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ABSTRACT
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This paper seeks to evaluate monetary policy rules which generalize the rule proposed by
Taylor (1993). In particular, we consider rules in which the Fed sets the Federal funds rate as
a function of the history of inflation, output and the Federal funds rate itself. Even though
this is not part of Taylor’s original formulation, we introduce the possibility that the Federal
funds rate depends on the history of the funds rate itself in order to allow for interest-rate
smoothing of the kind that appears to be an important feature of current Fed policy. We
also consider the character of optimal policy, i.e., the policy that maximizes the utility of
the representative agent, assuming unlimited information about the exogenous disturbarnces
to the economy. We then compare optimal policy in this unrestricted sense with the best
rule of the generalized-Taylor family.

We evaluate these rules under the assumption that interest rate, inflation and output
determination in the U.S. economy can be compactly represented by the small structural
model whose parameters we estimate in Rotemberg and Woodford (1997). This is a rational
expectations model derived from explicit intertemporal optimization, in which firms are un-
able to change their prices every period, and in which purchases are determined somewhat
in advance of when they actually take place. In evaluating different monetary rules we use
two approaches. The first approach is simply to compute the welfare of the representative
household according to our model of the U.S. economy. Because this places great strain on
the assumptions that the model contains accurate descriptions of the preferences of Amer-
ican residents, and that we have correctly identified the nature of the real disturbances to
which monetary stabilization policy must respond, we also study separately the variability
of output, inflation, and interest rates induced by different policy rules. This latter way
of characterizing economic performance under alternative rules is less dependent upon the
“deep structural” interpretation of the residuals in our structural equations, although it is,
of course, still dependent upon the specification of those structural equations and upon the
statistical properties of their disturbance terms.

We proceed as follows. In section 1, we describe the structure of the model, which is

discussed more thoroughly in Rotemberg and Woodford (1997, 1998). Section 2 is devoted



to the analysis of simple policy rules that represent variations upon the rule proposed by

Taylor (1993), while section 3 considers optimal policy. Section 4 concludes.

1 A Framework for Analysis

We begin by reviewing the structure of the estimated sticky-price model developed in Rotem-
berg and Woodford (1997). This also allows us to derive the utility-based measure of dead-
weight loss due to price-level instability that is the basis for our subsequent discussion of

optimal policy.

1.1 A Small, Structural Model of the U.S. Economy

We suppose that there is a continuum of households indexed by ¢ where i runs between 0
and 1. Each of these households produces a single good while it consumes the composite
good. The utility of household ¢ at ¢ is given by
oo
EfIZ;/B(T_t)[“(C;ﬁ&T) — v(yr;ér)], (1.1)
where (3 is a discount rate, y} is the household’s production of its own good and &, is a vector
of preference (or technological) disturbances. The argument C; represents an index of the

household’s purchases of the continuum of differentiated goods produced in the economy.

Following Dixit and Stiglitz (1977), this index is given by

Ci = ([ i) az)™ (1.2

where ¢}(z) is the quantity purchased of good 2, and the constant elasticity of substitution 8
is assumed to be greater than one. We assume that all purchasers, including the government,
care only about an aggregate of the form (1.2). As usual, this implies that the total demand

yi(z) for differentiated good z is given by a constant-elasticity demand function

i = K(ptg))_e, (1.3)



where p,(z) is the period t price of good z, P, is the price index defined by

P = [/Olpt(z)l"edz]ﬁ, (1.4)

and Y; measures aggregate demand for the composite good defined by (1.2).
One of the delays we assume is that households must choose their index of purchases
C} at date t — 2. As we show in Rotemberg and Woodford (1997) this, or an assumption
like it, seems necessary if one wishes to explain the response of U.S. GDP to monetary
disturbances, because this response is itself delayed by about two quarters. This delay
implies that the standard Euler equation for optimal intertemporal allocation of consumption
spending need not hold, except (approximately) conditional upon information available two
periods in advance. Because C! is chosen in advance, household optimization requires only
that
Et[uC(C:+2;ft+2)] = Et{)\i+2Pt+21, (1.5)

where X} is a Lagrange multiplier indicating the marginal utility for household ¢ of additional
nominal income in period ¢. Assuming borrowing limits that never bind in equilibrium, these

marginal utilities of income must satisfy
)\i = /BRtEt)‘:-H: (1-6)

where R; is the gross return on a riskless nominal one-period asset in which the household
Invests at . We assume the existence of complete insurance markets, so that all households
consume the same amount at any time, and have the same marginal utility of income. Then
equations (1.5) and (1.6) also hold when we drop the i superscripts, and interpret them
as equations relating aggregate consumption C, to the marginal utility of income A, of the
representative household. However, because of the conditional expectations in (1.5), these
two equations still do not imply the standard Euler equation relating aggregate consumption
spending in two consecutive periods to the real rate of return between those two periods.
Finally, substituting into (1.5) the equilibrium requirement that C; = Y; — G, where G,

represents exogenous variation in government purchases of the composite good, we obtain
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an equilibrium relation between the index of aggregate demand Y; and variations in the
marginal utility of income, which provides the crucial link in our model between interest
rate variations and aggregate demand.

For our numerical work, we rely upon log-linear approximations to the model’s structural
equations. We assume an equilibrium in which the economy always stays near a steady state
path, which represents a stationary, deterministic equilibrium in the case of no exogenous
disturbances (§ = 0 and G, = G at all times) and a monetary policy consistent with stable
prices. In this steady state, output is constant at a level Y (defined below), and consumption
is constant at the level C =Y —G.! It follows that the marginal utility of real income, AP,
is also constant, at the value \ = uc(C;0). We log-linearize the structural equations of
the model around these steady-state values. Percentage deviations in the marginal utility of
consumption uc(Cy; &) around the steady-state value uc(C;0) can be written as —5(@ —Cy),
where C, = log(C,/C), C, is an exogenous shift variable (a certain linear combination of the
elements of &), and & = —uccC/uc, where the partial derivatives are evaluated at the
steady-state level of consumption. With this substitution, the log-linear approximations to

(1.5) and (1.6) are given by
—5Ez—2[ét - ét] = Et—z[j\t]a (1-7)

j\t = Rt — T+ + Etj\t+1¢ (1.8)

where R, = log(R,/ R*) = log(BR,) is the percentage deviation of the short-run nominal
interest rate from its steady-state value, 7, = log(F, /P;_1) is the inflation rate, and X =
log(A P,/ )) measures the percentage deviation of the marginal utility of real income from its
steady-state value. (Equation (1.8) refers to actual rather than expected inflation because
inflation m;.; is known with certainty at date ¢ in our model.)

A similar log-linear approximation to the market-clearing condition allows us to replace
Cy — E,_,C, with soH (Y, — G,), where so = C/Y, Y, = log(Y,/¥), and G, collects the

exogenous disturbance terms that shift the relation between aggregate demand and the



marginal utility of consumption. Substituting this into (1.7) yields
Et—2j\t = _UEt—2[Y};: - ét]y (1.9)

where 0 = s;'G. Then taking the conditional expectation of (1.8) two periods earlier, and

substituting (1.9), we obtain
Eio[Y, — Gy = ~07 B[Ry — meat) + EiafVig1 — Gunrl. (1.10)

(Thus, in our log-linear approximation, the standard Euler equation does hold, but only
conditional upon lagged information.) Solving forward, we may equivalently write
oc
Y/.t=C‘;1:“0'_1Et—2 Z[RT—WT-H]- (1-11)
T=t
Equation (1.11) plays a role analogous to the “IS equation” of traditional Keynesian models,
but is consistent with intertemporal optimization.? It relates output to the long run real
interest rate (with a negative sign) and to autonomous spending disturbances. The latter
include both disturbances to private impatience to consume resources, and to government
spending, summarized in the composite disturbance term ;. We assume that G, is deter-
mined at ¢ — 1, so that it is determined after C, has already been chosen, but in time for
the central bank to adjust the period ¢ interest rate R, in response to it. Letting G, be
determined after C, ensures that output is not predetermined as of ¢t — 2 (i.e., it allows us an
interpretation for the output innovations in our VAR model of the U.S. data}, even though
output responds with a two period delay to exogenous disturbances to monetary policy.
The source of the real effects of monetary policy in our model is that prices do not
adjust immediately to shocks. Following Calvo (1983), we assume that prices are changed
at exogenous random intervals.* Specifically, a fraction (1 — @) of sellers get to choose a
new price at the end of any given period, whereas the others must continue using their old
prices. Of those who get to choose a new price, a fraction v start charging the new price
at the beginning of the next period. The remaining fraction (1 — ) must wait until the

following period to charge the new price or, put differently, they must post their prices one
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quarter in advance. These assumed delays explain why no prices respond in the quarter of
the monetary disturbance and why the largest response of inflation to a monetary shock
takes place only two quarters after the shock.

Let p; denote the price set by sellers that decide at date t — 1 upon a new price to take
effect at date t, and p? the price set by sellers that decide at date ¢t — 2 upon a new price to
take effect only two periods later. These prices are chosen to maximize the contributions to
expected utility resulting from sales revenues on the one hand, and the disutility of output
supply on the other, at each of the future dates and in each of the future states in which the
price commitment still applies. This means that p! is chosen to maximize

oo T—t P -8 P —8

®e1(p) = Eis Tzzzt(aﬁ) [)\T(l — 7)pYr (FT) - v (YT (P_T) §5T)J (1.12)
over p. Here we have substituted the demand function (1.3) into the household’s objective
function, written Az for the marginal utility (in units of period T utility flow) of additional
nominal income during period T, and assumed that revenues each period are taxed at the
constant rate 7.° The factor a7~ appears as the probability that the price that is charged
beginning in period ¢ is still in effect in period T > ¢ (where we assume that this contin-
gency is independent of all aggregate disturbances). Note that our assumption of complete
contingent claims markets (including full opportunities for households to insure one another
against idiosyncratic risk associated with different timing of their price changes) implies that
the marginal utility of income process {7} is the same for all households, and can be treated
as an exogenous stochastic process by an individual household (whose pricing decisions will
have only a negligible effect upon aggregate prices, aggregate incomes, and aggregate spend-
ing decisions). Similarly, an individual household treats the processes { Pr, Yr} as exogenous
in choosing its desired price. The optimizing choice of p} then must satisfy the first-order
condition

0y_1(p) =0, (1.13)

where the prime denotes the derivative with respect to p in the explicit expression given in

(1.12).



As before, we wish to log-linearize this equilibrium condition around a steady state in
which Y; = ¥, B,/P,_; =1, p}/P, = 1, and A\,P, = } at all times. (The requirement that
these constant values satisfy (1.13) when & = 0 at all times determines the steady-state
value Y.5 ) Percentage deviations of v, (yi; &) from its steady-state value can be written
as w(f! — V;), where w = v,y Y /vy, with partial derivatives evaluated at the steady state,
7 =log(yi/Y), and ¥, is a certain linear function of &:. Using this notation, the log-linear
approximation to (1.13) takes the form

E,_, i(aﬁ)T't[(j\T + Yr—(6- 1)p; 1)

T=t
—w(Yy — 8pLr — Yr) = (Vr — 65} 1) = 0, (1.14)

where in addition p; = log(p;/ Pr). Introducing the notation X, = =2 log(p}/P,),” so that

Pip = T_‘}&Xt — ¥l .17, we can solve (1.14) to obtain

5 1-al—oaf ad Tetr 4 - - T
Xt = —_'_Et—l Z(O{ﬁ) [_)\T + (A)(YT — YT) -+ (1 + L{JG) Z 71'51 (115)
a 1+wf ey s=t+1

as the optimizing choice of the relative price in period ¢ of goods with new prices chosen just
the period before.
We can use (1.9) to eliminate the F,_;Ay terms in (1.15), for all T > t. Taking the

conditional expectation of (1.8) at t — 1, and using (1.9), we see that we can also write

Et—lj\t =¢p1 — JEt—l[Y/t - ét], (1-16)

where

¢ = Et[Rt+1 — Ty — U(}}t+2 - ét+2 - Y/t+1 + ét+l)]
= E; Z(RT - 7rT-H) — ki Z(RT - 7TT+1)‘ (1-17)

T=t T=t
Note that the final equality in {1.17) follows from substitution of (1.11). Then, substituting
(1.9) and (1.16) into (1.15), we obtain

N — —_ o > " L
e L A CRS LA SRRIRR SR R

s=t-4+1




_1“‘011—&/8 o Tt ~ _A.S' aﬁ _
=% 1+u8 Et—szzt(aﬁ) [(o +w)(Yr = Y7)+ (1 +w9)1_aﬁ7rm] dr-1|
(1.18)
where
~ W - o N
VS = 1Y, G
¢ w+aEt ' t+w+0 '

is a composite exogenous disturbance. We can think of }A’ts as representing variation in the
“natural” or “potential” level of output, since it is expected deviations Y — ¥'5, rather than
deviations in the level of output relative to trend, that results in a desire by price-setters
to increase the relative price of their goods, which in equilibrium requires inflation of the
average level of prices. (An equilibrium in which no prices are ever changed is consistent
with (1.18) as long as ¥; = ¥;° at all times, and interest rates vary so as to ensure that
¢¢ = 0 at all times. Note that the latter condition ensures that (1.10) and hence (1.11) are
also satisfied at all times.)

We turn next to the price-setting decision of sellers that choose a new price p?att—2
to apply beginning in period t. Because such a price is expected to apply in periods t + j
with exactly the same probabilities as for the price p!, the objective of these sellers is simply
Ei_2®:_1(p), and the first-order condition that determines p? is given by E,_,®,_,(p?) = 0.

Comparison with (1.13) implies that, in our log-linear approximation,
logp? = Ey_log pt. (1.19)
Finally, our definition of the price index (1.4) implies that this index evolves according to
Po=[aP5 + (1 - a)y(p})' ™ + (1 — a)(1 — 7))/

Dividing both sides by P;, log-linearizing, and substituting (1.19), we obtain

l—a

My = ’YXt + (1 — ’Y)[Et—2Xt - (me — Ey_om,)].

Taking the conditional expectation of both sides at ¢ — 2, one observes that E,_,m; = Es_o X,

Substitution of this then allows the equation to be written in the form
me =X, + (1-¥)E_X,, (1.20)
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where ¥ = yo/[1—7(1—a)]. This indicates how aggregate inflation results from the incentives
of individual price-setters to choose a higher relative price.

