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ABSTRACT

It appears that volatility in equity markets is asymmetric: returns and conditional volatility
are negatively correlated. We provide a unified framework to simultaneously investigate asymmetric
volatility at the firm and the market level and to examine two potential explanations of the
asymmetry: leverage effects and time-varying risk premiums. Qur empirical application uses the
market portfolio and portfolios with different leverage constructed from Nikkei 225 stocks,
extending the empirical evidence on asymmetry to Japanese stocks. Although volatility asymmetry
is present and significant at the market and the portfolio levels, its source differs across portfolios.
We find that it is important to include leverage ratios in the volatility dynamics but that their
economic effects are mostly dwarfed by the volatility feedback mechanism. Volatility feedback is
enhanced by a phenomenon that we term covariance asymmetry: conditional covariances with the
market increase only Signiﬁcantly following negative market news. We do not find significant

asymmetries in conditional betas.
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1. INTRODUCTION

There is a long tradition in finance (see for example Cox and Ross (1976)) that models stock
return volatility as negatively correlated with stock returns. Influential papers by Black (1976)
and Christie (1982) further document and attempt to explain the asymmetric volatility property
of individual stock returns in the U.S. The explanation put forward in these papers is based on
leverage. A drop in the value of the stock (negative return) increases financial leverage, which
makes the stock riskier and increases its volatility'.

Although to many “leverage effects” have become synonymous to asymmetric volatility, the
asymmetrc nature of the volatility response to return shocks could simply reflect the existence
of time-varying risk premiums (Pindyck, (1984), French, Schwert and Stambaugh, (1987) and
Campbell and Hentschel (1992)). If volatility is priced, an anticipated increase in volatility raises
the required return on equity, leading to an immediate stock price decline. Hence the causality is
different: the leverage hypothesis claims that return shocks lead to changes in conditional volatility
whereas the time varying risk premium theory contends that return shocks are caused by changes
in conditional volatility.

Which effect is the main determinant of asymmetric volatility remains an open question. Studies
focusing on the leverage hypothesis, such as Christie (1982) and Schwert (1989), typically conclude
that it cannot account for the full volatility responses. Likewise, the time-varying risk premium
theory enjoys only partial success. The volatility feedback story relies first of all on the well-
documented fact that volatility is persistent. Thatis, a large realization of news, positive or negative,
increases both current and future volatility. The second basic tenet of this theory is that there exists
a positivé intertemporal relation between expected return and conditional variance. The increased
volatility then raises expected returns and lowers current stock prices, dampening volatility in the
case of good news and increasing volatility in the case of bad news. Whereas such a relationship
for the market portfolio would be consistent with the Capital Asset Pricing Model (CAPM, Sharpe
(1964)), it only holds in general equilibrium settings under restrictive assumptions (see Backus and
Gregory (1992), Campbell (1993) and the discussion in Glosten, Jagannathan and Runkle (1993)).

Moreover, there are conflicting empircal findings. For example, French, Schwert and

Stambaugh (1987) and Campbell and Hentschel (1992) find the relation between volatility and

! Black (1976) also discusses an operating leverage effect, induced by fixed costs of the firm, but that effect has received little

attention in the finance literature.



expected return to be positive while Turner, Startz and Nelson (1989), Glosten, Jagannathan and
Runkle (1993) and Nelson (1991) find the relation to be negative. If the relation between market
conditional volatility and market expected return is not positive, then the validity of the ime varying
nsk premium story 1§ in doubt.

Furthermore, the time varying risk premium story does not readily explain the existence of
volatility asymmetry at the firm level, since, in the CAPM example, the relevant measure of risk is
then the covariance with the market portfolio. For the time-varying risk premium story to explain
firm-specific volatility asymmetry, covariances with the market portfolio should respond positively
to increases in market volatility.

Our first contribution is to develop a general empirical framework to examine volatility
asymmetry at the market level and at the firm or portfolio level simultaneously and to differentiate
between the two competing explanations. That such an analysis has not be done before reflects
the existence of two virtually separate literatures. As the survey of empirical papers in Table 1
shows, studies focusing on the time-varying risk premium story typically use market level returns,
whereas studies focusing on the leverage hypothesis typically use firm or portfolio data. Moreover,
the empirical specifications are not entirely compatible across the two literatures. Studies focusing
on individual firms typically use regression analysis to examine the relation between a measure
of volatility during a particular month (“gross” volatility) and the return in the previous month.
Studies at the market level have mostly used the GARCH-in-mean framework of Engle, Lilien and
Robbins (1987) focusing on the relation between return innovations and the conditional volatility
of the returns (See Table 1).

Our second contribution is to document a new phenomenon that helps explain volatility
asymmetry at the firm level: covariance asymmetry. When the conditional covariance between
market and stock returns responds more to negative than to positive market shocks the volatility
feedback is particularly strong. Our empirical framework accommodates this possibility and we
find evidence of such covariance asymmetry. Although Kroner and Ng (1995) document covariance
asymmetry in the volatility dynamics of portfolios of small and large firms, most previous studies
have focused on asymmetric effects in conditional betas (see Braun, Nelson and Sunier (1995), Ball
and Kothari (1989)) with conflicting empirical results. We argue below that asymmetry is more
likely to be found in conditional covariances and re-examine whether conditional betas display

asymmetry for our sample. We also compare the fit of our model to that of unconditional and



rolfing beta models.

Our third contribution is to re-examine potential size effects in the asymmetry refation. Cheung
and Ng (1992) show that volatility asymmetry is stronger for small U.S. firms, without providing
an explanation. In fact, this may not be surprising. First, Christie’s (1982) classic analysis implies
that the negative relation between current returns and future volatility is stronger for firms with
higher financial leverage and small firms may have higher leverage. Second, small firms may have
higher betas and higher beta stocks may exhibit stronger covariance asymmetry?.

Finally, we hOpe that our analysis will contribute to a more widespread use of asymmetric
volatility in financial modelling. In the extensive GARCH-literature, a number of sophisticated
models have been developed to accommodate asymmetric volatility (see e.g. Nelson (1991),
Glosten, Jagannathan and Runkle (1993) and Hentschel (1995)) and the results in Pagan and
Schwert (1990) and Engle and Ng (1993) indicate that these volatility models outperform standard
GARCH models. Nevertheless, most applications of GARCH models, with a few exceptions, have
not yet embraced asymmetric volatility models. For example, parameterizations of CAPM models
that use GARCH (see e.g. Engel, Frankel, Froot and Rodriguez (1995)), models of volatility spill-
over across equity markets (see e.g. Hamao, Masulis and Ng (1990))) and stochastic volatility
models for options (Hull and White (1987)) have typically not used asymmetric volatility models®.
One would expect these models to yield quite different conditional volatilities from symmetric
GARCH models. Whereas most of the empirical analysis so far (see Table 1) has focused on
U.S. stock returns, our empirical application focuses on the market return and portfolio returns
constructed from Japanese stocks in the Nikkei index. Our results indicate that asymmetry is an
important feature of stock market volatility in the Japanese market as well.

The remainder of the article is organized as follows. Section 2 formulates our empirical model,
the empirical hypothesis and explains the role of leverage in generating asymmetric risk and
volatility. A setofspecification testsis also discussed. Section 3 discussesthe data and the empirical
results. Section 4 looks for a size effect in asymmetric volatility and the final section concludes the

paper.

2 Duffee (1995) documents a puzzling strong positive relation between returns and contemporaneous volatility, which is stronger
for small firms.

3 Exceptions are Koutmos and Booth {1995) and Ng (1996) in the volatility spillover literature and Duan (1995), Amin and Ng
(1993) and Wi (1997) in the options literature.



2. A MODEL OF ASYMMETRIC VOLATILITY AND RISK

2.1  Asymmetric Volatility and Risk at the Firm and Market Level

To establish notation, let P, denote the market index, let 7, denote the return of the market
portfolio and 7ps ¢ 41 =F (rase41|1e)+€as,e41 where I, denotes the information setat time ¢. Similarly,
B, ri; are the price and return of the stock of firm 7 respectively and r; 1y = E(rip41]1:) + €i441.
Define conditional variances and covariances, 0%, = var(rae1]le), 07, = var(ri,i|L) and
Tinter1 = COU(Ts i1, Parerr|e).

Definition: A return r;, displays asymmetric volatility if
var [rie1|le, €0 < 0] — 05, > var [ripa| I €50 > 0] = o2, (1)

In words, negative unanticipated returns result in an upward revision of the conditional volatility
whereas positive unanticipated returns result in a smaller upward or even a downward revision of
the conditional volatility*.

One explanation for such asymmetry at the equity level relies on changes in leverage. To
illustrate, consider a world where debt is riskless, that is, the return on all debt equals the risk
free rate. We denote the risk free rate by rtfﬂl.t, since it 1s known at ¢t — 1. It is straightforward to
show that

Tig — 7"{—1,1: = (14 LR;z-1) (ﬂ,t - 'r;:f—l,t) 2
where LR;,_; is the leverage ratio for firm ¢ and ¥;, refers to the return on the firm’s assets. Even
when the volatility of the return on a firm’s assets is constant, the conditional volatility of the
equity return should change when leve_fagé changes (see also Christie (1982) and Schwert (1989)).
In particular, shocks that increase the value of the firm, reduce leverage and, with it, the conditional
volatility of the stock’s return and vice versa. We use the riskless debt model to illustrate leverage
effects thfoughout the article but our empirical specification is valid more generally.

Qur analysis here is premised on two assumptions, which we test below. First, we assume that
a conditional version of the CAPM holds, i.e., the market portfolio’s expected excess return is

the (constant) price of risk times the conditional variance of the market and the expected excess

4 We will refer to the latter case as “strong asymmetry,” which implies

"61’[7':+1|Ir.,€c>0]—af < 0, and

Var[‘l't+1|[¢,€g<01—0’? > 0.



retumn on any firm is the price of risk times the conditional covariance between the firm’s retumn
and the market. Note that we formulate the volatility feedback effect at the level of the firm’s total
assets, since it does not at all depend on leverage. Second, we assume that conditional volatility is
persistent, which is an empirical fact supported by extensive empirical work, see Bollerslev, Chou
and Kroner (1992). Since the ﬁme variation in second moments is not restricted by the CAPM,
we explicitly parameterize it in the next subsection. For now, we consider more generally the
mechanisms generating asymmetry, including leverage and volatility feedback, at the market level
and firm level using the flow chart in Figure 1.

We begin by considering news (shocks) at the market level. Bad news at the market level has
two effects. First, whereas news is evidence of higher current volatility in the market, investors
also likely revise the conditional variance since volatility is persistent. According to the CAPM,
this increased conditional volatility at the market level has to be compensated by a higher expected
return, leading to an immediate decline of the current value of the firm and the stock price and
a further retumn shock to the market. The price decline will not cease until the expected return is
sufficiently high. Hence, a negative retum shock may generate a significant increase in conditional
volatility. Second, the market-wide price decline (a negative return shock) leads to higher leverage
at the market level and hence higher stock volatility. That is, the leverage effect reinforces the
volatility feedback effect. Note that although the arrows in Figure 1 suggest a sequence of events,
the effects described above happen simultaneously, that is, leverage and feedback effects interact.

When good news arrives in the market, there are agaiﬁ two effects. First, news brings about
higher current period market volatility and an upward revision of the conditional volatility. When
volatility increases, prices decline to induce higher expected returns, offsetting the initial price
movement. The volatility feedback effect dampens the original volatility response. Second, the
resulting market rally (positive return shock) reduces leverage and decreases conditional volatility
at the market level. Hence, the net impact on stock retumn volatility is not clear.

