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ABSTRACT

We model the equilibrium price and quantity of risk transfer between firms and financial
intermediaries. Value-maximizing firms have downward sloping demands to cede risk, while
intermediaries, who assume risk, provide less-than-fully-elastic supply. We show that equilibrium
required returns will be “high” in the presence of financing imperfections that make intermediary
capital costly. Moreover, financing imperfections can give rise to intermediary market power, so
that small changes in financial imperfections can give rise to large changes in price.

We develop tests of this alternative against the null that the supply of intermediary capital
is perfectly elastic. We take the US catastrophe reinsurance market as an example, using detailed
data from Guy Carpenter & Co., covering a large fraction of the catastrophe risks exchanged during
1970-94. Our results suggest that the price of reinsurance generally exceeds “fair” values,
particularly in the aftermath of large events, that market power of reinsurers is not a complete

explanation for such pricing, and that reinsurers’ high costs of capital appear to play an important

role.
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1. Introduction

What drives the prices of intermediated risk transfers? If capital markets were perfect, risks would flow
costlessly from corporate hedgers to investors, and prices would be “fair” in the sense that they would be
determined entirely by investor preferences. For example, in a perfect market, firms would pay the
riskfree rate to cede risks that are independent of aggregate wealth. In such a world, there would be no
need for financial intermediation. Intermediaries, whose job is to distribute, transform, and inventory
risk, would not be able to earn an acceptable return. Indeed, with perfect markets there would be no
rationale for corporate hedging in the first place. As Modigliani-Miller argued, firms would be
indifferent between ceding risk (e.g., hedging) and financing risk (e.g., raising equity).

In practice, of course, markets are far from perfect. And the nature of these imperfections at once
gives rise to firms' desire to cede risk and intermediaries' ability to profitably assume risk. For example,
investors may be at a competitive disadvantage when it comes to evaluating and monitoring risks which
are non-standardized and informationally opaque. If forced to finance such risks directly, investors
charge more. Consequently, firms may find it cheaper to cede to intermediaries rather than finance with
investors some of these risks. Intermediaries can do this because they provide valuable evaluation and
monitoring services. However, intermediaries — like firms — must find financing. This too will be
costly, since intermediaries will also need to ask investors to bear non-standardized, opaque exposures.
As a result, prices of intermediated risks will be high and capacity supplied by intermediaries will be
less-than-perfectly elastic.

Financial imperfections of this type may also affect the industrial structure of intermediation, leading
to imperfect product market competition, and raising the price of intermediated risk transfer even further.
Bigger intermediaries may conserve on costly external finance because they are better able to diversify
risks and fund investment opportunities of a given size. If so, then financing imperfections become a
source of increasing returns to scale. This is important because it implies that market power and financial
imperfections interact, allowing even small financing imperfections to have large equilibrium price
impacts.

In this paper, we model the equilibrium pricing of risks that are nonstandardized and opaque.
(Investors more readily bear standardized, transparent exposures, such as major currencies or stock
indexes. This reduces the marginal cost of intermediation and the resulting potential for intermediary

market power. Consequently, the supply of intermediary capacity will be highly elastic with respect to
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such risks.) In our view, firms wish to cede risks to economize on financing/investment costs. Because
intermediaries specialize in bearing these risks, they can assume them at lower cost than investors, albeit
at higher cost than “fair” value. The higher required returns are a result of the costs intermediaries bear in
funding themselves and the barriers to entry created by the financial imperfections intermediaries face.

Our model of these issues is motivated by the catastrophe reinsurance market. In this market,
insurers and reinsurers exchange obligations to pay the damages resulting from natural perils such as
hurricanes and earthquakes. Because single-event catastrophes generate potential insured losses of up to
$100 billion in the US, they cannot easily be diversified among insurers and reinsurers.' Insurers and
reinsurers nevertheless retain these catastrophe exposures, with investors unwilling to bear the risks in
securitized form, perhaps because they are not standardized or transparent.

The modelable nature of catastrophe exposures makes this market well-suited to our analysis. We
are able to calculate the implied discount rates firms use when trading exposures under relatively mild
assumptions. These assumptions are that catastrophe risks are independent of other risks to wealth
(suggesting that actuarial flows discounted at riskfree rates are a good benchmark of fair value in a
perfect market) and that the distributions for catastrophe losses we calculate are reasonably accurate. We
are also able to employ a new set of reinsurance contract data from Guy Carpenter & Co., the largest
broker of catastrophe reinsurance. The data cover a large fraction of the US catastrophe reinsurance
market over the period 1970-1994 and allow us to explore the properties of equilibrium prices and
quantities of risk transfer.

To preview our findings, the average premiums (i.e., prices) on catastrophe reinsurance are
considerably above our estimate of actuarial value. Furthermore, prices and quantities seem to be
negatively correlated. Both facts suggests that the supply of capital is not perfectly elastic. Consistent
with our findings over the historical sample are the results of sophisticated natural catastrophe models
produced by EQECAT and RMS, among others. These models generally suggest that current-day prices
on catastrophe reinsurance are well above actuarial loss estimates.

Prices are particularly high in the aftermath of major catastrophic events. Indeed, price increases are
often associated with declines in the actuarial value of insurance purchased, stemming predominantly
from increases in deductibles. We find evidence that such price increases are driven by decreases in the
supply of reinsurance as well as increases in demand.” The price impact of a shift outward in demand

could be attributable to a combination of enhanced reinsurer market power and increased reinsurers' cost

! Estimates of total capital and surplus of US insurers run to about $239 billion. Sce Froot (1997) for an overview of
catastrophe insurance and reinsurance.

? Doherty and Smith (1993) present evidence that insurance markets are less competitive when prices are high.



of capital. But part of the price impact is also driven by a shift backward in supply, suggesting that
increases in reinsurers' costs of capital must be an important element.

We estimate the elasticity of demand to be between -0.2 and -0.3, while the elasticity of supply is
approximately 7. The latter figure suggests that a 1% increase in premium above actuarially expected
losses leads to a 7% increase in reinsurance capacity supplied. This response seems small relative to
what capital markets could be expected to provide for liquid instruments. For example, a similar 10%
increase in the interest rate on several billion dollars of one year risky corporate debt (equivalent to an
increase in yield of about 50 basis points when interest rates are 5%), with no change in riskless rates or
credit quality would presumably increase the supply of buyers by more than 70%.>*

We also present evidence that changes in reinsurers' capital costs affect supply. Specifically, we find
that the supply for a given contract is reduced (i.e., the reinsurance premium is increased) when: i)
variance of losses under that contract is greater; and ii) the covariance of losses under that contract with
the loss distribution of reinsurer portfolios is greater. (In both cases, we hold constant demand factors
such as the variance of insurer exposures and recent insurer losses, as well as reinsurer losses). These
effects would have no impact on supply if financial markets were perfect. Because reinsurer financing
imperfections may promote market power, it is difficult to disentangle the relative importance of
financing imperfections versus market power in these results.

The rest of the paper is structured as follows. Section 2 lays out the model of supply and demand in
an intermediated market for risk. Section 3 describes our strategy for implementing this model. Section

describes the data. Sections 5 and 6 then present estimation methodology and results. Section 7

concludes.

2. A model of hedging demand and supply

In this section we model the price and quantity of risk transfer in an intermediated market. Our basic
rationale for corporate hedging demand is that of Froot, Scharfstein, and Stein (1993): hedging increases

firm value by reducing costly fluctuations in investment spending and external fund raising.’

¥ Note that it is appropriate to hold riskless interest rates constant in this example to the extent that changes in catastrophe
prices appear independent of other financial market returns (including interest rates). As one might guess, actual correlations are
neither statistically nor economically different from zero. See Froot, Murphy, Stern, and Usher (1995).

? Indeed, an adjustment for credit quality would, if anything, make this investment even more attractive. That is, after a
catastrophic event, reinsurers may receive, say, 10% higher premiums even though their credit quality has probably declined.

