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ABSTRACT

Recent tests using long data series find evidence in favor of long-run PPP (by rejecting either

the null hypothesis of unit roots in real exchange rates or the null of no cointegration between

nominal exchange rates and relative prices.) These tests may have reached the wrong conclusion.

Monte Carlo experiments using artificial data calibrated to nominal exchange rates and disaggregated

data on prices show that tests of long-run PPP have serious size biases. They may fail to detect a

sizable and economically significant unit root component. For example, in the baseline case which

is calibrated to actual price data, unit roots and cointegration tests with a nominal size of five percent

have true sizes that range from ,90 to .98 in artificial 100-year long data series, even though the unit

root component accounts for 4270 of the variance of the real exchange rate in sample. On the other

hand, tests of stationarity are shown to have very low power in the same circumstances, so it is quite

likely that a researcher would reject a unit root and fail to reject stationarity even when the series

embodied a large unit root component.
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Recent work on purchasing power parity &PP) among high-income countries has found

evidence in favor of the hypothesis that real exchange rates converge to their PPP level

in the long run. This work (for example, Frankel (1986), Edison (1987)) reaches a

conclusion opposite from earlier work that found real exchange rates to

The more recent work uses longer sample periods (100 years or more),

tests with greater power to reject the null hypothesis of a unit root.

However, the more recent litemture may have reached the wrong

have unit roots.

which imbue the

conclusion. While

the power of these tests over long horizons is great, there may be a serious size bias in

the tests. We argue that when a random variable evolves according to the sum of two

processes -- a station~ but persistent component and a non-stationary component --

tests for unit roots are incorrectly sized. Here, we contend that there is a spectilc

source of non-stationary behavior in real exchange rates which the unit roots tests

generally fail to detect. The size bias is large even when the unit root component

accounts for a significant share of the movement in the real exchange rate. This size

bias is shown to occur not only in unit roots tests, but also in tests for cointegration

of nominal exchange mtes and prices.

Whether or not PPP holds in the long run is a prominent question in international

macroeconomics. A wide variety of hypotheses about exchange rate movements hold that in
,

the short run the exchange rate deviates from its long-run equilibrium value, but

converges eventually to that equilibrium value. But, there is disagreement over what

constitutes the equilibrium value. Some argue it is the PPP level, while others argue

that there is a complex set of factors determining the long-run value, including such

things as the relative labor productivities at home and abroad. In the latter set of

models, the equilibrium value for the real exchange rate nd not be a stationary

variable; so, the real exchange rate itself may have a unit root. Policy decisions and
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forecasts of the path of exchange rates may depend on getting the long-run value right.

The problem that is addressed here is closely related to earlier work in the time-

series literature on testing for unit roots. Suppose the (log of the) real exchange

rote, ~, is composed of two components, A and y~:

(1) qt=%+Yt.

Assume y, is a non-stationary random variable -- for example, a simple random walk. Let

~ be a stationary but persistent random variable -- for example, an AR(1) with large

f~st-order serial correlation. Then, q(t) is non-stationary. Its fwst difference is

stationary with a moving average component. Schwert (1989) uses Monte Carlo results to

show that standard unit roots tests can be grossly incorrectly sized when the moving

average component is important. The problems that arise here are also examined in the

literature on processes that are nearly stationq (for example Cochrane (1991) and

Blough (1992)).

