




1. Introduction

An important problem of causal inference is how to estimate treatment effects in observa-

tional studies, situations (like an experiment) in which a group of units is exposed to a

well-defined treatment, but (unlike an experiment) no systematic methods of experimental

design are used to maintain a control group.  It is well recognized that the estimate of a

causal effect obtained by comparing a treatment group with a non-experimental compari-

son group could be biased because of problems such as self-selection or some systematic

judgment by the researcher in selecting units to be assigned to the treatment.

Matching methods have been widely used in the statistics literature to address this

problem (see, inter alia, Cave and Bos 1995; Czajka, et al. 1992; Cochran and Rubin

1973; Raynor 1983; Rosenbaum 1995; Rosenbaum and Rubin 1985a; Rubin 1973, 1979;

and Rubin and Thomas 1992), but are relatively new to the economics literature. Matching

involves pairing together treatment and comparison units that are similar in terms of their

observable characteristics. When the relevant differences between any two units are cap-

tured in the observable (pre-treatment) covariates (i.e., outcomes are independent of as-

signment to treatment, conditional on pre-treatment covariates), matching methods can

yield an unbiased estimate of the treatment impact.

This paper makes three contributions to the literature on matching methods. First,

we discuss and extend propensity score matching methods, which are new to the eco-

nomics literature (the only other application we are aware of is Heckman, Ichimura, and

Todd 1997; see Friedlander, Greenberg, and Robins 1997 for a review). Second, we show

how these methods expose the key issue of the comparability of the treatment and control
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groups in terms of their observable characteristics. Third, we show that our methods can

succeed in producing accurate estimates of the treatment impact even when there exist

very few comparison units that are comparable to the treatment units.

The motivation for focusing on propensity score matching methods is that, in many

applications of interest, the dimensionality of the observable characteristics is high. With a

small number of characteristics (e.g., two binary variables), matching is straightforward

(one would group units in four cells). However, when there are many variables, it is diffi-

cult to determine along which dimensions to match a unit. Propensity score matching

methods, as we demonstrate below, are especially useful under such circumstances, and

succeed in yielding accurate estimates of the treatment impact.

An important feature of our method is that, after units are matched, the unmatched

comparison units are discarded, and are not directly used in estimating the treatment im-

pact. This contrasts with approaches that use the full set of controls to estimate the treat-

ment impact (e.g., Heckman, Ichimura, and Todd’s [1997] kernel-based matching esti-

mator). There are two motivations for our approach. First, in some settings of interest,

data on the outcome variable for the control group are costly to obtain. For example, in

economics, some data sets only provide outcome information for one year; if the outcome

of interest takes place in a later period, possibly thousands of controls have to be linked

across data sets or re-surveyed. In such settings, the ability to obtain the needed data for a

subset of relevant controls, discarding the irrelevant potential controls, is extremely valu-

able.

Second, even if information on the outcome is available for all comparison units

(as it is in our data), the process of searching for the best subset from the comparison
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group is very revealing of the extent of overlap between the treatment and comparison

groups in terms of pre-treatment characteristics. Since methods that use the full set of

controls extrapolate or smooth across the treatment and control groups, it is extremely

useful to know how many of the controls are in fact comparable and hence how much

smoothing one’s estimator is expected to perform.

The data we use, obtained from Lalonde (1986), are from the National Supported

Work Demonstration, a labor market experiment in which participants were randomized

between treatment (on-the-job training lasting between nine months and a year) and con-

trol groups.  Following Lalonde, we use the experimental controls to set a benchmark es-

timate for the treatment impact and then set them aside, wedding the treated units from

the experiment to comparison units from the Population Survey of Income Dynamics

(PSID) and the Current Population Survey (CPS). We compare estimates obtained using

our non-experimental methods to the experimental benchmark. We show that we succeed

in replicating the benchmark treatment impact and in selecting from the large set of com-

parison units those which are most comparable to the treated units.

The paper is organized as follows.  In Section 2, we discuss the theory behind our

estimation strategy. In Section 3, we analyze the shortcomings of the standard matching

approach and propose algorithms to deal with problems of incomplete matching.  In Sec-

tion 4, we describe the NSW data, which we then use in Section 5 to implement our

matching procedures.  Section 6 concludes the paper.
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2. Matching Methods

2.1 The Role of Randomization

A cause is viewed as a manipulation or treatment that brings about a change in the variable

of interest, compared to some baseline, called the control (Cox 1992; Holland 1986).  The

basic problem in identifying a causal effect is that the variable of interest is observed under

either the treatment or control regimes, but never both.