As Figure 1 shows, for the initial impact of news at the firm level, the reasoning remains largely
the same: bad and good news generate opposing leverage effects which reinforce (offset) the
volatility embedded in the bad (good) news event. What is different is the volatility feedback. A
necessary condition for volatility feedback to be observed at the firm level 1s that the covanance of
the firm’s return increases in response to market shocks. Ifthe shock is completely idiosyncratic, the

covariance between the market return and individual firm return should not change, and no change



in the required risk premium occurs. Hence, idiosyncratic shocks generate volatility asymmetry
purely through a leverage effect. Volatility feedback at the firm level occurs when market-wide
shocks increase the covariance of the firm'’s return with the market. Such covariance behavior
would be implied by a CAPM model with constant firm betas and seems generally plausible. The
impact on the conditional cov:cuiance 1s likely to be different across firms. For firms with high
systematic risk, market-wide shocks may significantly increase their conditional covariance with
the market. The resulting higher required return then leads to a volatility feedback effect on the
conditional volatility, which would be absent or weaker for firms less sensitive to market level
shocks. From equation (2), it also follows that any volatility feedback effect at the firm level leads
to more pronounced feedback effects at the stock level, the more leveraged the firm is,

The volatility feedback effect would be stronger if covariances respond asymmetrically to market
shocks. We call this phenomenon covariance asymmetry. So far, covariance asymmetry has
primarily received attention in the literature on international stock market linkages, where larger
co-movements of equity returns in down markets adversely affect the benefits of international
diversification (Das and Uppal (1996)). Kroner and Ng (1995) document covariance asymmetry
in stock returns on U.S. portfolios of small and large firms without providing an explanation.
However, covariance asymmetry in stock returns could be partially explained by a pure leverage

effect, without volatility feedback. Using the riskless debt model, it follows
coUy [n,t T — r{_m] = (14 LRipy) (14 LRageor) (3)
COV_1 [ﬁ',t - T{—l,t}FM,t - T{-1,t] .
Even with constant covariance at the firm level, the covariance of an individual stock return with

the market may exhibit (strong) asymmetry. Conditional stock return betas are somewhat less likely

to display pure leverage effects, since
' 1+ LB 1

/Bz,t—l 1 _l_LRM’t—l/Gz,t—l? ( )

where Ei,t_l (B;4-.1) is the firm (stock) beta. Hence, idiosyncratic shocks should result in
asymmetric beta behavior, but the effect of market-wide shocks on betas is ambiguous.

At the firm level as well, covariance asymmetry arises more naturally than beta asymmetry.
Suppose the conditional beta of a firm is positive but constant over time, still a popular assumption
in many asset pricing models. Then the conditional covariance with the market retum is

proportional to the conditional variance of the market. Hence a market shock that raises the



market’s conditional variance increases the required risk premium on the firm (unless the price of
risk changes) and causes a volatility feedback effect. When the effect of the market shock on market
volatility is asymmetric, the firm (and stock) return automatically displays covariance asymmetry.
Of course, betas do vary over time (see Jagannathan and Wang (1995) for a recent discussion) and
may exhibit asymmetry as weli, but it is hard to come up with a natural story for beta asymmetry
at the firm level. In the framework set out below, we impose only mild restrictions on the behavior

of betas over time and we examine whether they exhibit asymmetry.

2.2  Empirical Model Specification

We use a conditional version of the CAPM to examine the interaction between the means and

vanances of individual stock returns and the market return. The conditional mean equations are
defined as

Tamge — Tf-u = Yt—i“%/r,c + €at
f
The = Tioye = Yi-1016m, + €18
S ()
—»f =Y,
Tn,t T::_Lg = X 10npMt + €n,t
where T;:f—l,t 1sthe one period nisk free interest rate known attime¢—1, Y,_, isthe price of risk, M

denotes the market portfolio, and n is the number of other portfolios included in the study, Naturally,
these portfolios are classified by the leverage ratios of the underlying firms, with portfolio 1 having
the highest leverage and portfolio n the lowest. We call these portfolios the leverage portfolios.

The time vanation in the price of risk depends on market leverage:
Y
= 6
1+ LRz ©)
This specification for the price of risk follows from formulating the CAPM at the firm level, not

Yia

the equity level, with a constant price of risk. That is,

E—l[FM,]—"J— ,
. Y

Tire
where the bars indicate firm values, rather than equity values. Under certain assumptions, Y’ is the

Y =

aggregate coefficient of relative risk aversion (see Campbell (1993)). It is critical in this context
that the return used in equation (7) is a good proxy to the return on the aggregate wealth portfolio.
Since the stock index we use in the empirical work is highly levered, 7, is a better proxy® than

Tar,e- Of course, the specification in equation (6) relies on the riskless debt model. However we

®  Jagannathan, Kubota and Takehara (1996) argue that a portfolio of listed stocks is untikely to be a good proxy for the aggregaté '
wealth portfolio in Japan and find that labor income is priced. They ignore leverage effects, however



subject the model to a battery of specification tests some of which are specifically designed with
alternatives to the riskless debt model in mind, We also estimate a model in which the price of risk
is assumed constant at the stock market level for comparison.

Since the CAPM does not restrict the time-variation in second moments, we employ a
multivariate GARCH model. S.rpecifica]ly, the variance-covariance matrix follows an asymmetric
version of the BEKK model (Engle and Kroner (1995) and Kroner and Ng (1995)). This GARCH-
in-mean parameterization of the CAPM, incorporating an equation for the market portfolio, is
similar to the international CAPM parameterization in Bekaert and Harvey (1995) and DeSantis
and Gerard (1996), with more general volatility dynamics.

Define,
Ent Mare
€1t e —€;s ife, <0
&= . = | . iy = e e s @ ®
: ¢ : it 0 otherwise
fn,t "qn,t

The asymmetric shocks n may capture both a volatility feedback effect and a leverage effect.
Consistent with our analysis of asymmetric volatility in Section 2.1, we also introduce leverage
ratios for both the market portfolio and the leverage portfolios into the conditional variance process

to capture leverage effects more directly,

LRys
LR]_J
lt = . ?
LR,
where LR represents the leverage ratio, The conditional variance covariance matrix is
Uﬁm TMmit " TMngt
2
Om1s O3 trr Oing
B =B (et femr) = | . R 9
Ornt Tint - Ji,t
which is modeled as
%, =Q0 + BE, 1B +Ceqe, O+ D7, D +Glual, G (10)

In “VEC™” notation the model becomes

VEC(%:) = Q" + B*VEC(X,-1) + C*"VEC(€c1€/e-1) + D*VEC(n,_10t-1) + G*VEC(le—1lt—1),
(11)
with O* = VEC(Q¥), B* = B®B,C* = C®C,D* =D®Dand G* = G®G. 2, B,C, Dand

G aren + 1 by n + 1 constant matrices, with elements w;; and b;; , etc. The conditional variance




and covariance of each excess return are related to past conditional variances and covariances,
past squared residuals and cross residuals, past squared asymmetric shocks and cross asymmetric
shocks, and past leverages and cross leverages of all portfolios®.

Apart from its technical advantages that simplify estimation (see Engle and Kroner (1993), the
BEKK model has quite general volatility dynamics. Alternative multivariate GARCH models
impose restrictions on the variance process that make them ill-suited for our purposes. The
(diagonal) VECH model (Bollerslev, Engle and Wooldridge, 1988) cannot capture volatility
feedback effects at the firm level. The Factor ARCH model (Engle, Ng and Rothschild, 1990)
assumes that the covariance matrix is driven by the conditional variance process of one portfolio
(the market portfolio), making it impossible to test for firm-specific leverage effects. The Constant
Correlation model (Bollerslev, 1990) restricts the correlation between two asset returns to be
constant over time, Braun, Nelson and Sunier (1995) use univariate asymmetric GARCH models
coupled with a specification for the conditional beta that accommodates asymmetry. As we suggest
above, itis more natural to model asymmetry in covariances, asis possible in the BEKK framework.

One drawback of the BEKK model is the large numbers of parameters that mnust be estimated.
For a system of m equations, there are (9m? + m + 2)/2 parameters. For example, a system
of 4 equations has 75 parameters. To keep the size of the parameter space manageable, we
impose additional constraints. We assume that lagged market level shocks and variables enter all
conditional variance and covariance equations, but that individual portfolio shocks and variables
have explanatory power only for their own variances and covariances with the market.

The parameter matrices B, C, DD and G now have the form, for example,

byume 0 0 .. O

byr by O .- O
EBE = bM2 0 522 -0 D

: : : o0

byn O 0 o bpp

This reduces the parameter space considerably while leaving enough flexibility in modeling the
processes of all conditional variances and covariances with the market. For a system of 4 equations,

there are 39 parameters, instead of 75.

§  Note that the asymmetric shock is defined using the negative shocks as opposed to Glosten, Jagannathan and Runkle Fl993),
who use positive shocks. This is consistent with the idea that the strong form of asymmetric valatility, discussed above, is most
likely to arise from the direct leverage effect, through the [, variable.



2.3  Empirical Hypotheses

231 Asymmetry, Volatility Feedback and Leverage

Asymmetric volatility in the model enters through the 7- terms and the leverage ratios. To test
for the significance of asymmetry, we test the hypothesis D = 0, G = 0. Since previous GARCH
models of asymmetry have not added leverage ratios to the conditional variance equation, we also
test G = 0 separately. Finally, since in the literature on firm volatility, firm volatility is linked
exclusively to leverage ratios, we test the hypotheses D = 0 (GARCH with leverage effects fully
captured by leverage ratios) and B = 0, C' = 0, D = 0 (volatility changes completely driven
by changes in leverage). In the latter case, the volatility model is still more general than earlier
leverage models of volatility. In a world where the variance of the firm’s asset is constant and the
firm has riskless debt, the relation between the leverage and conditional stock volatility is trivial:

021 =(1+LRyp)?* -7 fori=1,...,n (12)
If B=C = D =0, our volatility model reduces to:
0%y = c+ v’ LR,  + 20wl Ry LRy, + w’ LR, (13)

When v = 0, the model is closely related to the leverage model above since (1 + LR;,)? and
1+ LR;,? are extremely highly correlated’.

Equation (13)also reveals the difficulty in disentangling volatility feedback and leverage effects.
When a market shock occurs, we expect most of the volatility feedback effect to work through e,
and 7, , but (13) shows that the market leverage ratio could partially capture a volatility feedback
effect as well. Conversely, the 7, , shocks could capture both volatility feedback effects (if part of
the shock is a market shock) or leverage effects (when it is primarily an idiosyncratic shock). One

way to keep these two effects separate is to further restrict the D and G matrices as follows:

dyr 0 0 --- 0 0 gu 0 - 0
DE = dpys 00«0 O , GR = 0 0 gn -+ 0
: oo .0 :. N

With this model, the LR, variables capture leverage effects and the 7, variables capture volatility

" For the portfolios used in our empirical work that correlation is never below 99%. Christie (1982), generalizing the leverage

model to risky debt, finds that o4,: = B, + B, LR:;, and the ratio 3, /3, should decline as leverage increases. He finds empirical
support for this hypothesis, using simple regression analy sis. Although our volatility model does not exactly nest Christie’s equation,
even the restricted model in (13) suggests that his regression may suffer {rom omitted variable bias.
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feedback effects. If both effects are present and interaction effects are important, as our analysis in
Section 2.1 suggests, this model may be rejected. We test this restricted model with a likelihood
ratio test below. Nevertheless, the parameter changes relative to the full model may be informative
about the source of the volatility asymmetry captured by the 1, terms.