These results may be collected in the form of an implied aggregate supply relation between
inflation variation and deviations of output from potential. Equation (1.18) may be expressed

in quasi-differenced form as

. R . . K
X: = w(Y, - Yts) + (1~ a)BE, 17y + afBE,_1 X4 — . +w¢t-—1
N - . K
= K(Y: = Y7) + BE Xop1 - br-1, (1.21)
o+ w

where £ = (1 — a)(1 — af)(w + o)/a(l + wh), and the second line follows from the fact that
(1.20) implies that E,_pm, = E,_ o X,. Solving this forward, we obtain

o0
X, = wE,_ T4y VS — 4
t Ky 1{Tz=:t,3 ( T T)} a+w¢t 1

where we have used the fact that (1.17) implies that E,_;¢; = 0. Substitution of this into
(1.20) then yields

M = (1= 9)Eam+9[kEy 3 AT (Y — V)
T=t

(Et—l i(éT —7rs) — Ep o i(RT - TTT+1))]- (1.22)

T=t

K
w+o

This is our aggregate supply (AS) equation, relating inflation variation to deviations of
output from potential. Because prices are set in advance, expectations of future increases in
output relative to Y5 also raise prices. In addition, inflation declines when the long term real
interest rate at ¢ is higher than had been expected at ¢ — 1. The reason for this is that such
upwards revisions raise the returns households can expect to earn from their revenues at 7.
As a result, they are inclined to raise these revenues by cutting their prices. Only surprise
variations in the long rate contribute to this term, because only those variations result in
changes in the current marginal utility of income that are not reflected in the current level
of aggregate consumption demand, and hence in the output gap.

To complete our model specification, we posit that interest rates are set according to a

10



feedback rule of the form
My my . mpg
re—rt =2 aj(mey =)+ 3o bV + 3 cilre; — 1) (1.23)
§=0 j=0 i=1

Here 7 is the continuously-compounded nominal interest rate (identified with log R; in terms
of our theoretical model, and with the Federal funds rate in our empirical implementation
of the model), r* is the steady-state value of r implied by the policy rule, and 7* is the
steady-state inflation rate implied by the rule. In equilibrium, the steady state nominal
interest rate r* must equal the sum of the equilibrium steady state real interest rate p and
the steady state inflation rate m*. Thus, if p is independent of the monetary policy rule (as
our model implies®), the monetary authority’s choice of 7* implies a value for 7*. Thus the
pair of values 7* and r* represent only a single free parameter in the specification of the
policy rule, which we shall treat in the subsequent discussion as the choice of 7*.°

The aim of our paper is to discuss the effects of alternative rules of the form of (1.23). In
our discussion, we will generally treat separately the effects of the parameters a;, b; and ¢;,
which indicate how the interest rate reacts to the history of the economy, and the effects of
the choice of m*. This is because, in our log-linear approximation to the model’s equilibrium
conditions, the parameter 7* has no effect upon the implied responses to shocks (and hence
upon the equilibrium variability of the various state variables), while the parameters a;, b;, ¢
have no effect upon the implied steady state (and hence upon the average equilibrium values
of the state variables). We may thus study separately the determination of the steady state
and the determination of fluctuations around the steady state, and different parameters of
the policy rule matter for each of these investigations. Qur overall welfare criterion (discussed
in the next subsection) depends, however, upon both aspects of equilibrium, and so upon
both sets of policy parameters.

Our complete model of the economy consists of the IS and AS equations (1.11) and
(1.22) together with the monetary policy rule (1.23). To evaluate the effect of changing the
monetary rule we need to know both the parameters of the model as well as the stochastic

process for the two structural disturbances, G, and Y’ts . the first of which affects only our IS
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equation while the second affects only our AS equation. In Rotemberg and Woodford (1997,
1998) we describe both our method for estimating and calibrating the behavioral parameters
as well as our approach to reconstriicting the structural disturbances and their stochastic
process. Here we give an outline of this approach.

We start with a recursive VAR model of the state vector'®
Zy = [f4, ftrp1, Yeur (1.24)
where 7 = r, — r* and 7, = m; — 7*.! We estimate a system of the form
Zy=BZ,_, + Ug (1.25)

where the vector Z, is the transpose of [Z], Z_,, Zi_,], and U is a lower triangular matrix
with ones on the diagonal and nonzero off-diagonal elements only in the first three rows, the
off-diagonal elements of which are estimated so as to make the residuals in €; orthogonal to
one another. The first three rows of the vectors €, contain the VAR residuals €1, €2y and
e3+, While the other elements are zero. The number of lags included in our VAR is sufficient
to eliminate nearly all evidence of serial correlation in the disturbances.

The first equation in this VAR is our estimate of the monetary policy rule. This estimated
rule has the same structure as (1.23), except that it also includes a white noise residual €1¢-
Note that while the interest rate comes first in the casual ordering, the timing of the variables
ensures that the interest rate in period ¢ responds to inflation and output in period ¢, while
these variables only react to lagged interest rates. We suppose that e, is independent of the
two “real” disturbances ¥, and G, so that it is exclusively a monetary policy disturbance.
(Note that these identifying assumptions are ones that are implied by the decision lags
assumed in our theoretical model.) Under these assumptions, we can estimate not only the
coeflicients of the historical monetary policy rule, but also the impulse responses of output,
inflation and the interest rate to a monetary policy disturbance. We can then recover most of
the structural parameters of our model by minimizing the discrepancy between the estimated

responses of these variables to the monetary disturbance e1¢ and the responses predicted by
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our theoretical model when the systematic part of the monetary policy rule is given by the
estimated coefficients in (1.23).}? By calibrating the remaining parameters on the basis of
other evidence, we obtain numerical values for the model parameters «, 3, v, o, # and w.
These are, respectively, .66, .99, .63, .16, 7.88 and .47, so that & equals .024 and ¢ equals
.53.

Armed with our parameter values and the VAR, we can reconstruct the stochastic pro-
cesses for the structural disturbances as follows.’® Equation (1.11) gives G, as the sum of ¥
and o times the expected long term real rate. Given that the VAR allows us to forecast both
inflation and interest rates, this expected long term real rate is a function of Z,. Similarly,
solving (1.20) for X, as a function of inflation and expected inflation, and substituting this

into (1.21), we find that ¥;% must be given by

Py

. 1 1—v 8 1
YtS =Y, —m+ ——FE om +<E;_ 7y —
K Ww+o

K K

Furthermore, using (1.17), the last term in this equation can be written as a function of

Pr-1.

expectations of future interest rates and inflation rates, as of periods t — 1 and ¢ — 2. Using
the VAR to forecast future variables, the right hand side of the equation then depends just on
Zy_1, on Z;_y, and on the model parameters. It is thus straightforward to use the structural

parameters as well as the matrices T and A4 to compute matrices ' and D such that
St = [Gt+1 ) Y;il]l = CZtml + De;. (1'26)

The resulting historical time series for the two disturbances s; could then be identified with
the residuals of the model’s structural equations.

If the model fit the properties of the U.S. time series perfectly, the vector s, constructed in
this way would be orthogonal to the identified monetary policy disturbance e, ;. In practice,
the right hand side of (1.26) does depend upon the first element of the vector of VAR
residuals &;, which we identify as the monetary policy disturbance. Perhaps more troubling
is the observation that if the real disturbances s, are generated by a law of motion of the kind

implied by conjoining (1.26) with equation (1.25) for the evolution of Z,, then we should not
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expect all three of the independent structural disturbances &, that matter for the evolution of
S¢ to be revealed by data on the three variables in Z, alone. (This is because one of the VAR
innovations corresponds to the monetary policy shock, so that only the other two orthogonal
innovations can reveal information about the real disturbances.) But this would mean that
forecasts of the future values of the variables in Z; using the VAR should not correspond,
in principle, to the expectations of these variables conditional upon the public’s information
set (assuming that the public has complete information about the structural disturbances);
and thus our method for identifying the historical series for our structural equation residuals
would not be internally consistent.

We prefer instead to work with a theoretical model not subject to this last problem,
i.e., one in which the evolution of the real disturbances s, depends only upon two orthogonal
disturbances each period, which then should in principle correspond to the two VAR residuals
€y and &3. The structural disturbances s; of our theoretical model then have moments
that do not correspond precisely to those of the residuals of our model equations; but this
discrepancy will exist only insofar as our model {quite apart from the law of motion chosen for
the structural disturbances) is in fact inconsistent with the estimated VAR (and in particular,
with the estimated impulse responses to a monetary policy shock). We accordingly consider
a law of motion

s:=CZ_, + Dlel (1.27)
for the structural disturbances, where the matrix C is the one referred to in (1.26), Df
corresponds to D with the first column deleted, € is a vector of two orthogonal white noise
disturbances (which correspond to & and &j). Here Z! is a vector of exogenous state

variables that evolve according to

zl = Bzl + Ute], (1.28)

where B is the same as in (1.25), and U' corresponds to U with the first column deleted.
Note that because the elements of Z{ refer to exogenous states (underlying states for

the dynamics of the real disturbances s;), unlike the elements of Z, (which correspond to
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endogenous variables of our model), this specification does not imply the existence of any
feedback from the evolution of the endogenous variables to the exogenous disturbance pro-
cesses s;. What this construction does guarantee is that the empirical impulse response
functions of inflation, output and interest rates to the two VAR disturbances orthogonal to
the monetary policy shock are identical to the impulse responses predicted by our theoretical
model. This property of the predicted impulse responses is independent of the structural
parameters assumed in the model. Thus, given this method for constructing the laws of
motion for the real disturbances, only the estimated responses to the monetary policy shock
contain any information that can be used to help identify the structural parameters. This is
our justification for the strategy that we use for parameter estimation, mentioned above.

It is worth noting that the stochastic processes for the real disturbances that we obtain
with this method imply a great deal of variability for both G, and Yts . For example, the
standard deviations of these two series are 29.5 and 13,7 percent respectively.!* This extreme
volatility is consistent with the fact that the literature reports many “failures” in fitting
equations very similar to our IS and AS curves by either ordinary least squares or by using
lags as instruments. Our interpretation of these “failures” is that they say simply that these
equations are subject to disturbances whose variance is large and whose serial correlation
pattern is rich (so that they are correlated with the lags that are used as instruments).

In this paper, we evaluate monetary rules by evaluating how well they perform when the
economy is buffeted by these shocks to G and Y°. In other words, we are asking how the
U.S. economy would perform if it were subject to structural disturbances whose properties
are the same as those which have affected it in the past while, at the same time, the way
interest rates are set by the central bank is different. Because the structural equations (1.11)
and (1.22) follow simply from the Euler equations for optimal intertemporal behavior on the
part of households, and so can be derived without reference to any particular specification of
the monetary policy rule, they should remain invariant under contemplated changes in that
rule. Thus our stochastic simulation methodology responds to the Lucas (1976) critique of

more traditional methods of econometric policy evaluation.!®
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1.2 The Welfare Loss from Price-Level Instability

One of the primary advantages of our derivation of our structural equations from explicit
optimizing foundations is that we are able to evaluate alternative monetary policy rules in

terms of their welfare effects. Specifically, we consider the effects upon the average level of

welfare
W= B{u(Cii&) - [ vlulz)i&)dz) (1.29)

in the stationary equilibrium associated with one or ancther policy rule within the class that
we consider.
Here the expectation is over alternative possible histories of the preference shocks & (which
include the effects of technology shocks, since technological possibilities are implicit in our as-
sumed disutility of supplying output). We only consider the welfare associated with alterna-
tive stationary rational expectations equilibria, in which all relative quantities are stationary
and all quantities are trend-stationary. Thus we can evaluate an unconditional expectation
in (1.29) for each of the equilibria that we consider. We also restrict our attention to mone-
tary policy rules which result in unique stationary rational expectations equilibria (in terms
of inflation, all relative prices, detrended output, and all relative quantities); we thus obtain
a unique welfare measure for each policy rule in the admissible set. Given that we evaluate
the unconditional expectation, rather than conditioning upon the current state of the econ-
omy at some particular date at which the policy choice is to be made, the criterion (1.29)
Is equivalent to comparing equilibria on the basis of the average level of expected utility
of the households in our model (for the unconditional expectation of the latter quantity is
simply (1 — 3)~'W). We evaluate the unconditional expectation in order to obtain a policy
evaluation criterion that is not subject to any problem of time consistency.

Following Rotemberg and Woodford (1998), we take a second-order Taylor series approx-
imation of this welfare measure around the steady-state values of the stationary variables
that affect utility. The “steady-state values” represent the constant equilibrium values of

these variables in the absence of real disturbances, and in the case of a deterministic mone-
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tary policy consistent with zero inflation.!” The steady state considered for this purpose also
involves a tax rate T which is set so that the steady-state level of output is efficient. (This
involves a small output subsidy, in order to counteract the distortion caused by monopoly
power.) Consideration of a Taylor series expansion around these values means that our ap-
proximate welfare measure will accurately rank alternative policy rules insofar as they result
in only a small degree of variability of the relevant state variables, and they result in average
values of the state variables that are close to the assumed steady-state values. Thus our
analysis should be most reliable in the case of rules which imply an average rate of inflation
not too different from zero and an average level of output near the optimal steady-state
level ¥, and in which the fluctuations in both inflation and output are small. In fact, the
policies that we characterize as optimal within various families of possible policy rules all
imply low inflation rates, and also low variability of inflation and output, in the case that
the variability of the real disturbances (represented by &) is small enough.

Linearization around this particular {optimal) steady state is extremely convenient, since
our approximate measure of W takes an especially simple form in that case. In particular,
in this case our second-order approximation for W depends only upon a first-order approxi-
mation to the equilibrium responses of inflation and output to the exogenous shocks. This
means that we can solve a log-linear approximation to the model’s equilibrium conditions
using standard linear methods, as sketched in the previous subsection, and obtain an ap-
proximation to W that neglects only terms of third order and higher in the deviations from
the steady state. This result depends upon the absence of any first-order contribution to
our welfare measure from changes in the average level of output under alternative rules (as
a result of the optimality of the level ¥ relative to which we consider deviations); for if W
contained a term of first order in the average level of outputl, then second-order terms in the
equations determining output would matter for a second-order approximation to W.

In fact, in the calculations reported here, we furthermore assume that the tax rate T
actually varies depending on the monetary policy rule, so as to ensure that E logY;] =logY

in any event. This allows us to obtain a measure of the deadweight loss associated with price-
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level instability that abstracts from any effects of alternative monetary policies upon the long-
run average level of output. While many analyses of the welfare effects of monetary policy
have emphasized exactly such effects,'® we think there is good reason to abstract from them.
Our primary reason is that there exist other policy instruments, such as the general level of
and structure of taxation, which allow the government to influence the average level of output
while, at the same time, being much less well-suited for the achievement of stabilization
objectives, since they cannot be adjusted quickly and precisely in response to shocks. It
thus makes sense to assume that, in an optimal policy regime, the other instruments are
chosen to achieve the desired average level of output for a given monetary policy, while the
monetary policy rule is chosen to minimize those contributions to deadweight loss that are
independent of the economy’s average level of output. We do this by choosing the monetary
policy rule that maximizes W under the assumption that the other instruments are adjusted
in the manner stated in response to any change in the monetary policy rule.