* A similar motivation for hedging can be found in Stulz (1984) and Diamond (1984) (which deals specifically with the role of
diversification in reducing firm-wide risks).



Here, however, we model equilibrium risk transfer. The equilibrium is interesting because
intermediaries have limited capital and face costs of adding more, as in Froot and Stein (1996).
Intermediary costs of external finance would seem natural since intermediaries are themselves
corporations, subject to the same kinds of frictions that make corporate hedging desirable in the first
place. We show below how these financial imperfections interact with market power to magnify the
increase in the equilibrium price of intermediated risk.

The model has two time periods: present and future. In the present period, insurers (“firms”) and
reinsurers (“intermediaries”) make insurance and reinsurance (“hedging”) decisions. In the future period,
catastrophe losses and firms' and intermediaries' stock prices are realized. Firms and intermediaries also
make present-period hedging decisions with an eye toward their overall goal—maximization of

shareholder value.

2.1 Firms' demand for hedging

In the present period, the ith firm begins with an inherited level of net internal assets, w,, These net
assets are exposed to uncertain shocks (e.g., catastrophe losses) given by €, For simplicity, we assume g,
is normally distributed, €, ~ N(1,6/°).° The firm's exposure to this shock can be managed by hedging an
amount g,. We assume that the hedging contract is linear, so that the contract has a payoff of gg,.’ Net

assets in the future period are therefore

w; =wi,0[(1_Qi)8i+Qi(1_pi)] (D

where g, can be interpreted as the hedge ratio, and p; is the unit cost of the hedge contract in excess of fair
value. Intuitively (and as we show below), p, = 0 in a market with no costs of financial intermediation. In
other words, fair value is defined as the price that would prevail in a perfect market with costless access
to investors.

If risk management is to matter to a firm, the distribution of net internal assets across future
outcomes of g, must affect stock prices today. To establish this linkage, we use the FSS formulation,

which assumes that in the future, the firm has positive-NPV investment opportunities it wishes to

® This distributional assumption is made for the sake of simplicity and has no effect on the basic results. Of course. normality is
unlikely to be a good assumption for the distribution of catastrophe losses. In the empirical section below, we more accurately
model the empirical distribution of catastrophe losses.

” This assumption does not affect the qualitative nature of the results but simplifies the analysis considerably. In practice, of
course, most reinsurance contracts are excess-of-loss treaties (which are nonlinear in insurer losses—see footnote 25 par below).
In the empirical section. we model the distribution of the nonlinear excess-of-loss contract payoffs.



protect.® The investment requires an expenditure of 7, (to be determined in the future period after w; is
realized). It provides a net return of F(I;) = fI;) — I, where f.) is an increasing, convex function. Clearly,
the funds for this investment must come from some combination of external sources, ¢;, and internal
sources, w, so that 7, = e, + w, The problem for the firm is that external funds cannot be costlessly
tapped—raising external funding generates convex costs, given by C(e;).”
If managers maximize firm value, then the value of the firm in the future is the solution to the
investment/financing problem:
P(w,-) = max F(I,-)— C(e,-),
! (2)
subjectto I; = e; + w;.
FSS show that, under these conditions, P(w,) is an increasing concave function with 1< P, and P, <0."
Intuitively, low levels of internal assets cause the firm to experience costly cuts in investment and/or
costly attempts to raise external funding. If fluctuations in the value of internal net assets can be avoided
through hedging, then the prospect of experiencing such costs is reduced. Thus, it is the concavity of the
value function, P(w,), that makes risk management value-enhancing for the firm."'
From the perspective of the present period, the firm chooses its hedging policy so as to maximize
expected future value of the company—max,, V; = E[P(w;)], where the expectation is taken with respect
to €. (For simplicity, we ignore discounting.) The first-order condition for this problem defines the

optimal amount of hedging, g,":

dw;
E[Pw d_q} = E[P,(1-¢, - p;)| = —cov[P,.&;] - PE[P,]= 0 3)

!

* For an insurer, these investment opportunities might involve the competitive pricing of insurance policies to gain or protect
market share, upfront funding of brokerage expenses, purchases of property, etc.

° FSS show how a convex cost function arises in the standard optimal contracting setting introduced by Townsend (1979) and
Gale and Hellwig (1985). Other applications include Stein (1995) and Froot and Stein (1996). FSS also provide arguments as to
why corporate agency and information problems result in the kind of convex cost function of external finance assumed here.

' Our notation for derivatives is P, = dP/dw, and P, = d*Pldw’.

'"In the FSS formulation, a firm that inherited a capital structure with lower leverage, would have greater internal net assets,
all else equal. It would therefore be able to mitigate future costs of external finance. Thus low leverage would seem to be an
inexpensive means of avoiding costly external finance. Froot and Stein (1995) remedy this imperfection by incorporating carry
costs for net internal assets. These costs (which resuit from factors such as foregone interest tax shields and agency costs). make
it expensive for the firm to solve its risk management problem through undericveraging.



Using the assumption that g; is distributed normally, we can solve this equation explicitly for the hedge

quantity demanded:"
qi =1-o+ @)

where 0, = w,(G,c;” represents the strength of demand—it is literally the insurer's marginal financing cost
of retaining an additional unit of risk—and G, = G(w,) = -E[P,,,JJE[P,] = 0 is effectively a firm-specific
measure of risk aversion to fluctuations in w,. It is easy to show that G, is monotonically decreasing in w,
G, <0, and that G(0) = 0. The better capitalized the firm, the lower its risk aversion and the less there is
to be gained from hedging."

Equation (4) is our hedging demand equation. It shows that the optimal hedge ratio, g, is a
decreasing function of price, p;, an increasing function of the variability of the underlying exposures, %,
and a decreasing function of internal funds, w; (through G(.)).

The term p/6, is the product of the expected excess return-to-variance ratio, p/c,’—essentially, the
“alpha” on ¢, risk—multiplied by the level of firm risk tolerance, 1/w,(G,. This term can be interpreted as
the firm's desired or “target” exposure to g, risk."* If p, > 0, the firm should optimally retain some of its
own exposures as a value-maximizing investment decision. If p, = 0 the firm will optimally cede all its ¢,

risk and hedge completely.

2.2 Intermediaries' supply of hedge capacity

As with a firm, an intermediary (i.e., reinsurer) begins with an inherited level of net internal assets, wy.
For simplicity, we assume that there is a single intermediary, but that this intermediary nonetheless
prices competitively. If the intermediary exchanges risks with firms, its net assets will be exposed to a
portfolio of €/s from cedents; from Equation (1) above, the intermediary will assume from the ith cedent

risk given by g (€;+p~1). The intermediary's future-period net internal assets are therefore given by:

wR=ZqR,i(8i‘1+Pi)+1 (%)
i

12 If x and y are normally distributed and a(.) and b(.) are differentiable functions, then covia(x).b(v})=E [a,]E,[b,] cov(x.y). In
the absence of normality, there is no convenient closed-form solution. Furthermore, the qualitative aspects of that hedge ratio
will be the same as derived in the simple case of normality.

'3 Investors as a group represent the decp capital markets, and as such have elastic demand, so that for investors G, = 0.

" That is, the unhedged fraction of exposure (i.e., retention) is 1-q,” = p/0,. Froot and Perold (1996) define target exposure.
show that. in general, it is given by the ratio of excess return to total variance times the level of investor risk tolerance.



where for simplicity we have normalized initial intermediary wealth to one, wy,= 1.

2.2.1 Supply with financing imperfections

In this subsection, we assume that intermediaries face the same sorts of financial-market imperfections
that firms face. Thus, intermediaries have profitable internal uses of funds and costs of raising external
funds, just as firms have. Intermediaries are also value maximizers, just as firms are. They therefore also
solve the maximization problem given in Equation (2), using w,(5) in place of w; (1).