Formally, let i index the population under consideration. Yi1  is the value of the

variable of interest when unit i is subject to treatment (1), and Yi0  is the value of the same

variable when the unit is exposed to the control (0).  The treatment effect for a single unit,

τ i, is defined as τ i i iY Y= −1 0 . The primary treatment effect of interest in non-

experimental settings is the expected treatment effect over the treated population; hence:

τ τT i i
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where Ti=1 (=0) if the i-th unit was assigned to treatment (control).1  The problem of un-

observability is summarized by the fact that we can estimate E(Yi1|Ti=1), but not

E(Yi0|Ti=1).

The difference, τ e
i i i iE Y T E Y T= = − =( | ) ( | )1 01 0 , can be estimated, but is poten-

tially a biased estimator of τ . Intuitively, if the treated and control units systematically

differ in their characteristics, then in observing only Yi0 for the control group we do not

                                                       
1 In a non-experimental setting, because the treatment and control groups may differ systematically, we
must consider them to be drawn from different populations with potentially different treatment effects. In
contrast, in a randomized experiment, the treatment and control groups are drawn from the same popula-
tion. Thus, in an experiment, the treatment effect for the treated is identical to the treatment effect for the



5

correctly estimate Yi0 for the treated group.  Such bias is of paramount concern in non-

experimental studies.  The role of randomization is to prevent this:

Y Y Ti i i1 0, ||

⇒ = = = = =E Y T E Y T E Y Ti i i i i i( ) ( ) ( )0 00 1 0 ,

where Yi = TiYi1 + (1–Ti)Yi0 (the observed value of the outcome) and,  ||   is the symbol for

independence. The treated and control groups do not systematically differ from each

other, making the conditioning on Ti in the expectation unnecessary (ignorable treatment

assignment, in the terminology of  Rubin 1977), and yielding τ |T=1 = τ e.2

2.2 Exact Matching on Covariates

To substitute for the absence of experimental control units, we assume that data can be

obtained for a (large) set of potential controls, which of course are not necessarily drawn

from the same population as the treated units, but for whom we observe the same set of

pretreatment covariates, Xi. The following proposition extends the framework of the pre-

vious section to non-experimental settings:

Proposition 1 (Rubin 1977):  If for each unit we observe a vector of covariates Xi,  and

Y Y T Xi i i i1 0,  ||  , ∀i,  then the population treatment effect for the treated, τ |T=1, is identi-

fied: it is equal to the treatment effect conditional on covariates and assignment to

treatment, τ |T=1,X , averaged over the distribution X|Ti=1.

                                                                                                                                                                    
untreated, and therefore to the population average treatment effect.
2 We are also implicitly making what is sometimes called the stable-unit-treatment-value assumption (see
Rubin 1980, 1986).  This amounts to the assumption that Yi1 (Yi0) does not depend upon which units other
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Proof: Y Y T Xi i i i1 0,  ||  ⇒  )()0,()1,( 000 iiiiiiii XYETXYETXYE ==== ,

which allows us to write:
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Intuitively, this assumes that, conditioning on observable covariates, we can take assign-

ment to treatment as having been random and that, in particular, unobservables play no

role in the treatment assignment; comparing two individuals with the same observable

characteristics, one of whom was treated and one of whom was not, is by Proposition 1

like comparing those two individuals in a randomized experiment.  Under this assumption,

the conditional treatment effect, τ |T=1,X,  is estimated by an argument identical to the one

used above for ignorable assignment, simply by conditioning on X and then averaging over

X|T=1 to estimate the treatment effect.

One way to estimate this equation would be through matching units on their vector

of covariates, Xi.  In principle, we could stratify the data into bins, each defined by a par-

ticular value of X; within each bin this amounts to conditioning on X.  The limitation of

this method is that it relies on the availability of sufficiently rich data on controls so that no

bin containing a treated unit is without a control.  For example, if all n variables are di-

chotomous, the number of possible values for the vector X will be 2n.  Clearly, as the

                                                                                                                                                                    
than i were assigned to the treatment group.
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number of variables increases, the number of cells will increase exponentially, reducing the

probability of finding exact matches for each of the treated units.

2.3 Propensity Score and Dimensionality Reduction

Rosenbaum and Rubin (1983, 1985a,b) suggest the use of the propensity score -- the con-

ditional probability of  receiving treatment given a set of covariates -- to reduce the dimen-

sionality of the matching problem alluded to in the previous section:

Proposition 2:  Let p(Xi) be the probability of a unit i having been assigned to treatment,

defined as )|()|1Pr()( iiiii XTEXTXp ==≡ . Then:
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Proposition 3:  [ ]1)|(| )(,1)(1 == == iXpTXpT TE ττ .

Proof:  Follows immediately from Propositions 1 and 2.