Abstracting from these effects also has the advantage of making our results independent
of a feature of our model about which we are especially uncomfortable, namely its predictions
about the effects of sustained inflation upon the long-run level of output.'® One might think
that sustained inflation should result in adaptations that eliminate any effects of the aver-
age inflation rate upoﬁ average output. One such adaptation would be price commitments
that specify a constant rate of price increase of m* between the occasions upon which the
commitments are modified, as assumed in Yun (1996). With this modification, our model
would come to satisfy the “natural rate hypothesis”. In the modified model, the correct
second-order approximation to W would be exactly the one that we report here, but then it
would apply to small fluctuations in the rate of inflation around any average value 7*.%0

We show in the Appendix that, under these assumptioﬁs, a second-order approximation

for W is given by

W = _%Uc?(o +wvar{(E,_o(Y; = ¥,%)} - %“CY’(G‘I +w)Elvar. {log y.(z)}]

+terms independent of policy + O(||€[|®), (1.30)
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where the suppressed final terms are either independent of the evolution of the endogenous
variables, or of third order or smaller in the size of the exogenous disturbances. Note that
this welfare measure depends solely upon the allocation of real resources, summarized by
the pattern of levels of production {y.(z)} at each point in time. However, equation (1.30)
indicates that welfare depends not only upon the degree to which aggregate output deviates
from the natural level of output Y°, but also upon the degree of (inefficient) dispersion of
output levels across the different varieties of goods being produced at each point in time.
The dispersion of output levels directly corresponds, in equilibrium, to the degree of
dispersion of output prices. Prices differ across goods, in turn, only because of variation
in the overall price level (together with the fact that different suppliers adjust their prices
at different times). The E{var,{logy:(z)}] term in (1.30) can accordingly be expressed as a

function of the aggregate inflation process, as shown in the Appendix. With this substitution,

we obtain
1 _ N - 9 1 =+ Gw *
W = —§UCY{(W + o)var{E;, o(Y; -~ Y*)} + —((1—_c~1-)2—)[avar{Et_27rt} + an*?
1 —
+(o+ —=L)var(m, — E_gm)] } + t.ip. + O(lE]1). (1.31)

Here n* again denotes the steady-state rate of inflation associated with a given policy rule
(the rate of inflation when the shocks & = 0 for all time); it corresponds, neglecting terms of
second order or higher, to the average rate of inflation (or to the unconditional mean of #)
in the stationary equilibrium. The notation “t.i.p.” refers to the terms that are independent
of policy.

Expression (1.31) can be written more compactly as
W = —-Q[L+ 7" + t.ip. + O(€|]*) (1.32)

where

L = var{m} + v~ 'var{m — E,_ym} + Avar{E,_(¥; — f’f)}, (1.33)

and 2, A > 0. The quantity L + 7*? represents the measure of deadweight loss due to price-

level instability that we shall use to evaluate alternative monetary policies. Here the loss
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measure L collects the terms that depend solely upon the degree of variability of inflation
and the output gap, while #*2 is proportional to the deadweight loss due to nonzero inflation,
even when it is perfectly steady.?!

Note that our loss measure L is similar in form to a type of ad hoc loss function,
var{m} + Avar{¥;, — Y5},

for some A > 0, assumed in many analyses of optimal monetary policy (e.g., Taylor (1979),
Bean (1983)). Our utility-based derivation, however, allows us to assign a specific numerical
weight to the relative importance of stabilization of output around Y5, as opposed to inflation
stabilization. It also clarifies the kinds of stabilization that are important. Because of the
lags involved in pricing, it turns out to be desirable to reduce the variability of both expected
inflation and unexpected inflation. Moreover, the variability of unexpected inflation deserves
somewhat greater weight, unlike what the ad hoc loss function above would imply. The
analysis also makes it clear that it is the variability of quarter-to-quarter inflation, rather
than some longer-horizon average rate of inflation, or the deviation of the price level from
some deterministic or stochastic trend path, that is most closely related to the welfare losses
due to price-level instability. Finally, it makes it clear that it is the variability of ¥ — V'S,
rather than the variability of deviations of output from trend or the variability of output
growth, that matters for welfare. Specifically, it is the variability of the part of Y — Y'§ that
is forecastable two quarters earlier that policy should seek to minimize.

It is worth noting that all three of the terms in (1.33) are directly related, in different
ways, to inflation variability. For the analysis of optimal policy below, it is helpful to rewrite
L so that it depends only on the stochastic process for the relative price variable X. We show
in the Appendix that the model’s structural equations imply that (1.33) may be rewritten

in the form
~ . N A - -
L= VaI'(Et_QXt) + l/)V&r[Xg — Et_QXt] + Evar[Et—2(Xt - ﬁXH-l)]- (134)

This shows that the deadweight losses measured by L are zero if variations in X are elim-

inated (as we show below to be possible in principle). Thus a constant rate of inflation is
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both necessary and sufficient for achievement of the minimum value of L = 0. This means
that, even though our proposed welfare criterion (1.30) assigns ultimate importance only to
the efficiency of the level of real activity in each sector of the economy, it in fact justifies
giving complete priority to inflation stabilization as opposed to output stabilization.

Given the model, one can compute the value of L as well as that of its components for
any rule that sets the interest rate as a function of the history of inflation and output in such
a way that there is a unique stationary equilibrium. But this still leaves open the question
of whether there is a trade-off between stabilizing the economy by reducing L and keeping
a low steady state level of inflation. As suggested by Summers (1991), the requirement that
nominal interest rates must always be positive implies that a low average rate of inflation
Is inconsistent with a great deal of stabilization. The reason is that a low average rate
of inflation implies that the average interest rate is low, and this means that the interest
rate cannot be too variable. At the same time, keeping the variability of interest rates low
weakens the government’s ability to reduce L by having the interest rate respond to shocks.
To see this, it is worth displaying the relation between interest rates and X implied by our
model.

This relationship can easily be derived from the equilibrium conditions (1.17), (1.20),

and (1.21), together with the requirement that
Et(i/t+2 - C?.‘,+2) = 3;}4.2 — GH.Q, (1.35)

which is implied by the fact that interest-sensitive purchases in period t 4+ 2 are determined
at t. We first take the difference between (1.21) and the expectation of this equation at ¢t —2
and use (1.17) and (1.35) to obtain

(Xe = BBerRen) = BiealXe = %) = 6l(Ge = V) = Eical Gy - )] = =611
Using this expression to substitute for ¢, ; in (1.21), we obtain
Vi = Y7+ kT B X - Re) + [(Go — V) — BuolG, - Y (1.36)
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We now rewrite (1.17) using (1.36) to substitute for ¥; and the expression just above to

substitute for ¢;_;. This yields

. N R g A N . -
EiRy1 = EXio+ e+ EEtKXHZ — BXi43) — (Xi41 — 8Xi42)]
w N N N -
_E[Et(XH-l — BXt42) — Eee1( X1 — BXi10)] (1.37)

where we have used the fact that (1.20) implies that E;_,m, = EHX}, and where

pe = WGt = Vi51) = Eees (G = V3] = 0[B(Grrz = ¥iy) — (Guin — ¥5)) (1.38)
Note that p, is an exogenous stochastic process, that can be expressed as a function of the
history of the shocks &;.

Equation (1.37) represents the only restriction implied by our model on the behavior of
R, given the evolution of X,. For any given process for Xt, the variance of R, is obviously
minimized by setting R,,1 equal to the right-hand side of (1.37). In the case where one
wishes to stabilize prices completely, this means that Rtﬂ is given by p;, as discussed in
Rotemberg and Woodford (1997). This means that the interest rate at f + 1 must rise
whenever (GH_I — f’tf_l) increases unexpectedly at t. If, instead, upwards revisions in (Gt+1 —
Ytil) are matched by upwards revisions in X 41, Rtﬂ need not rise as much. In other words,
if inflation is allowed to respond to these shocks, the interest rate does not have to respond
as much to them.

We propose a simple representation of the quantitative connection between average infla-
tion and the variability of interest rates as in Rotemberg and Woodford (1997). In particular,
we suppose that, along any equilibrium path, the lowest possible value of r* (and 7*) con-

sistent with a given degree of interest-rate variability is given by

" =p+7" = ko(R), (1.39)

A

where o (1) refers to the standard deviation of the unconditional distribution for R, in the
stationary equilibrium associated with a given policy rule. We let the factor k equal 2.26,

which is the ratio of the mean funds rate to its standard deviation under the historical regime
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so that, in effect, we are assuming that this is the minimum possible value for this ratio.??
For any monetary policy rule we consider, we thus compute the variance of the nominal
funds rate, and then use (1.39) to determine the associated value of 7*. We then compare
policy rules according to how low a value they imply for the overall deadweight loss measure
L 4 7223

While minimizing the welfare losses of the agents in the economy is a rather obvious
objective for policy, it is worth looking more generally at the effect of different monetary
policy rules on the variances of output, inflation, and interest rates. This analysis has several
benefits. First, it provides intuition for our results concerning the effects of different rules
on L + m*2. Second, because this analysis is not as dependent on the subset of parameters
that we calibrate, it remains valid even if some our calibrations are inappropriate.

Finally, the model may be incorrect in ways that maintain the validity of our estimates
of the structural parameters but vitiate our welfare analysis. We do not know the precise
range of variations on the model for which this would be true. One simple example would
be if there are changes over time in the elasticity of substitution of different goods for each
other. This would imply that the Dixit-Stiglitz aggregator varies over time. The resulting
changes in the elasticity of demand faced by each firm would lead firms to desire changes in
the ratio of price to marginal cost. As far as the algebra of the model is concerned, such
changes in the desired markup have the same effect as changes in Y,%. The difference is that,
under this alternative interpretation, it is no longer socially desirable for output to track the
time variation in Y;°. In particular, variation in desired markups would justify an objective
of reducing the variance of output relative to trend more than is implied by our minimization
of L 4 7*2 below. For this reason, as well as for comparability of our results with those of
other studies, we look at a relatively wide range of consequences of the monetary rules we

study.
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2 Consequences of Simple Policy Rules

As noted earlier, we wish to compare a variety of types of monetary policy rules that make
the interest rate r, depend on the history of output, inflation and the interest rate itself, In
this section, we explore the effects of varying the parameter in some very simple rules of this
kind. These simple rules, which are variants of the rule proposed by Taylor (1993), have
some practical advantages. Their simplicity makes them easy to understand so that a central
bank that adopted them ought to find it easy to explain what it is doing. As a result, the
public ought to find it easy to monitor the central bank’s compliance with its rule. Finally,
the use of similar rules in the other papers in this volume makes our results concerning the
desirability of these rules directly comparable to theirs.

When we study rules that can be described by only a small number of parameters, we
study the consequences of parameter variation for two sorts of issues. First we analyze the
range of parameter which ensure that a determinate rational expectations equilibrium exists;
as an extensive prior literature has stressed, determinacy of equilibrium cannot be taken for
granted in rational expectations models, especially in the case of a monetary policy defined
by an interest-rate rule. (See, e.g., Bernanke and Woodford, 1997, for general discussion of
this issue, and illustrations in the context of a model similar to the one that we use here.)
Next we study the effect of parameter variation within the range of parameter values for

which equilibrium is determinate.

2.1 Performance Measures for Alternative Rules

For each of the rules we consider, we compute a number of statistics relating to the vari-
ability of inflation, output and interest rates in the unique stationary rational expectations
equilibrium associated with that rule. These statistics are reported in Table 1 for a number
of rules of particular interest. The significance of the parameters a, b and ¢ that define these
rules is explained below.?

Among the specific rules included in the table are several that are also considered in
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other papers in this volume. These are labeled A; — D;, with i equal to 0 in the case of rules
where the interest rate responds to contemporaneous output and inflation, while 1 equals 1
in the case where it responds with a lag. The table also reports the effects of setting the
parameters at the values that represent the best rule (in the sense of minimization of our
utility-based loss measure L + 7*2) within each of several families of simple rules discussed
below (these are labeled Ey — Gy, and E; — G;). Finally, we also report the statistics
associated with our estimate of actual U.S. policy during the period 1979-1995 (rule H), and
for the unconstrained optimal policy according to our model, discussed in section 3 (rule I).

The statistics reported in Table 1 include the variance of output around trend, the vari-
ance of inflation and the variance of the Federal funds rate. In addition to these conventional
statistics, we also report the variance of quarterly innovations in the rational forecast of the

long-run price level. This is the variance of changes in the variable
> = E, Tli_rgo[log Pr —Tn*,

which is just the stochastic trend in the price level in the sense of Beveridge and Nelson
(1982). (Note that it follows from this definition that the first difference of p™ is also the
innovation in this variable.) We include this statistic as an alternative index of the degree of
price stability associated with different equilibria. The advantage of this statistic is that it
reflects the extent to which agents make capital gains and losses on long term nominal con-
tracts and some analysts have expressed concern over these {e.g., Hall and Mankiw (1994)).
Finally, we also report the coefficient 34 of a regression of the innovation at ¢ in the forecast
of the long-run price level p* on the quarter ¢ innovation in the (log) price level at ¢ + 1.
(Recall that according to our model, the price level P, is determined at date ¢.) This coefhi-
cient tells us whether inflation innovations in quarter ¢ eventually lead to a higher price level
or whether instantaneous increases in the price level are later offset by subsequent expected
reductions in prices. In the case of a random walk in the log price level, we should find

Bsc =1, while if temporary price-level increases are eventually completely offset, we should

find B, = 0.

25



The first column of Table 1 serves as a key for Figures 1, 2 and 3, where the consequences
of these rules for the variability of output, inflation, interest rates and long-run price-level
forecasts are plotted. The first of these figures has a certain similarity to the policy frontier
shown in Taylor (1979), in that rules that have smaller standard deviations of inflation tend
to involve larger standard deviations of output and vice versa. The only rules that appear
to be “dominated” in this plot are the rules with labels in the series C; and D;. These
are simple “Taylor Rules” that make the funds rate a function only of current inflation and
output, and they respond much more strongly to output fluctuations than does our optimal
rule in that family (labeled Fy). The rules in families C; and D; are worse than the B; rules
because they induce a higher standard deviation of inflation without reducing the standard
deviation of output. Interestingly, the rule Fy, which is the best rule of this type in terms
of minimizing our utility-based loss measure, is something of an outlier as well in that it
involves more variability of both inflation and output relative to other rules in the set. From
the point of view solely of the criteria plotted in this figure, historical policy seems to be
slightly worse than the rules described by B;, but not significantly so.