To gain further insight into ihe relative importance of feedback effects versus leverage effects
across leverage portfolios, we make use of the news impact curves introduced by Engle and
Ng (1993), generalized to accommodate the effects of the leverage ratio variables. The news
impact curve graphs the conditional variance as a function of the shocks, keeping the other inputs
to the conditional variance equation {(conditional variances and co-variances) constant at their
unconditional means. We call the effect of the ¢ and 7 shocks the “direct effect”. Of course, our
variance equation also incorporates leverage ratios. We augment the news impact curves with the
effect of changes in leverage using a second order Taylor approximation to the non-linear relation
between leverage ratios and shocks, evaluated at the sample mean®. We then split up this curve into
two pieces. First, we look at the news impact curve from market shocks and market leverage ratios,
assuming zero portfolio shocks. This curve unambiguously reflects volatility feedback. Second,
we investigate the impact of portfolio shocks and portfolio leverage, assuming zero market shocks.
This curve may reflect both leverage effects and volatility feedback, and we discuss the likely
source of the effects below. These curves ignore interaction effects due to the presence of terms
such as n,n,, and LR; LR, in the conditional variance equation. Hence, we also provide a three
dimensional news impact surface as in Kroner and Ng (1995), that incorporates these interaction
effects.

Finally, the estimated parameters are directly informative about the relative importance of market
versus portfolio shocks. With the M (i) subscript denoting the market (firm), volatility asymmetry

at the market level implies
do ?\/I,t+1
_ Nt N
In our framework, this can be tested by testing whether D}, > 0. In addition, we expect

2
80M,t+1 0

OLR}y, ’
that is G},,, > 0. For the leverage portfolios, we can gauge the statistical significance of volatility

> 0.

8 Since we compute returns as the logarithm of gross returns, the level of leverage ratio as a function of the return shock is

LR(e)) = LR{e; =0) [L + &} —¢.]
where LR(e, = 0) is evaluated at the sample mean of leverage ratios.

|3



feedback, ignoring the direct effect of a change in market leverage and a potential indirect effect

through firm specific shocks, by testing

2
Tiept
2
M.t

> 0.
This is equivalent to testing D]y > 0.
2.3.2  Covariance and Beta Asymmetry

As noted above, a necessary condition to observe volatility feedback at the firm level is that
covariances increase more when the shock is negative than when it is positive. This is directly
testable using the parameter estimates. We also test for co-variance asymmetry and produce news
impact curves and surfaces for the covariances. We investigate whether covariance asymmetry
translates into strong volatility feedback effects and whether it is more pronounced for firms with
high systematic risk®.

Given that most recent research has focused on asymmetries in betas, we examine whether the
conditional betas implied by our model exhibit leverage effects. To do so, we create approximate
news impact surfaces for the 5’s. This can be accomplished by combining the impact of shocks on
conditional variances and covariances.

The idea of a leverage effect in betas received recent attention in the literature on stock market
over-reaction. Ball and K othart (1989) and Chan (1989) show that betas of loser portfolios increase
and betas of winner portfolios decrease, providing a potential explanation for the observed reversal
in performance. Both articles ascribe the beta change to the effect of negative return shocks on
leverage, which in turn increases beta. This behavior is implied by idiosyncratic shocks in the
riskless debt model. In our volatility model, the link between betas and leverage is less direct.
However, implicitly betas are a non-linear function of leverage ratios and return shocks. In addition
to our news impact curves, we examine the link with past returns more directly by running the

regression,
J

Bis=a+ks Z (ritei — Tae-] + €i (14)
=1
where J is the window size. The work of Ball and Kothan (1989) predicts k; to be negative. Our

analysis suggests that k; should be negative for portfolios (or time periods) where idiosyncratic

% Note that the BEKK-model imposes non-linear restrictions on the parameters, which implies that covariances and variances are
parttally driven by the same parameters. Nevertheless, it is possible for the model to generate volatility asymmetry in response o
market shocks without generating covariance asymmetry or to simultaneously generate reverse covariance asymmetry. Consistent
with the volatility feedback model, the strength of covariance and volatility asymmetry is positively correlated when the parameter
Dy is positive.

12



shocks dominate (See also equation (4)).

2.4  Specification Tests

24.1 Generic Rests

We conduct tests of the specification of the conditional means, variances and covariances. These
tests are indicated by MEAN, VAR, and COV, respectively. All tests use the standardized residuals:
z:, which are computed as (72, )—1 ¢, with T, = PP, Thatis, z; is a N(0, I) vector conditional
on time ¢ — 1 information and the model being well specified. For each test and most other tests
below we use the generalized method of moments (Hansen 1982) to test moment implications of a

well-specified model, which are of the general form:
E{ViL;-1] =0

with V; a vector stochastic process. The resulting test statistic has an asymptotic x?* distribution
with degrees of freedom equal to the dimension of V. The use of estimated residuals and the size
of our sample may imply that the actual small sample distribution of the test statistics is no longer
a x*- distribution. Monte Carlo results in Bekaert and Harvey (1997) suggest that the small sample
distribution of the tests may have more mass in the nght tail so that we over-reject at the asymptotic
critical values.

The conditional mean test, MEAN, sets

v;=["“ ]j=1,2,3; i=M123
Zit - Zit—g

MEAN tests the serial correlation properties of the standardized residuals and is done for each
portfolio separately.

For the conditional variance tests, VAR, we introduce the variable ¢;; = zﬁt — 1 and we let

V= [ o ]j=1,2,3; i=M,1,2,3.
it * Qit—j5
Again the test is done separately for the different portfolios. Finally, to test the conditional

covariance specification, consider the variable

Wie = 2EME_ 1 5=123,
Tint
We let
_ | Wi F_ .
Vi= Im 'T/Vu—j:lj =1,2,3;

for each portfolio 3.
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2.4.2  Testing the CAPM Assumption

The MEAN test partially tests the CAPM assumption. If other risks are priced, the mean of the
residual may not be zero. However, this test may not be powerful to detect particular deviations
from the CAPM and we provide a number of alternative tests. Qur first CAPM test, CAPM,,
provides a simple test of whether leverage plays a role in the conditional mean. Bhandari (1988)
shows that leverage is cross-sectionally priced in US stock returns. Moreover, if debt is not riskless,
leverage ratios may enter the conditional mean.

We put
Zit LRM,&-[
‘/g = Zig t LRz',t—l 1= 1, 2,3 (15)
Zppe - LRage—1
for a total of 7 restrictions.

Second, since we use weekly data (see below), there may be serial correlation in the portfolio
returns, for example because of liquidity problems, that is not captured by the CAPM model. The
MEAN test implicitly tests the serial correlation properties of the returns, but we also provide a
more explicit test by putting

Zit *TM -1
VE == Zit t Tit—1 1= 1:'273' (16)
2pe - TM-1
The CAPM; test has 7 restrictions and also tests whether past market portfolio returns predict

future portfolio residuals, which may be the case if liquidity problems prevent information from
being incorporated quickly into the prices of smaller stocks.

Third, previous research (see e.g. Harvey (1991), Bekaert and Harvey (1995) and DeSantis
and Gerard (1996)) has uncovered time variation in the prices of risk for a large number of equity
markets across the world. It is likely that the price of risk varies with the business cycle (see
Campbell and Cochrane 1995). Therefore, we also consider a more ‘general model with a time-

varying price of risk. In particular, we let

YA = [YII(T{_M>MA(10)) + K‘!I(r{_MSMA(m))] / (L+ LRu,) (17)
where M A(10) represents a 10 week moving average of past interest rates and [ is the indicator
function. Hence, the price of risk can take on two values depending on whether interest rates are
high or low relative to a moving average of past interest rates. The link between interest rates and
business cycles is well-known. This model is an estimable, one parameter extension of our general

model that avoids the large swings in the price of risk implied by standard empirical models of
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time-varying prices of risk (see the references above). Our CAPM; test is a likelihood ratio test of

the restriction Y; = Y.
243 Intcrest Rate Effects

As stressed by Christie (1982), and confirmed by a number of empirical studies, interest rates
are good predictors of stock market volatility. Interest rate changes also affect the market value of
debt and hence leverage ratios. Since we use book values of debt in the empirical work below, the
measurement error in leverage ratios may be correlated with interest rates.

We examine remaining interest rate effects in both conditional variances and co-variances. INT,
sets

Vi = {qz-‘t : r{_ml i=M,1,2,3, (18)

and INT; lets
V, = [Wi,t-r{_l'z] i=1,2,3, (19)
Finally, if debt is not riskless, the conditional mean for equity returns depends on the risk free

rate through the expected excess return on debt. Hence for INT;, we set

Vo= [meorly] i=M1,23 20)

3. Empirical Results

3.1 The Nikkei 225 Data

Our data consists of daily observations on the (dividend-adjusted) prices and market
capitalization of the firms in the Nikket 225 index. In addition, we have biannual data on their
book value of debt. The sample period is from January 1, 1985 to June 20, 1994, Stocks that are
not in the Nikkei 225 index over the whole period or do not have debt data are discarded. There
are 172 stocks left in the sample. We construct three portfolios of 5 stocks each, representing a
low leverage, medium leverage and high leverage portfolio. To do so, daily leverage ratios are
calculated, with missing debt data set equal to the last available data point. Then we rank all firms

according to their average leverage ratios. The leverage portfolios consist of five stocks with the
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lowest, the medium or the highest leverage ratios, respectively, excluding commercial banks'®.

- The portfolio leverage ratios are then calculated as the total debt over the total capitalization of the
portfolio. For the market leverage ratio, we use the ratio of total debt over total capitalization of the
172 stocks left in the sample. Fi{lally we extract weekly observations on leverage and stock returns
from the daily data.

The leverage ratio data are measured with error because the debt valueis a book instead of market
value and because it is only updated every six months. Moreover, the substantial time-variation
observed in the capital structure of a firm over a 10-year period, may make a classification based
on leverage difficult. Nevertheless, Table 2 shows that our portfolios have very distinct leverage
ratios over the full sample period. In particular, the leverage ranking is preserved not only on
average but at every pointin time. Their return characteristics do not appear significantly different.

For the short term interest rate, we use the 1-month Gensaki rate, which is the yield on bond
repurchase contracts''. As noted in Dickson, Fuchida and Nishizawa (1990), the Gensaki market
was the first open market short-term investment with rates determined freely by supply and demand

of funds.

3.2 Estimation and Specification Tests

To estimate the model in equations (5) -(11), we assume that the innovations are conditionally
normal. We obtain quasi-maximum likelihood estimates of the parameters with White (1980)
standard errors, unless mentioned otherwise. To improve the conditioning of the system, all the
leverage ratios are scaled by a factor of 0.01. The price of risk is estimated to be 2.842 with a
standard error of 4.071. This is the only parameter that is significantly affected by the leverage
adjustment to the price of risk. That is, the model without the adjustment and hence a constant
price of risk at the equity level yields very similar volatility dynamics'*. Importantly, the price of
risk is positive so that we can proceed with the analysis of volatility feedback effects.

Before we do so, we want to ensure that the model is well specified. The specification tests
discussed in Section 2.4 are reported in Table 3. The MEAN, VAR and COV statistics reveal little

0 See the Appendix for the list of all stocks included in the leverage portfolios. Portfolios are constructed analogous to the
construction of the Nikkei 225 index, that is, the total value of a portfolio is the sum of the value of individual stocks with dividends
reinvested.

1! \We divide the annualized rate by 5200 to express it as a weekly yield. Implicitly, we assume a flat term structure of interest rate
at the very short end of the maturity spectrum.