The intermediary's present-period decision to supply hedge capacity is therefore the solution to the
problem, max,, V, = E[P(wg)], where P(w;) = max,, F(Iy) - C(eg), subject to I, = e + wy. The resulting
first-order condition of V), for the ith exposure is just the negative of Equation (3). Solving this we have

D;~ GRCOV[5i rgR,i]

* pl
QR; = : = —~~—B;, (6)
e GRGZ‘z GRGQ'Z l

where G, = G(wy) = -E[P, . JE[P,] where w = w, is the risk aversion of the intermediary, and where 3, =
cov[e, e, )07 (with g, = Z,.4qrE;) 1s the covariance between a unit of the ith risk and the weighted
average of the other K-1 risks in the intermediary's portfolio, where K is the number of insurers. Note
that Equation (6) indicates that the optimal capacity provided for the ith risk, ¢,,, depends on the
capacities provided for all other risks, g.;. Following Froot and Stein (1996), we can solve the K

equations represented by (6) for the Kx1 vector of optimal supplies

gr =0 a% M
where ;" is the Nx1 vector of optimal supplies, Q is the KxK covariance matrix of the €, shocks, and p is
the Kx1 vector of per unit prices. Equation (7) just says that the optimal allocation of intermediary
capacity is mean-variance efficient—increasing in return, and decreasing in covariance. Note that the
optimal allocation for each gy,” depends on the entire vector of prices, p .

Rather than work with the full solution to the intermediary's portfolio problem in Equation (7),
however, we use the partial solution in equation (6). This latter condition is preferable since it does not
impose full optimality, although it is consistent with it. Our interest here is not really whether
intermediaries form mean-variance efficient portfolios, but whether internal funds, variance, and

covariance importantly influence market prices.



Equation (6) is the supply-curve analog of Equation (4). It says that the optimal amount of exposure
to a given risk is equal to the difference between the intermediary's “target” exposure, p;/ G,c/, and the
“pre-existing” exposure to that risk already in the portfolio, B3, This latter term is just the coefficient in a
regression of the portfolio return (excluding the ith exposure) on the ith risk factor. It therefore conveys
how much exposure to the ith factor is contained in the preexisting portfolio. All else equal, the higher
the preexisting exposure, the lower the willingness to supply additional capacity. If preexisting exposure
equals target exposure, then it is optimal neither to assume—nor cede—any of the ith risk."

Note that equation (6) says that if G, > 0, intermediaries will supply positive capacity only if the ith
risk is negatively correlated with the rest of the portfolio. Clearly, if intermediaries have plenty of

internal funds, G, =0, and risks are priced at fair value, p,= 0.

2.2.2 Supply with imperfect competition

Financing imperfections may have other, more indirect effects on the supply of intermediary capacity.
Most importantly, these imperfections generate increasing returns to scale: the larger is intermediary
size, the better it can conserve on costly external funds. This occurs because the investment opportunity
set (given by F(J) = i) - I,) remains constant when the size of the intermediary (represented by wy,)
grows. Indivisibilities in the size of risky positions will also create increasing returns, because larger
intermediaries will be better able to diversify their investments into many risky exposures. Both of these
arguments suggest that market power will be increasing in the size of intermediary financing
imperfections.

It is straightforward to extend the model to allow for market power. To do this, we employ a simple
model of Cournot competition among N symmetric intermediaries. Each chooses an amount of capacity
to provide to the ith firm, g,, (where Z,g;,, = ¢;) to maximize value, max,;,V, = E[P(w,)], given internal

wealth in equation (5). The first-order condition for the nth intermediary is similar to (3):

i dq

i
[

E{PH ((i;:;” } = cov[Pu,,si]Jr [pl- +q;, —OE‘D—)E[P“] =0, (8)

except that now we account for the infra-marginal decline in price resulting from an increase in quantity
supplied, g,,dp,/ dq,,. Note that with such strategic intermediary behavior, there is no supply curve per
se: the intermediary merely chooses the profit-maximizing place along each of the K demand curves, and

charges accordingly.

¥ Sec Froot and Perold (1996).



2.3 Equilibrium

In the equilibria with financing imperfections and/or with imperfect competition, total demand will equal

supply, so that
%Ur = ZQ;,H =qiWip. ®)
n

However, the equilibrium prices and quantities will differ depending on the extent of financing

imperfections and market power.

2.3.1 Equilibrium with financing imperfections

Using (9) along with Equations (4) and (6), the simplest solution for equilibrium price and quantity is

p; =YiGR°;'2
. ¥:Gro! (19)
q; = 1——9_—,

!

where v, is the exposure of the entire intermediary portfolio to the ith risk factor, y, = cov[g,&x)/c/, and g,
= X.gx & Note that this total exposure equals the preexisting exposure to i, plus the size of the position in
the ith risk, y; = B,+gx, For given B, equilibrium prices are increasing in the quantity of the ith exposure
intermediary portfolios have to absorb. Here, because we have competitive behavior, price is equal to
intermediary marginal cost, p, = y,Gzo’ = mc,

The results in Equation (10) have intuitive properties. First, if intermediaries have effectively no
exposure to the ith risk factor, then: y, = 0; fair prices prevail, p,;” = 0, and the ith firm hedges fully, g’ =
1. The ith firm effectively absorbs no intermediary capacity, so it is as though intermediation is costless.
Also, high levels of intermediary capital imply that G, = 0, again making intermediation effectively
costless.

Second, if firms have ample internal funds, they face small costs of external finance, i.e., G;=0. In
this case, demand is perfectly elastic at p,” = 0. Intermediaries will be able to supply capacity only to the
extent y; is zero. Otherwise, no risk will be exchanged, g,” = 0, since it is cheaper for firms to retain
exposures. To buffer their risks, firms would either prefund with large amounts of equity or issue equity
contingent on catastrophes. In practice of course, either strategy will be costly: large equity buffers are

tax-inefficient and promote agency problems and takeover pressures, while issuing equity in bad times is



difficult and costly due to heightened informational asymmetries. This is just another way of saying that
internal funds are scarce in practice.

Finally, the equilibrium has the property that as G, and G, converge to zero, price also goes to zero,
but quantity becomes indeterminate. This is just the limiting case of Modigliani-Miller: if capital markets

are perfect, the structure of financing does not matter.

2.3.2 Equilibrium with both imperfect competition and financing imperfections

U.sing the demand curve in Equation (4), the equilibrium condition in (9), and the fact that the N
intermediaries are symmetric, the solution to the imperfectly-competitive intermediary's problem in (8) is

just:

p; =A0; +(1— K)mc,-

11
af =15 o

i

where A = I/N+1 is an increasing measure of market power, and mc; = y,G,o; is the (symmetric)
marginal cost for the nth intermediary's investment in the ith firm's risk.

Equation (11) is the standard solution to the Cournot problem with linear demand. Note that A = 0
under perfect competition. In this case, the equilibrium in (11) converges to the perfectly competitive
outcome in (10). With nonzero market power, A > 0, price will be above intermediaries’' marginal cost.

Equation (10) is interesting to us in this context for several reasons. First, the greater is market
power, A, the more demand (given by 6)) raises price and quantity. Second, if market power is enhanced
by greater intermediary financing imperfections, we have that A = A(Gy), where A; > 0. Third, by
definition, demand and marginal costs are increasing functions of insurer and intermediary financing
imperfections, respectively. That is, d0,/dG, > 0 since 0, = w,,G,6, and dmc/dG, > 0 since mc, = y,Gyo /.
This implies that the impact on price of an increase in financing imperfections is
dx

=kwi,oc?+(l—l)yio?+(6i—mc,-)ﬁ (12)

dp;
dG

An increase in financing imperfections has three distinct effects, given by the terms in Equation (12).
The first term shows that the demand for hedging by firms increases with financial imperfections. This is
a substitution effect—the costs of direct firm financing rise. The second term measures the decline in the
supply of intermediary capacity as a result of more costly intermediary finance. The third term is the

magnification effect of financing imperfections. All else equal, prices are most sensitive to changes in

11



imperfections when demand is relatively high (8, large) and when intermediary financing imperfections

are small (mc; = 0).