Thus, the conditional independence result extends to the use of the propensity

score, as does by immediate implication our result on the computation of the conditional

treatment effect, now τ |T=1,p(X).  The point of using the propensity score is that it sub-
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stantially reduces the dimensionality of the problem, allowing us to condition on a scalar

variable rather than in a general n-space.

3. Propensity Score Matching Algorithms

In the discussion that follows, we assume that the propensity score is known, which of

course it is not. The Appendix discusses a straightforward method for estimating it.3

Matching on the propensity score follows from Proposition 3. An unbiased esti-

mate of the treatment effect arises from conditioning on p(Xi), which entails exact match-

ing on p(Xi). But it is very rare to find two units with exactly the same propensity score,

so the objective becomes to match a treated unit to the control units whose propensity

scores are sufficiently close to that of the treated unit to consider them as being approxi-

mately the same. In particular, we want them to be close enough to consider the condi-

tioning on p(Xi) in Proposition 3 to be approximately valid.

We define a distance metric, which allows us to seek the nearest match.  In the

context of matching on the propensity score, the simplest metric is:

∑ ∈
−=

Jj ji Xp
J

XpJid )(
||

1
)(),( ,

where i is typically a treated unit and J is a set of control units (|J| denotes the cardinality

of J). The objective then would be:

                                                       
3 Note that the propensity score is used only to select a subset of the control group, and does not enter di-
rectly into the estimation of the treatment effect. Nonetheless, standard errors should adjust for the esti-
mation error in the propensity score, which ours currently do not. As far as we know, the best way to do
this for our estimator has not yet been addressed in the literature. Heckman, Ichimura, and Todd (1997)
do adjust their asymptotic standard errors for the estimation of the propensity score, though for a different
estimator.
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where m(i) denotes the set of control units matched with the treated unit i, and where we

sum over the n treated units since we are estimating the treatment effect for the treated

population. If the treated units are exactly matched to controls, then D=0.

When no exact matches are available, matters become more complicated. Exam-

ples of simple algorithms applied in the literature (see Rubin 1973, 1979) include ranking

the treated observations in descending (or ascending) order of the estimated propensity

score, and then matching (without replacement) each treated unit, in turn, to the closest

control. An even simpler method involves randomly ordering the treated units, and again

matching without replacement.

When there is substantial overlap in the distribution of the propensity score be-

tween the control and treatment groups, any matching protocol will usually bring D close

to its minimum; the randomized protocols are simply easy ways to cut through the prob-

lem.  But when the control and the treated units are very different, finding a satisfactory

match using the standard algorithm can be very problematic. In particular, if there are only

a handful of control units comparable to the treated units, then once these controls have

been matched, the remaining treated units will have to be matched to controls that are very

different. There are two solutions to the problem. Rosenbaum (1995 and references cited

therein) considers the use of network flow methods in finding the best matching function,

m(·), independent of the order in which units are matched.

In this paper, we explore another approach: matching units with replacement.

When control units are very different from the treated group, matching with replacement
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allows many treated units to be matched to the same control unit. The simplest method is

to match each treated unit to the single control unit with the closest propensity score (we

call this the nearest-match method). This method selects the smallest possible control

group.

But to the extent that our motivation for matching is to condition on p(Xi), we

might be willing to admit more than the single best match. In particular, if we consider all

units within some tolerance level, δ  (chosen by the researcher), to have approximately

the same propensity score, then when a treated unit has several controls within a δ -

radius, we could use all of these controls. When implementing this method (the radius

method), we make one modification, namely that if a treated unit has no control units

within a δ -radius, we take the nearest control. Note that like the nearest-match method,

a given control may be matched to more than one treated unit.

In switching from the nearest-match to the radius method, we end up using more

controls. Adding control units has two effects. The first is to worsen the quality of the

match on the propensity score; this follows immediately from the algorithm described ear-

lier. The second is to change the variance of the estimate by using a larger and different

sample. The fact that the sample is larger will tend to increase the precision of the esti-

mates, but the larger sample may also embody greater variability; which effect dominates

will depend on the application. In essence, then, we face a potential bias-variance tradeoff.

In general it is difficult to know which point on the tradeoff is desired, since in applica-

tions one does not know the relationship between δ  and the resulting bias. In addition to
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demonstrating the efficacy of these methods in general, our application also explores this

bias-variance tradeoff.

4. The Data

4.1 The National Supported Work Program

The NSW was a U.S. federally funded program which aimed to provide work experience

for individuals who had faced economic and social problems prior to enrollment in the

program (see Manpower Demonstration Research Corporation 1983).4 Candidates for the

experiment were selected on the basis of eligibility criteria, and then were either randomly

assigned to, or excluded from, the training program. Table 1 provides the characteristics

of the sample we use (185 treated and 260 control observations).5 The table highlights the

role of randomization: the distribution of the covariates for the treatment and control

groups are not significantly different. We use two non-experimental control groups, drawn

from the CPS and PSID (see Lalonde 1986 for further details).