Figure 2 paints a different picture, one that involves pure dominance relations and no
trade-offs. Once again, the rules C; and D; are particularly bad, in that they now also involve
a high standard deviation of the funds rate. Among the remaining rules, those with a lower
standard deviation of inflation tend to have lower standard deviations of the funds rate so
they allow average inflation to be lower as well. Thus, the best rules in this plot are the
rules E; which, as we shall see below, also minimize I + 7*2 among rules that are as simple
as these. These involve both low standard deviations of inflation and interest rates, while
the other rules perform worse on both dimensions. When coupled with the results of Figure
1, we see that — leaving aside C; and D; - the rules we consider here have the property that
those that reduce the standard deviation of output tend to raise the standard deviation of
nflation and interest rates simultaneously.

Figure 3 shows the implications of these rules for the variance of inflation and the variance

in the innovation of the forecast of the long-run price-level. We see in this Figure that the
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specific rules we consider rank equally along these two dimensions. The price-level rules G;
and the E; rules have both the lowest variance of inflation and the smallest innovations in
the long run price level. That the price-level rules have low variances in the long-run price
level is not surprising, since they ensure the price leve! is stationary. What is perhaps more
surprising is that the best of the rules that respond to deviations of the inflation rate from
target have this property as well.

The regression coefficients g, of the innovation in the long-run price level on the current
price level innovation reported in Table 1 help to explain this finding. This coefficient
is obviously zero for the price-level rules, since these equilibria involve no change in the
forecast of the long-run price level at any time. For the E; rules as well as for the rule
marked I, which is the rule that minimizes L + 7*? among all possible rules, this coefficient
is actually smaller than -1. This means that increases in the contemporaneous price level
eventually lead to a lower price level, and indeed, to a lower price level by an amount that
Is even greater than the size of the initial price-level innovation (but with an opposite sign).
Thus, while the long-run price level is not being stabilized, expected reductions in future
inflation more than offset the initial increase in the price level. This stands in sharp contrast
to the other rules reported in the table. For these rules, this coefficient exceeds one so that
increases in the current price level lead to even larger increases in the long-run price level.
This means that, on average, increases in inflation are followed by further inflation. This
clearly destabilizes the long-run price level. In addition, because expected future inflation
leads price setters who can change their prices at ¢ to raise their prices by more, it also means
that inflation at ¢ is increased by policies that follow inflation at ¢ with further inflation. For
this reason, policies with high values of A, have both variable inflation and large variances
in the innovation of the long run price level.

The remaining columns of Table 1 report statistics that measure various components of
the utility-based measure of deadweight loss derived in the previous section. The columns
labeled var(r), var(m — E7) and var{ E(Y — Y 5)} report the values of the three unconditional

variances that receive positive weights in expression (1.33) for the loss measure L. The third
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column from the right then reports the implied value for L. This is our summary measure
of the deadweight losses due to variability of inflation and output, in units of the variance
of inflation. We scale inflation so that m = 1 corresponds to a 1% inflation per year. Hence,
L =1 indicates the same degree of deadweight loss as results from this inflation rate. The
next-to-last column reports the minimum value of ©* consistent with the degree of funds rate
variability required by the policy rule, using (1.39) to derive this. Finally, the last column
reports the implied value of L + 7*?, our total measure of deadweight loss.

One interesting fact about the table is that the ranking of alternative rules according to
their implications for the variability of ¥ — ¥ is quite different from their ranking according
to their implications for the variability of output relative to its deterministic trend path. The
Henderson-McKibbin (1993) rule Dy, that minimizes var(Y") among those considered in the
table, implies the highest degree of variability of output relative to the natural level ¥°°. This
indicates that responding to deviations of output from a deterministic trend, while perhaps
successful as a way of stabilizing output around that trend, may well be counter-productive
if one is interested in keeping output close to its natural level. (Compare Figures 6 and 8
below, for further illustration of this point.)

Another fact that is apparent from the table is that the ranking of different rules according
the value achieved for L is essentially the same as their ranking in terms of the variability of
inflation. Thus our utility-based welfare criterion L+7*? leads to conclusions that are similar
to those that would be reached by giving some weight to the reduction of both the variability
of inflation and the variability of the funds rate. In both these respects, the rules labeled
E;, G;, and I are better than the others. We turn now to a more systematic exploration of

the consequences of parameter variations, in order to clarify why this is so.

2.2 Simple “Taylor Rules”

We first consider the consequences of varying a and b in simple “Taylor rules” of the form
#y = afty + bY, (2.1)

where once again #, = r, — r* and #, = #, — #*. Note that both the rule Coy proposed by
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Taylor (1993) and the related rule Dy considered by Henderson and McKibbin (1993) belong
to this family. Our aim here is to highlight the trade-offs involved in choice between having
Interest rates respond to output and having interest rates respond to inflation.

In the case of simple Taylor rules of the form (2.1) with a constrained to be positive,
our loss criterion L + #*? reaches a minimum when a equals 2.88 and b equals 0.02. The
consequences of this rule for our loss measures is displayed in Table 1, where the rule is
designated Fy. As one might guess, this rule (which places essentially all of the weight on
inflation variations rather than output variations) allows much greater variations in output
relative to trend than do rules Cy and Dy. However, according to our model, it leads to less
variability of output relative to its natural level, which is what matters for our loss measure.
It also results in significantly less variability of inflation, and noticeably less variability of the
funds rate. (It is actually the latter difference that is most significant for our loss measure,
because of the reduction in the average inflation rate 7* that it allows.) The ultimate result is
a reduction in deadweight loss by a factor of three, relative to the other proposals. However,
our model and our loss measure imply that this rule would not represent an improvement
upon historical U.S. policy in the Volcker-Greenspan period. To do better we must not simply
vary the weights on inflation and output, but consider at least slightly more sophisticated
rules.

Before turning to other families of rules, it is worth noting that the welfare criterion
L 4 7** reaches an even lower value, according to our model, if we allow @ and b to be
negative in (2.1). The optimum then involves a equal to —1 and b equal to —1.3. The idea
that negative values of a and b are acceptable may be surprising. For this reason, Figure
4 displays both the region where equilibrium is determinate as well as a contour plot of
L + 7*? as we vary a and b. The equilibrium is not unstéble for any of these parameter
values (i.e., a stationary equilibrium always exists), but equilibrium is indeterminate in the
shaded region. Indeterminacy arises, for example, when b is zero and a is small and positive.
This indeterminacy implies, among other things, that inflation can vary simply as a result

of changes in expectations. A “sunspot” can lead inflation at ¢ to rise, for example. The
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real interest rate would then fall (because the nominal interest rate responds little) and
the resulting increase in output means that expected future inflation is lower than current
inflation. Thus the change in the expected future path of inflation that is required to justify
the initial change in inflation is consistent with expected future inflation converging back to
the target inflation rate #*. In this case, a stationary rational expectations equilibrium is
possible in which such fluctuations occur simply because they are expected to.

If, instead, a is large and positive, no such equilibrium is possible. Any increase in
inflation above its unique saddle-path value is matched by increases in real interest rates
which imply that output must fall. This, in turn, implies that expected future inflation rates
must be higher than current inflation, given the nature of our AS curve. Thus, inflation must
be expected to explode and, since this is not consistent with stationarity, inflation must equal
its saddle-path value in the unique stationary equilibrium. Similarly, as mentioned above,
the equilibrium is determinate when a and b are both negative.

Figure 4 presents contour lines for the value of our loss measure L + 72 in the regions
where equilibrium is determinate. Policy Fj appears as a star on this figure, at the point
of a local minimum of the loss measure. However, the region of determinate equilibria
with negative a and b also contains a local minimum. This point, which is shown with a
star inside a circle, is actually the global minimum value. Nonetheless, we have chosen to
present the local minimum Fj in Table 1, on the ground that restricting attention to values
a > 0 corresponds to rules that are more similar to the Taylor and Henderson-McKibbin
proposals. In addition, once we consider more general families of rules, we do find that
the best rules involve tightening monetary policy (i.e., raising the funds rate) in response
to inflation increases, as conventional wisdom (at least since the work of Wicksell (1907))
would indicate.

Similar contour plots for other statistics reported in Table 1 provide further insight into
why our loss measure varies with @ and b as it does. Figure 5 shows the contour plots of the
variance of inflation, while Figure 6 shows the contour plots for the variance of (Y —YvS ).

These figures are essentially identical to each other, and they are both similar to the contour
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plot for L itself. There is thus no trade-off between stabilizing inflation and stabilizing
(Y — Y'5); the same parameters stabilize both. This follows immediately from our AS curve
which relates inflation to departures of ¥ from Y. For the ranges considered in our figures,
a wheel marks the global optimum for the performance criterion being considered. Thus,
the figure shows that these variances become as small as possible when a is at its maximum
possible value of 20 while b is set to a small negative number. Making a big contributes
to stabilization because it ensures that interest rates rise a lot when either G rises or V5
falls. This ensures that inflation does not rise much in either case and that, at least after
the demand for output adjusts to changes in real rates, output does not rise in the former
case while it declines substantially in the latter.

As Figure 7 indicates, the rule that minimizes L by setting @ equal to 20 leads to very
variable interest rates. This is in part due to the delays in the response of output to interest
rates. These delays imply that changes in &, that become known at £ — 1 inevitably change
output at t since C; is predetermined. This leads firms to raise their prices at ¢ unless long
term real interest rates rise unexpectedly. With ¢ equal to zero, this means that prices can
only be stabilized if the nominal interest rate at t rises a great deal. The resulting variability
of interest rates then requires a high average inflation rate for interest rates never to be
negative. This high inflation is so costly, at least relative to the benefits of the additional
stabilization that is possible with a high value of a, that the contour plots for the variance
of the interest rate are essentially identical to the contour plots for L + 7*2. The point that
minimizes the variance of interest rates has a sufficiently stable inflation to be quite desirable
as far as total welfare is concerned.

It is interesting to note that the stabilization of output requires a quite different set of
parameters. This is demonstrated in Figure 8 which gives the contour plots for the variance
of output. This variance is reduced by keeping a small and positive while making b very
large. Not surprisingly, output is stabilized if the real interest rate is raised significantly
by the central bank whenever output rises while it is lowered when output declines. What

is interesting here is that the effect of the policy parameters on the variance of (Y — Y5 )
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which are essentially the same as the effects on L, are very different from the effects on the
variance of Y. The reason is that the VAR of Rotemberg and Woodford (1997) identifies
large short run fluctuations in Y'S5. As long as these are treated as variations in the welfare
maximizing level of output, setting b large is not desirable and, indeed, stabilization of
(Y -YS ) requires that b be negative at least when a is 20. Even higher values of a reduce
the variance of (Y —¥5) still further. Obviously, the result that the stabilization of ¥ relative
to V¥ requires very different policies from those that stabilize output relative to trend is very
sensitive to the assumption that our estimate of ¥'S is indeed the welfare maximizing level
of output. This conclusion would presumably change dramatically if movements in Y5 were
viewed as resulting from changes in distortions such as changes in desired markups. From
an empirical point of view these two interpretations may be diff.cult to disentangle because
we identify ¥ by measuring shifts in the empirically estimated aggregate supply equation
given by (1.22). Unfortunately, changes in desired markups will shift this equation just as

much as changes in technology or other changes in the welfare maximizing level of output.

2.3 Rules that Involve a Lagged Interest-Rate

We achieve improvements in household welfare if we generalize the family of simple Taylor
rules to allow the funds rate to respond also to lagged values of itself. We thus consider

generalized Taylor rules of the form
Py = afy, + BY, + cfy_,, (2.2)

where we now allow ¢ to be greater than zero. This allows for interest rate smoothing, so
that sustained changes in output and inflation lead to only gradual changes in interest rates.
Actual policy in the United States and elsewhere seems to involve some degree of interest
rate smoothing, though academic commentators have often questioned why this should be
0.2 Nor is there any reason to restrict attention to the case 0 < ¢ < 1, though it is only
in that case that the policy rule can be described as involving partial adjustment toward a

“target” funds rate that depends upon current output and inflation, as assumed for example
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in Clarida et al. (1997). An alternative is to follow Fuhrer and Moore (1995) and model
U.S. interest rates by supposing that c is equal to one, so that it is changes in the funds
rate, rather than the level of the funds rate, that respond to deviations in inflation and
output from their typical levels. Policy proposals of this kind are considered elsewhere in
this volume with rules Ay and Bg in Table 1 being examples of such rules. We find that
policies that involve values of ¢ even greater than one often result in determinate rational
expectations equilibria in our model, and so we consider arbitrary positive values of ¢. In
fact, rules with ¢ > 1 turn out to possess an important advantage, and this is one of our
most important findings.

To gain some insight into the consequences of varying ¢, we set b equal to zero and
discuss contour plots in the {a, c} plane for various measures of economic performance. Our
motivation for starting with plots that set b equal to zero is that, as we show below, the
welfare optimum obtains near this point. Moreover, the resulting family of rules has a very
simple interpretation as the family in which interest rates depend only on inflation and lagged
interest rates. Figure 9 displays the resulting contour plots for var(#) which, once again, are
essentially identical to those for both the variance of ¥ — ¥ and for L itself. One interesting
aspect of this figure is that it shows that detérmina.cy obtains with ¢ greater than one even
if a is negative so that the Fed reacts perversely to inflation by cutting rates when inflation
rises. The reason is that, as in the earlier case with negative values of a, these rules also
induce explosions in response to deviations of inflation and output from saddle point paths.

One surprising aspect of the figure is that it shows that “explosive” monetary rules in
which c exceeds one do not produce explosive equilibria. In a way, this potential explosiveness
of interest rates is effective at keeping the economy on track in this model. It means that,
unless the price level reacts properly, the real interest rate falls or increases exponentially.
An cxponential increase in real rates represents a rather substantial reduction in expected
future aggregate demand and thus leads firms to cut prices. The result is that the economy
stays on a non-explosive path in which increases in inflation are matched by subsequent

reductions in inflation which ensure that the interest rate does not explode. In fact, higher
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values of ¢ actually increase the range of values of a for which a determinate equilibrium
exists, by helping to solve the problem of indeterminacy discussed above.

The figure also shows that, within the range being considered, the goal of inflation stabi-
lization is furthered by setting a to as large as possible. The variance of inflation reaches its
minimum value (over the range of rules shown in the figure) when a equals 20 and ¢ takes
a positive value less than one. If the range of the figure were extended, the optimum would
involve even higher values of a. Thus, the key to inflation stabilization remains making sure
that the interest rate reacts vigorously to inflation.

