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ABSTRACT

This paper investigates the use of trimmed means as high-frequency estimators of inflation.

The known characteristics of price change distributions, specifically the observation that they

generally exhibit high levels of kurtosis, imply that simple averages of price data are unlikely to

produce efficient estimates of inflation. Trimmed means produce superior estimates of ‘core

inflation,’ which we define as a long-run centered moving average of CPI and PPI inflation, We find

that trimming 9% from each tail of the CPI price-change distribution, or 45% from the tails of the

PPI price-change distribution, yields an efficient estimator of core inflation for these two series,

although lesser trims also produce substantial efficiency gains. Historically, the optimal trimmed

estimators are found to be nearly 23% more efficient (in terms of root-mean-square error) than the

standard mean CPI, and 45% more efficient than the mean PPI. Moreover, the efficient estimators

are robust to sample period and to the definition of the presumed underlying long-run trend in

inflation.
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1 Introduction

How should we interpret, mont,h-to-month changes in t,he measured Consumer Price

Index? Over the years, t#his question has led to the construction of several measures of

what, has come to be called ‘core’ inflation. Common measures of core inflation regularly

remove certain components from the construction of the CPI. In t,he U.S., ‘volatile’ food

and energy price movements, are often ignored, and core inflation is synonymous wit,h t,he

CPI that excludes food and energy. ’ But,  is it truly the case that food and energy price

changes never contain information about, trend inflation? Or, for that matter, is it, only

the volatile food and energy components that, distort, attempts to measure the underlying

inflation trend? Surely not. This leads us to consider how we might, develop a syst,ematic,

statistical methodology for reducing the transitory noise in measured inflation indices.

This paper follows our recent work, largely beginning with Bryan and Cecchetti (1994),

where we investigate the estimation of aggregate consumer price inflation using t,rimmed

means of the distribution of price changes. These are estimators that are robust to t,he

distributional anomalies common to price statistics. They are order stat,istics that, are

computed by trimming a percentage from the tails of a histogram, and averaging what

is left. For example, the sample mean trims zero percent, while the median t,rims  fifty

percent, from each tail of the distribution of price changes.

Every student, in introductory statistics learns that, when data are drawn from a

normal distribution, the sample mean is the minimum variance estimator of the first

moment. But price changes are not normally distributed. In fact, as we discuss in

Bryan and Cecchetti (1996), the cross-sect,ional  distribution of inflation has very fat, tails,

with a sample kurtosis that is often substantially above ten. Underlying leptokurtotic

distributions create inferential difficulties, as they routinely produce skewed samples. In

our earlier papers, we discuss how these problems lead to transitory movements in the

sample mean, causing it, to have a high small-sample variance.

Given what we know about, the distribution of price changes, what)  is the most, efficient,

lThe: 1 9 9 7  Eco~n,orn.ic  Repo,rt  of the Presiden,t  is a prirrlc  e x a m p l e .  C h a r t  2-6 0x1 page 76, and a~-

companying  text,, use the now cornmonplacc  designation of core inflation as the ‘Consumer Price Index
excluding the volatile  food ant1 energy  components.’
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estimator of the first moment of the price change distribution? How can we produce a

reduced-noise estimate of aggregate inflation at high frequencies? Our answer is to trim

the price change distribution, not by removing food and energy prices every time, but by

ignoring some percent(age  of the highest and lowest price changes each mont,h.

We study monthly changes in both consumer and producer prices in the U.S. Data

availability dictate that we examine 36 components of the CPI from 1967 to 1996 and 29

components of the PPI over the same period. Throughout, we take as our benchmark

the thirty-six month centered moving average of actual inflation. We evaluate the ability

of candidate estimators to track the movements in the benchmark. Our conclusions are

that the most efficient estimate of inflation at the consumer level comes from trimming

9% from each tail, while efficient estimation of producer prices trims 45%. By trimming

a cumulative 18% of the consumer price distribution we are able to reduce the root-

mean-square-error (RMSE) of aggregate inflation by nearly one-quarter. For the PPI,

the improvement is even more dramatic, as the RMSE declines by over 45 percent!

The remainder of the paper is composed of five sections. Section 2 reports descriptive

statistics for the distribution of CPI and PPI price changes. Section 3 discusses the

stat,istical  problems we attempt to overcome. Section 4 follows with by a discussion of

the Monte Carlo results that guide our choice of the optimal trimmed estimat,or.  We

provide various robustness checks in Section 5. These include examining changes in

sample period, changes in the degree of disaggregation of CPI data, and changes in the

benchmark. Sect ion 6 concludes.

2 Characteristics of Price Change Distributions

By how much would the monthly measure of the consumer price index have to deviate

from its recent trend for us to be relatively certain that the trend has changed? This is

the question that is in most people’s minds when the Bureau of Labor Statistics releases

the price statistics each month. 2 Figure 1 plots the monthly changes in consumer and

producer prices, at an annual rate, together with a three-year centered moving average,

ZCecclictti (forthcoming) suggests a preliminary answer to exactly this qucstiori.
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FIGURE1
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both for the period 1967:02 to 1997:04.”