2.4 Discussion

The model is intended to motivate the empirical section below where we attempt to estimate the slope of
the short-run supply curve for catastrophic risk taking. However, our analysis raises a number of
important issues which deserve separate mention.

The first point—one that is directly relevant to the empirical work—is that we have modeled the
short-run equilibrium only. Capacity and institutional structure are taken as constant, fixed factors.
Positive shocks to demand may raise price in the short run, but over time, this price increase stimulates
investment in intermediary capacity. Subsequent price declines are likely to follow. Loosely speaking,
the long-run supply curve will be more elastic than the short-run supply curve because short-run
marginal costs exceed long-run marginal costs. We provide loose evidence of these elasticities for
catastrophe-risk intermediation below.

The second point is that our model is incomplete, in that it begs the question of why intermediation
in sectors such as insurance is structured the (costly) way it is, even if we take as given the existence of
financing imperfections. High equilibrium prices are partly a result of intermediaries failing to fully pool
firm exposures. This lack of complete diversification is inefficient and expensive, so our model produces
only a second-best outcome. Are there arrangements that might generate a constrained first-best outcome
in which all risks are pooled?

One way to avoid costly intermediation is through an industry-wide merger of firms. This would be
more efficient in that it would better spread firms' deadweight costs of external finance. However,
standard monopoly arguments suggest that such a merger might generate enough market power among
firms to reduce social welfare below where it is in our model. Besides (and partly as a result), such
mergers are generally illegal.

Another way to avoid costly intermediation would be through the use of inter-firm exchanges of risk.
Indeed, the unconstrained first-best outcome would have firms costlessly transferring their risks directly
to investors. However, given the informational intensity and non-standardized nature of insurance risks.
adverse-selection, moral hazard and agency problems make such an equilibrium potentially very costly.
In the absence of standardized packages of risk, firms (or investors who may wish to fund these

exposures directly) would want a monitor to evaluate risks and verify outcomes. The monitoring function
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may be most efficiently housed in a small number of organizations specializing in these activities. And,
of course, this is the spirit of the multi-firm/single-intermediary structure of our model.

The third and most important point is that the source of high prices has important consequences for
policy. If the story we tell is correct, then innovation in insurer/intermediary financing has very potent
effects on the price of intermediated risk, as demonstrated in Equation (12). In the insurance and
reinsurance sectors, for example, use of catastrophe bonds and indexes of insurer losses might enhance
standardization and transparency. This would reduce both insurer and reinsurer costs of capital and,
simultaneously, cut reinsurer market power, further lowering the costs intermediated risk transfer.

If, on the other hand, market power is high for other reasons (e.g., barriers to entry due to reputation,
etc.), there may be gains to encouraging competition among intermediaries. Note, however, that no
matter how important these other sources of market power, they have little effect on equilibrium prices in
the absence of financial imperfections. To see this, note that without financial imperfections, both 6, and
mc; are zero in Equation (11). The existence of low-cost substitutes to firm/intermediary hedging
transactions limits intermediary market power and the distortion in prices.

Finally, we have ignored transactions costs as a potential explanation of high hedging costs. In some
cases, such as reinsurance, transactions costs are likely to be important. However, transactions costs
cannot easily explain the variation in prices over time nor high prices levels (transactions costs increase

bid/ask spreads around fair value).

3. Testing the model

From Equation (4) above, the quantity of reinsurance demanded is a decreasing function of price,
increasing function of variance, and a decreasing function of internal funds. For purposes of estimation,

we represent the demand for reinsurance by insurer i at time ¢ by the simple quasi-log linear form
In(1+p,,)=a,; +ayln(g:,)+o,In(c 2 )+ otV (13)
Dig) =0y + 0 IN{G;, )+ O 2INNG;, J+ Q3w + Vi,

where p,, and g,, are, respectively, the price and quantity measures defined earlier, ¢, is the per unit
variance of the insurer’s exposure, w;, is the level of internal funds available to insurer i, and the o's are
coefficients to be estimated. The coefficient a,; represents an insurer-specific fixed effect, attributable to
unobserved differences in insurer-specific willingness to bear catastrophe exposure. The elasticity of

demand is given by the inverse of coefficient ot,,.
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If insurer capital markets were perfect, so that G, = 0, then risk management policies would be
independent of the level of internal funds, w,,, implying a,, = 0. Perfect markets would also imply that
the variance of individual company exposures, o, %, would have no influence on the demand for hedging,
o, = 0. Furthermore with perfect financial markets, demand is perfectly elastic, so o,, = 0.

On the supply side, Equation (6) tells us that capacity supplied is an increasing function of variance
and portfolio covariance relative to variance and a decreasing function of reinsurer internal funds.

Linearized, this equation takes the form

2
In{1+ p;,) =y +azIn{g;,) +0‘22|"(0 R ) +093B;, +Agwg, +M;, (14)

where gy, is the absolute quantity of reinsurance supplied to reinsurer #, oy, is the per-unit variance of
the claims ceded by insurers to reinsurers, 3, = cov[g;, €z, )/0x; is the intermediary’s preexisting
portfolio covariance with respect to the ith firm’s ceded risks, and wy, is the industry-wide level of
financial slack in the reinsurance sector. There are no insurer-specific intercepts in the supply function.
Note that the unit variance of the ith exposure assumed by the reinsurer, Gy, is not the same as the
variance of the ith insurer's exposures, o,,>. This distinction is necessary because the contracts in our data
transfer exposures which are nonlinear functions of underlying insurer portfolios. The covariances in 3,
capture the fact that, all else equal, an increase in the correlation of risks across insurers reduces effective
reinsurer capacity.

The elasticity of supply in Equation (14) is the inverse of «,,. If there were no financial market
imperfections impeding the flow of capital into catastrophic risk bearing, then the properties of
intermediary portfolios would have no impact on supply, so that a,; = a,, = 0. Note, however that under
this null hypothesis, a,, would be expected to be nonzero if intermediaries are imperfectly competitive.
Only under the hypothesis that both financial markets and competition are perfect would supply be
perfectly elastic, a,; = 0. This implies that an incipient increase in p;, above zero would result in an
infinite amount of capacity becoming available.

To construct the variables for these regressions, we used data on the pricing and risk exposure of a
panel of reinsurance contracts brokered between 1970 and 1994. In the sections that follow, we describe
our basic data sources, our methodology for measuring risk exposure, and the precise construction of our

regression variables.
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4. Data

Our data is built up from four sources. The basic information on catastrophe reinsurance pricing is
provided by Guy Carpenter & Co. Information on the regional market share of insurers is developed
from A. M. Best data on insurance premiums written by company. Our estimates of catastrophe
frequency and severity are based on Property Claims Services (PCS) data on U.S. catastrophe losses
since 1949. Finally, interest rate and CPI data are collected from Ibbotson and Associates and the IMF

respectively.

4.1 Guy Carpenter catastrophe treaty data

Our basic data come from Guy Carpenter’s proprietary database of catastrophe reinsurance contracts.
Guy Carpenter & Co. is by far the largest U.S. catastrophe reinsurance broker, with a market share of
between 30% and 80% during our sample. The contracts brokered by Guy Carpenter cover a variety of
natural perils, including earthquake, fire, hurricane, winter storm and windstorm.

From these data we extract transaction prices and quantities of “excess-of-loss” reinsurance
contracts. Excess-of-loss contracts are defined by a deductible (“retention”) and a maximum possible
loss (“limit”). To understand how such contracts work, consider an insurer which purchases a layer of
reinsurance covering $100 million in cat losses “in excess of $200 million.” These terms imply that if the
insurer’s losses from a single catastrophic event during the contract year exceed $200 million retention,
the layer is triggered. The reinsurer pays the insurer the amount of any losses in excess of $200 million,
with the loss capped at a limit of $100 million.' By purchasing this contract, the insurer cedes its
exposure to single-event catastrophe losses in the $200 — $300 million range. In return for assuming this
exposure, the reinsurer receives a premium payment. If the insurer wishes to cede a broader band of
exposure, it could purchase additional layers — $100 million in excess of $300 million, $100 million in
excess of $400 million, and so on."