                                                       
4 Four groups were targeted:  Women on Aid to Families with Dependent Children (AFDC), former ad-
dicts, former offenders, and young school dropouts. Several reports extensively document the NSW pro-
gram.  For a general summary of the findings, see Manpower Demonstration Research Corporation
(1983).
5 The data we use are a sub-sample of the data used in Lalonde (1986). The analysis in Lalonde (1986) is
based on one year of pre-treatment earnings.  But as Ashenfelter (1978) and Ashenfelter and Card (1985)
suggest, the use of more than one year of pre-treatment earnings is key in accurately estimating the treat-
ment effect, because many people who volunteer for training programs experience a drop in their earnings
just prior to entering the training program.  Using the Lalonde sample of 297 treated and 425 control
units, we exclude the observations for which earnings in 1974 could not be obtained, thus arriving at a
reduced sample of 185 treated observations and 260 control observations. Because we obtain this subset by
looking at pre-treatment covariates, we do not disturb the balance in observed and unobserved character-
istics between the experimental treated and control groups.
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4.2 Distribution of the Treatment and Control Samples

Tables 2 and 3 (rows 1 and 2) present the sample characteristics of the two control groups

and the treatment group. The differences are striking:  the PSID and CPS sample units are

8 to 9 years older than those in the NSW group; their ethnic composition is different; they

have on average completed high school degrees, while NSW participants were by and

large high school dropouts; and, most dramatically, pre-treatment earnings are much

higher for the control units than for the treated units, by more than $10,000. A more syn-

optic way to view these differences is to use the estimated propensity score as a summary

statistic. Using the method outlined in the Appendix, we estimate the propensity score for

the two composite samples (NSW-CPS and NSW-PSID), incorporating the covariates

linearly and with some higher-order terms (age squared, education squared).  Figures 1

and  2 provide a simple diagnostic on the data examined, plotting the histograms of the

estimated propensity scores for the NSW-CPS and NSW-PSID samples. Note that the

histograms do not include the controls (11,168 units for the CPS and 1,254 units for the

PSID) whose estimated propensity score is less than the minimum estimated propensity

score for the treated units. As well, the first bins of both diagrams contain most of the re-

maining controls (4,398 for the CPS and 1,007 for the PSID). Hence, it is clear that very

few of the control units are comparable to the treated units. In fact, one of the strengths of

the propensity score method is that it dramatically highlights this fact. In comparing the

other bins, we note that the number of controls in each bin is approximately equal to the

number of treated units in the NSW-CPS sample, but in the NSW-PSID sample many of

the upper bins have far more treated units than control units. This last observation will be

important in interpreting the results of the next section.
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5. Matching Results

Figures 3 to 6 provide a snapshot of the matching methods described in Section 3 and ap-

plied to the NSW-CPS sample, where the horizontal axis displays treated units (indexed

from lowest to highest estimated propensity score) and the vertical axis depicts the pro-

pensity scores of the treated units and their matched-control counterparts (the corre-

sponding figures for the NSW-PSID sample look very similar).  Figures 3 to 5 share the

common feature that the first 100 or so treated units are well matched to their control

counterparts: the solid and the dashed lines virtually overlap. But the treated units with

estimated propensity scores of 0.4 or higher are not well matched. In Figure 3, units that

are randomly selected to be matched earlier find better matches, but those matched later

are poorly matched, because the few control units comparable to the treated units have

already been used. Likewise, in Figure 4, where units are matched from lowest to highest,

treated units in the 140th to 170th positions are forced to use controls with ever-higher

propensity scores. Finally, for the remaining units (from approximately the 170th position

on), the controls with high propensity scores are exhausted and matches are found among

controls with much lower estimated propensity scores.  Similarly, when we match from

highest to lowest, the quality of matches begins to decline after the first few treated units,

until we reach treated units whose propensity score is (approximately) 0.4.

Figure 6 depicts the matching achieved by the nearest-match method.  We note

immediately that by matching with replacement we are able to avoid the deterioration in

the quality of matches noted in Figures 3 to 5; the solid and the dashed lines largely coin-

cide. Looking at the line depicting controls more carefully, we note that it has flat sections
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not seen on the line for treated units. These flats are exactly the regions in which a single

control is being matched to more than one treated unit. Thus, even though there is a

smaller sample size, we are better able to match the distribution of the propensity score of

the treated units.