As is evident from the figure, the monthly changes in both of these price indices

contain substantial high-frequency noise. By this we mean that, deviations of the monthly

changes from the trend are quite large and often reversed. In fact, the standard deviation

3We use 36 camp oncnts  of the Consumer Price Index for Urban Consumers, seasonally adjusted by the
BLS. These data arc all available continuously, monthly, since 1967:Ol.  The housing scrvicc component
is based on the rental  equivalcncc  mcasure of owner  occupied housing, and so prior to 1982, the series is
essentially the experimental  CPI-Xl. The producer price is based on the PPI for commodities, and uses a
set of between 29 and 31 components. All data arc seasonally ad.justed  using the ARIMA X-11 procedures
available  with SAS. A dctailcd Appendix containing descriptiona of the sources and construction of the
data sets used is available from the authors upon request.
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of the difference between the monthly and the moving average aggregate price change

is 6.92 percentage points for the PPI and 2.50 percentage points for the CPI (bot,h at

annual rates). A look at the actual distributions shows that a 90% confidence interval for

the CPI is from -3.92 to +3.76 percentage points, while for the PPI it, is from -10.35 to

+8.97 percentage points. In other words, since 1967, monthly changes in producer prices

have been either more than 10 percentage points below or 8 percentage points above the

thirty-six month moving average one in every ten months!

The common method of excluding food and energy simply does not, help much. In

fact, the standard deviation of the difference between the CPI ex food and energy and the

thirty-six month average CPI is 2.31 percentage points, and the 90% confidence interval

shrinks slightly to [-3.73,+3.76] percentage points. By contrast, for the PPI, excluding

food and energy improves things, as the standard deviation of difference between the PPI

excluding food and energy and the 36 month centered moving average of the actual PPI

drops by about,  40% to 4.14, and the 90% confidence interval shrinks by about t,he same

amount to [-5.94,+4.76].

In an effort to better understand the nature of the transitory fluctuations in high-

frequency inflation measurement, we begin by examining the characteristics of the price

change distributions. It is useful to pause at this stage to introduce some notation. We

define the inflation in an individual component price over an horizon k: as

where pit is the index level for component i at time t. From this, we define the mean

inflation in each time period, over horizon k, as

where the rit’s are relative importances that are allowed to change each mont,h  to reflect,

the fact that the actual index is an arithmetic average.4

41t is straightforward to show that if the price level index utiliaes  fixed weights, call these UQ, t,hcn theL L
pcrccntagc  change in the aggrcgatc index cm bc approxirnatcd  by the wcightctl  sum of t,hc pcrccntagc
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The higher-order central moments are then

(3)

Skewness and kurtosis are the scaled third and fourth moments, respectively:

St”  = 4,
[m&l C3i2)

and

(4)

(5)

Table 1 reports numerous descriptive statistics for the cross-sectional distribution of

monthly price changes at overlapping horizons of one to thirty-six months. Among the

noteworthy characteristics is that the distributions are often skewed. The mean absolute

value of the skewness, the mean of Si, in monthly CPI changes is 0.20 and in PPI changes

it is 0.04, suggesting that the distributions are nearly symmetrical on average. there is

little skewness in the distributions on average. But the standard deviation of Si is 2.35

for the CPI and 2.36 for the PPI, implying that distributions of one-month changes are

often highly skewed. This standard deviation falls off as the horizon increases, implying

that the distribution of longer-run changes are much less likely to exhibit, skewness.5

The price change distributions also have very fat tails. The average kurtosis of

monthly changes, the average value of Icj, is 11.24 for the CPI and 10.35 for the PPI. In

fact, the weighted kurtosis of monthly price changes is in excess of 20 about ten percent

of the time. See Figure 2.

These facts allow us to identify a potentially important source of high frequency noise

in the measurement of inflation. In a given month, there is a high probability of observing

some subset, of prices change by a substantial amount, - generating the skewness and

kurtosis that we see. But, over time, these extreme changes are balanced out, reducing

changes  in the components, whcrc  the weights change to reflect  changes in relative  prices. Defining the
aggregate  price lcvcl P+ = C wipit,  then Tit = wi(pit/pt-1).

‘For  example the 5th and 95th pcrccntilcs  of Si for the CPI arc [-X52,4.26].  Bnt  the same percentiles
for S,“” arc [-2.X3,1.93].
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Table 1: Summary Statistics for Price Change Distributions

Deviations from 36 Month Moving Average
Consumer Prices, 1967.01 to 1996.04

36 Components
1 k:=l 1 ti=3 Ik:=12jk:=241,+36

Standard Deviation
Average 9.18 6.64 4.06 3.36 3.14
Std .  Dev.  190 .45  79 .80 25.49 11.81 8.83

Skewness
Average 0.20 0.16 0.21 0.29 0.26
Std. Dev. 2.35 2.15 1.51 1.38 1.41

Kurtosis
Average 11.24 9.56 5.72 4.52 4.23
Median 8.60 7.37 4.65 3.89 3.75
Std. Dev. 9.80 8.36 3.49 2.39 2.20

Producer Prices, 1967.02 to 1997.04
29-32 Components

1 k:=l 1 k=3 Ik=12jk:=241k:=36
Standard Deviation

Average 15.59 10.60 6.24 4.82 4.44
S t d .  D e v  9 5 5 . 6 6  2 6 6 . 6 4  8 6 . 8 5 35.08 22.82

Absolute Skewness
Average 0.04 0.14 0.04 0.02 0.01
Std. Dev. 2.36 2.12 1.74 1.53 1.46

Kurtosis
Average 10.35 8.80 7.26 5.47 4.03
Median 6.38 6.23 4.89 3.51 2.78
St,d. Dev. 11.51 8.47 6.50 6.11 3.43

All data are at annual rates.
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the observed skewness.