12 Therefore we will not report results from this constant price of risk model, which are available upon request from the authors.
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evidence against the model. Only the MEAN statistic rejects at the 5% level for the market portfolio.
Given that these tests are likely to over-reject at the asymptotic cntical value (see Bekaert and
Harvey (1997)), there is no strong evidence against the model. There do not appear to be interest rate
effects in the vanance, covariance and fnean expectations that we fail to capture. However, there
is some evidence against the CAPM model. Leverage ratios may have some remaining predictive
power but the test does not reject at the 1% level (CAPM,). The constant price of risk model is
strongly rejected by a likelihood ratio test (CAPM;). Despite this evidence, we continue to work
with the constant price of risk model for three reasons, First, the estimates of the prices of risk are
economically plausible as to their relative magnitude — the price of risk is larger when the interest
rate is below the moving average — but implausible in their absolute magnitude. Y] is actually
negative at -4.51, whereas Y; equals 8.11. Second, the volatility dynamics of the constant and time
varying price of nsk models are fairly similar. Finally, on the root-mean-squared error criterion we

employ later (see section 3.5), the constant price of risk model dominates.

3.3  Volatility Persistence, Volatility Feedback and Leverage Effects

3.3.1 Likelihood Ratio Tests

The simultaneous presence of leverage ratios, asymmetric shocks and volatility persistence
makes our model more general than previous volatility specifications. In Table 4, we present a
number of likelihood ratio tests to determine the potential validity of more restrictive models,

First, the B = C = D = 0 restrictions basically represent the GARCH structure, which
is typically ignored in the literature focusing on individual firms and leverage effects. Clearly,
leverage variables alone cannot account for the volatility behavior of the Japanese stock returns.

Second, since both the asymmetric shocks (7)) and the leverage ratios give rise to asymmetric
volatility, it may be superfluous to have both. For example, the 1 terms may indirectly capture
the leverage effect in addition to volatility feedback effects. The overwhelming rejection of
G = 0,D = 0 and the joint hypothesis G = D = 0 show that this is not the case. In part,
the presence of leverage ratios may simply enable the BEKK model to capture strong asymmetry
(see footnote 4). We investigate whether the model generates strong asymmetry below.

Third, as discussed in section 2, we test a model in which leverage ratios unambiguously capture

leverage effects (G diagonal) and the n variables unambiguously capture volatility feedback effects
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(D all zero except the first column). The strong rejection of this model indicates that interaction

effects are important, which makes it hard to disentangle volatility feedback from leverage effects.
3.3.2  Volatility Dynamics

The dynamics of conditional variances are driven by a number of variables in our model. Market
variance, for example, is related to the past conditional market variance, the squared market return
shock, the squared asymmetric shock and the leverage ratio of the market portfolio. By assumption,
it is not affected by the analogous variables of the individual portfolios. However, individual
portfolio vanances are affected by their own variables and those of the market portfolio. Figure
2 plots the estimated conditional variances for the market portfolio and the three leverage sorted
portfolios.

Table 5 shows the estimated VEC form coefficients of the variance equations with standard
errors in parentheses. The parameter estimates in Table 5 imply that conditional volatility is quite
persistent both at the market level and at the portfolio level. The coefficient on lagged volatility
is always significant and between 0.3701 and 0.8888. At the market level, the asymmetry of
volatility response to return shocks is significant and pronounced. The coefficient on the squared
return shock is 0.0647 and insignificant while the coefficient on the squared asymmetric shock
term 1s 0.2089 and significant. Recall that the asymmetric shock term is defined to be the negative
component of the return shock. Thus, negative shocks have a large impact on conditional volatility,
whereas positive shocks have negligible effect. In fact, one disadvantage of the BEKK model is
that it does not accommodate the strong form of asymmetric volatility where positive return shocks
decrease conditional volatility (see equation 1 and the associated footnote). Even so, the model
yields pronounced asymmetry.

The asymmetry of the volatility response to shocks is best illustrated by the shock impact curves
in Figures 4a-4d and shock impact surfaces in Figures 5a-5d. These figures incorporate the effect
of the leverage variables. Table 5 reveals that most leverage variables fail to significantly affect
conditional variances. For the low leverage portfolio, both its own and the leverage variable enter
significantly whereas for the high leverage portfolio only its own leverage variable is statistically
significant, but the effect of market leverage seems quite large. Nevertheless, the economic effects
of these variables are sometimes large, as we will discuss below. Figure 4a shows the impact

of market return shocks on the market conditional variance. For a return shock of the same
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magnitude, a negative shock clearly increases the conditional variance much more than a positive
shock, hence the volatility asymmetry. Figures 4b-4d focus on the leverage portfolios. The high
leverage portfolio exhibits distinct and strong asymmetry both with respect to market shocks and
portfolio shocks. The latter is weaker and entirely driven by the leverage variables. Moreover,
once interaction effects are accohnted for (Figure 5b), it disappears. The medium leverage portfolio
shows a similar picture (see Figures 4c and 5c) with the exception that the leverage variables have no
detectable effects on the volatility response. The dynamics for the low leverage portfolio (Figures
4d and 5d) are quite different. The low leverage portfolio exhibits a small asymmetry effect caused
by its own portfolio shocks. Market shocks have a symmetric impact on the conditional volatility
of the low leverage portfolio.

Although the leverage ratios are statistically significant overall in the model, changes in leverage
directly generate only small changes in conditional volatility. There are a number of reasons why
we may underestimate the importance of the leverage variables. First, the shock terms ¢ and 7 are
correlated with the leverage ratio. When there is a negative shock, coefficients on the shock term
imply that conditional variance should increase, which is also implied by the increased leverage
ratto. It is possible that some of the explanatory power of the leverage ratio has been taken away
by the shock terms in the volatility equation. However, the estimated correlation coefficients
between leverage ratios and the shock terms fitted from the estimated model are all smaller than
0.11 in absolute value. (The correlation coefficients are presented in the Appendix.) Second,
the measurement error associated with the leverage variable may induce downward bias in the
estimated coefficients. As illustrated above we use book value of debt rather than the market value,
which is updated every six months. Finally, leverage ratios may be indirectly important through
the covariance equations (see Section 3.4),

To conclude, our results indicate that the high and medium leverage portfolios exhibit
pronounced asymmetry caused by market shocks. For the low leverage portfolio, the asymmetry
seems economically less significant. For the volatility feedback story to explain the asymmetry
in the high and medium leverage portfolios, negative shocks at the market level must lead to an
increase of conditional covariances between the market and these portfolios. We examine this issue

in the next section.
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3.4 Conditional Covariances

At the portfolio level, the conditional covariance plays an important role in determining the
expected excess return and volatility feedback according to the time varying risk premium theory.
How do return shocks and leverage ratios affect the conditional covariance? Table 6 summarizes
the estimated coefficients and their standard errors (in parentheses). The conditional covariances
between the market portfolio and the leverage portfolios are very persistent and show quite a bit
of time variation, suggesting that required excess returns for these portfolios change substantially
over time. Figure 6 plots the estimated conditional covariances for the three portfolios. Overall,
the covariances for the three leverage portfolios track each other over the whole sample period, and
the portfolio with higher leverage tends to have a higher conditional covariance with the market.

It is interesting to note the existence of pronounced covariance asymmetry in the high and
medium leverage portfolios. The asymmetry is caused by market return shocks rather than portfolio
specific shocks. When there is a one percentage point negative return shock to the market portfolio,
the impact on the conditional covariance between the high leverage portfolio and the market is
significant and larger than 0.1775 * 107, while a one unit positive shock increases covariance
only by 0.0168 x 10~%and it is statistically insignificant. For the medium leverage portfolio, the
corresponding values are 0.2991 x 10™% vs. —0.0388 * 10™*. The cross product terms €;;—1€x,¢1
and 7, ;_; Mare1 Nave much smaller coetficients for these two portfolios. For the low leverage
portfolio, the market level shocks have no significant impact on the conditional covariance and
there is little evidence of covariance asymmetry.

Figure 7 plots the covariance responses to market return shocks assuming portfolio shocks are
zero. The results confirm our analysis in Section 2 about firm level volatility feedback. Bad
news at the market level increases the conditional covariances with the market of the high and
medium leverage portfolios substantially, inducing a volatility feedback effect. The low leverage
portfolio displays a smaller asymmetric effect than the market, the high and medium leverage
portfolios because its covariance with the market does not increase very much in response to a
negative market return shock, Figure 7 ignores the effect of leverage variables and interaction
effects. This is rectified in the impact surfaces of Figures 8a-8c. The high and medium leverage
portfolios continue to show pronounced asymmetry with respect to market shocks. Part of this
effect could come from a leverage effect. As equation (3) shows, positive market shocks reduce

market leverage and hence automatically reduce the covariance of the stock return with the market
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portfolio stock return, even though the asset covariance need not change. Such strong asymmetry
is only observed for negative portfolios shocks however These results confirm that the volatility
asymmetry documented in Section 3.3 for the high and medium leverage portfoliosis closely related
to the asymmetric response of the covariance with respect to market shocks. The magnitude of the
effects is enhanced by the presence of the leverage variables  at least for negative portfolio shocks.

Overall, volatility feedback seems to be the dominant factor behind asymmetry.

3.5 Conditional Betas

In Figure 9, we graph the conditional betas implied by the model for all three leverage portfolios.
The betas vary substantially over time and a higher leverage level is associated with a higher beta.
At times of major market fluctuations, as marked by the vertical lines, the betas for all portfolios
approach 1 dramatically. This makes intuitive sense. Such major market movements typically stem
from macro economic or political events rather than from firm or industry specific news. All stocks
then move with the market portfolio and the riskiness of all portfolios approaches that of the market
portfolio.

Although some authors have found a “leverage effect” in conditional betas, Braun, Nelson and
Sunier(1995) find no evidence that betas rise (fall) in response to bad (good) news at the industry
level. As equation (4) indicates, this is a priori not so surprising. If market [everage changes
simuftaneously and shocks are not purely idiosyncratic, the change in market leverage may mitigate
the leverage effect of the portfolio shock. The relation between market shocks and the market beta is
not very transparent in this model, since shocks affect both the conditional variance and covaniance
in a similar way. Nevertheless, if the leverage effect is important, we ought to unambiguously see
rises in betas when market shocks are positive and portfolio shocks are negative. Figures 10a-
10c graph news impact surfaces for the betas of the three leverage portfolios. The graph for the
high and medium leverage portfolios show the opposite effect. Betas sharply drop in response to
highly positive market and negative portfolio shocks. Even for small market shocks, beta is higher
when positive portfolio shocks hit than when comparable negative portfolio shocks occur, These
numbers have to be interpreted with caution, however. As Table 7 indicates, the high and medium
leverage portfolios have average betas somewhat higher than one. The simultaneous occurrence
of a large positive market shock and negative portfolio shock is very unlikely. Moreover, the drop

in beta when large market shocks hit is consistent with the convergence to 1 of all betas in such
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circumstances (see Figure 9).

If this is the dominant force behind the beta movements, we should expect the low leverage
portfolio to exhibit a reverse effect, since its beta is lower than | on average (See Table 7). That
is, beta should increase for large market shocks. Figure 10¢ shows this is indeed the case, but only
for positive market shocks. Forf negative market shocks, we observe beta asymmetry of the form
predicted by a standard leverage story. Beta decrease in response to positive portfolio shocks and
vice versa. A similar effect is visible for the medium leverage portfolio. The fact that the low
leverage beta responds positively to positive market shocks may also be caused by the leverage
effect of equation (4).

