
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Appendix 

Efficient weighting of Fama-MacBeth Regressions

Consider a pooled time-series and cross-section regression model written similar to Litzenberger

and Ramaswamy (1979), as:

Y = X ( + U,   E(UU') = S,                                                      (A.1)

where Y is a TN x 1 vector.  The first N rows are the returns of N stock portfolios for the first

month of the sample, followed by the second month, and so on.  There are T months in the

sample.  The TN x K matrix X has a column of ones, and the remaining columns are the

predetermined portfolio attributes such as the betas, book-to-market ratios or the fitted expected

returns, stacked up like the dependent variable.  The K x 1 vector of parameters, (, are the

average risk premiums that we wish to estimate.  The TN x TN covariance matrix is S.

Under standard assumptions the generalized least squares estimator is best linear

unbiased, and is given as:

(  = (X'S X)  X'S Y                                                          (A.2)GLS
-1 -1 -1

We make the assumption that the error terms are uncorrelated over time but correlated across

stock portfolios with a general N x N covariance matrix at date t, S .  This implies that S has at

block diagonal structure with the S 's on the diagonal.  Using this structure in equation (A.2), thet

GLS estimator may be written as:

(  = (E  X 'S X )  (E  X 'S Y ) ,                                            (A.3)GLS t t t t t t t t
-1 -1 -1
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where E  indicates summation over time.  Now, the GLS version of the Fama-MacBetht

coefficient for month t may be written as:

(  = (X 'S X )  (X 'S Y )                                                    (A.4)FM,t t t t t t t
-1 -1 -1

From equations (A.3) and (A.4) we can express the full GLS estimator as:

(  = E  {(E  X 'S X )  (X 'S X )} (  ,                                  (A.5)GLS t t t t t t t t FM,t
-1 -1 -1

which shows that the efficient GLS estimator is a weighted average of the Fama-MacBeth

estimates with the weights for each date t, proportional to X 'S X .  t t t
-1

From equation (A.4) we calculate the variance of a typical Fama-MacBeth estimator for

month t as E{(( - ()(( - ()'} = (X 'S X ) .  Thus, we can see that the efficient weightingFM,t FM,t t t t
-1 -1

of the FM estimators in (A.5) places more weight on the months with lower variance estimators,

and less weight on a month with an imprecise estimate.  

The standard errors of the GLS estimates may be obtained from the usual expression:

Var(( ) = (E  X 'S X ) .  However, when N is large relative to T (for example, a standardGLS t t t t
-1 -1

design with a rolling regression estimator of beta, N=25 and T=60), full covariance GLS is not

practical.  In such cases weighted least squares (WLS) may be used, which assumes that S  ist

diagonal.  But with a diagonal covariance matrix the standard error estimator does not capture the

strong cross-sectional dependence in stock returns, which motivates the original Fama-MacBeth

approach.

Fama and MacBeth (1973) suggest calculating a standard error for the overall coefficient

from the time-series of the monthly estimates.  The variance of the sample mean of the monthly
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estimates is: (1/T)[T E  (  - (T E  ( ) ], which assumes that the model errors are-1 2 -1 2
t FM,t t FM,t

uncorrelated over time, but cross-sectionally dependent.

We provide a simple modification of the approach of Fama and MacBeth for the

efficient-weighted FM estimator.  We first express ( =E  w( , where the weight for eachGLS t t FM,t

month, w ={(E  X 'S X )  (X 'S X )}.  The variance may be obtained as:t t t t t t t t
-1 -1 -1

s (( ) = (1/T)[T E  w  (  - (T E  w( ) ].                            (A.6)2 -1 2 2 -1 2
GLS t t FM,t t t FM,t

The standard errors for the efficient-weighted FM estimator are thus obtained by replacing (FM,t

by w(  in the usual calculation.t FM,t

A Measure of Explanatory Power  

The simplest measure of explanatory power in a regression model is the coefficient of

determination, or R-squared.  However, the usual R-squared is difficult to interpret in a cross-

sectional regression for stock returns because of the strong cross-sectional dependence.  Consider

a standard, GLS-transformed version of equation (A.1):

 =  ( + ,   E(  ') = I ,                                             (A.7)Y X U U U TN
~ ~ ~ ~ ~

where  = S Y,   = S X  and  = S U.  In the transformed model there is no time-Y X U
~ -1/2 ~ -1/2 ~ -1/2

series or cross-sectional correlation of the errors, and the errors are homoskedastic.  We use the

R-squared of the transformed model as a measure of the overall explanatory power.  The GLS R-
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squared is advocated by Kan and Zhang (1999) for cross-sectional regressions.  The overall

measure here gives equal weight to the time series and cross-sectional dimensions of explanatory

power in the transformed model.  Within a given cross-section, observations with larger standard

deviations are given smaller weight.  In the time-series dimension, months with larger standard

deviations of the error term are given smaller weights.