One economic int,erpretation of these distributional characteristics is that if price

change is costly, we will not observe the distribution of desired price changes each month.

If the size and t,iming of price changes are based on two-sided state-dependent, rules, as

in Caballero and Engel (1991), or Caplin and Leahy (1991)) what, we observe will depend

on the rule used by the price-setter and the history of the shocks to desired prices. As

a result, we will rarely see prices that exactly equal the price that would be set, in the

absence of any price-adjustment costs. The amount of noise decreases over longer periods,

when each price has changed numerous times. But for high frequencies of one quarter or

one month, the problem can be a serious one.6

However, one need not, necessarily attach oneself to a particular model of price-set,ting

behavior in order to accept our conclusions. It, is well known that a mixture of random

draws from normal dist,ribut,ions  with differing variances will produce a leptokurtic sam-

ple. As a statistical matter, then, we can show that the mean price-change statistic is

unlikely to provide the efficient estimate of inflation, regardless of the price setting model

that is assumed.

We can t,hink of two possible approaches to handling the problem. One would be to

actually model price-setting explicitly using the theory as it, has been worked out. But

this has substantial drawbacks, as it, requires that,  we actually estimate the time-varying

price change rules themselves. Alternatively, we can treat the complication presented

by state-dependent price change rules as a statistical sampling problem. We view the

monthly, skewed distributions as small-sample draws from the longer-horizon (roughly)

symmetrical populat,ion  distribution. The fact that the population has such high kurtosis

leads ILS to consider a family of estimators that are robust to the presence of fat, tails, a

topic to which we now t,urn.

6An alternative  intcrprctation  is irnplictl  b y  Balkc ant1 Wymc  (1%X), who show that a multi-sector,
dynamic gemral  equilibrium  model with Inoncy and flexible prices can product: similar characteristics  in
an cnvironrnent  of asyrnmctric  supply shocks. A distinguishing fcaturc of this rrloclcl  is that the ‘n&c’
in the estimator rioctl  riot significantly diminish at lower frcqnencies.
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3 Robust Estimation

We begin by assuming that we have available a sequence of samples from a symmetric

distribution wit,h  an unknown, and possibly changing, mean. At issue is the efficient,

est,imation  of the mean. We consider a set, of est,imators  called trimmed means, that

average centered portions of the sample. The method of averaging is to order the sample,

trim the tails of the sample distribution, and average what remains.

To calculate the (weighted) a-trimmed mean, we begin by ordering the sample,

{ 21 , “‘7 x,}, and the associated weights, (201,  . . . . wn}. Next, we define Wi as the cu-

mulative weight from 1 to i; that is, W,: s $, wj. From this we can determine t,he set,

of observations to be averaged for the calculation: the i’s such t,hat  G < Wi < (1 - $).

We call this 1,. This allows us to compute the weighted a-trimmed mean as

There are two obvious special cases. The first is the sample mean, .%a,  and the second is

the sample median, 250.~

The efficient estimator of the mean, in the class of trimmed sample means, will depend

on the charact,eristics  of the data-generating process. 8 If, for example, the data are drawn

from a normal distribution, then we know that the sample mean is the most, efficient

estimator. That is, t,he sample mean is the estimator that has the smallest, small-sample

variance.

But when the data are drawn from leptokurtic distributions - distributions with

much fatter tails t,han the normal - the sample mean will no longer be t,he most, efficient

estimator of t,he population mean, even in t,he class of trimmed sample means. It, is

relatively easy t,o see why this is so. With a fat-tailed distribution, one is more likely

to obtain a draw from one of the tails of the distribution that is not, balanced by an

7See Stuart ant1 Ord (1987) pg. SO-51  and particularly Huber  (1981) for general definitions of limited-
influence estimators arid their propcrtics.

‘For  cxamplc, Yule and Kendall (1968) 1’( IS:CI~SS  the impact of changing kurtosis on the rclativc: effi-
cicncy of the sample mean and the sample median. But we know of no general results concerning the
relative  cfficicncy of trimmed-mean  estimators.
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equally extreme observation in the opposite tail. That is to say, as t,he kurtosis of t,he

data-generating process increases, samples have a higher probability of being skewed.g

The impact, of kurtosis on the efficiency of trimmed-mean estimators is straightforward

to demonstrate. To do so we construct, a simple experiment, in which we draw a series of

samples from distributions with varying kurtosis and compute the efficiency of the entire

class of trimmed-mean estimators, including the mean and the median.

In all of our experiments, the data-generating process is characterized by a two pa-

rameter distribution that, is a mixture of two normals, one with unit variance, and one

with changing variance. We consider a random variable Z, such t#hat

2 = s * y1 + (1 - s) * 92 ) (7)

where

Pr(s = 1) = p )

Yl - N(O,l) ,  a n d

Y2 - N(O,A) .