In Table 2 we explore the matched samples and the estimated treatment impacts

for the CPS.  From rows 1 and 2, we already noted that the CPS sample is very different

from the NSW population. The aim of matching is to choose sub-samples whose charac-

teristics more closely resemble the NSW population. Rows 3 to 5 of Table 2 depict the

matched samples that emerge from matching without replacement. Note that the charac-

teristics of these samples are essentially identical, suggesting that these three methods

yield the same control groups. (Figures 3 to 5 obscure this fact because they compare the

order in which units are matched, not the resulting control groups.) The matched samples

are much closer to the NSW sample than the full CPS control group. The matched CPS

group has an age of 25.3 (compared with 25.8 and 33.2 for the NSW and full CPS sam-

ples); its ethnic composition is the same as the NSW sample (note especially the difference

in the full CPS in terms of the variable Black); Nodegree and marital status align; and,

perhaps most significantly, the pre-treatment earnings are similar for both 1974 and 1975.

None of the differences between the matched groups and the NSW sample are statistically

significant. Looking at the nearest-match and radius methods, little significant improve-

ment can be discerned, although most of the variables are marginally better matched. This

suggests that the observation made regarding Figure 1 (that the CPS, in fact, has a suffi-

cient number of controls overlapping with the NSW) is borne out in terms of the matched

sample.
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Turning to the estimates of the treatment impact, in row 1 we see that the bench-

mark estimate of the treatment impact from the randomized experiment is $1,794. Using

the full CPS control group, the estimate is –$8,498 using a difference in means and $1,066

using regression adjustment. The raw estimate is very misleading when compared with the

benchmark, though the regression-adjusted estimate is better. The matching estimates are

much closer, most dramatically for the difference in means, where the estimates range

from $1,559 to $1,605; the regression-adjusted estimates are similar. The fact that the

difference in means and regression-adjusted estimates are very similar to the benchmark

and to each other demonstrates the success of this method in selecting a suitable control

group.

Using the PSID sample (Table 3), somewhat different conclusions are reached.

Like the CPS, the PSID sample is very different from the NSW sample. Unlike the CPS,

the matched-without-replacement samples are not fully comparable to the NSW. They are

reasonably comparable in terms of age, schooling, and ethnicity, but in terms of pre-

treatment income we observe a large (and statistically significant) difference. As well, the

estimates of the treatment impact, both by a difference in means and through regression

adjustment, are far from the experimental benchmark. In contrast, the matched-with-

replacement samples use even fewer (56) controls, but are able to match the pre-treatment

earnings of the NSW sample and the other variables as well. This corresponds to our ob-

servation regarding Figure 2, namely that there are very few controls in the PSID that are

similar to units in the NSW; when this is the case, we expect more sensitivity to the

method used to match observations. The treatment impact as estimated by the nearest-

match method through a difference in means ($1,890) is very similar to the experimental
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benchmark, but differs by $425 when estimated through regression adjustment (though it

is still closer than the estimates in rows 1 to 4).  The difference in the two estimates is less

surprising when we consider the sample size involved: we are using only 56 of the 2,490

potential controls from the PSID. The disappointment, then, is not that the regression es-

timate is poor, but that there are so few controls comparable to the treated units.

In both Tables 2 and 3 the radius method of matching yields broadly similar results

to the nearest-match method. As we increase the radius we use more and more controls.

For the CPS we expand the number from 119 to 1,731 (for a radius of δ =0.0001), and

for the PSID the number expands from 56 to 337. For both samples the estimates of the

treatment impact become worse (the bias increases), and the standard errors do not appre-

ciably decline. As more controls are used, the regression-adjusted treatment impact in-

creasingly differs from the difference-in-means treatment impact, because as the composite

sample becomes less and less well-balanced in terms of pre-treatment covariates, control-

ling for these characteristics has a greater impact. Thus, in this application there seems to

be little value in using additional controls beyond the nearest matches; of course, this may

differ in other applications.

6. Conclusion

This paper has presented a propensity score matching method that is able to yield accurate

estimates of the treatment effect in non-experimental settings where the treated group dif-

fers substantially from the pool of potential controls. The method is able to pare the large

pool of potential controls down to the relevant comparisons without using information on

outcomes, thereby, if necessary, allowing outcome data to be collected only for the subset
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of relevant controls. Of course, the quality of the estimate that emerges from the resulting

comparison is limited by the overall quality of the comparison group that is used. Using

Lalonde’s (1986) data set, we demonstrated the ability of this technique to work in prac-

tice. Even though in a typical application the researcher would not have the benefit of

checking his or her estimator against the experimental-benchmark estimate, the conclusion

of our analysis is that it is extremely valuable to check the comparability of the treatment

and control units in terms of pre-treatment characteristics, which the researcher can check

in most applications.