We examine a total of 489 contracts brokered for 18 national and 19 regional insurers over the period

1970-1994."® These reinsurance contracts cover insurer losses sustained as the result of a single

' To help guard against moral hazard, excess-of-loss reinsurance contract typically require coinsurance. In practice, this
effectively means that the insurer provides 5-10% of the reinsurance itself.

"If losses are given by the random variable /, retentions by R, and the limit by Lim. then the excess-of-loss contract pays
max(0, min(Lim./-R)), where Lim and R are known at the time the contract is struck. This contract is equivalent to a call
portfolio -- the combination of a purchase of a call struck at R (with payoff linked to max(0, /-R)), and the sale of a call struck at
Lim+R (with payoff linked to max (0./-Lim-R)).

'* Seven very small regional insurers were dropped from the original Guy Carpenter & Co. data. In some of the computations
below, we focus in on a smaller number of national reinsurers, for whom data are available in every vear.



catastrophe events. The duration of coverage for each contract is one year. Data on contract inception
date, retention, limit, losses, and premiums, company purchasing coverage, are employed. All of the
contract inception dates are at the start of a quarter. Most contracts have a single mandatory

reinstatement provision."

4.2 A. M. Best market share data

To determine the catastrophe exposure of each contract, we must calculate the distribution of contract
losses, a random variable for each contract. To do this, we assume that, within each region, each
company’s exposure is proportional to insurance industry exposure within the region. We therefore first
determine a distribution for insurance industry losses for each region (by event type), and second
multiply this aggregate distribution by an individual insurer’s market share to determine the distribution
of insurer-specific faced by that company. Using this information, we can calculate the company-specific
distribution of losses under each contract.

Our estimates of insurer market shares are developed using data from A. M. Best on insurance
premiums written by company, by line-of-business, by state, and by year. We reduce these multiline
market shares to regional catastrophe market shares by applying a modified Kiln Formula, which assigns
regional weights to premiums in each line of business based on exposure to catastrophes of that line in
that region.® For example, depending on the region, anywhere between 50 and 95 percent of
homeowners premiums are considered as funding catastrophe exposure. The five US regions used for
insurer market shares are the Northeast, Southeast, Texas, the Midwest, and California.”’ We apply this

market share data to all 489 reinsurance contracts selected from the Guy Carpenter & Co. treaty

database.

'* The reinstatement provision stipulates that, conditional on an event which triggers losses on the contract. the limit is to
mandatorily reinstated (one time only) by the reinsurer after payment of a reinstatement premium by the cedent. It appears that
this provision has had only a modest effect on prices, and we ignore its effects. Conversations with brokers suggest that observed
prices are approximately 10% lower than they would have been without the reinstatement premium. This seems surprising
(forward contracts are usually priced at zero), but if anything leads us to underestimate what premia would be in the absence of
reinstatement provision.

** This is a common industry practice. The specific weights used in our Kiin formula are from Guy Carpenter & Co.

2" The regions are comprised as follows: Northeast—Connecticut, Delaware, Maine, Maryland, Massachusetts, New
Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont: Southeast—Florida. Georgia, Mississippi, North
Carolina, South Carolina, Virginia, West Virginia; Texas—Texas; Midwest—Illinois, Indiana, Kentucky, Missouri. Tennessee;
California—California.
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4.3 Historic catastrophe loss data from Property Claims Services

As mentioned above, we need to determine the distribution of industry-wide losses to calculate the
catastrophe exposure of each contract. To do this, we estimate the distributions of catastrophe frequency
and severity using data from Property Claims Services (PCS). PCS has catalogued all catastrophe losses
on an industry-wide basis since 1949 by type and U.S. region. The PCS data are widely used as an
industry standard.

Prior to estimating the parameters of the frequency and severity distributions, two adjustments are
made to the PCS data. First, the losses are converted to 1994 dollars using the CPI. Second, they are
modified to take into account shifts in the portfolios of property exposed to loss over the period. A key
component of the latter adjustment is the demographic shift towards California, Florida, and Texas that
has characterized recent decades. These two adjustments are carried out by Guy Carpenter & Co. Both
adjustments are important. Indeed, the second adjustment implies that the same size event in real dollars

causes damages which have grown on average by 5% per year over the sample period.

4.4 Interest rate and CPI data

For the purposes of calculating the net present value of payment flows, we use Ibbotson and Associate’s
index of the return on 30-day U.S. Treasuries. This is collected monthly from 1970:1-1995:4. The U.S.

CPI is taken from the IMF’s, International Financial Statistics. The frequency is monthly, from 1970:1-
1995:3.

5. Calculation of exposure and price

5.1 Exposure

In this section, we describe our method of estimating the catastrophe exposure embodied in each excess-
of-loss contract. The estimation is carried out in three stages. First, the frequency and severity of each
type of event and region are estimated by maximum likelihood for particular families of distributions.
Second, a simulated event history is generated by repeatedly drawing from the fitted frequency and
severity distributions. Finally, the payouts under each contract in each year of event history are
calculated. The mean of the distribution of these payouts is our estimate of the “quantity” of reinsurance,

4.+, embedded in that particular contract.



5.1.1 The frequency and severity of catastrophes

The first step towards calculating contract exposure is to estimate the frequency and severity of
catastrophes using the adjusted PCS loss data. Altogether there are over 1,100 catastrophes recorded by
PCS. These events are classified into 10 categories: earthquake, fire, flood, freeze, hail, hurricane,
snowstorm, tornado, thunderstorm and windstorm.” Many of these events are relatively minor: only 557
have adjusted losses in excess of $15 million, and only 107 have losses in excess of $100 million. Four
categories of losses are well-represented in the set of large losses: earthquake, fire, hurricane and
windstorm.” As our primary interest is in exposure to large losses, we confine attention to these types.
Examination of the data reveals that there is some heterogeneity in the losses that arise from windstorms.
In particular, a number of the windstorms refer to winter storms (“Nor’easters”) in New England.
Accordingly, we split the windstorm category into two subcategories: winter storm, defined to be a
windstorm in New England in either the first or fourth quarter, and windstorm, defined to be all other
occurrences of a windstorm.**

Having defined these five categories of events, we need to make some assumption about regional
effects before we can estimate frequency and severity distributions. The simplest assumption would be
that, for each catastrophe type, event occurrences are drawn from a single nationwide frequency
distribution while loss sizes are drawn from a single nationwide severity distribution. Given the relative
paucity of loss information, this approach helps by pooling the available data. However, the assumption
of equal regional distributions is likely to be incorrect. For instance, hurricanes are much less likely to
occur in California than in Florida, and the majority of earthquakes occur in California.

As a result, we make specific assumptions regarding frequency and severity on the basis of a careful
examination of the 1949-1994 catastrophe data. These assumptions are summarized in Table 1. A
catastrophe is defined as an event that gives rise to $15 million or more in insured losses. Column 2
summarizes the event history for each type. Column 3 reports the regions in which each event type is
assumed to occur. Columns 4 and 5 indicate the number of regional frequency and severity distributions

estimated for each type. Some of the constraints, such as the assumption that winter storms do not strike

22 PCS classifies many events into more than one category. For instance, winter storms in New England. which have on
occasion caused substantial damage, are classified first as windstorms, and second as hail, freeze or snowstorm.

2 During the 1949-1994 sample period. there were no floods, snowstorms or thunderstorms with losses in excess of $100
million. Only one freeze had losses in excess of $100 million. a $307 million freeze in Texas in 1989. Three hailstorms and threc
tornadoes did produce losses in excess of $100 million, but these are all dated prior to 1970, and so do not appear in our
regression analysis below.

* The assumption that winter storms do not afflict the Midwest may seem strange. The reason is that our regional market share
data is calculated for the Midwest using only five states: Illinois. Indiana, Kentucky, Missouri, Tennessee. The Dakotas,
Michigan, Minnesota, Wisconsin and other characteristically Midwestern states are excluded.
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California, seem entirely reasonable. Others, such as the assumption that earthquakes do not strike
outside California or that winter storms do not hit the Midwest, are less tenable (though see Footnote 24),
and are dictated largely by data availability.