With probability p draws come from a standard normal and with probability (1 - p)

they come from a N(0, A). The population mean, E(z), is zero. The kurtosis of this

distributSion,  $$&, varies wit,h p and A:

3p+3(1-p)A2
IC(A'p) = b+ (1 4,412 ' (8)

We examine five cases, all with 23 = 0.90, and A set such that K = (3,10,15,20,30).

In each of our experiments, we construct, 10,000 replications of 250 draws each. We

then compute t,he Z, for QI = (0, 1, . . . , 49,50}.  This yields 10,000 estimates of all of the

trimmed-mean estimators, which we label Z& . From these we compute the root-mean-

gBryan  a n d  Cecchctti  (199ci)  1c crnonstrntc  this point in another context. Wc can show  that the
standard deviation  of the sample  skcwncss incrcascs  with the kurtosis of the data-generating  process.

10



square error (RMSE) and the mean absolute deviation (MAD). These are

R M S E ,  =

d 3

and

M A D ,  =
3

(9)

(10)

Figure 3 plots the RMSE, and the MAD, for experiments based on distributions with

varying kurtosis, K(A, p). To adjust for the fact that the variance of the distribution also

changes with A and p, we have normalized RMSEo  and MAD0  to one for each case. The

results clearly show t#hat the efficient trim - the trim that minimizes either t,he RMSE or

the MAD - increases with the kurtosis of the data generating process. As the kurtosis

increases from 3 to 30, the efficient trim goes from 0 to 16%.

We caution that*  the results from these experiments are illustrative and apply only

to the specific distributions we examine. We know of no general analytic result deriving

the optimal trimmed mean estimator as a function of the moments of the underlying

distribution and the size of the sample.

4 Efficient Estimation of Inflation: Preliminaries

We have now established one property of price data and a related statistical fact.

First, the cross-sectional distribution of price changes, both in the CPI and the PPI, is

fat-tailed. Second, trimmed-means are the efficient estimator of the mean of a leptokurtic

distribution. We now combine these two insights and ask what is the most, efficient

estimator of inflation?

We begin with a preliminary examination of the data using a simple Monte Carlo

experiment based on actual price data. In order to judge efficiency, we need to have a

measure of the population mean we are trying to estimate. Following Cecchet,ti (forth-

coming): we choose the thirty-six month centered moving average of actual inflation.

This is an approximation of the long-term trend in inflation that, is likely to he what

11



FIGURE 3

RMSE of Trimmed Estimators as Kurtosis  Changes
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FIGURE 4: Consumer Prices
Efficiency of Trimmed Estimators, Monte Carlo Results

people have in mind when they attempt, to construct measures they label core  inflation.

To proceed, we take the deviation of monthly component, price changes from this

thirty-six month centered moving average of inflation. For the CPI, we use 36 components

of the CPI-U over the period 1967.02 to 1997.04, with its 1985 weight,s.  To simplify the

experiments, we set, the relative importances (rit) equal to the 1985 weights (wi), and

leave them fixed throughout. For the PPI, we use a reduced set of 27 components

also available over the 1967.02 to 1997.04 sample and their fixed 1982 weights. After

subtracting each price change from the thirty-six month moving average change in the

appropriate index, we have two matrices of relative price changes.

In each experiment, we randomly draw a series of samples by t,aking  one observation

for each of the component, time-series - one draw from each column in the relative-price-

change matrix. This is a bootstrap procedure from which we generate 10,000 samples,

each with 36 relative price changes for CPI data, or 29 relative price changes for PPI

data. We then comput,e the two measures of efficiency - the root-mean-squared error

(RMSE) and the mean absolute deviation (MAD).

The results are reported in Figures 4 and 5. The weighted means are found to be the

least efficient of all of the estimators. The efficiency of the inflation estimates greatly

13



FIGURE 5: Producer Prices
Efficiency of Trimmed Estimators, Monte Carlo Resuhs

improves with even very small trims from the sample. For example, in the case of the

CPI, trimming as little as 3% from each tail of cross-sectional distribution improves the

efficiency of the estimator by over 15%. The most efficient estimator for monthly CPI

data was the 7% trimmed mean where the efficiency gain is approximately 20%, although

trims in the neighborhood of this estimator perform nearly as we11.l’

For the PPI, however, much larger trims of the sample distribution are necessary to

achieve the efficient estimator. The optimal trim, which occurs in the range of 40%, has

an RMSE that, is only one-third that of the sample mean!

‘OThc technique WC suggest here is appropriate for cases in which the price-change distributions arc
symmetrical  on avcragc.  WC know of instances where  this is not the cast. For example,  Roger’s (1007)
examination of New Zealand price data rcvcals  a pcrsistcnt, positive skcwncss in the price change tlistri-
bution that, products a bias in the trimmctl estimators of the mean. Roger constrlds  trimmed estimators
ccntcrcd  on the mean pcrcciitilc,  or the pcrcentilc of the distribution corresponding to the inC~aii  of the
distribution. That is, for New Zealand price data, Roger trims the tails of the distribution asymmdri-
tally,  centering on the 57th pcrcentilc. In this way, the trimmed estimator is an unbiased  estimate  of
the CPI trend in New Zealand. Roger’s insight implies a proccdurc in which  the trim and c~cnteriug
parameter arc chosen jointly to minimize cithcr  the RMSE or MAD criterion, subject  to the cstimatol
being unbiased in the sample.