In particular, the propensity score method dramatically highlights the fact that

most of the controls are very different from the treated units. In addition to this, when

there are very few control units remaining after having discarded the irrelevant controls,

the choice of matching algorithm becomes important. We demonstrated that when there

are a sufficient number of comparable controls (in our application, when using the CPS)

the nearest-match method does no worse than the matching-without-replacement methods

that would typically be applied, and in situations where there are very few comparable

controls (in our application, when using the PSID), matching with replacement fares better

than the alternatives. Extensions of matching with replacement (radius matching), though

interesting in principal, were of little value in our application.

It is something of an irony that the data which we used were originally employed

by Lalonde (1986) to demonstrate the failure of standard non-experimental methods in

accurately estimating the treatment effect. Using matching methods on both of his sam-

ples, we were able to replicate the experimental benchmark, but beyond this we focused

attention on the value of flexibly adjusting for observable differences between the treat-
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ment and control groups. The process of trying to find a subset of the PSID controls com-

parable to the NSW units led us to realize that the PSID is a poor comparison group, es-

pecially when compared to the CPS.

Because matching methods are focused on the process of constructing a suitable

control group in non-experimental settings, the methods which we discuss are a useful ad-

dition and complement to the standard techniques in the researcher’s arsenal.
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Appendix:  Estimating the Propensity Score6

The first step in estimating the treatment effect is to estimate the propensity score.  Any
standard probability model can be used, e.g., logit or probit.  It is important to remember
that the role of the score is only to reduce the dimensions of the conditioning; as such, it
has no behavioral assumptions attached to it.  For ease of estimation, most applications in
the statistics literature have concentrated on the logit model:
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where Ti is the treatment status, and h(Xi) is made up of linear and higher-order terms of
the covariates on which we condition to obtain an ignorable treatment assignment.7

In estimating the score through a probability model, the choice of which interac-
tion or higher-order term to include is determined solely by the need to condition fully on
the observable characteristics that make up the assignment mechanism. The following
proposition forms the basis of the algorithm we use to estimate the propensity score (see
Rosenbaum and Rubin 1983):

Proposition A:

X T p X ||  ( ) .

Proof: From the definition of p(X) in Proposition 2:

( )E T X p X E T X p Xi i i i i i( | , ( )) | ( )= = .

The algorithm works as follows.  Starting with a parsimonious logistic function
with linear covariates to estimate the score, rank all observations by the estimated propen-
sity score (from lowest to highest).  Divide the observations into strata such that within
each stratum (or block) the difference in score for treated and control observations is in-
significant (a t-test on a difference in means between the treated and control groups is a
criterion used in this algorithm). Proposition A tells us that within each stratum the distri-
bution of the covariates should be approximately the same across the treated and control
groups, once the score is controlled for. Within each stratum, we can test for statistically
significant differences between the distribution of covariates for treated and control units;
operationally, t-tests on differences in the first moments are often sufficient but a joint F-
test for the difference in means for all the variables within each block could also be per-
formed.8  When the covariates are not balanced within a particular block, the block may be
too coarsely defined; recall that Proposition A deals with observations with an identical
                                                       
6 This discussion is drawn from a related paper, Dehejia and Wahba (1997).
7 Because we allow for higher-order terms in X, this choice is not very restrictive.  By re-arranging and
taking logs, we obtain:  ( )ln ( )P r ( | )

P r( | )
T X

T X i
i i

i i
h X=

− = =1
1 1 λ .  A Taylor-series expansion allows us an

arbitrarily precise approximation.  See also Rosenbaum and Rubin (1983).
8 More generally, one can also consider higher moments or interactions, but usually there is little differ-
ence in the results.
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propensity score.  The solution adopted is to divide the block into finer blocks and test
again for no difference in the distribution of the covariates within the finer blocks.  If,
however, some covariates remain unbalanced for many blocks, the score may be poorly
estimated, which suggests that additional terms (interaction or higher-order terms) of the
unbalanced covariates should be added to the logistic specification to control better for
these characteristics. This procedure is repeated for each given block until covariates are
balanced. The algorithm is summarized below.

A Simple Algorithm for Estimating the Propensity Score
• Start with a parsimonious  logit function to estimate the score.
• Sort data according to estimated propensity score (ranking from lowest to highest).
• Stratify all observations such that estimated propensity scores within a stratum for

treated and control units are close (no significant difference); e.g., start by dividing ob-
servations in blocks of equal score range (0-0.2,...,0.8-1).

• Statistical test: for all covariates, differences-in-means across treated and control units
within each block are not significantly different from zero.
1. If covariates are balanced between treated and control observations for all blocks,
stop.
2. If covariate i is not balanced for some blocks, divide block into finer blocks and re-

evaluate.
3. If covariate i is not balanced for all blocks, modify the logit by adding interaction

terms and/or higher-order terms of the covariate i and re-evaluate.