We conduct two more exercises. Ghysels (1997) recently reports that one class of time-varying
beta models fail to capture beta risk dynamics well and are dramatically outperformed by a constant
beta model according to the (in sample) root mean square error (RMSE) criterion. In the class of
models we consider, betas are a function of a number of information variables (see for example,
Ferson and Harvey (1993)), which induce excess time-variation in the conditional betas. As Table
7 shows, the standard deviation of the conditional betas implied by our model is at most 0.20
(for the medium leverage portfolio), although Figure 9 reveals occasional erratic high frequency
movements in the conditional betas of the various portfolios. Panel A of Table 8 shows the in
sample RMSE results of our mode! relative to a number of standard and simpler models. The
unconditional beta model uses the sample beta whereas the rolling beta model uses a rolling sample
of 260 weekly observations in estimating beta. Note that our model and the time-varying price of
risk model need to predict both market risk premium and beta. Thus, for the unconditional beta
model and the rolling beta model, we use the predicted value of market risk premium from our
model to make the comparison meaningful. Surprisingly, the rolling and constant beta models
have marginally lower RMSE’s for all portfolios. However, when these models use the average
market excess return to proxy for the market risk premium, instead of the risk premium implied
by our model, our model marginally outperforms. Although the performance of our model seems
relatively better than that of the models examined in Ghysels (1997), it is surprising how well the
rolling and constant beta models do. It should be noted that the results are not very robust and
sensitive to the sample selection. For example, our model performs relatively better when the first
260 observations are included. This may reflect parameter instability but still is surprising that

the time-varying price of risk model (which allows one parameter to change over time) does not
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perform substantially better than the constant price of risk model. There are a number of alternative
interpretations. First, our model may outperform the other models according to economically more
relevant criteria than the RMSE, which is just an “average” pricing error Second, our model may
mis-specify the beta dynamics. Kroner and Ng (1995), for example, itlustrate the general difficulty
multivariate GARCH models ﬁave in modeling covaniance dynamics. Nevertheless, our model
has passed an extensive array of specification tests (see Section 3.2), which includes tests on the
covariance dynamics. It is definitely possible that the true betas display even smoother temporal
behavior than implied by our model. Third, our model may be an adequate model to describe beta
dynamics but sampling error causes the model to “misprice” on average relative to simpler models,
which require very few parameters to estimate. Although these questions are beyond the scope of
the current paper, they certainly deserve further scrutiny. '

Finally, we ran the Ball and Kothari regressions. We report results for k; =13, 26 and 52 for
the three portfolios in Panel B of Table 8. The coefficient is only significantly and consistently
negative for the low leverage portfolio. This is not surprising. The low leverage portfolio has a
relatively small beta (see Table 7), so that idiosyncratic shocks may dominate the variation in its
return. As a consequence, the “loser” effect may actually occur and negative shocks may actually

increase beta. The betas of the other portfolios may be too close to one to see significant effects.

4. Is there a size effect in asymmetric volatility?

Cheung and Ng (1992) show that volatility asymmetry is much stronger for small U.S. stocks.
To examine whether our results are robust and whether a similar effect exists for the Japanese
stocks, we apply our model to size-sorted portfolios. More precisely, we divide our universe of
Japanese stocks into tritiles based on average market capitalization over the sample period. Within
the smallest and the largest tritile, we select three leverage portfolios of 5 stocks. The stocks are
chosen so as to match the average leverage ratio of the portfolios in the main estimation as closely
as possible. The fact that such modeling was successful indicates that leverage ratios and size are
not strongly correlated.

The results for the impact coefficients estimated from small and large firm portfolios are

presented in Table 9 (for the variances) and Table 10 (for the covariances). First, we do not
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generally confirm Cheung and Ng’s results for the sample. [t is not true that small size firms
show more pronounced asymmetries than large size firms. For example, asymmetries for the high
leverage portfolio are stronger for the small firm/portfolio at the portfolio shock level but not at the
market shock level. Only the small size medium leverage portfolio unambiguously shows stronger
volatility asymmetry than its large size counterpart.

Second, it is hard to draw firm conclusions on the relative importance of market and portfolio
shock induced asymmetries, since the coefficients on the leverage variables and asymmetric
shocks are not perfectly correlated. Clearly the volatility dynamics of the high leverage/large firm
portfolios are dominated by market shocks whereas those of the low leverage/small firm portfolios
are dominated by portfolios shocks. Covariance asymmetries seem to be most pronounced for the
low leverage/small firm portfolio®?.

All in all, neither size nor leverage seems to differentiate the dynamic behavior of volatility and
risk across portfolios very well. Looking back at Table 7, which lists the capitalization and betas
of the various returns in our different estimations, an interesting conclusion emerges. What may be
more important than leverage or size is simply the beta of the firm. For example, the low leverage
portfolio in our onginal estimation exhibits very distinct volatility dynamics from the high and
medium leverage portfolios. In particular, its volatility dynamics are primarily driven by portfolio
shocks and the leverage effect seems to be more important than the volatility feedback effect. If one
looks at our size sorted portfolios, it is also the case that the low-beta firms (e.g., the large sizeflow
leverage and small size/high leverage portfolios) show such volatility behavior, For the high beta

firms on the other hand, market shocks induce pronounced covariance and volatility asymmetry.

5. Conclusions

In this paper, we investigate the leverage effect and the time varying risk premium explanations

of the asymmetric volatility phenomenon at both the market and firm level. Our results rely on a

13 Note the perfect rank correlation between the effect of 7,,7,,, term on the conditional covariance and the importance of asym-
metry through the portfolio shocks in the conditional variance. Part of this correlation in parameter estimates is accounted for by the
non-linear restrictions on the parameters imposed by the BEKK framework, but these results stress again the importance of the in-
teraction between leverage and volatility feedback effects. Covariance asymmetry, which at the firm level causes volatility feedback
effect, is magnified by changes in firm and market leverage (see equation (3)). The latter effect seems to be captured by 7,7 s,
term in the covariance equation and its effect on volatility by the 7, variables.

24



conditional CAPM model using a multivariate GARCH-in-mean parameterization applied to four
portfolios from the Nikkei 225 stocks. For the market portfolio, a high leverage and a medium
leverage portfolio, a pronounced asymmetry effect mainly arises from market shocks. For the low
leverage portfolio, the asymme'gry is still statistically significant, but its magnitude is smaller and
anses from firm-specific shocks.

The leverage variables are statistically important in the conditional variance equations,
especially for the low leverage portfolio. However, their effect on volatility seem small compared
to the asymmetry generated through the shocks in the GARCH specification, although they
sometimes generate strong asymmetry. The main mechanism behind the asymmetry for the high
and the medium leverage portfolios is covariance asymmetry. Negative shocks increase conditional
covariances substantially, whereas positive shocks have a mixed impact on conditional covariances.
This phenomenon can partially be attributed to a pure leverage effect. The conditional betas do not
behave as predicted by the leverage story, except for the low leverage portfolio. Taken together our
results suggest that “the leverage effect” may be a misnomer.

Although our results seem consistent with the existence of time-varying risk premiums and
volatility feedback, there may be other factors driving the results. For example, it is unlikely
that standard general equilibium models with an expected-utility maximizing representative agent
would generate time-variation in equity risk premiums that is as large as shown in Figure 3. In
the future, we hope to explore whether models where agents exhibit loss aversion can generate
asymmetric volatility effects in equilibrium. Another item left for future research is to examine
whether our results hold up for U.S. data. In particular, we would like to see whether the difference

in the sources of asymmetry for low and high leverage firms is country-specific,

25




References
Amin, Kaushik and Victor Ng, 1993, “ARCH Process and Option Valuation,” Working Paper,

School of Business Administration, University of Michigan.

Backus, David and Allan Gregory, 1993, “Theoretical relations between risk premiums and
conditional variance,” Journal of Business & Economic Statistics, 11, pp. 177-185.

Ball, R. and §. P Kothar, 1989, “Nonstationary Expected Returns: Implications for Tests of Market
Efficiency and Serial Correlation in Returns,” Journal of Financial Economics, 25, 51-74.

Bhandari, Laxmi Chand, 1988, “Debt/Equity Ratio arid Expected Common Stock Returns:
Empirical Evidence,” Journal of Finance, 43, pp. 507-528.

Bekaert, Geert and Campbell R. Harvey, 1995, “Time-Varying World Market Integration,” Journal
of Finance, 50, pp. 403-444.

Bekaert, Geert and Campbell R. Harvey, 1997, “Emerging Equity Market Volatility,” Journal of

Financial Economics, 43,29-77.

Black, Fischer, 1976, “Studies of Stock Price Volatility Changes,” Proceedings of the 1976

Meeftings of the American Statistical Association, Business and Economical Statistics Section, pp.
177-181.

Bollersley, Tim, 1990, “Modeling the Coherence in Short Run Nominal Exchange Rates: A
Multivariate Generalized ARCH Approach,” Review of Economics and Statistics, 72, pp. 498-
505.

Bollersley, Tim, Robert Engle and J. Wooldridge, 1988, “A Capital Asset Pricing Model with Time
Varying Covariances,” Journal of Political Economy, 96, pp. 116-131.

Bollerslev, Tim, Ray Y Chou and Kenneth F Kroner, 1992, “ARCH Modeling in Finance,” Journal
of Econometrics, 52, pp. 5-59.

Braun, Phillip A., Daniel B. Nelson and Alain M. Sunier, 1995, “Good News, Bad News, Volatility,
and Betas,” Journal of Finance, 50, pp. 1575-1603.

Campbell, John Y, 1993, “International Asset Pricing without Consumption Data,” American
Economic Review, 83, pp. 487-512.

Campbell, John Y and John H. Cochrane, 1995, “By Force of Habit: A Consumption-Based
Explanation of Aggregate Stock Market Behavior,” Working Paper No. 4995, NBER.

26



Campbell, John Y and Ludger Hentschel, 1992, “No News is Good News: An Asymmetric Model
of Changing Volatility tn Stock Returns,” Journal of Financial Economics, 31, pp. 281-318.

Chan, K. C, 1988, “On the Contrarian Investment Strategy,” Journal of Business, 61, 147-163.

Cheung, Yin-Wong and Lilian Ng, 1992, “Stock Price Dynamics and Firm Size: An Empirical
Investigation,” Journal of Finance, 47, pp. 1985-1997.

Christie, Andrew A., 1982, “The Stochastic Behavior of Common Stock Vanances — Value,
Leverage and Interest Rate Effects,” Journal of Financial Economics, 10, pp. 407-432.

Cox, John C. and Stephen A. Ross, 1976, “The Valuation of Options for Alternative Stochastic

Processes,” Journal of Financial Economics, 3, pp. 145-166.
Das, Sanjiv and Raman Uppal, 1996, “State Varying Correlations: A Theoretical and Empirical
Analysis,” Working Paper, University of British Columbia.

DeSantis, Georgio and Bruno Gerard, 1996, “International Asset Pricing and Portfolio

Diversification with Time-Varying Risk,” Working Paper, University of Southern Califomia.

Dickson, Jeffrey L., Hiroaki Fuchida and Yutaka Nishizawa, 1990, “The Gensaki Market,” in The
Japanese Bond Markets, Frank Fabozzi, editor, Probus Publishing Company.

Duan, Jin-Chuan, 1995, “Fitting and “Smile Family” - A GARCH Approach,” Working Paper,
McGill University.

Duffee, Gregory R., 1995, “Stock Returns and Volatility: A Firm Level Analysis,” Journal of
Financial Economfcs, 37, pp. 399-420.

Engel, Charles, Jeffrey A. Frankel, Kenneth A. Froot and Anthony P. Rodrigues, 1995, “Tests of
Conditional Mean-Variance Efficiency of the U.S. Stock Market,” Journal of Empirical Finance,
2, pp. 3-18.