14



5 Efficient Inflation Estimation: Historical Data

We now move to a more complete examination of the actual data. Here we will

compare the relative efficiency of trimmed estimators using the historical time series,

taking account of the changes in the relative importances [the rit’s in equation (2)] over

time. That, is to say, we will compute the weighted distributions of inflation each month,

where the weight,s  vary based on changes in relative prices as well as the periodic rebating

done by the Bureau of Labor Statistics roughly once per decade.

In Section 5.1, we look for the optimal trimmed mean estimator using the entire 1967

to 1997 sample currently available. Are the results of the previous section robust to

several obvious changes in methods.? We examine three cases. In the first, reported in

Section 5.2, we study more disaggregated CPI data over a shorter sample period. In

Section 5.3, we look at the implications of changing t,he measurement, benchmark from

the thirty-six month centered moving average of actual inflation to moving averages of

from twenty-four to sixty months. Finally, in Section 5.4, we st,udy  estimator stability

by looking at optimal trims over varying sample periods. We conclude this section with

a summary and comparison of the trimmed means with the inflation measures t,hat

arbitrarily exclude food and energy.

5.1 The Baseline Case

In this section we consider the time-series characteristics of the trimmed-mean estima-

tors. We calculate the RMSE and the MAD for each trimmed estimator using monthly

historical component price data. That is, we compute the trimmed-mean estimators

of inflation month-by-month, and compare their deviations from the centered thirty-six

month moving average. The results, reproduced in Figure 6 for the CPI, and Figure 7

for the PPI, are virtually identical to those in the Monte Carlo experiments shown in

Figures 4 and 5.11

It is easy to see how much inflation measures are stabilized by trimming. Figure 8

llTlu-oughollt  this section, the PPI data set rises  a set of components that varies  from 29 to 31 in
nmnbcr, depending  on data availability
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FIGURE 6: Consumer Prices
Efficiency of Trimmed Estimators, Historical Data

FIGURE 7: Producer Prices
Efficiency of Trimmed Eshmators,  Historical Data
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FIGURE 8
Monthly CPI Estimators
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Table 2: Comparison of Inflation Est,imators

Mean ( .$J)
ex Food& Energy
Median (250)
Optimal Trim
Trim at Opt.

CPI
1967 to 1997

R M S E  M A D
2.50 1.76
2.31 1.62
2.04 1.51
1.93 1.31
9% 9%

PPI
1967 to 1997

R M S E  M A D
6.91 4.27
4.14 2.55
3.98 2.55
3.80 2.52
40% 45%

All values are computed  from monthly  changes as annual  rates. Deviations  are from the 36-month centered  moving average.

The  optimal  trim is the trim that minimizes  either  RMSE, or MAD,.

plots the mean, the thirty-six month centered moving average, and the efficient t,rimmed

estimator for mont,hly  CPI and PPI data for the January 1990 to December 1996 period.

Table 2 compares t,he properties of a number of commonly used estimators for con-

sumer and producer price inflation. Focusing first on the CPI, we note that, exchlding

food and energy produces little improvement in efficiency. The CPI excluding food and

energy is only slight,ly  more efficient than the CPI-U itself, reducing the RMSE from 2.50

to 2.31. But trimming clearly helps. Trimming 9% of the cross-sectional distribution of

consumer prices reduces the RMSE by just under 23 percent.12

For producer prices, the improvements are even more dramatic. Using the long sample

period, we find that, trimming 40% of the distribution from each tail improves the RMSE

by over 45 percent,. Excluding food and energy from the PPI reduces the RMSE by less

than 40 percent.13

12Brydcn  and Carlson  (1994) also note that this trim products the minimum time-series variance of
any trimmed-mean estimator over the 1967 to 1994 period.

13A  common tcchniquc for reducing the noise in the high frequency  inflation cstimatcs  uses timc-
series averages. We have conducted  experiments that combine trimming with time-averaging. We note
that averaging the component price change data prior to trimming, or pm-trim meraging, tlrcrcases
the amount of trimming necessary  to produce a minimum RMSE estirrdor  of the inflation trcntl. For
example, using three-mouth avcragc  price changes of component CPI data, the minimum RMSE of the
inflation  trend is found ly trimming 6% from the tails of the price change distribution, compared  to the
9% trims rquircd  of monthly data. Similar results were found for post-trim avemges,  where WC average
the monthly trimmctl  moans. That is, if we calculate  the trimmed  estimators, and compute a 3-month
average of that, result, the minimlun RMSE estimate of the inflation trend is fount1  by trimming 6% from
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5.2 More Disaggregated Data

The price statistics are collected at a much more disaggregated level than what, we

have used thus far. Does the optimal trim change wit,h  the level of aggregation? The

experiments in Section 3 suggest that, the answer to this question will depend on what,

happens to the kurtosis of the cross-section distribut,ion  of price changes as we vary t,he

level of aggregation.