Interestingly, a higher value of ¢ turns out to be better if one seeks to stabilize the long
run price level. This can be seen in Figure 10 which shows that, for any given value of a,
the variance of Ap™ reaches a minimum of zero for ¢ equal to one. Further insight into
this behavior of the variance of Ap™ can be obtained from Figure 11 which shows 8 as
a function of a and c¢. This figure shows that, when c is zero, 3% is greater than one so
that initial increases in inflation are followed by further inflation. The reason for this is
that an increase in G, raises the price level at ¢ somewhat in spite of the increase in interest
rates that takes place at ¢. But, unless the price level continues rising, interest rates would
immediately return back to their steady state level. The result is that, in equilibrium, prices
do keep rising because the initial increase in prices means that marginal cost has gone up for
the firms which did not raise their price at ¢. Consequently, increases in the price level at ¢
are followed by further increases in prices which, admittedly, are kept somewhat in check by
the fact that the interest rate remains somewhat above the steady state for some time.

If, instead, c is made higher, the interest rate tends to stay high after an increase in &
even if the price level ceases to rise. This means that firms can be induced not to change
their prices in the aftermath of an increase in G. The result.is that initial increases in prices
are followed by smaller increases so that 3 is smaller and the variance of Ap™ falls. Setting
c equal to one as suggested by Fuhrer and Moore (1995) makes 3* equal to zero so that the
shocks have no effect on the long run price level. Even higher values of ¢ imply that initial

increases in inflation are followed by such high real rates that the expected long run price
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level is lower than the initial price level so that 8> is negative.

For a given initial increase in inflation and interest rates, higher values of ¢ imply that
the long run real rate rises more both because future short rates are expected to be higher
and because future inflation is expected to be lower. Since unexpected increases in the long
term real rate prevent prices from rising this means that, for given a, increases in G (and
reductions in Y5 ) lead to smaller immediate price and interest rate increases the higher is .
This is reflected in Figure 12 which shows that, for each a, the interest rate is less variable
the higher is ¢. It also shows that, not surprisingly, the variance of interest rates increases
with a.

While we have focused on stabilizing the variability of interest rates because of their
implication for average inflation, the Fed also seems to be concerned with stabilizing the
change in the funds rate from one week or month to the next. This would explain Rudebusch’s
(1995) finding that changes in the target rate are followed by further changes in the same
direction. Figure 13 thus displays the variance of the change in interest rates in the {a,c}
plane. Interestingly, this figure is nearly identical to the figure for the variance of the interest
rate itself. Thus, in our model, stabilization of the short term nominal rate is achieved in
the same way as stabilization of the quarterly change in this rate.

As we saw in Figure 9, setting ¢ to a very high value destabilizes the inflation rate. In
part this is because sufficiently high values of ¢ imply that increases in inflation at ¢ must be
matched by reductions in inflation in the future. These predictable movements in inflation
both raise the variance of # and increase the loss L. For that reason, Figure 14 shows that
L+ 72 reaches its lowest value for a low value of @ and a moderate value of c. This minimum
is very close to the point which minimizes L + 7*2 within the family (2.2) since this minimum

obtains when a, b and ¢ equal 1.22, .06 and 1.28 respectively, This is the rule labeled Ej in
Table 1.
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2.4 Rules Using Only Lagged Data

One criticism sometimes leveled (see, e.g., McCallum (1997)) against all rules of the kind
considered thus far is that they require the Fed to make use of data about current output
and inflation that it does not actually have when it sets the current interest rate. There are
two reasons why such variables may simply be unobservable by the central bank. These are
that some important economic data is collected retrospectively and that even the data that
are collected concurrently need to be processed before their message about the economy as
a whole can be distilled. A further difficulty with responding to contemporaneous variables
may be that, even if these are observable immediately, the political process of responding to
them takes time.

None of this denies that the central bank continually updates its estimate of the current
state of the economy. And it should be recalled that our model of the delays in the response
of output and inflation implies that the relevant data exist in principle in the quarter prior to
the one in which the data must be used under rules (2.1) and (2.2). However, it is reasonable
to suppose that the central bank’s estimate of the state of the economy generally differs from
the economy’s actual state. In this case, responding to the current estimate of the current
state differs from the rules (2.1) and (2.2). If rules of the form (2.1) and (2.2) are applied
to the error-ridden current estimates, the interest rate is affected by the measurement error,
and a thorough evaluation of these rules would require an analysis of these effects.

Thus we now suppose instead that the Federal Reserve does not respond to output and

inflation variations except with a one quarter lag. In this class of rules,
f't = aﬁt_l + b?t-—l + C'f't_l. (23)

Considering the effect of such a lag also allows us to compare our results with other papers
in this volume since some of these also include the rules we label 4, through D, in Table 1.

Even if the Fed had a reasonably accurate estimate of the current state of the economy,
there would be good reasons to be interested in lagged-data rules of this form. In particular,

the use of such rules would make Fed operations more transparent to the public at large if
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the public only had this lagged information. By avoiding the use of information that the
public does not have, it becomes both easier to describe Fed operations and easier for people
to detect when the Fed has departed from the rule. An alternative, of course, might be to
respond to internal estimates and publish these estimates of the state of the economy as they
become available. The study of this alternative, and its effects on transparency given that
this estimate will at least sometimes be wrong, is clearly beyond the scope of this paper.

We start in Figure 15 by displaying how the variance of inflation varies with a@ and b when
¢ is set equal to zero. This Figure is quite different from Figure 5 which involves the same
parameters and performance criterion in the case of contemporaneous Taylor rules. Unlike
what occurs with rules where the interest rate responds contemporaneously, large values of a
and b lead to unstable equilibria in the case where the interest rate responds only to lagged
output and inflation. Ignoring b, this can be understood as follows. Inflationary shocks now
lead to delayed increases in interest rates which imply delayed reductions in inflation. The
rule then requires that subsequent interest rates fall so that inflation rises once again. For
a sufficiently strong reaction of interest rates to lagged inflation, i.e., a high value of a, the
resulting oscillations are explosive. Thus, the parameters that minimize the variance of #
in the case of a contemporaneous rule no longer do so when the government can only react
with a delay. In particular, this minimization now requires that a be equal to about 15.

Figure 16 which gives the contour plot for the variance of # when b is set to zero while
a and c are allowed to vary tells a similar story. Again, high values of a lead to explosive
equilibria. By contrast, high values of ¢ with low values of a, do not. Note that high values
of ¢ coupled with moderate values of a mean that the eventual reaction of interest rates to
increased inflation is extremely large. Nonetheless, these rules are less destabilizing than
having the interest rate respond strongly to inflation after a delay of one quarter.

Even in the case of rules that react with a lag, the stabilization of interest rates continues
to require high values of ¢ together with small values of a. The result is that Figure 17
shows that L + 7*2 achieves a minimum for a combination of a and ¢ that is quite similar

to the combination that was optimal in the case where the interest rate reacted contempo-
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raneously. Moreover, the minimum value of L + 7*? within the family (2.3) is obtained for
very similar parameters. In particular, it requires that @, b and ¢ be equal to 1.27, .08 and
1.13 respectively.

This is the rule called E; in Table 1. Clearly, these parameters are very similar to
those (the rule E,) that minimize L + 7*2 when contemporaneous data are used. What
Is more surprising, however, is that Table 1 indicates that the minimized value of [ + 7*2
is very similar in the two cases. In other words, this welfare criterion equals 1.10 when
the best contemporaneous rule is used while it equals 1.13 when the best of the rules that
respond to lagged values is used. Recall that the units of this welfare criterion are squares of
percentage yearly inflation rates. Thus, the difference in loss is equivalent to the difference
between having a completely stable annual inflation rate of 1.06 percent per year and having
a completely stable annual inflation rate of 1.05 percent per year. This difference is trivial.

This similarity is not surprising once one recognizes that the optimal contemporaneous
rules involves a high value of ¢. This means that, even in the case of contemporaneous rules,
most of the reaction of interest rates to an inflationary shock such as an increase in G or a
reduction in Y5 takes place with a delay. Given this, it is not surprising that the further
delay that comes about from responding to inflation and output with a lag has trivial welfare
consequences. From an economic perspective, what is important is that delayed responses
still allow for substantial revisions in long term real interest rates, and it is these which help

stabilize inflation.

2.5 Price-Level Targeting Rules

In this subsection we consider the possibility of making the funds rate respond to deviations
of the price level from some target path (assumed to be a deterministic trend with growth

rate 7*), rather than responding to inflation. In particular, we consider rules of the form
TAt = Cljat + b};; + C?:t._l. (24)
The rule given by (2.4) has the advantage that (if a # 0) it makes the price level stationary
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around the target (deterministic trend) path. Such rules thus reduce var(Ap>) to the max-
imum possible extent by ensuring this variance is zero. This may be considered a desirable
goal of policy; for example, Hall and Mankiw {1994) discuss the advantages of a price-level
targeting rule in this regard.?® Such rules also address the desire expressed by the 90 % of
the respondents to Shiller’s (1996) survey, that any change in the price level be subsequently
reversed. We wish to consider whether rules of this kind are also desirable in terms of the
other measures of performance that we treat here, or to what degree one might have to
sacrifice other goals for the sake of stability of the long-run price level forecast.

Figure 18 displays the contour plots of L + 7*2, once again setting b equal to zero. As
the Figure shows, price-level rules tend to be unstable when ¢ is negative and c is large;
lower values of ¢ with negative values of a lead to indeterminate equilibria instead. Within
the positive orthant, these rules do lead to determinate equilibria, however. In particular,
points with positive a and ¢ equal to zero lead to unique determinate equilibria. Since the
same is true for rules in the family (2.2) with b equal to zero, ¢ equal to one and a positive,
the corresponding equilibria must be the same. To see this, note that, when b is zero, c is

one and a is positive, rules in family (2.2) take the form
Af, = aAP, (2.5)

Price-level rules in the family (2.4) must also satisfy this equation when b and ¢ are zero
since, in this case, (2.5) is just the first difference of (2.4). Thus, if the equilibrium with the
first-differenced rule (2.5) is unique, it must be the same as that of the corresponding price
level rule. This explains why we found that rules in the family (2.2) with b equal to zero
and c equal to one had the dual property that the long run price level was stable and that
8% was equal to zero. These rules were in fact equivalent to price-level rules.

However, the optimal price-level rule is not a member of the family {2.2) because the
optimal b and ¢ within the class (2.4) are not equal to zero. In particular, the lowest value
for L + 7*? within the family of price level rules (2.4), obtains when a, b and ¢ equal .26,

.07 and 1.03 respectively. Because the optimal b is zero, this point is close to the optimum
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depicted in Figure 18. Once again, the desire to stabilize interest rates leads to a high value
of ¢, though this parameter has a somewhat different meaning in the context of price level
rules than it does in the context of the family (2.2).

Perhaps the most interesting aspect of these price level rules is that even the best such
rule is somewhat worse from the perspective of I + 7*2 than the best rule that responds to
contemporaneous inflation. Indeed, household welfare is slightly lower than it would be if
the central bank followed the best rule that responds only to the lagged levels of inflation
and output. The best among the rules that respond to lagged output and the lagged price
level is even worse. Admittedly, the resulting differences in our welfare criterion are small
but it is worth knowing that price level rules are not particularly attractive in this context.

One could argue that these results do not really say whether it is worth stabilizing the
price level, because we are only looking at a very narrow class of rules. To see whether one
can obtain some incremental improvement in our criterion function by responding to both

the price level and the rate of inflation, we analyze hybrid rules of the form
?:t = aoﬁ)t + alﬁt_l -+ b)ﬂft + C?t-l (26)

When we choose parameters ag, a1, b, and ¢ to minimize L + 7*2, we obtain the values
ap = 1.22, a; = —1.22, b = .06, and ¢ = 1.28. Since a; = —ay, the optimal member of this
family is a member of the more restricted family (2.2) and, in fact, it is once again the rule
labeled Ej in Table 1. There is thus nothing to be gained, from the point of view of our
utility-based welfare criterion, by generalizing this family to add a term that ensures that
the interest rate reacts to the price level, even though adding even a small term of that kind
would serve to stabilize the long-run price level. _

The reason is that the best rule within the class (2.2) involves some base drift and this
base drift is optimal. Interestingly, this base drift is very different from, and in some ways
exactly opposite to, the base drift that people usually worry about. In particular, it is not

optimal to respond to shocks that temporarily raise inflation by allowing the price level

to be higher forever — ie., to choose a rule that implies B > 0. On the contrary, as
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discussed earlier, what is optimal is to have such shocks be followed by price declines that
are sufficiently large that, eventually, the price level ends up below its initial value (when
corrected for the average rate of inflation 7*). This is advantageous because the expectation
of future price declines, by itself, dampens the initial inflationary effect of increases in G and
reductions in Y5, It is then possible to obtain the same degree of current price stabilization
without having to raise interest rates so much. For this reason, the variability of interest
rates is lower in the E; rules than in the best price-level targeting rules. This additional
stability of interest rates is what makes the E; rules more attractive from the point of view

of the loss criterion L + 7*2 as well.

3 Optimal Policy

In this section we consider the best policy rule, from the point of view of minimization of
our deadweight loss measure L + 7*2. We start by analyzing not monetary rules per se but
allocations. In particular, we ask what (conditional) paths of output, inflation and interest
rates achieve the lowest value of L + 7*? while being consistent with our IS and AS curves as
well as with the stochastic process for G, and Y,5 given in (1.28) and (1.27). In other words,
we compute the optimal response of the whole economy to these structural disturbances.
We then show that this optimal response of the economy is the unique equilibrium that
emerges when the interest rate is set according to a rule belonging to the general class (1.23).
This means that one cannot do better from the point of view of minimizing L + 7*? than by
using a rule within this class. Moreover, it should be obvious that the member of this class

that induces the optimal allocation is also the optimal rule within the class given by (1.23).

3.1 Optimal Responses of the Economy to Real Disturbances

In this subsection we compute the optimal allocation and characterize it as a response of
the economy to the innovations in G, and KS . For this purpose we start by constructing
a moving average representation of the stochastic process for the real disturbances ¢ and

Y. From (1.28) and (1.27) it follows that these variables can be written as functions of the

41



history of the two i.i.d. shocks in eI. Since these two shocks consist of e;,; and es;, we can
rewrite the stochastic process of the structural disturbances as
3 oo 2 o
G = 22 ‘I’fsjei,r—j’ f”{L =) q)gjei,t—j' (3.1)
i=2 j=0 i=1;=0
The exact decomposition of the two shocks in (3.1) is irrelevant for present purposes; each
is allowed to affect the evolution of both structural disturbances.

We now consider how the endogenous variables ought to evolve. Because we can write
our loss measure in the form (1.34), it suffices to consider the evolution of X. It should be
obvious from (1.34) that there is no advantage to any random movements in X apart from
those needed for X; to respond to the shocks that contain information about the evolution of
the real disturbances. Thus we may restrizt attention to processes X which may be written

in the form
2 =
X£+1 = Z z tIDfXjez-'t_j. (32)
i=1j=0

Substituting this into (1.34), we find that L equals

oG

L= o?[ (@5, + 6l Bo) + 13 > (@, ~ 8,07 (5.3
7=1

3
i=2 i=

p—

where o2 is the variance of €; ;. We seek to obtain parameters ®x; that make L as low as
possible for a given variance of the funds rate, subject also to any constraints upon the joint
evolution of X and R implied by our structural model.