With the assumptions described in Table I, there are 33 frequency distributions to estimate. We
assume that the frequencies are Poisson distributed, and estimate the Poisson parameters by maximum
likelihood (the estimates are equal to the mean number of events that occur per quarter). Table 2 presents
the frequency results in four quarterly arrays, by type and regton. The estimated frequencies accord with
what one might expect. For example, hurricanes are most likely to occur in the third quarter.

Next we consider severity. There are six severity distributions, one for each of the catastrophe types
identified in Table 1. We fit two alternative density functions to the empirical severity distribution of
each type. The first is a lognormal distribution, with density function for losses / given by f (/) = exp{-
(In()-u}*26? Y/[loN(2r)], I > 0. The second is a Pareto distribution, with density function f (/) = af*//
') 7> B. Once again, the estimation is carried out by maximum likelihood. The fitted distributions are
reported in Table 3. For earthquake, winter storm and windstorm events, the likelihood ratio test selects
the Pareto distribution as the better fit, while for fire and hurricane events, the lognormal distribution is
preferred. However, because the Pareto distribution tends to place a large amount of probability in the
right-hand tail of the distribution, it does not perform well in attaching reasonable probabilities to large
losses. For example, using the estimated Pareto density, the probability that a hurricane in the Southeast
generates $15 billion in losses (given that a hurricane occurs) is almost 10%, which appears somewhat
high.”* It might be preferable, therefore, to use the lognormal fit as the baseline severity distribution for

all event types. This is the strategy we adopt.

5.1.2 Simulated event history

Using these frequency and severity distributions, we are able to simulate an “event history” of
catastrophes. From this event history the distribution of payments under each excess-of-loss contract can
be obtained.

Of course, it is not necessary to simulate the distribution of contract payments. In principle, it is
possible to determine contract payments analytically. However, analytical solutions are complicated
because a contract’s payment is triggered by only a single event, even though that event could be one of

five different peril types. The single-event clause is in effect a knockout provision, allowing the contract



to mature following the first event that generates losses in excess of the retention. For example, it may be
that earthquakes are the major large risk for a contract to trigger, but a large freeze in the Northeast in
early January could trigger the contract, thereby knocking out the earthquake risk for the remainder of
the year.

This knockout provision gives the contract a payment distribution that is very different from that
which would apply if the contracts were instead written to cover aggregate losses (i.e., the sum of losses
across events). It can also give rise to some paradoxical effects. For example, an increase in the
frequency of winter storms may actually reduce the total exposure embodied in a single-event contract,
since it may increase the probability that it matures following a winter storm rather than a devastating
hurricane. We look briefly at the value of the knockout provision in the Appendix.

We simulate a 1,250-year event history. For each quarter, the following steps are followed.

1. The number of events of each type that occur in each region is randomly drawn from the relevant
Poisson frequency distribution (Table 2).

2. For each event that occurs, a loss amount is randomly drawn from the relevant severity
distribution (Table 3).

3. All the events that occur in the quarter are randomly sequenced in time.

The random sequencing of the events throughout the quarter is an approximation, at best. It is likely, for
example, that winter storms occur more frequently in January than March. While it would be preferable
to sequence the events on a time scale finer than quarterly, too few events that have occurred since 1949

to allow estimation of this.

5.1.3 Contract exposure

The exposure of each excess-of-loss contract in our data can be calculated by examining its loss
experience in each year of the simulated event history. To take an example, suppose we are considering a
contract purchased by a national insurer with an April | inception date. Let L and R be the contract’s
limit and retention, and let m,,, k € { NE SE TX MW CA } be the ith insurer’s market share in each of

the five regions. The contract’s exposure is measured as follows:

1. Split the event history into 1,249 year-long periods measured from April 1 to March 31.

» Using PCS data, Cummins. Lewis and Phillips argue elsewhere in this volume that the Pareto distribution tends to

overestimate the probability in the tail of catastrophe severity distributions. and that the lognormal fit is to be preferred on these
grounds.
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2. Consider each period in turn. If no event occurs in a period, move to the next period. Otherwise
consider each event in sequence.
(a) Let the first event be in region &, and let insured losses from this event be /.
(b) If m,,{ > R, the contract is triggered. Measure the reinsurance payment for this period as
min(L, m,J - R), and move on to the next period. The contract is no longer in force.
(c) If m,/ <R, no payment takes place, and the contract remains in force. Move on to the next

event, or the next period if there are no more events.

This algorithm generates 1,249 observations on the distribution of payments under the contract. The first
moment of this distribution is the expected exposure to catastrophe losses. It is easy to derive various
conditional loss distributions from the unconditional distribution, such as the distribution of hurricane
losses, or the distribution of losses from events in the Northeast.

We label the expectation of the unconditional distribution g,,, the exposure embodied in company i’s
contract at time ¢. Thus, g;,1s the actuarially expected loss covered by contract i. We use g, to represent

the quantity of reinsurance purchased.

5.2 Other variables

To calculate contract price, we begin with the premium paid for each contract. This is simply measured
as the sum of the premiums paid for each layer. Typically, the premiums are paid on a quarterly basis
over the duration of the contract. We discount these premium flows back to the contract inception date
using the three-month Treasury Bill rate.

Once the NPV of the premiums is calculated, it is converted to 1994 dollars using the CPI deflator.
Our measure of price is the net present value (NPV) of premiums divided by contract exposure. Thus the

price of company i’s contract at time ¢ is

NPV(Premiums)
Pi; = p -1 (15)
it

Given our definition of quantity, the price of the contract is expressed as a unit increment to
actuarially fair value.

o, is the variance of underlying insurer portfolios. We calculate it using the simulated event history
and the regional market share information for each insurer. Specifically, in each year of the event history,
we estimate insurer i’s losses by multiplying the simulated losses in each region by i’s regional market

shares. This generates 1,249 observations on the distribution of insurer i’s losses, from which we
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calculate first and second moments. o’ is the variance of the simulated distribution (in millions of 1994
dollars).

w;,, is the level of insurer internal funds. This is generally a difficult variable to measure. Even if one
could accurately measure corporate net internal assets, their endogeneity makes them behave in ways
that are difficult to interpret. For example, if a firm anticipates hard times, it may raise outside funds
early, leading to the appearance that internal funds are plentiful, instead of scarce. Our solution is to use
(the negative of) catastrophe losses by firm year as an instrumental variable for changes in net internal
funds. This measure is particularly useful because cat losses are both strongly exogenous and correlated
with changes in total internal assets. Unfortunately, we do not actually observe each insurer’s catastrophe
losses. Instead we infer their loss experience by combining actual catastrophe loss history, as measured
by PCS, with insurer i’s regional market shares. For each event, the loss amount recorded by PCS (in
billions of 1994 dollars) is multiplied by the insurer’s market share in the loss region to generate that
insurer’s losses. Internal funds w;, are assumed to be depleted by the full amount of a loss for 8 quarters
following the loss, after which time the impact of the loss on internal funds is zero.

O, captures the variance of claims ceded by insurers to reinsurers. It is calculated in a manner
similar to o, . The distribution of the payments under each contract is tabulated by examining the claims
in each year of the simulated event history. As already discussed, g, is the first moment of this
distribution. o’ is its variance, scaled by g,,’.

Turning to {3,,, its numerator is the covariance between per-unit claims under company i’s contract,
and the quantity-weighted sum of per-unit claims under all other outstanding contracts (i.e. with all
insurers other than 7). Its denominator is the variance of per-unit claims under company i’s contract. The
fact that 3, is constructed using per-unit moments is important—it is intended to capture the covariation
in contract returns, rather than total contract payouts. Accordingly, we scale payouts by their first
moment prior to calculating 3, Thus the numerator is obtained by calculating the covariance between
contract i’s payout and the sum of payouts on all contracts other than / from the simulated event history,
and then dividing by ¢,,2g;,, j #i. The denominator is simply o,,’ We also consider a second measure of
covariation, ¥, ,, which is calculated in a similar fashion to 3, except that the covariance in the numerator
is between contract i and a portfolio consisting of a/l contracts, including /.