Engle, Robert F. and Kenneth Kroner, 1995, “Multivariate Simultaneous Generalized ARCH,”
Econometric Theory, 11, pp. 122-150.

Engle, Robert F, David M. Lilien and Russell P Robbins, 1987, “Estimating Time Varying Risk
Premia in the Term Structure; The ARCH-M Model,” Econometrica, 55, pp. 391-407.

Engle, Robert F. and Victor K Ng, 1993, “Measuring and Testing the Impact of News on Volatility,”
Journal of Finance, 48, pp. 1749-1778.

Engle, Robert F and Victor K Ng and M. Rothschild, 1990, “Asset Pricing with a Factor ARCH

27




Covariance Structure: Empirical Estimates for Treasury Bills,” Journal of Econometrics, 45, pp.
213-238.

Ferson, Wayne E. and Campbell R. Harvey, 1993, “The Risk and Predictability of International
Equity Returns,” Review of Financial Studies, 6, pp. 527-566.
French, Kenneth R., G. William Schwert and Robert Stambaugh, 1987, “Expected Stock Returns

and Volatility,” Journal of Financial Economics, 19, pp. 3-29.

Ghysels, Eric, 1997, “On Stable Factor Structures in the Pricing of Risk: Do Time-varying Betas
Help or Hurt,” Journal of Finance, forthcoming.

Glosten, Lawrence R., Ravi Jagannathan and David E. Runkle, 1993, “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance,

48, pp. 1779-1801.

Hamao, Yasushi and Ronald W. Masulis and Victor Ng, 1990 “Correlations in Price Changes and
Volatility across International Stock Markets,” Review of Financial Studies, 3, pp. 281-307,

Harvey, Campell R.,1991, “The World Price of Covariance Risk,” Journal of Finance, 46, pp.
111-157.

Hentschel, Ludger, 1995, “All in the family : Nesting symmetric and asymmetric GARCH

models,” Journal of Financial Economics, 39, pp. 71-104,
Hull, John and Alan White, 1987, “The Pricing of Options on Assets with Stochastic Volatilities,”
Journal of Finance, 42, pp. 281-300.

Jagannathan, Ravi, Keiichi Kubota and Hitoshi Takehara, 1996, “Income Risk and the Cross-
Section of Average Returns on Stocks: Some Insights from the Japanese Stock Market,” Working

Paper, University of Minnesota.

Jagannathan, Ravi and Zhenyu Wang, 1996, “The Conditional CAPM and the Cross-Section of
Expected Returns,” Journal of Finance, 51, pp. 3-53.

Koutmos, Gregory and Gebffrey Booth, 1995, “Asymmetric Volatility Transmission in
International Stock Markets,” Journal of International Money and Finance, 14, pp. 747-761.

Koutmos, Gregory and Reza Saidi, 1995, “The Leverage Effect in Individual Stocks and the Debt
to Equity Ratio,” Journal of Business Finance and Accounting, 22, pp. 1063-1075.

Kroner, Kenneth F. and Victor K. Ng, 1995, “Modeling the Time Varying Comovement of Asset

28



Returns,” Working Paper, Advanced Strategy Research Group, Wells Fargo Nikko Investment
Advisors.

Longin, Francois and Bruno Solnik, 1995, “Is the Correlation in International Equity Returns
Constant: 1960-1990?,” Journal of International Money and Finance, 14, pp. 3-26.

Merton, Robert C., 1973, “The Theory of Rational Option Pricing,” Bell Journal of Economics and
Management Science, 4, pp. 141-183.

Modigliani, Franco and Merton Miller, 1958, “The Cost of Capital, Corporate Finance, and the

Theory of Investment,” American Economic Review, 48, pp. 261-297.

Nelson, Daniel B., 1991, “Conditional Heteroskedasticity in Asset Returns: A New Approach,”
Econometrica, 59, pp. 347-370.

Ng, Angela, 1996, “Volatility Spillover Effects from Japan and the U.S. to the Pacific-Basin,”
Working Paper, Department of Economics, Stanford University.

Pagan, Adnan R. and G. William Schwert, 1990, “Alternative Models for Conditional Stock
Volatility,” Journal of Econometrics, 45, pp. 267-290.

Pindyck, Robert S., 1984, “Risk, Inflation, and the Stock Market,” American Economic Review,
74, pp. 334-351.

Schwert, G. William, 1989, “Why Does Stock Market Volatility Change Over Time?,” Journal of
Finance, 44, pp. 1115-1153.

Schwert, G. William, 1990, “Stock Volatility and the Crash of ‘87,” Review of Financial Studies,
3, pp. 77-102.

Sharpe, William, 1964, “Capital Asset Prices: A Theory of Market Equilibrium Under Conditions
of Risk,” Journal of Finance, 19, pp. 425-442.

Solnik, Bruno, 1993, “The Performance of International Asset Allocation Strategies Using
Conditioning Information,” Journal of Empirical Finance, 1, pp. 33-55.

Turner, Christopher M., Richard Startz and Charles R. Nelson, 1989, “A Markov Model of
Heteroskedasticity, Risk, and Learning in the Stock Market,” Journal of Financial Economics,
25, pp. 3-22.

White, Halbert, 1980, “ A Heteroskedasticity Consistent Covariance Matrix Estimator and a Direct
Test for Heteroskedasticity,” Econometrica, 48, pp. 817-838.

29



Wu, Guojun, 1997, “The Determinants of Volatility Asymmetry: Evidence from Option Prices,”

Manuscript, Graduate School of Business, Stanford University.

30



£1)UIUASE JO 95120 10BXS Y} AJ10ads 10U PIp SISYOIEISAI ) JNQ PA[APOW SeA A119MIWASE Jel) STt WUInjoo uoneueldxs ayi ul [aqe] paywoadsun,,
oUL "YIUOWE B JO 9SIMOD 9 J9A0 pajnduiod SWIar A|5ep JO UOIBIASP PIEpURIS 3y} 0) SI13ja1 A[[eo1dA) Arnejoa $5018 ‘A){JBJCA SINSEIU 0) S[OPOUT
HOYVD 25t £[jeoid) saiprus AN{ne[oA jeuonpuo) "AN{IE[OA [BUOHIPUOD PUe SWINGAI Uaam]eq disuone[aI 3y} HO SAPTIs JO srduwies e s1s1] 21q8) SIU Y, :SHLON

patmaadsun

(s1oj1eA] SuLdaty) Xapul

ANRIOA [BUONIPUOD

(L66T) £2A1ey pue LIREN3]

sisajodAy ofe1oAd

$201S

AN[NBIOA SSO1L)

(S661) 29530d

paywadsun) SY201S pue XapuJ ANTER[OA [RUOIIIPUOC)) (S66T) I2Iung puy uos{aN ‘unvag
pagioadsup) Xapu] AMeIoA [BUOTIIPUOD (£66T) Pumy pur uvyeuuedey ‘Ud)so()
payioadsupy (xidog, ueder) xapu] A1neIoA [BUOIIPUOD (£661) 3N pue 3jduy
patisadsun) SY0018 AMTIRIOA JELICHIpUOD (z66 1) 3N pue Sunnp)
Asoay ], winpuaid Ysny Sulkiep awig, xapuj Anneroa anon_n_.mu (Z66T) 194dsIIIY pue [pqdwe)
payadsun Xapuj AmeroA [euonipuo) (I661) UOS]2N
sisayodAY a8e13A97 X3pu] Anme[oA [euonipuo) (0661) 1EINIIS
L1021 [ wInrwaid ysnd Suikiep sy, xapuj ANIB[OA [RUCDIPUO]) (L86T) YSnuquie)§ pue LIDMYDS I
sisayjodAY a8e1aA9] S01]0JLI0d ‘S300IS ANINBIOA SSOID) (z861) ANsLIY)
s1saylodAY 2deraAd] SOI[OJUO ] ‘S3001S ANME[OA SSOID) (oL6T) HoEIg
uoneuejdxy A1puwmAsY Jo 30uISALJ Insvay ANUB[0A Lpmsg

ANIB[0 A SLyIuWASY uo sApmS [edrduyy pajddps jo Aremwmng 1 IqEL




‘sorjopod inoy a1 105 swmmyar pouad Suploy A{2as 91 St APIUS 9Y) 10 SSLIS 258Q AL ], "SHUEQ [EIOIIUINI0D Supnpoxs ‘pouad
a1dures 2y} 130 sorjes 9geraAd] S8LI0AR 1SOMO] Ol PUB WINTPAUL 3y} ISAYSTY 2Y) SABY YOTA Y0¥ SYO0IS SAY WM Pajonnsuod aIe sofonrod afereaar
saryy oy 1, “Iaded siy ur Apgs om 18 sotjopuiod a8810A0] 1SBq 22IY) Y pUE oyoyuod 1a¥yIEUI AU INOGR UOTJEULIOJUT ATeurmns sapiaord 21qes sl SEELON

¥S0°0 €920 5681 SHP 0 UOLIBIASP PIS

0120 SE8°0 96L’S 125! ugstu soljejrrod
LETO £6€°0 1L6C €5L°0 WU 30 souua
Z9€0 Z0¥'1 #8701 0Ev'T WIwrxeus i

A3] MO A9 "paut A3[ Y31y eyIew 93u.19A9]
Z100 £€0°0- £50°0 800°0 ($)ov

0L0°0- 0£0°0- £00°0 120°0- ov

9000 9¢1°0 1500 0600 (eov

S10°0 €200 0£0°0 0500 (@ov

190°0- S10°0 £20°0~ 8200 (1)ov

9ZY'€ 1€8°€ £V8E 1L9°T UOIIBIASD pis

6020 801°0 $91°0 9Z1°0 ugaw

8LEST- 6¥8° 12~ 956°¢ 1~ 06LT1- LLEBHBIL

10T 85ETI LY6 € 69201 wnwrxew sotepIod
AQ] MO A3[ 'pow A9[ Y31y josjdew Jo sumpy

(Apfeam) so1joj10g 3813497 91 Jo wopvuLIoju| AIewWmIng 17 QB




(1) X 93¢ 5159 [[V "SPJeI IsaI2ur Ised o} S[enpIsaI puk SIOUBLIEACO ‘S2OURLIVA PIZIPIEPURIS

10 Aupeuegoyuo oyl uo snooj s1sal-LNJ a1 “Areutrd (1) mx e 1 pue 3su Jo aoud JUeISUOD B JO [[0U 913 JO 1S3} ONEeX PeoyrfaI & st SNdVD (L) Nx
218 TNV Pue TAdYD) suamar ised pue sotjer ageraad] ised ApAnoodsal o3 sfenpisar pajeds jo AN[euoZoqHo i 159} SOUSHEIS VD oA ISTY Y L
'(g) X © se paquisip A[[eono)duL(SE ST PUE 20ULLIBACS [BUOHIPUOD 1) AQ PA]BIS S[ENPISAL SS0I0 3y} J0J 1591 snodoreue ug sapisoid AQD "WopaaLy Jo
592139 + YIm uonnqusIp X onojdursse sABY 51531 YYA PUe NVHIN UL '0I9Z 216 S[EnpIsas pIZIpIepue)s patenbs 1) JO SUCTIR[2LI000INE JAI] pue
[ 218 s[enpisal pazipIepuels parenbs ay) Jo sUBSWI AY1 JAIAYM 5159) YV A ‘019Z 2I€ S[ENPISAI PIZIPIEPUR]S ) JO SUOTIE[IAI0I0NE 3a1Y) pUE Sueaw
2) 19Y)aYM S1591 NV N "(sasayiuared ut) anfea-d 91y} SUIRILOD ALOT PUOO3S 1) PUE JTISNIEIS 3Y) JO NBA ) ST MOI ISIL AYL, JUBISUCD 3q O POLISSE
s1 (yoois 01 pasoddo se) e o1 1oadsal yua SsIr Jo 20iid 213YM U0 AU ST [9pOW SN, 'SIS3} UCHESYISads AA[) IO SHUSAI Y} sapiacid o1qe1 SIUL  SHLON