Using (1.38) and (3.1) we can write j, as a function of the lagged e’s. This means that,
using (3.2) in (1.37) we obtain an expression for the funds rate as a function of the history

of the shocks,
2 o
Ry = Z Z PrjCit—j (3.4)

i=13=0
where the coefficients ®; can be written as functions of the coefficients ®%;;, %, and Y.

This in turn allows us to write

var(R) = > i ( 'kj)g ol. (3.5)

i=1j=0
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The characterization of the optimal process X then reduces to the choice of coefficients

%; to minimize the Lagrangian L + Avar(R), where we substitute (3.3) for L and (3.5) for

var(R). Here A > 0 is a multiplier indicating the weight placed on the variance of the funds

rate. By minimizing the Lagrangian for different choices of A > 0, we obtain the family of

constrained-optimal equilibria. This family corresponds to the frontier of minimum possible

values of L for any given level of var(f%) (and hence of 7*) that we report in Rotemberg and
Woodford (1997).

There exists a particular value of A*” such that the marginal reduction in 7*? from raising
A further (using (1.39) to determine the lowest value of 7= consistent with any given value of
va.r(ﬁﬁ)) is of the same size as the resulting increase in L. The constrained-optimal equilibrium
associated with this particular value of A achieves the minimum value of L + 7*? among all
allocations consistent with the structural equations of our model. The variability of inflation,
output, the funds rate, and long-run price level growth in this allocation are indicated by
point [ in Figures 1-3 above, and the row labeled I in Table 1.

Observe that the optimal allocation does not involve complete stabilization of inflation
or of the long-run price level. This is not because complete stabilization is impossible in
principle, but because complete stabilization would require too great a degree of volatility
of the funds rate, and consequently too high an average inflation rate.?® Thus the concern
expressed by Summers (1991) — that the desire to maintain a very low average rate of
inflation conflicts with the desire to use interest rates as an instrument of stabilization, given
the existence of a zero nominal interest rate floor — matters quantitatively in the context of
our model. On the other hand, our results imply that it is possible, at least in principle, to
stabilize both inflation and the funds rate — and thus, both the average rate of inflation and
the variance of inflation — to a greater extent than has been achieved by historical policy.
This can be seen from the relative locations of points H and I in Figure 2. Similarly, Table

1 shows that both L and #* are lower with the optimal policy than with historical policy.
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3.2 Implementing the Optimal Allocation

While the optimal allocation is consistent with (3.4), it is important to stress that equa-
tion (3.4) does not represent a viable policy proposal, even if the Fed could directly observe
the structural disturbances and infer the history of the shocks e;;. Such a way of setting
interest rates would, instead, result in price-level indeterminacy, because the path of the
funds rate would be exogenously specified, with no feedback from the evolution of prices or
real activity.®® Thus the construction of a feedback rule for the funds rate that implements
the optimal allocation — that is not only consistent with it, but also renders it the unique
stationary equilibrium consistent with the proposed policy rule — remains a non-trivial prob-
lem. Furthermore, it is of considerable interest to ask how policy should make use of the
information revealed by the evolution of inflation and output, as in the various variants of
the Taylor rule discussed in section 2. Thus we are especially interested in finding a rule of
the form

C(L)#, = A(L)#, + B(L)Y,, (3.6)
where A(L), B(L), C(L) are finite-order lag polynomials, that implements the optimal allo-
cation.

To do this, we first consider whether any rule of this form is consistent with the stochastic
processes for interest rates, inflation and output that characterize this allocation. Substitut-
ing (3.2) into (1.20) and (1.36), we can write #, and ¥; as moving averages of e;; and ej.
These moving average representations for the optimal evolution of inflation and output can

be written compactly as

2= [ . } = 0c(Dews (3.7)

€2t
€ = ’ .
€3t

Similarly writing (3.4) as R, = ®r(L)e;_y, it would then seem natural to attempt to

where

obtain a representation of the form

R, =6(L)Z, (3.8)



by writing (L) = ®r(L)®;'(L). Unfortunately, ®z(L)} does not prove to be invertible,
since the polynomial [®z(z)| has a root inside the unit circle.*® This root is 1/¢, where ¢
is approximately 1.3267. We can, however, write ®z(L) = (1 — ¢L)D(L), where D{L) is
invertible so that (1 — ¢L)e;_; is equal to D(L)~1Z,. This means that

(1-cL)R = (1 — cL)®g(L)e;_1 = §(L)Z,. (3.9)

where §(L) = ®5(L)D(L)™".
This gives us a relation of the form (3.6) between the funds rate, its own past values, and

current and past values of inflation and output. The two elements (i = 1, 2) of the matrix

lag polynomial #(L) can be written as

6:(L)

> 4,17,
1=0

where the coefficients éij are square-summable, so that long lags j contribute only a small
amount to the overall variation in the right-hand side of (3.9). However, the coefficients

éij die out for large j only relatively slowly; they evolve asymptotically according to the

difference equation

6y = —a; ;1 — b j—s,

where the coefficients & and b are approximately equal to 1.0404 and .9643 respectively.?!
These values imply that the characteristic equation 22+az+b = 0 has a pair of complex roots
with modulus approximately equal to .9820. Thus the coefficients éij decline in magnitude
only at an average rate of less than 2 percent per quarter; a very long distributed lag is
required for an accurate approximation to the exactly optimal rule of the form (3.9). The
length of the distributed lag that is needed can be reduced significantly by further quasi-
differencing of Rj, yielding a rule of the form (3.6), where A(L) = ag + a1 L + aL2... =
(1+aL + bL?)8,(L), B(L) = by + bl + bpL?... = (1 + &L + bL*)dy(L) and C(L) =
l-aL—cl?. .. =(1+al+ BLQ)(I - cL). The coefficients in the matrix lag polynomials
A(L) and B(L) then become negligible much sooner.

45



Ignoring the constant, the policy rule that we derive in this fashion can then be written

as

Fo = 2071 + 427_o + 1.28F,_5
+.22Y, ;- 25Y, o+ ...
+.167, + 1.007,_; + 2.45%_p — 1.45%,_3 + .Td#,_4
— 0875 + .25%_g + .33F_7 + .237,_g + .25%,_q
+.19%_10 + 177,_11 + .13%_10 + 097,13 + 067,14 + . . ., (3.10)

where the omitted terms in Y;_; are all of size .01 or smaller (to two decimal places), and the
omitted terms in 7;_; are all of size .03 or smaller {to two decimal places).3? Supposing that
the monetary policy rule is given by (3.10), we find that our model has a unique stationary
rational expectations equilibrium. Furthermore, this unique equilibrium involves respornses
of output, inflation and interest rates to the real shocks that closely approximate the optimal
responses derived in the previous subsection. Thus we conclude that (3.10) does belong to
the admissible class of interest-rate feedback rules resulting in a determinate equilibrium;
that it represents a good approximation to the optimal rule within the general class of rules of
the form (3.6); and that the optimal rule within this class implements the optimal allocation
as defined above. Rule (3.10) is accordingly the optimal policy rule, labeled I in Table 1 and
in Figures 1 — 3.

Several features of this optimal interest-rate feedback rule are worth noting. First, the
coeflicient on 4, is a small positive number, which means that the optimal rule calls for
some immediate tightening in response to an observation of inflation above the target level.
However, most of the tightening prescribed by the rule in response to an inflation rate
above target occurs later. This subsequent tightening is reflected both in the series of
positive coefficients on lagged inflation deviations #,_ ;in (3.10), and in the series of positive
coefficients on lagged deviations of the funds rate itself. Even putting aside the consequences
of the lagged funds rate terms, the i—; terms in (3.10) prescribe a much larger response to

lagged inflation than to current inflation; for example, these terms place an average weight
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of .7 on the rate of inflation over quarters 1 through 4 prior to the quarter in which the funds
rate is being set, or four times the weight that is placed on inflation in the current quarter.

Second, the coefficient on Y} is exactly zero. This means that the optimal response to an
innovation in G, that increases output relative to what it would have been forecasted to be a
quarter earlier is to keep the interest rate at ¢t unchanged. This does not mean that there is
no optimal response to observed variations in output relative to trend; but that the optimal
response is a delayed one. Moreover, the interest rate ought to respond more to the growth
rate of output a quarter earlier, than to the level of output.33

Finally, the lag polynomial C'(L) has a root inside the unit circle, equal to the reciprocal
of ¢ = 1.33. Thus, just as in our optimal generalized Taylor rules, the optimal rule calls
not simply for interest-rate smoothing, but for an explosively growing response of the funds
rate to deviations of inflation from target. These explosions are avoided only if subsequent
deviations with the opposite sign eventually counteract the effects of an initial deviation. If
the inflation rate were permanently above its target, interest rates would grow asymptotically
as (1.33)", just as if we chose ¢ = 1.33 in the case of the family of simple rules (2.2). This
explosive behavior is of course exactly what we concluded was desirable in our previous
discussion of simple rules, and indeed the value ¢ = 1.33 is not too different from the most
desirable value of ¢ in the case of simple rules.

One way of comparing the implications of (3.10) with other candidate interest-rate rules is
to plot its implications for the cumulative response of the funds rate to a sustained deviation
of either inflation from target, or output from its trend level. This particular way of describing
the various feedback rules has the advantage of being independent of the degree of quasi-
differentiation that may have been used in the way that the rule is stated; for example,
it treats (3.9) and (3.10) as equivalent. The prescribed cumulative responses of the funds
rate to sustained one percent deviations in the two variables are displayed in the two panels
of Figure 19. Each panel compares the prescribed response of the funds rate under four
different rules: our estimate of historical U.S. policy over the period 1979-1995, the rule

proposed by Taylor (1993) as a rough description of recent U.S. policy, the optimal rule £,
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within the family (2.2), and our unrestricted optimal rule (3.10). We see that, after two
quarters of inflation being above target, the first two rules (which are quite similar to each
other in this respect) involve much smaller responses of the interest rate to the inflation
deviation than the latter two. Our unrestricted optimal rule is actually less aggressive than
the optimal rule of the form (2.2) over the horizon displayed in this panel. Indeed, the
initial reaction to inflation is actually smaller in this unrestricted optimum than it is in the
case of the simple Taylor rule. This serves to highlight once again the fact that our model
recommends postponing the reaction of interest rates while simultaneously increasing the
absolute magnitude of these delayed reactions.

The second panel shows the responses to a sustained output deviation. Here the Taylor
rule as well as our estimate of actual policy involve much stronger reactions of the interest
rate over the first three quarters than are implied by either of the optimal rules. For the
unrestricted optimal rule, the reaction remains more muted for the entire six-quarter horizon
displayed here. This indicates an important difference between actual policy, at least as either
Taylor or we have characterized it, and optimal policy according to our model: our model
suggests that interest-rate responses to output above trend should be much weaker, at least
in the first few quarters, than they actually are. On the other hand, this does not mean
that optimal policy would not involve interest rates eventually being raised. For the optimal
policy in the class (2.2), interest rates are actually higher after five quarters of high output
than they would be under actual policy or the simple Taylor rule. If one extends the plot
a few more quarters, this is also true of the unrestricted optimal policy, and both optimal
rules (unlike the two characterizations of actual policy) imply that the funds rate eventually
explodes.

A final feature of the optimal rule that is worth pointing c-)ut is its implication for long-run
price-level stability. We observe that the optimal rule has the form of an inflation-targeting
rule, rather than a price-level targeting rule, and indeed it does not imply trend-stationarity
of the price level. On the other hand, it does imply a tendency for unexpected increases in the

price level to be subsequently offset by (forecastable) price level declines. This is indicated
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by a coefficient 3 which is negative, indicating that unexpected price-level increases are
eventually more than completely offset by subsequent price-level declines, as in the case of
the optimal simple rules Ey and E;. As a result, optimal policy involves a significant degree
of stabilization of the rate of change of long-run price-level forecasts — the standard deviation
of Ap™ is reduced by a factor of four, relative to our estimate of historical policy.

Finally, it is worth asking to what extent our analysis implies that a simple rule such as
Ejp or Ey can be improved upon by using additional information. We have already observed
that, according to our structural model, the history of inflation and output variations alone,
if observed with sufficient accuracy and timeliness, provide all of the information needed
to implement the optimal equilibrium. Thus a sufficiently flexible rule of the form (3.6)
suffices. But, as a practical matter, it is probably even more interesting to observe that our
results imply that the unrestricted optimal rule is not too different from, and not too much
better than, the optimal rule within a simple family such as (2.2). Ninety nine percent of
the nearly fifteen-fold reduction in the size of the deadweight loss L + w*? that is achievable
by going from actual policy to optimal policy can be obtained by adopting the simple rule
Ey. Furthermore, if Ey is not considered operational due to its reliance upon measures of the
current quarter’s inflation and output, the simple rule E;, that requires only the previous
quarter’s data, results in performance that is nearly as good. Thus our analysis supports the
view that simple policy rules, variations upon the sort of rule proposed by Taylor (1993),
have highly desirable properties both from the point of view of stabilizing inflation, interest

rates, and the long-run price level, as well as from the point of view of economic welfare.

4 Conclusions

Our results offer a number of conclusions of importance for the design of a monetary pol-
icy rule. All of our conclusions are subject, of course, to the caveat that the seriousness
with which they should be taken depends upon one’s confidence in the extent to which the
specification of our structural model is not grossly incorrect.

Probably our most important conclusion is that a simple interest-rate feedback rule of
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the kind proposed by Taylor (1993) can achieve outcomes nearly as good as are achievable
in principle by any policy, assuming that the commitment of the monetary authority to
the rule can be made sufficiently credible. At least in the context of the simple structural
model that we consider, an interest-rate feedback rule that uses only information about the
recent behavior of inflation and output does quite well (and only the response to the recent
level of inflation matters much for this). Furthermore, performance under the best rule of
this kind is not significantly reduced if lagged inflation data are used. Thus lags in the
availability of accurate measurements of inflation are not necessarily a serious problem for
the implementation of such a rule.

It is worth noting in particular that a “backward-looking” rule, in which interest rates
respond to measures of inflation that has already occurred, rather than to forecasts (of one
sort or another) of future inflation (as in the rules considered by Rudebusch and Svensson
(1998) and Batini and Haldane (1998)), do quite well. We show that, at least in our simple
model, the theoretically optimal policy has a backward-looking representation, given by
(3.10). Perhaps more to the point, even very simple backward-looking rules, such as rules
Eo and E; in Table 1, are quite good approximations to optimal policy.