A key property of this estimation procedure is that it uses a well-defined criterion
to determine which interaction terms to use in the estimation, namely those terms that bal-
ance the covariates. It also makes no use of the outcome variable, and embodies one of the
specification tests proposed by Lalonde (1986) and others in the context of evaluating the
impact of training on earnings, namely to test for the regression-adjusted difference in the
earnings prior to treatment.
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Table 1:  Sample Means and Standard Errors of Covariates For Male NSW Participants
National Supported Work Sample

 (Treatment and Control)

Variable Dehejia-Wahba Sample
Treatment Control

Age 25.81 25.05
(0.52) (0.45)

Years of schooling 10.35 10.09
(0.15) (0.1)

Proportion of school dropouts 0.71 0.83
(0.03) (0.02)

Proportion of blacks 0.84 0.83
(0.03) (0.02)

Proportion of hispanic 0.059 0.1
(0.017) (0.019)

Proportion married 0.19 0.15
(0.03) (0.02)

Number of children 0.41 0.37
(0.07) (0.06)

No-show variable 0 n/a
(0)

Month of assignment (Jan. 1978=0) 18.49 17.86
(0.36) (0.35)

Real earnings 12 months before training 1,689
(235)

1,425
(182)

Real earnings 24 months before training 2,096
(359)

2,107
(353)

Hours worked 1 year before training 294 243
(36) (27)

Hours worked 2 years before training 306 267
(46) (37)

Sample size 185 260

Data Legend: Age, age of participant; Educ, number of school years; Black, 1 if black, 0 otherwise; Hisp, 1 if Hispanic, 0 other-
wise; Nodegree, 1 if participant had no school degrees, 0 otherwise; Married, 1 if married, 0 otherwise; RE74, real earnings
(1982US$) in 1974; RE75, real earnings (1982US$) in 1975; U74, 1 if unemployed in 1974, 0 otherwise; U75, 1 if unemployed in
1975, 0 otherwise; and RE78, real earnings (1982US$) in 1978





Table 2: Sample Characteristics of the NSW and CPS Samples
Control

Sample

No. of
Observa-

tions

Mean
Propen-

sity
ScoreA

Age School Black Hisp-
anic

No
Degree

Married RE74
US$

RE75
US$

U74 U75 Treat-
ment
effect

(diff. in
means)

Regres-
sion
treat-
ment

effectD

NSW 185 0.37 25.82 10.35 0.84 0.06 0.71 0.19 2095 1532 0.29 0.40 1794B

(633)
1672
(638)

Full CPS 15992 0.01 33.23 12.03 0.07 0.07 0.30 0.71 14017 13651 0.88 0.89 -8498 1066
(s.e.)C (0.02) (0.53) (0.15) (0.03) (0.02) (0.03) (0.03) (367) (248) (0.03) (0.04) (583) (554)

Without re-
placement:
Random 185 0.32 25.23 10.28 0.84 0.06 0.66 0.22 2286 1687 0.37 0.51 1605 1681

(0.03) (0.79) (0.23) (0.04) (0.03) (0.05) (0.04) (495) (341) (0.05) (0.05) (730) (719)

Low to High 185 0.32 25.23 10.28 0.84 0.06 0.66 0.22 2286 1687 0.37 0.51 1605 1681
(0.03) (0.79) (0.23) (0.04) (0.03) (0.05) (0.04) (495) (341) (0.05) (0.05) (730) (719)

High to Low 185 0.32 25.26 10.30 0.84 0.06 0.65 0.22 2305 1687 0.37 0.51 1559 1651
(0.03) (0.79) (0.23) (0.04) (0.03) (0.05) (0.04) (495) (341) (0.05) (0.05) (730) (719)

With re-
placement:
Minimum 119 0.37 25.36 10.31 0.84 0.06 0.69 0.17 2407 1516 0.35 0.49 1360 1374
Bias (0.03) (1.04) (0.31) (0.06) (0.04) (0.07) (0.06) (727) (506) (0.07) (0.07) (974) (743)

Radius:
δ=0.00001 325 0.37 25.26 10.31 0.84 0.07 0.69 0.17 2424 1509 0.36 0.50 1119 1142

(0.03) (1.03) (0.30) (0.06) (0.04) (0.07) (0.06) (845) (647) (0.06) (0.06) (1077) (780)

δ=0.00005 1043 0.37 25.29 10.28 0.84 0.07 0.69 0.17 2305 1523 0.35 0.49 1158 1139
(0.02) (1.03) (0.32) (0.05) (0.04) (0.06) (0.06) (877) (675) (0.06) (0.06) (1086) (774)