{6900 {Log'0) (¢68°0)
1698 0191 6011 93134 M0
(€LS0) (008°0) (878°0)
€16 6v9'1 o'l IZBIDAT WNIPI
w (zos'0) (017°0) (€090
Pe'E 98L’S SEL'T 93104977 Y3y
{8sv°0) Tro'0)
SE9°¢ L06'6 oT[0J)10d JINIBIA
(£L60) {€59°0) 066'0) (5100°0) (015°0) (820°0)
1070 9791 $6T°0 60°01 957°9 60L°S1 [BI3UI5)
ELNI LLNI TILNI ‘AL VD A VD AdVD AOD UYVA NVIIA $I1SNB)S 159,

uoi3ed1J139dg [IPOIAl 213 JO SIS, € 3qeL




PUE SI0yS SLIDUIUASE ‘SHIOUS WINJaI ‘Sa0uBLeA0d pagder ay1 10 (01 uanenba 29s) 553001 XLITRUT 2DURIIEAOS MHHH U1

"UOTINED YIA PIASIA 9 ST JNSAI

semonied SIQ) SOy} 1S3} Sl 10§ ON[BA POOYT[INI] 1qRIBAE 153818] SY1 35T 94| "3319AU00 JOU PIp [opoul PARINsaI (A=
10} UOTEUINSD YL 'SI|QRIIBA 3591} JO 2ouasaId 3y jo soueoytudis ay) J0J JOoyD Sis3) asay, “A[anoadsar ‘soper agrIaAa]

ux saouew 19jewered 2Ie O pue g ) ‘g "[9POW Y} UO SUOTIDLISAI SNOLIBA JO 5153} O1EI POOYIIAYI] Y1 sjuasaxd el sy SALON
£10-97508°1 S EL1L =D a=d
F10-21610°¢C £ 05'¢9 =D
600-0LTST v £ £6'1F «d=d
0 1T 81°69T 0=0=D=4
0 v 0T 9Tl =D=1
0 L EVAAA 0=a
T10-9807T'1 L 1oL 0=
mEeA-d wop2Ig Jo sadaq AMSNVIS IS, s1say10dLy HNN

S[9POJAl SNOLIEA 10f §)S3L, POOIPNIT b JqEL




“sasaijuased Ul 918 SIOLID PIBPUB]S “JUBISUOD 3q 0] PAUNSSE ST (2078
01 pasoddo se) wizf 01 1adsar YiA S JO 20ud 21U UO AP ST IS [2POW Y[, JUNOIIE OWUE A[[1Y) WONOBIAIUL INE) 1aded o) Jnoydnonp
panuasord seoejins jordwl Sy 319y PIUIWEXD JOU SI 103 UOHOBIANUL 2y SO uonejuasdrdar-JFA 211 WO UINE) ' SIUDOLIR0D
2} SI 1B JUBISUOD SI[QEIIRA IO SUIP[OY I[TUM SIBLIEA I} ut aFueld B UIAIF saouppva [RUONIPUOD UO 1deduy o) siosaid aqqer sl SHLON

(+887'® (8+00°0) FS10°0) {(£sz0°0 (80000} (86£0°0) (9tg070) (6600°0)
£96L°0 6600'0 FOr0°0 11100 100070 1880°0 888870 91100 M0
(+<00°0) (11000 (900°0) (1681°0) (zogo'0) (gSEq ) (9z90'® (£L00°Q)
12000 £000°0 L0000 18740 8101°0 ££20°0 L008°0 LEOO'O wnIpIAy
(¢c1o'®m (+z6T O (zeoom (815170 (Isc0'0) (16107 (sz0z°0) (#01°0)
TLI00 8L76°0 L000°0 60510 £9£0°0 £500°0 TOLE $8LO'0 YSIH
(0000°® (e8L0'®) F1H0°0) (Z650°0)
00000 68070 L¥90°0 LSEL'O 19HIGTAl
AT 01 | TR 01 il L 2 g o N o uoyenby

SIIUBLIE A [BUON)IPUO)) UO SIBLIEA JO joedw] G djqe],




‘sosayyuared U 218 SIOLID PIEPUE]S JUEISUOD 3G O) PAUNSSE St (0075
01 pasoddo se) w01 102dsdx AL Ysu Jo 20ourd UM SU0 A ST 2IY [SPOUI I, JUNOE Ot Afny uonperdiuy axe) zoded du) moydnong
pawuasanrd saoepns poedwl S SI9Y PAUIWEX2 JOU ST 123F2 UOIDEBINUL Syl sty], -uoniglussardal-) A oY) WOl udye) dIE SJUSOYR0d
SU3 ST 1811 ‘MIRISUOD SO[QELIEA JAU[I0 SUIP[OY S[IY ‘SI[qRLIEA 21 Ul JFury2 & UeAId s2oupLvACO TBUONIPUOI UO 10Bdun ay) syussard 9(qel SIUL  SHION

{(1900°0) {L000'0) (gcz0'0) (Zzoo'm) {re10°0) (08£0°0) {(#9£0°0) {59¢0'0)

T100°0- 1000°0 616070 18+0°0 810070 SSLO0 98080 $T60°0 MA07Y

(£000°0) (1000°® (13500 {¢s60°0) (82€0°0) (9z20° Q) {0rb0'0) (8050°0)

100070~ 00000 611070 166770 21800 88€0°0~ SLIL'O 61500 wnipajA

(1100'®) {1500°0) (8190°0) (zLor'o) {(1820'0) {00F0' M (LsF1' O (€z91°0)

20000~ 01000 2100~ SLLT'O S8P00 8910°0 81zs'0 10b2°0 Y3tH
YT Ol _L.»MMN_N 01 S AT _L.me IR gLt g Tu.&m.m kel TEM.O uonenby

SIIUBLIBAOY) [BUOT}IPUO) U0 s3[qeLie A Jo joedwm] :9 dqe],




‘(p661 oun[ 01 86T UEr) Aprus Y Ul pasaaod pouad sjdures 1040 9FeIsA. ol St uoneziende) #
[opowI A pojeumsd oy uwn
palerauad aIe s€19q [EUOHIPUO;) 'StIal ofjojuoed Jo oueLIEACS puR ourLEA djdures a1 Juisn porndwod SIe selaq JEUCTIIPUOSU[)
‘raded sup ur paunuex2 sonojuiod oy (B Jo S€J2q [EUONIPUOD puB SBJRQ [RUOLpuUodul ‘suonezijendes syjuesaid siqel sl ‘SHLON

FZLT'O €066°0 6S1S°0 EELY' S610' €1'S 98e1aAa] MO — 9IS [fBIIg
9L81'0 08660 864770 0S€9'T SH60'1 96°¢ 98219A9] WHIPIN — 921 [JEUIS
07SE0 6£06°0 8L00°0 PT16'T £969'0 80°L ageaa43] YBIH — 9ZIS [[BWIS
9SH1'0 $958°0 8£TS°0 88€€'T €ELLO $€°€9 a5e19A3[ MO — 9218 3548
68LT°0 106670 Z1SS°0 £89¢°1 $738'0 9b°€9 981043 WINIPS — 9218 255e]
8217’0 PIIET 6LLLO SSOL'1 99LT'1 61'1L aferaas] YSIY — 921s aGie ]
€I41°0 P1€L'0 ZEPT'0 YETUT YH29°0 ¥L'8T a3ei0A9] MO']
LEOT0 $900'T 8v80°0 63641 8801'1 61'6 afe1aAa] WP
€IT1°0 ISLT'T SHP80 61HHT 418 AT 91949 YSTH

‘A3 *PIS uBIl uriy e elog (,,01 % 01T04180d

B)ag [BUOIPUO)) [BuOLIpUOIU[) Juoneziende)

SO1[0J}.10J JO ejog pue uonezijeside)) 1L dqe],




‘sasayiuazed ur 21e SIOL prepurls ‘(] uonenbs 33s) UOISSaISAI LIEYIO PuB [[BF A4} JO SIBWNSI 7y ) sjussald g pued
‘sonjea do-11ess uo asuspuadap 211 proae o) peddorp s1e SUONBAIISAO 09T ISIT SYL ‘wnrurard ysu
1oyaeE o1 105 £x01d O) PASN ST LINJOX SS0X? JodIew FRIDAE U 2IUAM HSIARI Y} dIE S[APOUI €19q SUI[[01 puE Blaq [BUONIIPUCOUN 34} JO ul]
pU02as Syl U0 SIN[RA YL, “[PPOW ©12q SuIfjol 3Y) PUR [SPOW BJ3q [PUONIPUOOUR 3} 10f S10119 arenbs uesw joo: sy Sunndwios ur ppow Ino
wiosy wnimaid YSU J9YIBW JO dnRA palorpaid ayl 350 oM ‘[ySuruedw uosireduros sy YEW 0} JAPIO U ‘SUYJ "BIdq pue wnfwsid ySII JIBW
y10q 101pa1d 0) pagu [apow sU Jo 9oud FuikIeA-sWn oyl PUB [SpOW INO el SJON 'B1aq SUNBWINSS Ul SUONIBAISSQO 097 Jo ofduies Sulfjol
© Sasn ppow €19q Su[[o1 31 sealaym e1aq aduies a1y} S35t [opoUl B)2q [BUOTIIPUOSUN Y], [9POW €)3q SUi[[0F 31 pue [9POUI €1aq [BUOHIpUcOUn
a1y} “fapowr ysu jo soud Furliea swm 9y) Jo 950U YA [opowr mo JO (SJARY) Joa1d drenbs ueswr 001 pazijenuue 3y} saredwod y PUBJ  SHLON

(€L£0°0) (TLFO'O) (0ss0'0) 9T T 91°+T

£0£€°0- 6+05°0- LS08°0- SOV OV PTYT EU¥T IFRIOAYT MO
(6880°0) (0660°0) (9zz1'0) £1¥E yI¥E

90l 0 6vT0°0 808770~ TOPE 80°¥¢ 0T ¥¢ TI¥e 9361247 PIN
(z6£0°0) (89+0°0) ($790°0) 0L'8C 0L'8C

8161°0 16270 8SYT0 95'87 £5°87 LO'8T $9'87 aFeiaAaT Y31H

[PPOIN [9POA ST JO PPON Blog
7e=( 97=l £l=I elog Junjioy elag] [euompuoour) | song Surfrea-owiy | Fuiliep swig,
U0ISSaId9y Heyloy pue jjed g [pued S[apowl Blaq Jo 51591 S |V [Pued

OISSAATIYY LILYI0] pue [jeg 34} pue ASJAY :SIS9], v)dyg :§ Jqel




‘sasayjuased Ul a1v S10113 PIEPUER)S “JUBISUOD 3 0) PAWNSSE ST (2075 0} pasoddo se) ey 0
1oadsal s ysu jo 20uid 1atjM U0 oY) ST 213y {SpOW Y], “UN0OIE O Aqny uonosesaur ey Jaded 2yl moySnosy) pajwasaid saogns 1oedun
2y ], 219y PAULWIEXY JOU ST 1930 UCHOBIAUI 91 SNY L, "UONEIUIsudaI-DHA U1 WOl US3E] 318 SO0 Y] ‘ST 1Y} SJUBISUOD SIYQBLIBA IaYqI0
SuIp[oy 3[IYAL ‘SI[QELIBA Y] UT 9FURYD € USALS S22UDLIDA [EUONIPUCD UO 1oeduir oy ‘sorjoyrod 3§RIDAa] WAy jppues 24} 10F ‘syussald o1qe) STYL SHLON