Finally, wy, is the level of internal funds available to the reinsurance industry. As with w,,, this is
generally a difficult variable to measure. We use the total of reinsurance payments as reported by Guy
Carpenter, scaled by Guy Carpenter’s market share, as our measure of industry-wide reinsurance losses.

Industry funds are assumed to be depleted by the full amount of any claims for 8 quarters following the



claim, after which time the impact of the loss on industry funds is zero. The negative of this quantity,

expressed in 1994 dollars, is wy,.

6. Estimation

6.1 Graphical analysis

It is useful to look first at the amount of catastrophe risk ceded by insurers during the sample period, and
the average per-unit price at which this risk was ceded. Figure 1 and Figure 2 plot indices of industry
price and quantity on a quarterly frequency from 1975:1-1993:4. The quantity series is the sum of the
exposure ceded by four national insurers in each quarter for which data are available during the full
sample, scaled by the total market share of these four insurers.? The price series is the quantity-weighted
average of the prices paid by these four insurers in each quarter. Figure 3 shows a scatter plot of price
and quantity.

A number of features of these figures are noteworthy. First, it appears that quantities rose and prices
fell for much of the late 1970s and 1980s. Second, a startling rise in prices and decline in quantities took
place beginning in the mid-1980s through the end of the sample. Indeed, in 1993, price was between 5
and 7 times its historical average. This will come as no surprise to industry observers. It is common to
relate this price rise to the occurrence of a number of large events during this period, notably hurricane
Andrew (320 billion in losses) in August 1992, hurricane Hugo in 1989 and several windstorms in 1985—
1986.

Figure 4, which plots total catastrophe losses by quarter from 1970:1-1994:4 as measured by
Property Claims Services, lends support to this view. In the period since 1994 (a period not covered by
our data), the price of reinsurance has declined and quantity increased somewhat, notwithstanding the
occurrence of the Northridge earthquake in January 1994.” From these observations, it is clear that there
is considerable negative correlation between prices and quantities at frequencies of several years.

Hurricane Andrew is responsible for the largest catastrophe loss during our sample period. In light of
this, it is of interest to look at the time series of prices around the time of this event. In particular, we can

differentiate between the price-quantity reactions of those contracts heavily exposed to hurricane

% The four insurers included in the industry indices purchased reinsurance through Guy Carpenter & Co. in each year from
1975:1-1993:4. They represent about 10% of the total market.

27 Paragon Inc. produces a catastrophe price index shows the following prices since peaking in late 1994 at 2.47 (and
beginning in 1/84 at 1.00): 1/1/95, 2.32: 7/1/95, 2.16: 1/1/96, 2.14: 7/1/96, 2.06.



risk/Southeast risk and those with relatively less exposure. Table 4 contrasts the price and quantity
responses. From Panel (a), we see that even those contracts with zero market share in the Southeast show
large increases in price in the wake of Andrew. Panel (b) sorts contracts according to their hurricane
exposure instead of by region. Contracts least exposed to hurricane losses that exhibit the largest increase

in price. The results again suggest a negative correlation between prices and quantities.”®

6.2 Estimation of supply and demand

Let y,, by the 2x1 vector of endogenous variables [p;, ¢, ], and let x,, be the 5x1 vector of predetermined

variables [o,” w,, Gy, Wi, B,,]. The structural equations (13) and (14) above can be rewritten as

Byi,l +l"xl-,t =y +uu, (16)
where
l -«
B= 11
1 —(1.21
F_[—alz — O3 0 0 0 }
0 0 —Ogy —Qg3 —Qgy

a; =[0‘1,i 0‘2]

and u,, is a 2x1 vector of disturbances, distributed bivariate normally, with E(u, u,) = D, a diagonal
matrix.

The reduced form of this system is obtained by premultiplying (16) by B, which yields
Yie =) + 10, + vy, (17)

where IT' = -B"'T" is a 2x5 matrix of reduced form parameters common to all companies, 7, = -B'q, is a
2x1 vector of reduced form intercepts for company i, and v,, = B'u,. We estimate this reduced form by
full-information maximum likelihood (FIML). The conditional log-likelihood for company i is

T
L(B,F,ai,D) = ——g[ln(Zn)— ln|B|2 + ln|D| + Z[ By,, +I'x;, —a]’D'l[By,-,, +Ix;, —a,;]

t=1

The log-likelihood for the full sample of 37 companies is therefore L(B,I",«,,..., a;;,D) =%, L.

* This negative correlation could be the result of our assumption that the distribution of losses is time invariant. Froot and
O’Connell (1997) examine the hypothesis that the loss distribution may shift as a result of losses. but find little evidence that
changing loss distributions explain the behavior of prices and quantities.
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The FIML estimates are the values of B, T, a.,,..., a;;and D for which L is maximized.?

6.3 Results

Table S reports the FIML estimates of the structural coefficients, along with the estimated variances of
the structural disturbance. The regressions are carried out both with and without company-specific
intercepts. A likelihood ratio test easily rejects the common intercepts model, but nevertheless it is of
interest to compare estimates across the two specifications. Standard errors for each coefficient are
shown in parentheses.

Looking first at the demand specification, the elasticity of demand is estimated between -0.2 and -
0.3, suggesting that, other things equal, a | percent increase in p,, leads to a 0.25 percent reduction in
quantity demanded. Lagged insurer losses exert an ambiguous effect on demand. The coefficient on w;, is
expected to be negative since lower internal funds implies higher reinsurance reservation prices. It is
positive in the specifications without fixed effects and negative (the expected sign) when firm-specific
fixed effects are included. To get a sense of magnitude, the coefficient in the first regression indicates
that a reported loss of $10 million by a company (any time over the preceding 8 quarters) decreases the
price the insurer is willing to pay by 3.0%.

Increases in the variance of own-company exposure, captured by changes in 6,°, lead to significant
increases in demand in all specifications. The point estimate in the first regression indicates that a 10%
increase in the variance of a firm's risk exposure produces an increase in reservation price of 29.6%."
This number falls by a factor of two when company-specific intercepts are added in the latter
specifications, yet it remains statistically significant. This is consistent with the hypothesis that
financing imperfections play a role in the demand for catastrophe reinsurance.

Turning to supply, the elasticity is estimated to be on the order of 7 — ceteris paribus, a 1% increase
in price produces a 7% point increase in quantity supplied. This suggests that the marginal cost of
reinsurer capital is upwardly sloped (though not strongly so). The coefficient on the variance of
reinsurer-assumed exposure scaled by squared expected losses, o, % is positive and statistically

significant. It indicates that, for a given assumed exposure, a 10% increase in the squared coefficient of

* We do not have a balanced panel of data. in the sensc that at time ¢, y,, and x;, are observed over a {possibly empty) subset of
the 37 sample companies. This does not present a problem for identification or estimation, as the simultaneity we are concerned
with is within companies rather than across companies. The purpose of pooling the data is to obtain more efficient estimates of
the structural parameters by imposing the constraint that they be equal (except for a,) across companies. Note that we assume the
disturbance terms are i.i.d. The rationale is that any contemporaneous and serial correlation in p, and g, ought to be captured in
the predetermined variables.

* It should be noted, however, that there is no evidence of this effect in specifications 5 and 6. which are favored by the
likelihood ratio test as the best characterizations of the data.



variation increases prices by about 6.8%. In addition, the covariance term, B, is positive in all cases
(and marginally statistically significant), so that exposures that are more correlated with reinsurance
portfolios are priced higher. A 0.1 increase in the portfolio beta raises prices by 5.2%. Finally, reinsurer
losses measured by wj, enter negatively and significantly. A $100 million loss increases reinsurers
reservation price by 2.3%. These coefficients seem of reasonable magnitude and are consistent with the

capital market imperfections story.