It is interesting to note that we obtain this result despite using a structural model that
implies that monetary policy has no effects upon inflation until the following quarter (and
the largest effect only after two quarters), and no effects upon real activity until after two
quarters. Lags in the effects of a monetary policy change do not imply that an effective
policy must be “forward-looking”. The crucial insight is that there is no need for policy to
be “forward-looking” as long as the private sector is. A commitment to raise interest rates
later, after inflation increases, is sufficient to cause an immediate contraction of aggregate
demand in response to a shock that is expected to give rise to inflationary pressures. This
channel should be effective as long as aggregate demand depends upon expected future
interest rates (or equivalently, upon long rates), and not simply upon current short rates; as
long as the monetary authority is understood to be committed to adhere to the contemplated

policy rule in the future, and not only at the present time; and private agents have model-

a0



consistent {or “rational”) expectations. Indeed, if, as our model implies, aggregate demand
is affected only by expectations of future interest rates, and not by unexpected interest-rate
variations {either immediately or with a lag), then a credible commitment to systematically
respond in the future is the only way in which monetary policy can be effective. But when
one conceives policy in these terms, there is no need for that commitment about future action
to involve a commitment to be “forward-looking” at that future date.

Despite our general support for the type of policy rule proposed by Taylor, our analy-
sis suggests that the best rules differ from the specific rule that he proposes in important
respects. Probably the most important difference is our conclusion that short-term interest
rates should depend not only upon deviations of inflation from target, but also upon their
own past values - ideally, with a coefficient even greater than one. A less radical-sounding
version of our proposal would be to make the change in the funds rate, rather than the level
of the funds rate, a function of deviations of inflation from its target value, as is also found
to be desirable in the forward-looking models studied by Levin et al. (1998). It is interesting
to note that in forward-looking models of these kinds, such dependence, even with a coef-
ficient greater than one on the lagged value, does not lead to instrument instability. This
result contrasts sharply with the conclusion that one would obtain using a traditional, purely
backward-looking macroeconometric model, such as the one considered by Rudebusch and
Svensson (1998).

In our analysis, the desirability of such dependence upon the lagged funds rate does not
depend upon any assumption that variability in the change in the funds rate from one period
to the next is a bad thing in itself. Rather, it represents a way of allowing the central bank
to commit itself to raise interest rates later, in response to an increase in inflation that is not
offset by a subsequent (and sufficiently prompt) inflation decline, without having to have
much of the eventual interest rate response occur immediately. Assuming that the private
sector understands this commitment and is forward-looking in its behavior, this allows the
central bank to have a large effect upon aggregate demand without having (in equilibrium)

to move interest rates very much. This in turn is desirable if one wishes to maintain a low
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volatility of interest rates. We argue that a low volatility of the funds rate is in fact desirable
as it allows a given degree of inflation stabilization to be consistent with a lower average rate
of inflation, due to the zero floor for the nominal funds rate.

Our results here plainly depend upon the assumption not only that the private sector is
forward-looking, but that private agents fully understand and believe in the central bank’s
policy rule. One might wonder whether such an analysis gives a correct account of the
consequences of adopting such a rule, especially in the short run, given that it would represent
a significant departure from present policy (according to our estimates). Nonetheless, our
analysis shows that the possibility of achieving a significant degree of stabilization without
a great deal of interest rate volatility through this channel is an important advantage of a
high degree of credibility for the central bank’s commitment to a monetary policy rule. This
helps to clarify why the design of arrangements under which such a rule could be credible
could have significant benefits.

Another respect in which our conclusions differ from Taylor’s proposal is that we find
there to be little gain from making interest rates depend upon the current level of economic
activity. We find that optimal rules within our simple families involve a small positive
response to the level of detrended output, but it is much more modest than the sort of
response suggested by Taylor, or indicated by our estimate of actual U.S. policy. The reason it
is undesirable to respond to output deviations, in our model, is that deviations of output from
trend have so little to do with deviations of output from potential (which, according to our
estimates, is quite volatile}. It is possible that an alternative interpretation of the residuals
in our aggregate supply equation, under which they would not all represent variations in
the efficient level of output, would increase the role for responses to output variations in an
optimal rule. Alternatively, it is possible that if we considered other real variables (such as
employment) along with variations in detrended output, we would be able to construct a
better proxy for deviations of output from potential (as proposed, for example, by McCallum
and Nelson (1998)), to which it would be desirable for interest rates to respond.

Finally, our results shed light upon the debate about the relative advantages of price-level
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targeting and inflation targeting. We find that under a desirable policy, the central bank
should consistently act to subsequently reverse any movements of inflation above its target
level, rather than simply preventing further price increases without undoing the ones that
have already occurred. Nonetheless, according to our analysis, there is no special significance
to the goal of returning the price level to a deterministic target path. Our optimal policy
rules actually imply that an unexpected increase in inflation should decrease the expected
long-run price level. Such an outcome is obtained by a policy that involves no reference
to a target price-level path. It follows simply from the dependence of the funds rate upon
the lagged funds rate, mentioned above, which has the consequence that, in equilibrium,
inflation increases must be followed by subsequent, and even greater, inflation declines, in

order to avoid causing the funds rate to grow explosively.
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5 Appendix: Derivation of the Utility-Based Loss Func-
tion

Here we present further details of the derivation of equations (1.30), (1.31), (1.33), and
(1.34), which describe our utility-based loss function L + 7*2. We begin with the derivation
of (1.30 as a second-order Taylor series approximation to (1.29). Note that our objective
function is of the form W = E[w], where wy is the average utility flow (integrating over the
continuum of households) each period. This utility flow may be written as a function solely

of the pattern of real activity {y:(z)} within a period, and the exogenous shocks:

we= (¥~ Gag) = [ olul=)ié)d= CBY

We begin by considering a Taylor series expansion for each of the two terms in this expression,
expanding around the levels of output ¢,(z) = Y for each 2, and the values G, = G, £, =
for the exogenous shocks. Here ¥ represents the level of output in an optimal steady state;
it represents the constant equilibrium level of output in an equilibrium with no variation
in the values of G, and ¢ around their steady-state values, a constant price level, and a
tax rate 7 = 7% = —(8 — 1)7! that perfectly offsets the distortion resulting from firms’
monopoly power. (As we shall see, our loss function takes an especially simple form in
this case, and we wish to direct attention to the terms in it that survive even under these
ideal circumstances. We leave for further work the analysis of how the welfare effects of
monetary policy change when one considers possible interactions between monetary policy
and distortions other than the one resulting from sluggish nominal price adjustment.) The
steady-state value G is chosen to equal E[Gy], and the shocks & are normalized so that
E[&] = 0; thus the steady-state values of the exogenous variables equal their unconditional
Ireans.

A second-order Taylor series expansion for the first term on the right-hand side of (5.1}

is given by
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+5uco(C = OF +ucg - (G~ C)6u+ Suee? + O(le]1) (52)

- a1 .
= u(C;0)+ucY-(Yt+-2-1’;2-Gt)+u5-Et

~

1l 5 . . 1
+§UCCY2 (Y= G tuceY - (Y — Go)& + 5“555.3 + O(lEl®) (5.3)

_ . 1 - _ .
= ucY  -Y;+ -é—['llcy -+ uchQ] Y2
—ugeY? - [Gy + scCi)Y; + tip. + O(|l€]]?) (5.4)
-~ 1 _ _ .
= ‘LLCY ’ }ft + —2—[uCY + UC6Y2] . Y2

—uecY? - GoY; + t.ip. + unf. + O(|¢|]®). (5.5)

In (5.2), we simply expand in terms of the index of aggregate consumption C;, where
C =Y -G, and each of the partial derivatives is evaluated at the steady-state values (C;0).
Here the term O(||¢||*) indicates that we neglect terms that are of third or higher order in the
deviations of the various variables from their steady-state values. In the case of a monetary
policy rule that implies 7* = 0 and a tax rate 7 = 7*, the variables will deviate from these
values in an equilibrium only because of fluctuations in the shocks G, and & around their
steady-state values. In this case, the omitted terms are all of third or higher order in the
size of the exogenous shocks (and we use ||€|| to indicate the a measure of the size of these
shocks, where the size of fluctuations in G, is intended to be included). More generally, the
omitted terms also include terms that are of third or higher order in deviations of 7* from
the value zero and of 7 from the value 7*; but we shall (for now) retain terms that are of
first or second order in perturbations of those assumptions about long-run aspects of policy.
In (5.3), we rewrite the expressions in terms of ¥; = log(¥;/Y) and G, = (G, — G) /¥, using
the Taylor expansion

Y=V [+ Yot 592+ O )

In (5.4), we suppress the terms that are independent of policy (because they involve only
constants and exogenous disturbances), denoted “t.i.p.” as in the text, and make use of the

definition uce - & = —upcCC; to obtain a scalar representation of the disturbance to the
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marginal utility of consumption. Finally, in (5.5), we recall the notation
ét = ét + SCEt__Qét = ét + SCCt + unf.,

where “unf.” stands for an unforecastable term (i.e., a term z, with the property that
E;_>z¢ = 0). Unforecastable terms may be neglected because we are ultimately interested
only in the unconditional expectation of each of the terms in (5.5).

Similarly, a second-order Taylor series expansion of household 2’s disutility of working is

given by

v o= u(Y;0)+u, - (n(z)-Y) + +ug - &
1 ~ _ 1
Tl (¥e(2) = V)% + o - (melz) — V)& + 5”&5‘53 + O(lIEl®)

o 1, o o _
= 0¥ 92 + 30 Y + 0,77 6(2)? — 0, V2 ()Y + tip. + O, (5.6)

where now ,(2) = log(y,(2)/Y), and Y;, defined by the relation vyeby = —vy, Y'Y, provides
a scalar measure of disturbances to the marginal disutility of supply. Integrating (5.6) over

z we obtain

1 _ R 1. - _ R 1. _ — .
/0 v(y(2);&)dz = oY - E4,(2) + wz—[va + vysz} B () + §[va + vyyY2] - var, 9 ( z)
—vy Y2 - B s(2)Y, + tip. 4+ O(Ji€]®). (5.7)

Next we wish to express the terms in (5.7) involving the population average E,9:(2) in terms
of the Dixit-Stiglitz output aggregate ¥; instead. To do so, we first compute a Taylor series

expansion for the right-hand side of the aggregator equation (1.2), obtaining

Vi = Bae) + 5 (" tvarlz) + O(e]P).

Solving this equation for £.§,(z) and substituting into (5.7) yields
1 _ . 1 _ - - 1 _ _
/0 v{ye(2); &)dz = v,Y Y, + §[va + 1, Y Y2+ E[Q_IUyY + vy, Y] - var,g,(2)

¥V, 4+ tip. + O], (5.8)
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Substituting (5.5) and (5.8) into (5.1), we obtain
.1 . o
wy = ugY - th + '2*(1 - U)}Itg + UGJ/E]
_ . 1 - 1 .
—v,Y - [V + 5(1 +w)Y? + 5(6'1 + w)varz%(z)] + t.i.p. + unf. + O(||€]]*)

1 R n ~ g N
= —2uo¥ [0+ w)¥7 — 20 + W)V + (07 + w)var.gi(2)]

+t.i.p. + unf. + O(]|€]|]*). (5.9)

Note that in deriving (5.9) from the line above we have (at last) used the assumption that

Y is the efficient level of output, so that uc = v, and the definition
VS =(o+ w) oGy + wE_ Y] = (o + w) oGy + wY¥i] + unf.
Then taking the unconditional expectation of (5.9), we obtain

W= ~guc¥ [0+ ohvarl¥i ~ ¥} + (0 + )BT + (07 + ) Efvar,ie(2))]
+t.1.p. + O(JI€]]2). (5.10)

As promised, we have obtained a welfare measure that allows us to compute all second-
order or lower terms in W using only a first-order (log-linear) approximation to the equi-
librium solution for the pattern of activity {y(z)}, since no terms of order O(|IE]?) in the
solution for y,(z) have any effect upon terms of order lower than O(|IER) in (5.10).%¢ If
we furthermore assume that the tax rate 7 (or some other aspect of “long-run” policy) is
adjusted so as to guarantee that E{ﬁ} = 0 (i.e., logY; equals log Y on average) regardiess
of the monetary policy rule, then the [E‘?{‘.:"t}]2 term in (5.10) can also be suppressed, as this
term is also independent of the monetary policy rule. Our decision to assume this results
from a belief, as discussed in the text, that monetary poliéy is not an appropriate instru-
ment with which to seek to affect the long-run average level of economic activity, given the
existence of other instruments with which policymakers may more directly seek to offset the
distortion resulting from suppliers’ market power. F inally, noting that Y, equals E,_,Y, plus

a forecast error term that is both unforecastable and independent of monetary policy, one
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can show that
var{Y; — Y} = var{ E,_»(¥; — V%)} + t.ip.
Substitution of this into (5.10), along with the stipulation that E{Y,} = 0 regardless of
monetary policy, then yields (1.30).
Some might prefer instead an analysis that would assume a tax rate 7 that remained
invariant under alternative monetary policy rules. In this case, we would not be able to drop

the [E{Y;}]? term in (5.10). However, our model implies that
. 1-— - 1-—
B{Y} = 222 B2 + 0llel®) = =L pimy + o(e).

where the first equality follows from taking the unconditional expectation of all terms in
(1.21), and the second from taking the unconditional expectation of all terms in (1.20).
(Note that in the log-linear approximations to the model equations reported in the paper,
we routinely suppress terms of order O(}|£]|?).) Thus the only difference in the alternative
case would be the presence of an additional negative term in 7*? in (1.31). This would
have no effect upon the definition of the loss from incomplete stabilization L in (1.33), but
it would mean that in (1.32) we would have L + um*? instead of L + n*2, for a certain
k> 1, as our overall deadweight loss measure. This would imply that the optimal point on
the L — 7* frontier (discussed and graphed in Rotemberg and Woodford, 1997) would be
slightly different from the one that we assume here, involving a slightly smaller, though still
slightly positive, value of 7*. Such a change makes no qualitative difference, however, in the
conclusions announced here about the nature of optimal policy.

Next we turn to the derivation of (1.31) from (1.30). As noted in the text, we need
to show that the dispersion of levels of production across differentiated goods is a function
of the degree of variability of the aggregate price level. We begin by noting that output

dispersion follows from price dispersion, since (1.3) implies that

Evar, {logy,(z)} = 6*Evar, {log p;(2)}. (5.11)

To relate the cross-sectional variance of prices to the variability over time of the price

index F;, we begin by recalling that in any period ¢, a fraction o of suppliers charge the
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same price as at ¢t — 1 (and the distribution of their prices is the same as the distribution of
period ¢ — 1 prices); a fraction (1 — a)vy charge a common new price p! chosen at ¢ — 1, and
a fraction (1 — a)(1 ~ ) charge a common new price p? chosen at t — 2. Then, introducing

the notation, p, = E, log p¢(z), we obtain

var{logp,(z)} = var.{logp:(2) — i1} = E-{[logpe(2) — pr-1]*} + (AB)?
= aBE{[logp,-1(2) — 5]’} + (1 — a)v[log p} — pe—i)®
+(1 ~a)(1 = )[logp; — pe1]® + (AF)?
= avar,{logp,-1(2)} + (1 — a)y[log p} — pe-1]?