(6100°0) (8L00°0) (6800°0) (9L10°0) (L600°0) (z100°0) {(¥150°0) (LO¥0°0)
8tH0°0 £000°0 F9LOO 1890°0 12790°0 7900°0 FSH0 $L90°0 M0
(£610°0) (TT10°0) (1£00°0) {(£010°0 (TFOO O (L8000 (re10° 02 (£$80°0)
6100 3TLO0 26300 95+0°0 031170 1£60°0 £000°0 689¢°1 Wp3JA
(3+10°0) (6T1O°0 {9800°0) {(LLoo'® (9810°0) {sT00°0) (O1F0'®) (£100°0)
LLED'O 9850°0 7660'0 9900°0 £611°0 9000 S6¥8°0 70000 43t
(€100°0) (g810°0 (9610°0) (Lo o)
000070 LTITITO 8070°0 90080 JABIA
S0 | T on | Tl Tl e e 7o "o uopenby

SIIUBLI A [RUOIIPUO)) UO SAQRLIBA Jo Joedui] :eg d[qe L

(swraryg [rews :393)37 9Z1S)




‘sasaIuased UL 3IE SI03 PIEPUE]S “JUBISUOS 9q 0} PIWNSSE ST (4007s 0} pasoddo su) w0
oadsar i 51 Jo 9oL1d 219yM U0 Y] ST 213 [Spolr Y], JUN0dOE o1l Any uonorrarur e} Jaded o) noySnoyy pajussaxd sacens joedun
Y[, 213V PIUIWEXS JOU ST JOLO UOTIOBIUT dY) SOy [, -uoneuasaidol-)IA 2 WOl UINE) 1B SIIADLJR09 2] ‘S1 JEY) JJUBISUOD SAGELIEA JAYI0
SuIp[OY S]TyA\ ‘SIJGELIBA Y] U1 BUBD B UIAIF Sa0UDIIA [RUOTIIPUOD UG toedut a1 ‘sorjopiod d8eiaas] wiy 28407 2Y) 107 ‘siuasaid 2[qel YL :SHLON

(c100°0) (L900°0) (z1100) (L100'®) (Z£000) (0600°0) (z950°0) (8100°0)
60000 $SE00 8611°0 #1000 701070 8TL0°0 £908°0 100070 A0
(8100°0) (92000) {6500°0) (1¥00°0) {L£00°0) (+700°0) (Lito0) {0z00°0)
10000 £600°0 FEE0°0 €ETO'0 $810°0 790070 3156°0 $€00°0 wunipagy
{LL000) (cLzo°0) (cto0 0 (0500°0) (zz00'0) {L+000) (#010°0) (3200°0)
1$£0°0 CTH0 LETOO $TE00 12000 TOE0'0 F0+6°0 ££00°0 4s1H
(c100°0) {0010°0) (£800°0) (s1+0°0)
10000 oFs10 7690°0 EV6L0 PHIBA
TMS N|O I _L.wm_wmﬂ niO~ T“.m._& T:Mb T“MN T“.»\Mm _LM.O T_.S.Nb —.-c_:wﬂ_“.m~

SIIUBLIE A [EUCHIPUO)) U0 SIqBLIBA JO Joedui] :¢6 d[qeL

(sunaLf 9347 )91 AZIS)




sosaijuared Ul o€ SIOLD PIBPURIS “JUBISUCD 2 0} PIUNSSE SI (205 O} pasoddo se) weay 0) 10adsas Yim
NSu Jo 20ud 215ys U0 YY) SI AISY [9POW YT, JUNOIOE OIUT AN UONORIINL E] 1aded 21y) 1noySnoxy pajuasaid saorpIns joedunl Y[, 214
POUTUIEXD JOU ST I59LJ9 UONOBIANU 31 SOYJ, "UONBIUasaIddr-JHA ) WOlf UIXE) e SUIDIPa00 ) ‘SI JB1[] ‘JURISUOD SO[QELIBA IOY10 JuIploy
AMIAL ‘SOIQELIBA 1) Ul JFUTYD B UIAIS SFOUDIMDA0? [RUONIPUOD 1O pedurr sy ‘sorjopuod a8eIaAd] WL jjUius Yl 10) ‘syussard 21qe1 s, SHLON

(#+8€0°0) (£¥00°0) (2100 (g010°0) {9610°0) {s¥00°0) (€TL00 (6¥30°0)
60000 1000°0 ZLITO 10210 65£0°0 PIIO'O- $€09°0 $TETO Mo

(€100 {06t0°0) {6900°0) {05100 (6220°0) (gcz00) (TsLE0) (9660°'0)
01000~ 110070 6LETO £860°0 S6+0°0 0¥F0°0- 71070 LOYO'T wWnIpIAl

(€5€00) (L£t00) (ot00°0) {£0z0'0) {TLTo®) (£200°0) (oo (6+¥06°0)
3000°0 01000 610 SLEQO 26+0°0 L6000 LYI8'0 7110°0- ysig
Yy Yo _L.“M%.ﬂ .0l ‘ - - T:M& 1IH gl _L.va A ) _L._SN..O uonenby

SIIUBLIEAO)) [BUOIIPUO)) UO SIqRLIBA Jo Joeduy 18| d[qeL

(swagg [rews 33933 271S)




‘sasayuased Ul oI SIOLIS PIBPUBIS "JURISUOD 3 0} PSWNSSE St (pops 01 pasoddo se) wiif 0)

1oadsar i Jsut JO 30ud 2I9GA SUO 3y} ST 213y [9POUI 31, "JUNOIIE Ol A[[r HOTIORISIUT YE) 1aded a1 oygnoryy pajuasard saogpns Joedull
N, 249 PAUIUIEXS JOU ST 103J WONDRIANUT 31} ST ], "UOHLIUSSAUAI-TA ) WOI UNfE) 318 SIUIIS03 3 ‘s JBY) SIUBISTOD SI[QBLIBA 12710
FUIPOY 2JTYAL ‘SIIQRLIEA 3Y) UL SFUEYD B UIAIS SA0UDLLAG [EEONIPUOD U0 1oeduii o) ‘sorjoquiod 99e1949] Wiy 2847 a1 10 ‘slussaid 2jqel sI4L  ‘SHLON

(gToo'o (cc10°0) (9L00°0) (£800°0) (8£00°0) (rLOO'O) (gs10°M) (9¢90°0)
£000°0 L1000 8CET'0 gF10°0 9920°0- 60L0°0 0080 8010°0- L |

(2000 0) (89000 (£900°0) (8500°0) (8+00°0) (LroO'Q) (z6T0°0) P10
1000°0- 6000°0 L1LO0 7090°0 LSEO'D LOTO0 $698°0 SIS00- WInipajAl

(s£10°0) (zs90'0) (z900°0) (z900°0) (8900°0) (8v00'0) (sozo'O) (+ozo0)
L1000 £800°0~ +090°0 90L0°0 0TI0'0 LSYO'0 £¥98°0 605070~ ystg
ST 01 ﬁ‘h.huﬁ 201 IRy TCM& L 51t g T:\Mm o I.smb uonenby

SIOUBLIBAO)) [BUOLIPUO)) U0 SI[qeLiA Jo joedwy :qQ] d[qeL

(suraLf 28.ae7 A AZIS)




NIBQPIY AMNIB[OA

i, of1, it
n ' h g
("' AEEEP& sy Mo =
. : :SHIOYS [2AY] URILY
VOV
i+
W N, <IN
Ant.wfv H_mu TJQ\M.O - AIUIAISISIdJ 3 ¢ A ﬁN
P —
: wniw.Ig 4T 1oay 9981040 | SHIOYS [SAJ[ JNIBIA
HIBPIIY ANIB[OA

\

[9A9T ULILT 3y} PUE [9A] I9NABIA Y} Je oeduif SMIN T N3y




108

tional Variances for Market and Leverage Portfoli

Condi

Figure 2
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Figure 4-a: Market Conditional Variance Response to Market Shocks
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Figure 4-b: High Leverage Portfolio Conditional Variance Response
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Figure 4-¢: Medium Leverage Portfolio Conditional Variance

Response to Shocks
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Figure 4-d: Low Leverage Portfolio Conditional Variance Response
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Figure 5-a: Market Variance Impact Surface
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Figure 5-b: High Lev. Portfolio Variance impact Surface
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Figure 5-¢c: Med. Lev. Portfolio Variance Impact Surface
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Figure 5-d: Low Lev. Portfolio Variance Impact Surface
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Figure 6
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Conditional Covariance Response to Market Return

Figure 7
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Figure 8-a: High Lev. Portfolio Covariance Impact Surface
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Figure 8-b: Med. Lev. Portfolio Covariance Impact Surface
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Figure 8-c: Low Lev. Portfolio Covariance Impact Surface
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Figure 10-a: High Lev. Portfolio Beta Impact Surface
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APPENDIX:

Estimated Variance Covariance Equation
5, = K(,6\,.) = Q% + BE, B +Ce, &' + D, D +Gl_ .G

Parameters Standard Errors
Q 0.007%9441 0 0 0 0.0013 0 0 0
0.0117213 0.0159199 0 0 0.0035735 0.0024673 0 0
0.0079926 -0.000428 0.0060023 0 0.0017454 0.000904 0©.0016703 0
0.0079048 -0.003092 -0.001487 0.0030638 0.0018376 0.0012561 0.0014492 0.0018565
B -0.857736 0 0 0 0.0345051 0 0 0
-0.279977 -0.608332 0 0 0.18638 0.167234 0 0
0.0605615 0 -0.89481 0 0.0605369 0 0.0349734 0
0.10779 0 0 -0.942748 0.0458295 0 0 0.0178208
C 0.254448 0 0 0 0.0812707 0 0 0
0.0659186 0.190547 0 0 0.144745 0.0921017 0 0
-0.152627 0 0.319019 0 0.115724 0 0.0566804 0
0.296883 0 0 0.0072308 0.0669847 0 0 0.0529013
D 0.457104 0 0 0 0.0856168 0 0 0
0.388415 -0.026775 0 0 0.195357 0.13534 0 0
0.654319 0 0.0259551 0 0.144533 0 0.124766 0
0.105122 0 0 0201077 0.120399 0 0 0.0382485
G 0.0136816 0 0 0 0.0698543 0 0 0
7.26529  -1.64993 0 0 2.01245 0.471163 0 0
0.164107 0 -0.460715 0 0.334358 0 0.58614 0
0.995647 0 0 -8.69641 0.238744 0 0 1.65841

NOTES: This is the model where price of risk with respect to firm is assumed to be constant.




between Leverage Ratios and Shock Terms

Estimated Correlation Coefficients

Variables

market

high medium

low

Corr(/,,£,)
Corr(/,,7,)

-0.034931
0.038775

-0.032482 -0.086619
0.004192 0.10947

0.00888
-0.013569

Firms in the Leverage Portfolios

Portfolio

Firms

Low Leverage

Teikoku Qil
Pioneer Electronic
Shimura Kako
Fuji Photo Film
Sankyo

Medium Leverage

NTN

Shinagawa Refractories
Nitto Beseki
Nachi-Fujikoshi
Toyobo

High Leverage

Mitsubishi
Ttochu
Mitsui & Co.
Marubeni

Nippon Shinpan