7. Conclusions

We have traced out the implications of financing imperfections for equilibrium in markets for
intermediated risks. Our results suggest that even small imperfections can lead to large deviations from
fair pricing, particularly if these imperfections interact with intermediary market power.

In the case of catastrophe reinsurance, we used observed transactions to estimate reinsurer supply
curves and insurer demand curves. These curves appear to shift in response to recent catastrophe losses,
and to changes in the variance of insurer and reinsurer exposures. Furthermore, there is some evidence
that reinsurers price both own variance and covariance of the risks they assume. This is consistent with
the presence of capital-market imperfections. It does not rule out market power explanations, but

suggests that market power cannot be the full explanation for high reinsurance prices.
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Table I: Frequency and severity assumptions by catastrophe type

Type Description of PCS data

Earthquake 10 events, all in CA. Frequency appears
throughout year.

Fire 19 events, 12 in CA, 2 in MW, 3 in NE, 2
in SE. Frequency higher in fourth quarter,
and different for CA. Severity comparable
across events.

Hurricane 48 events, 26 in SE, 22 in NE and TX.

Most in third quarter. More severe in
Southeast.

Winter storm 35 events, in NE in quarters 1 or 4

Windstorm 352 events, all regions. Frequency differs

across regions, but severity is comparable.

Assumptions

Regions

CA

NE, MW, CA
NE, SE, TX
NE

NE, SE, TX,
MW, CA

Frequency
(# of regional
distributions)

1: Uniform
across quarters
2: CA and
NE/SE/MW/
TX. Both
uniform across
quarters

8: SE @
quarterly) and
NE/TX (4
quarterly)

l: uniform
across quarters
| and 4

20: one for
each  region
and quarter

Severity
(# of regional
distributions)

1

2:  Southeast,
Northeast/
Texas

Assumptions for catastrophe frequency and severity distributions, based on catastrophe experience 1949-1994. A catastrophe is
defined as an event that gives rise to $15 million or more in insured losses. Column 2 gives a description of catastrophe
occurrence by type, 1949-1994. NE denotes northeast, SE southeast, TX Texas, MW Midwest and CA California. Columns 3, 4,
and 5 give the assumptions concerning the frequency and severity distributions. The number in the frequency and severity
columns represents the number of separately-estimated distributions for that type. For example, the number “17 implies that all
regions are pooled, and that a single, nationwide distribution is estimated.
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Table 2: Frequency of catastrophes, measured by their Poisson parameters, by quarter, type and region,

1949-1994
NE SE TX MW CA NE SE TX MW CA
January-March April-June
Earthquake 0.054 0.054
Fire 0.031 0.031 0.031 0.031 0.125 0.031 0.031 0.031 0.031 0.125
Hurricane (SE) 0.000 0.043
Hurricane (NE/TX) 0.000 0.000 0.033 0.033
Winter storm 0.380
Windstorm 0.652 0.326 0.500 0.304 0.196 0457 1.109 0935 0.000
July-September October-December
Earthquake 0.054 0.054
Fire 0.031 0.031 0.031 0.031 0.125 0.031 0.031 0.031 0.031 0.125
Hurricane (SE) 0.370 0.130
Hurricane (NE/TX) 0.283 0.283 0.033 0.033
Winter storm 0.380
Windstorm 0.174 0.065 0.152 0.326 0.000 0.283 0326 0370 0.130

Poisson parameter is equivalent to the mean number of catastrophe occurrences per quarter by type and region If the frequency
of each catastrophe type in each region is Poisson distributed — f{n) = e*A"/n!, where n is the number of cvents that occur —
then the numbers in the table are the maximum likelihood estimates of A. NE denotes Northeast. SE Southeast, TX Texas, MW
Midwest and CA California. Blank elements of the arrays are 0 by assumption (see Table 1).
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Table 3: Fitted severity distributions by catastrophe type, 1949-1994.

Distribution ~ Parameter Earth Fire Hurricane Hurricane Winter Wind
quake (SE) (NE/TX) storm storm

n 10 19 26 22 35 352
Lognormal u -2.100 -2.350 -1.233 -1.454 -2.440 -3.039
o) 1.964 1.196 1.610 1.454 1.166 0.859
Mean log-L 0.006 0.752 -0.662 -0.340 0.867 1.772
Pr(/> $5bn)% 2.915 0.046 3.870 1.760 0.025 0.000
Pr({> $15bn)% 0.684 0.001 0.718 0.211 0.000 0.000
Pareto o 0.476 0.541 0.337 0.364 0.568 0.862
B 0.015 0.015 0.015 0.015 0.015 0.015
Mean log-L 0.358 0.735 -0.854 -0.556 0.875 1.891
Pr(/> $5bn)% 6.288 4.327 14.110 12.057 3.684 0.670
Pr(/> $15bn)% 3.727 2.389 9.743 8.082 1.973 0.260

Results from fitting of lognormal and Pareto distributions 1o PCS event losses. PCS losses have been adjusted for inflation and
population movements by Guy Carpenter & Co. A catastrophe event is defined giving rise to insured losses in excess of $15
million. The density function for the lognormal is f (/) = exp{-[In(/}-u]*/25* }/[10\/(27!)], { > 0, while the density function for the
Pareto is £ (1) = off /! ***, I > B. The parameters y, o, and o (not B, which is a fixed scale parameter set equal to $15,000,000)
are estimated by maximum likelihood. For a given catastrophe type, estimated mean log-likelihoods for the two distributions are
comparable, and provide a means for choosing between them. The table also shows the probability that an event produces
insured losses in excess of $5 billion and $15 billion respectively.

Table 4: Event study of hurricane Andrew

(a) Southeast exposure (b) Hurricane exposure
Mean Mean Mean Mean Mean Mean
exposure  Aln(p;,) Aln(g;,) exposure  Aln(p;,) Aln(q?,)
5 most-exposed insurers 0.707 0.310 0.085 0.654 0.270 -0.030
5 least-exposed insurers 0.000 0.334 -0.011 0218 0.557 -0.138

Comparison of price responses in the year after hurricane Andrew (8/20/92-8/19/93) for different insurers. Panel (a) contrasts
insurers which have high and low exposure to the Southeast (as measured by market share). Panel (b) contrasts insurers which
have high and low exposure to hurricanes. The table shows the mean exposure and the mean price change of the 5 most extreme
contracts in each case. The mean price change for the insurers with lesser exposure to the Southeast is calculated using all 14 of
the insurers that have zero market share in that region.
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Table 5: Estimates of structural model parameters.

Demand

In(qi’l)

ln(oi,lz)

Supply

1n(qi’/)

2
In(ck,i,t )

Bi

No. Parameters
Mean log-L

No. Observations

No fixed effects

Demand-equation fixed effects

-4.856
(0.763)
2.956
(0.475)
3.017
(1.728)
5.769
(1.807)

0.130
(0.019)
0.679
(0.030)
0.523
(0.261)

-0.227
(0.020)
0.214
(0.014)

B
0.502
466

-4.821
(0.750)
2.935
(0.466)
2.978
(1.710)
5.689
(1.762)

0.134
(0.018)
0.682
(0.030)

0.414
(0.204)
-0.226
(0.020)

0214
(0.014)

B
0.503
466

-3.420
(0.420)
1.437
(0.261)
-0.617
(0.809)
1.197
(0.293)

0.144
(0.020)
0.692
(0.030)
0.396
(0.264)

-0.226
(0.020)
0.215
(0.014)

44
0.950
466

-3.409
(0.412)
1.432
(0.257)
-0.624
(0.801)
1.190
(0.287)

0.145
(0.018)
0.693
(0.030)

0.329
(0.205)
-0.224
(0.020)

0215
(0.014)

44
0.950
466

Estimated parameters of the demand and supply equations. See text for a complete description of the parameters and variables.
Estimation is by full-information maximum likelihood (#7ML). Standard errors in parentheses.
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