To examine this issue, we assembled a data set, composed of between 142 and 175

components of t,he CPI-U from 1978 to 1996. The number of series (and the relat,ive

importance of each series) varies each mont,h  depending on availability. The weighted

kurtosis of these data is much higher than that for the 36 component dataset  examined

in the previous section. For monthly changes, for example, Table 1 reports that, inflation

in the 36 components of t,he CPI-U has median kurtosis of 9.68. By contrast, t,he kurtosis

in the more disaggregated data set, has a median of 43.1!

As in Section 5.1, we construct, using historical data, the RMSE and MAD for each

of the trimmed estimators, from a = 0 to 50. These provide a gauge of the efficiency

gains from t,rimming  the outlying tails of the price-change distribution. The results in

Figure 9 confirm that, in the case of consumer prices, the efficient, estimation of inflation

requires more trimming when more disaggregated data are used. In this experiment,: the

optimal trim is 16%, at which point the RMSE is cut, nearly in half. But again, virt,llally

any trimming helps. For example, trimming 9% from each t,ail - the optimal amount,

for the 36 component, data set, - reduces the RMSE by about 40%.

The practical implications of this exercise are fairly important. We have found t,hat

since the kurtosis of the price-change distributions depends on the level of disaggrega-

tion, so does the optimal trim. As a result, implement#ation  of these techniques for the

production of a core inflation index will depend critically on the exact, dataset llsed.

each tail of the price change distribution. Even at, relatively  low frequencies,  some amount of trimming
of the price change distribution seems warranted. For cxamplc, using a 6-month  componcrlt  price  changr
and a 6-month avcragc  of the trimmed  estimators, the minimum RMSE estimator  of the CPI trend is
obtained by trimming 55%  from each tail of the price change distribution. These alternative  smoothing
techniques  address a somewhat different question from the one posed in this paper: How much new
information dots a monthly price report  contain? Wc leave  the investigation  of this important area for
future rcscarch.
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FIGURE 9: Consumer Prices, 142 to 175 Components
Efficiency of Trimmed Estimators, Historical Data

5.3 Changes in the Benchmark
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As we noted at the outset of the previous section, in order to assess efficiency, we must

specify a goal: What is it we would ideally like to measure? Our second robustness check

involves deviating from the thirty-six month centered moving average as the benchmark.

Table 3 reports optimal trims as a function of the length of the moving average

specified for the benchmark, similar to those in Sections 4 and 5.1 for the opt,imal  trim.

Included are the optimal trims using the Monte Carlo methods, as well as those for the

historical data. The table also reports an informal confidence interval construct,ed  as the

set of trims with RMSE or MAD within five percent, of the minimum. For example, using

the historical data in the case of the 36 components CPI data and the thirty-six month

centered moving average benchmark, the minimum RMSE of 1.93 occurs at, a trim of 9%

(see Table 2). Th I fe ourth line in the first bottom panel of Table 3 reports that, all of the

trims between 5% and 48% have an RMSE below 1.93*l.05=2.03.i4

Several patterns emerge from these results. First, the ‘point estimate’ of the optimal

trim does not vary as we change the benchmark. But the approximate confidence intervals

14Note that thcrc  is nono  reason for the approximate confidenc~c  intervals  to be either symrr~ctrical  or
continuous. Tllc ones reported in Table 3 all happen to be continuous.
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Table 3: Optimal Trim for Changes in the Benchmark

MA
24

36

48

60

-

-

Monte Carlo Results

CPI PPI
RMSE MAD RMSE MAD

0.07 0.07 0.43 0.45
(0.03,0.35) (0.03,0.17) (0.31,0.50) (0.33,0.50)

0.07 0.07 0.41 0.43
(0.03,0.44) (0.03,0.17) (0.31,0.50) (0.33,0.50)

0.06 0.07 0.43 0.46
(0.03,0.42) (0.03,0.17) (0.31,0.50) (0.34,0.50)

0.06 0.07 0.42 0.45
(0.03,0.41) (0.03,0.17) (0.30,0.50) (0.33,0.50)

-

Historical Data

CPI
36 Components

1967 to 1997
RMSE MAD

0.09 0.09
(0.05,0.25) (0.05,0.17)

0.09 0.09
(0.05,0.48) (0.05,0.19)

0.09 0.09
(0.05,0.50) (0.05,0.21)

0.09 0.09
(0.05,0.50) (0.05,0.23)

-

-

PPI CPI
29 to 31 Components 142 to 175 Components

1967 to 1997 1978 to 1996
RMSE MAD RMSE MAD

0.40 0.45 0.14 0.16
(0.25,0.49) (0.30,0.50) (0.08,0.23) (0.09,0.24)

0.40 0.45 0.16 0.17
(0.25,0.50) (0.31,0.50) (0.10,0.24) (0.11,0.26)

0.43 0.45 0.17 0.17
(0.25,0.50) (0.29,0.50) (0.11,0.25) (0.12,0.25)

0.43 0.49 0.18 0.18
(0.25,0.50) (0.27,0.50) (0.12,0.26) (0.12,0.28)

-

-

Numbers  in parentheses  are  trims  with  RMSE  or MAD within  5% of the value at the minimum.  Monte Carlo  experiments

use 10,000  replications.
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FIGURE 10: Consumer Prices, 36 Components
Efficiency of Trimmed Estimators, Changing Sample

have a tendency to grow as the degree of the moving average increases. Second, for the

PPI, there is little difference bet,ween  the ‘optimal trim’ and the median. In all cases but

one, the RMSE and MAD of the median are well wit,hin  the 5% st,andard.  Finally, for

CPI at both levels of aggregation there is a large benefit, to trimming a small amount.