Define de-meaned variables, y  = Y  - N  T  E  E  Y , demeaned using the grandit it t i it
-1 -1

mean, taken over both the time series and cross-section.  Stack the y 's into a TN x 1 vector, y,it

using the same convention as before.  The de-meaned predictors x and the residuals, u, are

defined analogously.  A simple expression for the overall R-square measure uses the TN x 1

vectors y, x and u.  The of the R-square for the transformed model (A.7) is  1-(u'S u)/(y'S y). -1 -1

Substituting the expression for (  with the assumed diagonal structure of S, we can express theGLS

R-square in terms of the demeaned N-vectors of the original data:

R-squared = (E y 'S x ) (E x 'S x )  (E x 'S y )/(E y 'S y ).                       (A.8)t t t t t t t t t t t t t t t t
-1 -1 -1 -1 -1

In a typical application such as ours, full covariance GLS is not practical. We therefore use a

weighted least squares version of (A.8).  We replace S  with a diagonal matrix using an estimatet

of the variance of the residuals for each test asset in a given month on the diagonals.

Book/Market and Size-sorted Portfolios

Returns on 25 value-weighted portfolios of the common stock of firms listed on the New York

Stock Exchange (NYSE) and covered by Compustat, are formed.  Following Dimension Fund
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Advisors' exclusion criteria, foreign firms, ADR's, and REITS are excluded.  Portfolios are

formed by ranking firms on their market capitalization (size) in June of each year and the ratio of

book value to market value of equity (BE/ME) as of December of the preceding year.  The size

and BE/ME sorts are independent.  Firms are ranked and sorted annually into five groups. 

Monthly portfolio returns are then computed from July of year t+1 to June of t+2 for each

group.  BE is Stockholder's Equity (A216) less Preferred Stock Redemption Value (A56) (or

Liquidating Value (A10), or Par Value (A130), Depending on availability), plus balance sheet

deferred taxes (A35), if available.  If Stockholders Equity is not available, it is calculated as

Total Common Equity (A60) plus the par value of preferred stock (A130).
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Industry Portfolios

Monthly returns on 25 portfolios of common stocks are from Harvey and Kirby (1996).  The

portfolios are value-weighted within each industry group.  The industries and their SIC codes are

in the following table.

-----------------------------------------------------------------------------------------------------------------------------
Number Industry SIC codes  
------------------------------------------------------------------------- 
1 Aerospace 372, 376 
2 Transportation 40, 45 
3 Banking 60 
4 Building materials 24, 32  
5 Chemicals/Plastics 281, 282, 286-289, 308 
6 Construction 15-17 
7 Entertainment 365, 483, 484, 78 
8 Food/Beverages 20 
9 Healthcare 283, 384, 385, 80 
10 Industrial Mach. 351-356 
11 Insurance/Real Estate 63-65 
12 Investments 62, 67 
13 Metals   33 
14 Mining 10, 12, 14 
15 Motor Vehicles 371, 551, 552 
16 Paper 26 
17 Petroleum 13, 29 
18 Printing/Publishing 27 
19 Professional Services 73, 87 
20 Retailing 53, 56, 57, 59 
21 Semiconductors 357, 367 
22 Telecommunications 366, 381, 481, 482, 489 
23 Textiles/Apparel 22, 23 
24 Utilities 49 
25 Wholesaling 50, 51 
-----------------------------------------------------------------------------------------------------------------------------------------------
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Comparison of Cross-Sectional Slope Coefficients
One-Factor CAPM (Line) One-Factor Fit (Dash)

D
ec

-6
2

D
ec

-6
3

D
ec

-6
4

D
ec

-6
5

D
ec

-6
6

D
ec

-6
7

D
ec

-6
8

D
ec

-6
9

D
ec

-7
0

D
ec

-7
1

D
ec

-7
2

D
ec

-7
3

D
ec

-7
4

D
ec

-7
5

D
ec

-7
6

D
ec

-7
7

D
ec

-7
8

D
ec

-7
9

D
ec

-8
0

D
ec

-8
1

D
ec

-8
2

D
ec

-8
3

D
ec

-8
4

D
ec

-8
5

D
ec

-8
6

D
ec

-8
7

D
ec

-8
8

D
ec

-8
9

D
ec

-9
0

D
ec

-9
1

D
ec

-9
2

D
ec

-9
3

D
ec

-9
4

-30

-20

-10

0

10

20

30

-10

-5

0

5

10
CAPM Slope
Fit Slope

Fit Slope

Figure 1

CAPM Slope