δ=0.0001 1731 0.37 25.19 10.36 0.84 0.07 0.69 0.17 2213 1545 0.34 0.50 1122 1119
(0.02) (1.03) (0.31) (0.05) (0.04) (0.06) (0.06) (890) (701) (0.06) (0.06) (1080) (774)

Notes:.(A)  The propensity score is estimated using a logit of treatment status on: Age, Age2, Age3, Educ, Educ2, Married, Nodegree, Black, Hisp, RE74,
RE75, U74,. U75, Educ·RE74. (B) The treatment effect for the NSW sample is estimated using the experimental control group. (C) The standard error applies
to the difference in means between the matched and the NSW sample, except in the last two columns, where the standard error applies to the treatment effect.
(D) The regression treatment effect controls for all covariates linearly. For matching with replacement, weighted least squares is used, where treatment units
are weighted at 1 and the weight for a control is the number of times it is matched to a treatment unit.



Table 3: Sample Characteristics of the NSW and PSID Samples
Control
Sample

No. of
Observa-

tionsA

Mean
Propen-

sity
Score

Age School Black Hisp-
anic

No
Degree

Married RE74
US$

RE75
US$

U74 U75 Treat-
ment
effect

(diff. in
means)

Regres-
sion
treat-
ment

effectD

NSW 185 0.37 25.82 10.35 0.84 0.06 0.71 0.19 2095 1532 0.29 0.40 1794B

(633)
1672
(638)

Full PSID 2490 0.02 34.85 12.12 0.25 0.03 0.31 0.87 19429 19063 0.10 0.09 -15205 4
(s.e.)C (0.02) (0.57) (0.16) (0.03) (0.02) (0.03) (0.03) (449) (361) (0.04) (0.03) (657) (1014)

Without re-
placement:
Random 185 0.25 29.17 10.30 0.68 0.07 0.60 0.52 4659 3263 0.40 0.40 -916 77

(0.03) (0.90) (0.25) (0.04) (0.03) (0.05) (0.05) (554) (361) (0.05) (0.05) (1002) (1152)

Low to High 185 0.25 29.17 10.30 0.68 0.07 0.60 0.52 4659 3263 0.40 0.40 -916 77
(0.03) (0.90) (0.25) (0.04) (0.03) (0.05) (0.05) (554) (361) (0.05) (0.05) (1002) (1152)

High to Low 185 0.25 29.17 10.30 0.68 0.07 0.60 0.52 4659 3263 0.40 0.40 -916 77
(0.03) (0.90) (0.25) (0.04) (0.03) (0.05) (0.05) (554) (361) (0.05) (0.05) (1002) (1152)

With re-
placement:

Minimum
56 0.70 24.81 10.72 0.78 0.09 0.53 0.14 2206 1801 0.54 0.69 1890 2315

Bias (0.07) (1.78) (0.54) (0.11) (0.05) (0.12) (0.11) (1248) (963) (0.11) (0.11) (1791) (809)

Radius:
δ=0.00001 85 0.70 24.85 10.72 0.78 0.09 0.53 0.13 2216 1819 0.54 0.69 1893 2327

(0.08) (1.80) (0.56) (0.12) (0.05) (0.12) (0.12) (1859) (1896) (0.10) (0.11) (2410) (853)

δ=0.00005 193 0.70 24.83 10.72 0.78 0.09 0.53 0.14 2247 1778 0.54 0.69 1928 2349
(0.06) (2.17) (0.60) (0.11) (0.04) (0.11) (0.10) (1983) (1869) (0.09) (0.09) (2523) (955)

δ=0.0001 337 0.70 24.92 10.73 0.78 0.09 0.53 0.14 2228 1763 0.54 0.70 1973 2411
(0.05) (2.30) (0.67) (0.11) (0.04) (0.11) (0.09) (1965) (1777) (0.07) (0.08) (2691) (1094)

δ=0.001 2021 0.70 24.98 10.74 0.79 0.09 0.53 0.13 2398 1882 0.53 0.69 1824 2333
(0.03) (2.37) (0.70) (0.09) (0.04) (0.10) (0.07) (2950) (2943) (0.06) (0.06) (3459) (1404)

Notes:.(A)  The propensity score is estimated using a logit of treatment status on: Age, Age2, Educ, Educ2, Married, Nodegree, Black, Hisp, RE74, RE742,
RE75, RE752, U74,. U75, U74·Hisp. (B) The treatment effect for the NSW sample is estimated using the experimental control group. (C) The standard error
applies to the difference in means between the matched and the NSW sample, except in the last two columns, where the standard error applies to the treatment
effect. (D) The regression treatment effect controls for all covariates linearly. For matching with replacement, weighted least squares is used, where treatment
units are weighted at 1 and the weight for a control is the number of times it is matched to a treatment unit.