5.4 Variations in the Sample Period

Next, we examine the sensitivity of the results to the sample period. This is analogous

to asking whether the underlying distributional characteristics of the data are st,able. To

do t,his, we perform a series of Mont,e  Carlo experiments comparable to those in Section 4,

but, instead of using the full sample from which to draw, we use rolling t,en year samples.

For example, in the case of the CPI we compute the optimal trim based on dat,a  from

1967 to 1976, then from 1968 to 1977, moving forward twelve months at a time.

Figures 10 and 11 report the results of these experiments. Each figure has a horizontal

line at the optimal trim calculated using the full sample, together with a second line

plot,ting  the optimal trim based on each of the ten year samples. The horizontal axis

shows the final date of the sample. To give some sense of precision, the X’s in t#he figures

represent the approximate confidence intervals construct,ed  as all of the t,rims  such t,hat
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FIGURE 11: Producer Prices
Efficiency of Trimmed Estimators, Changing Sample

the criterion, RMSE or MAD, is within 5 percent of the minimum.

The RMSE and MAD of the optimal full-sample trim are nearly always within 5

percent, of the minimum value for the 10 year sub-samples. In fact, for the CPI, using

the mean absolute deviation (MAD) criteria, the optimal trim is never outside of this

rough confidence bound. For the PPI, there are thirty-six 10 year sub-periods. Using the

RMSE criteria, the optimal full sample trim of 40 percent is within the confidence band

in 33 of the 36 cases.

5.5 Summary and Comparisons

Given that the “CPI excluding food and energy” is the measure of core inflation in

common use, it is useful to compare this measure of core inflation to ours. We do t,his is

two ways. First, we ask which components we are trimming. And second, we look at a

closer comparison of various candidate measures based on the RMSE criteria used above.

Table 4 examines which components we are trimming. For each month, we counted the

frequency at which some portion of the weight of each component, was trimmed using the

optimal trim - 9% for the CPI and 40% for the PPI. We also note which components are

systematically excluded by the ‘ex food and energy’ measures (highlighted in bold-faced
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Table 4: Frequency  That a Component is Trimmed: CPI 9% trim

CPI CoIIlpoIl”Ilt

Fruits  and vegetables
Motor fuel
Fuel oil and other household fuel commodities
Used  cars,  etc.
Infants and toddlers apparel
Meats, poultry, fish and eggs
Womcns and girls apparel
Public transportation
Other apparel  commodities
Other private transportation commoclitics
Gas and electricity (energy services)
Tobacco and smoking products
Dairy products
Other private transportation services
Mens and boys apparel
Other utilities and public services
Personal and  educational  services
Toilet goods and personal  cart appliances
Medical cat-c services
Other food at home
Footwear
Cereals and bakery products
School books and supplies
New vehicles
Housekeeping  supplies
Hol~sefurnishings
Entcrtainmcnt services
Medical care  commodities
Shelter
Housekeeping  services
Entertainment commodities
Personal cart scrviccs
Alcoholic bcveragcs
Apparel services
Auto maintenance  and repair
Food away from home
Mean of All Items
Mean of Food & Energy

Average
Relative

Importance
2.26
3.82
0.80
2.27
0.11
4.61
2.71
1.41
0.58
0.67
3.35
1.63
1.92
3.35
1.90
2.30
1.96
0.93
5.20
3.01
1.02
1.86
0.48
3.64
1.37
4.00
1.88
1.01

25.24
1.80
2.37
0.94
1.73
0.92
1.37
5.58

-

-

Percent, of Sample
period that, a

portion of the good
is trimmed

69.61
67.13
59.94
58.84
54.97
54.70
43.09
40.33
37.85
37.85
34.81
33.43
28.73
24.59
23.48
23.20
22.65
20.99
20.72
19.06
19.06
17.96
17.96
17.13
16.57
16.30
15.47
14.92
12.98
9.67
7.46
7.18
6.91
5.25
3.87
3.31
26.89
39.93
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Table 5: Frequency  That a Component  is Trimmed: PPI 40% trim

PPI  CorIlpoIlcIlt

Farm products
Fats and oils
Meats, poultry, and fish
Prepared animal feeds
Fuels and related products and power
Metals and metal products
Hides, skins, leather,  and related products
Lumber and wood products
Sugar and confectionery
Electronic computers and computer cquipmc
Transportation equipment
Chemicals and allied products
Processed fruits and vegetables
Dairy products
Cereal and bakery products
Miscellaneous processed foods
Misccllancous Instruments
Beverages and beverage materials
Motor vchiclcs  and cquipmcnt
Miscellaneous products
Electrical  machinery  and equipment
Construction machinery  arid  cquipmcnt
Agricultural machinery  and cquipmcnt
Tcxtilc products and apparel
Rubber  and plastic products
Pulp, paper,  and allied products
Nonmetallic  mineral products
Misccllancous machinery
Special industry machinery  and equipment
Furniture and l~ouscl~old  durablcs
General  purpose  machinery  and equipment
Metalworking  machinery  and equipment
Mean of All Items
Mean of Food & EnerEv