+(1 = a)(1 — v)[log p} — Pe—1]* + (AP:)°. (5.12)

Taking the unconditional expectation of both sides of (5.12) then yields

Elvar-{logp:(2)}] = ~vE[(logp; — pi1)?] + (1 — 7)E[(log p} — Fs-1)?)
(1 - o) (AR, (5.13)

Similar reasoning as is used in deriving (5.12) also yields

Pt — P = E.{logp(z) — P11}
= oF {logp,1(2) = pr1} + (1 - a)v{logp; — De-1)
+(1 = a)(1 — 7)[log p} — Pe—1]

= (1~ apflogp! - Fi] + (1~ o)1 = Dlogr? —ps].  (5.14)
Taking the expectation of (5.14) conditional upon date ¢ — 2 information, one obtains
Ei2(Pe = Pi1) = (1 = a)log p} — §,-1] + O(|I€]17), (5.15)

using the fact that p; = E,_opr + O(||€]|?) and that all date ¢ — 1 prices are known at ¢ — 2.
This combined with (5.14) implies that

(Pe ~ Pr1) — (1 = 7)Eya (P — Prr) = (1 — a)yllogps — Be-1] + O(JE|%). (5.16)
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Furthermore, given that we are expanding around a steady state with zero inflation, the
right hand sides of both (5.15) and (5.16) consist solely of terms of order O(||€||). Thus by

squaring (5.15) and taking the conditional expectation, we obtain

E((logp} — 5:-1)?] = (1-a)2E[(Emalp:)?] + O(li€]])
= (1 =) *var{E,Ap} + (1 — o) 2[EAR)? + O(€]1°).

A similar expression for E[(log p; —p;—1)?] is implied by (5.16). Substituting these expressions
into (5.13) then yields

E[Varz{logpt(z)}] = (T’_CY_Q')E{VM{EtﬂAﬁt} + [EA@]Q}
+1‘;(f—(—1;)_3")"’ar{ﬂﬁt — Eo8p} +O(lEl").  (5.17)

Finally, the definition of the price index {1.4) implies that
pe = log P, + O(J|¢]]).

Making this substitution in (5.17), we obtain

Bhers{logp()}] = roptvarlBiam} + [En’)
+1_»-y—(_}£_1;_)f)var{wt - Et—zﬂ't} + O(H.SHB) (518)

Substitution of (5.11) and (5.18) into (1.30), and using the fact that (as a consequence of
our definition of 7*) Em, = m* + O(||€|[?), then yields (1.31). This last expression can in turn
obviously be written in the form (1.32), where L is defined by (1.33), and

1 a - (1-a)k

Finally, we can rewrite L so that it depends only on the stochastic process for the relative

price variable X. To do this, note first that (1.21) implies that
Es(Yi = Y) = (1/K)Ea(X, — 8X.01). (5.19)
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At the same time, (1.20) implies that
Ty — Eyomy = 1/’(Xt - Et—th), (5-20)

so that
var(m) = var(E,_,X,) + VPvar(X, — E;_pX,). (5.21)

Substituting the expressions in (5.19), (5.20) and (5.21) in the term in square brackets in
(1.33), we obtain (1.34).
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Footnotes

1. Throughout these derivations, we assume an economy with zero growth for simplicity.
More properly, we assume a deterministic trend for real activity, and variables such as Y
refer to detrended values, that take constant values in the steady state. In our estimation
of the model, we use a series for ¥; obtained by removing a linear trend from the log of real
GDP.

2. Details of this and other aspects of our Taylor series expansions are presented more fully
in the Appendix.

3. Except for our introduction of the two-period delay in the determination of interest-
sensitive purchases, our derivation of this “expectational IS equation” follows the earlier
work of authors such as Koenig (1987), Kerr and King (1996), McCallum and Nelson (1997),
and Woodford (1996).

4. This general approach to modeling the dynamics of price adjustment is adopted in a large
number of recent quantitative equilibrium business cycle studies, beginning with Yun (1996)
and King and Watson (1996).

5. The allowance for non-zero 7 is primarily so that we can linearize around a steady state
in which the constant level of output is efficient. The convenience of this for our purposes is
discussed in the Appendix.

6. Under the assumption that T = —( — 1)7!, this requires that ¥ satisfy the equation
uc(Y — G;0) = vy(?; 0), which also defines the efficient. level of output.

7. The factor (1 — a)/a turns out to be convenient in giving a simpler form to equations
such as (1.20) below.

8. Up to the log-linear approximation used in all of our computations of the equilibria
associated with alternative policy rules, the steady-state real interest rate is given by p =
—log 3, as a consequence of (1.6).

9. We need not assume that the monetary authority actually knows the true value of -
The rule (1.23) involves a single constant term X = [1 — ¢t — ¥ a7, and it is this

that the authority must know in order to implement the rule. However, according to our
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model, a given value of K implies (generically) a unique value of 7* (which may or may not
be correctly estimated by the authority). We choose to parameterize alternative policy rules
in terms of 7* rather than in terms of K because of the simpler interpretation of the latter
parameter.

10. In fact, we estimate a VAR model of r; and m, that includes constant terms in the
equations, and use these constant terms to obtain our econometric estimates of r* and 7*.
The latter estimates then imply our estimated value for the model parameter p (and hence
3). In the exposition here, we drop the constant terms for simplicity.

11. Note that with these definitions, #, = B, — 7*. The difference in the definitions follows
from the difference in the rate of inflation in the steady state with respect to which deviations
are calculated under the two definitions. It is also worth noting that 7, bears the same relation
to R, as y bears to m,.

12. Our estimation strategy is discussed in more detail in Appendix 1 of Rotemberg and
Woodford (1998).

13. Rotemberg and Woodford (1998) provides more details about both this method of
construction and the properties of the constructed series.

14. This compares, for example, with a standard deviation of only 2.1 percent for our
detrended output process Y;. The high volatility of the constructed G, process is mainly due
to its high serial correlation (serial correlation coefficient of .92), rather than to extraordinary
volatility of the G, innovations, which correspond in fact to the ¥; innovations in our VAR
model. It is possible that the data would be better described by a model in which C,, C, and
G are not required to have a common deterministic trend. The volatility of the constructed
?;S process, instead, is largely due to the presence of a very volatile transitory component.
For example, the standard deviation of Et_z}A/;S is only 4.3 i)ercent.

15. It should go without saying that this does not imply that the model is necessarily
correct. If our model is incorrectly specified, changes in the monetary policy rule will have
effects other than those implied by our analysis. What makes the model preferable to purely

backward-looking models is that, as stressed by Lucas (1976), it is highly implausible that
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purely backward-looking specifications of IS and AS curves will remain invariant with respect
to changes in the monetary rule.

16. For an alternative approach, compare King and Wolman (1998).

17. The rate of inflation matters for the evaluation of (1.29) in such a steady state because it
determines the dispersion of relative prices and hence the dispersion of the relative quantities
produced of the various goods z.

18. See, e.g., Benabou and Koniezeny (1994), King and Wolman (1996) and Feldstein (1997).
19. For example, McCallum and Nelson (1998) criticize the Calvo model of price-setting on
the ground that its failure to conform to the “natural rate hypothesis” is unrealistic. Qur
closely related model has exactly the feature that they criticize.

20. King and Wolman (1998) also argue, on alternative grounds, that optimal policy should
involve a steady-state inflation rate of #* = 0, despite the fact that a small positive in-
flation rate can raise steady-state output by lowering average markups, and that (if one
assumes 7 = 0, as they do) this would raise the steady-state value of the period utility
flow u(C) — v(y). Their argument involves calculation of the optimal time-dependent pol-
icy (under commitment) to maximize the average level of discounted utility over the infinite
horizon. They show that this optimal time-dependent (and time-inconsistent) policy involves
a commitment to an inflation rate that converges to zero asymptotically, even though the
optimal stationary rate of inflation would be positive.

21. Note that the latter measure considers only the welfare costs of steady inflation that result
from the relative price distortions that follow from the lack of continuous price adjustment.
As noted earlier, we abstract from any effects of steady inflation upon the steady-state level
of aggregate output. We also abstract from other welfare costs of inflation, such as the
costs of economizing on real money balances, that are emi)hasized in many discussions of
this issue. It seems likely that the effects that we neglect should, if anything, make it even
more desirable that average inflation be low. Since many of our results consider the trade-off
between stabilization objectives and the objective of a low average rate of inflation, and since

our results, when we consider the overall minimization of L 4+ 7*2, recommend a low average
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rate of inflation in any event, we do not feel that an attempt to quantify such additional
considerations is likely to change our conclusions dramatically.

22. Note that our definitions imply that R, = r, — g, so that U(R) = o(r). We refer to o(R)
in (1.39) because the structural equations of our model are written in terms of the variable
R:, and so we solve for the equilibrium fluctuations in that variable.

23. The advantage of this substitute for the more rigorous approach of imposing the require-
ment that R, > 0 at all times, given estimated shock distributions with bounded supports, is
a considerable saving in computational effort. First, imposing a constraint of the form (1.39),
our optimization problem continues to be a linear-quadratic one (if we use approximation
(1.32) to the objective, and a log-linear approximation to the model structural equations),
and as a result the optimal policy is described by a linear rule, which we can obtain using
linear methods. Second, under this form of constraint, the optimal policy does not depend
upon any more detailed description of the distribution of the exogenous shocks e} than their
means and variances. This means that we do not need to estimate more detailed properties
of these distributions, and that our conclusions are not dependent upon properties of such
distributions that are likely to be very poorly estimated in a sample of our size.

24. Briefly, in each case, a measures the extent to which the funds rate responds to deviations
of inflation and/or the price level from its target value, b measures the extent to which the
funds rate responds to deviations of output from trend, and ¢ measures the extent to which
the funds rate responds to deviations in its own lagged value.

25. See, e.g., Goodfriend (1991), Rudebusch (1995), Goodhart (1996) and Sack (1997).

26. But for a contrary view of the relative desirability of inflation stabilization and price-level
stabilization, see, e.g., Gertler (1996).

27. As reported in Rotemberg and Woodford (1997), the value is approximately .2249,

28. As explained in section 1.2 above, complete stabilization of the path of the price level
would require that Rt = p;—; each period. Given our estimated shock processes, this would
imply a standard deviation of funds rate variations of 27 percentage points - ten times

the funds rate volatility associated with historical policy. (See Table 2 in Rotemberg and
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Woodford, 1997.) Using (1.39) to determine the minimum required value for 7*, we conclude
that the average inflation rate would have to equal 58 percent per year.

29. The result that equilibrium is indeterminate in this case can be observed from the fact
that the point a = 0,5 = 0 is in the zone of indeterminacy in Figures 4 — 8, or similarly that
the point a = 0,c = 0 is in the zone of indeterminacy in Figures 9 — 12.

30. We demonstrate this numerically by truncating the infinite lag polynomial ®;(L) at a
finite number of lags, and solving for the roots of |®z(2)|. In our numerical work, we use
the terms for j = 0 through 130 in (3.2). We stop at lag 130 because both ®z(1) as well as
our estimate of the root of {®z(z)| which lies inside the unit circle are little affected by the
addition of further terms.

31. We determined this by inspection of the coefficients éij, which can be computed recur-
sively. The coefficients that we compute obey the stated recursion, up to four decimals places
of accuracy, for both ¢ = 1,2, for all values of j between 61 and 92. After this, the recursion
breaks down, presumably because a small numerical error in our estimate of ¢ introduces a
non-trivial error into our computation of 67,-j for larger values of 7.

32. For j = 50 and above, the terms in Ti—; are all .0001 or smaller, while the same is true
of the Y;_; terms for j = 19 and above. Whether the small non-zero values that we still
obtain for large j indicate that further quasi-differencing is needed in order to obtain a rule
of the form (3.6) with finite lag polynomials, or are simply due to numerical error, we have
not been able to determine.

33. Interestingly, our estimated historical policy rule for the U.S., reported in Rotemberg
and Woodford (1997), also implies more response to the growth rate than to the detrended
level of real GDP; but the historical rule can be more accurately described as making the
funds rate respond to ¥; — Y;_; rather than to Vi1 — Yo

34. This result depends upon our having linearized around the efficient Y, since otherwise
our expression for W would contain a term that is linear in E{Y;}. However, even without
this choice, we could have obtained the same result by assuming that tax policy adjusts in

response to any change in the monetary policy rule in order to preserve a particular value
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for E{Y;}, where this quantity then becomes one of the terms independent of the monetary
policy rule. In fact, we assume that taxes respond to keep output fixed in the work reported

here in any event.
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Figure 1: Selected Rules: The Standard Deviations
of Output and Inflation
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Figure 2: Selected Rules: The Standard Deviations
of the Interest Rate and Inflation
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Figure 3: Selected Rules: The Standard Deviations
of Inflation and of the Innovation in the Long Run Price Level
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Figure 4: Simple Taylor Rules:
L + n*% as a function of a and b
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Figure 5: Simple Taylor Rules:
var(#) as a function of a and b
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Figure 6: Simple Taylor Rules:
var(Y — Y) as a function of a and b

4 T T T T T T T T T
5
3 0 7
2
5 i
; i
9,
0 \
-1
2
5
-2 1
-2 0 2 4 6 8 10 12 14 16 18

Region of Indeterminacy



Figure 7: Simple Taylor Rules:
var(R) as a function of a and b
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Figure 8: Simple Taylor Rules:
var(Y’) as a function of @ and b
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Figure 9: Generalized Taylor Rules:
var(#) as a function of a and ¢
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Figure 10: Generalized Taylor Rules:
var(Ap™) as a function of a and c
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Figure 11: Generalized Taylor Rules:
(°° as a function of @ and ¢
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Figure 12: Generalized Taylor Rules:
var(R) as a function of a and ¢
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Figure 13: Generalized Taylor Rules:
var(R; — R;_1) as a function of ¢ and c¢
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Figure 14: Generalized Taylor Rules:
L + 7*? as a function of a and ¢
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Figure 15: Lagged Response Rules:
var(7) as a function of a and b
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Figure 16: Lagged Response Rules:
var(7) as a function of ¢ and ¢
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Figure 17: Lagged Response Rules:
L + 7*? as a function of ¢ and ¢
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Figure 18: Price Level Rules:
L + 7*2 as a function of a and ¢
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Figure 19: Response of Interest Rate to Permanent Shocks
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