Average
Relative

Importance
7.477.47
0.420.42
3.563.56
1.221.22
12.1612.16
11.8611.86
0.810.81
2.402.40
1.041.04
0.650.65
8.888.88
6.866.86
0.750.75
1.721.72
1.581.58
1.151.15
0.550.55
1.90
7.01
3.473.47
4.544.54
0.740.74
0.580.58
5.335.33
2.562.56
6.826.82
2.752.75
1.731.73
1.19
2.98
2.062.06
1.241.24

Percent of Sample
period that a

portion of the good
is trimmed

98.90
97.5297.52
96.97
96.14
96.14
92.8492.84
90.08
88.98
87.8887.88
86.7886.78
86.7886.78
86.2386.23
85.6785.67
85.4085.40
83.2083.20
82.6482.64
82.0982.09
81.5481.54
81.5481.54
80.7280.72
78.7978.79
78.5178.51
77.4177.41
77.1377.13
77.1377.13
76.0376.03
74.1074.10
72.4572.45
71.3571.35
70.8070.80
69.4269.42
66xl66xl
83.0583.05
90.08
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type). The results show that we often trim some of the food and energy prices. Indeed,

for the CPI, food and energy components are trimmed from the efficient estimator nearly

40% of the time - nearly one and one-half times as frequently as the average component,.

Still, some food and energy goods, notably food away from home, appear to provide an

efficient, signal of core inflation as we define it, here. In fact, of the 36 CPI components

considered, food away from home was the least likely to be trimmed. Moreover, many

non-food, non-energy goods appear to provide little information about t,he economy’s

inflation trend. Notable among these are used cars and infant, and t,oddler  apparel t,hat

are likely to be trimmed out, of the efficient estimator nearly twice as frequently as the

average good (the average component is trimmed out of the 9% trimmed mean in 27%

of the months in the sample).

The components most likely to be included in the calculation of t,he efficient CPI

estimator include a wide variety of services and the shelter component, which, despite its

hugh average relative importance of 25.24, is likely t#o  be on one of the trimmed tails of

the price change distribution only about 13% of the time.

Similarly for the PPI, food and energy goods tend to be trimmed from the efficient,

estimator a disproportionately large share of the time. But,  some food component,s,  such

as beverages and beverage materials and miscellaneous processed foods, are t,rimmed  at

the same frequency as the average component. The least frequently trimmed component,

metalworking machinery and equipment, is still trimmed about,  two-thirds of t,he time.

This is a relatively low proportion when one considers that, for any given month, 80% of

the price change distribution is trimmed to produce an efficient estimat,or  for PPI core

inflation.

Finally, in Figure 12 we plot the ratio of the RMSE of various measures to the RMSE

of the CPI-U and PPI themselves over different, sample periods. For example, for the

ten-year period ending July 1995, the RMSE for the CPI ‘ex food and energy’ was 57.8%

than of the CPI-U itself - about the same as t,hat  of the median. But, the RMSE of the

9% trim was 42.5% of the RMSE of the CPI-U. The main result, is t,hat, for the CPI, the

9% trim is always more efficient that t#he CPI excluding food and energy. But, for the

optimally trimmed PPI and the PPI ‘ex food and energy’ are very close.
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FIGURE 12: Comparison of Various Estimators
Efficiency with Changing Sample

6 Conclusion

In this paper we challenge the conventional wisdom that core inflation can be mea-

sured by simply excluding food and energy from monthly price data. We show that,

price change distributions are highly leptokurtic, or ‘fat-t,ailed,’  and so commonly used

measures, such as t,he sample-mean, are inefficient, estimators of the populat,ion  mean of

interest. We demonstrate that trimmed-mean estimators significantly improve the effi-

ciency of inflation estimates. Furthermore, we are able to show that as the kurtosis of

the distribution increases, efficiency dictates trimming an increasing percentage of the

sample.

We proceed to apply these insights to inflation data. For consumer prices beginning

in 1967, we find that trimming 9% from each tail of the cross-sectional price-change

distribution produces the minimum root-mean-square error and minimum mean-absolute

deviation estimate of monthly inflation. This estimator provides efficiency improvements

on the order of 23 percent relative to the mean. By contra&,  the CPI excluding food

and energy provides virtually no efficiency improvement at all.

More disaggregated data amplify the difficulties, as the kurtosis of the distributions
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increases. Moving from a dataset  composed of 36 components of the CPI to one with

185 components beginning in 1978, we show that the optimal trim nearly doubles to

16%. Here we find an efficiency gain of nearly 50 percent (although t,he sample period

is substantially shorter). For producer prices beginning in 1947, where price-change

distributions are more leptokurtic, trimming 40% to 50% from each tail produces t,he

most efficient estimate of monthly aggregate price movements and improves efficiency by

over 40 percent, relative to the mean.
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