This paper makes three contributions which may be of interest not only to

international economists, but to users of unit roots tests in general:

(1) We argue that the problem of “near observational equivalence” is not merely a

theoretical curiosity, but in fact arises in the case of the real exchange rate. We are

able to obtain data for disaggregated components of prices over a relatively short

horizon (25 years). From that data, we can indd identify one component (Q, the

relative price of traded goods across countries, that should be station~ on theoretical

grounds. Theory does not preclude that the other component (y), which involves the

relative price of tided to non-tmded goods, is non-stationary. In our 25-year time

series, yt appears more persistent than L, and we cannot rule out that it has a ufit

root. This component has a much smaller innovation variance than A. We use parameters

estimated from the 25-year time series of the disaggregated prices to simulate the

behavior of the real exchange rate in 100-year samples.
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(2) We fmd that the size bias in unit roots (and cointegration) tests is large,

even when the unit root component, yt, accounts for a large proportion of the variance in

real exchange rate movements within the 100-year sample period. For some issues, the

failure to detect a small unit root component does not matter. But, the results here are

striking -- large unit roots components wiU go undetected with a very high probability.

We argue that this size bias even has

behavior of the real exchange rate.

(3) Recently, tests which have

developed (for example, Kwiatkowski,

implications even for how we consider the short-run

a null hypothesis of stationarity have been

Phillips, Schmidt and Shin (1992).) Researchers

frequently have taken the position that if one simultaneously rejects a unit root with a

Dickey-Fuller type test, and fails to reject stationtity with a KPSS test, that there is

strong and mutually reinforcing evidence that the series being tested is stationary. I

Here we show that under the same circumstances in which the unit roots tests

size biases, the stationarity tests have very low power. One is quite likely to

unit root and fail to reject stationarity, even though there is a large unit root

component embodied in the series.

have large

reject a

Section 1 decomposes the rd exchange rate into its A and y, components using

disaggregated data. We cannot reject the null that the real exchange rate or its two

components have unit roots with our twenty-five year time series. Unfortunately, long

time series on the disaggregated series do not exist, so we are unable to say whether

this failure to rejmt a unit root arises because of the low power of the tests for non-

stationtity. However, we discuss

stationary and the y~ component is

for the 1970-1995 time period and

why it is plausible that the \ component is

non-stationary. We take disaggregate U. S./U.K. data

estimate a simple time-series model.

1 See, for example, Chen and Tran (1994) and Cheung and Chinn (1996); or Fischer
and Park (199 1) for the converse.
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In section 2, we construct arttilcial 100-year time series using the model

estimated in section 1. Using Monte Carlo simulations, we fmd the true ske of several

tests for long-inn PPP that have nominal sizes of 5%. We examine the simple Dickey-

Fuller test and the Augmented Dickey-Fuller test for unit roots in real exchange rates.

We also simulate the behavior of the Error Comection Model test, and the Horvath-Watson

test for cointegration between the nominal exchange rate and relative price levels.

We acknowledge that the behavior of exchange rates and prices in our 25-year sample

may be different than the behavior over the past 100 years as a whole. The variance of

nominal exchange rates may be different, and price-setting behavior may have changed,

hence altering the persistence of the stationq component of the real exchange rate.

There may also be measurement error in + and y, which causes their relative variability

to be mismeasured. Hence, we use the time series constructed from the model estimated in

section 1 only as a benchmark. We perform Monte Carlo exercises for a wide variety of

parameters. I.nd~, one exercise calibrates parameters to actual 100-yea.r data on

nominal exchange rates and (non-disaggregated) price indexes.

Section 3 performs parallel Monte Carlo exercises on the KPSS test of stationarity.

Here, since our Mlcial data contain unit roots, we are interested in assessing the

power of the KPSS test.

S~tion 4 concludes with a discussion of the implications of the size bias in tests

for long-run PPP.

1. A Decomposition of the Real Exchange Rate

The real exchange rate is the relative price of foreign goods to domestic goods

corrected for the nominal exchange rate. In log terms,
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(2) %=S,+ P:- P,,

where p; is the log of the foreign price level and pt is the log of the domestic price

level.

If price indexes are geometric means of traded goods prices and non-traded goods

prices, we can write

p, = (1-a)p~ + ap~,

and ,

P; = (1-~)p~ + /3py*.

Then, the real exchange mte can be written as

(3) q, = (s,+p~-pfl + ~(p~-p~”)-a(p~-p~.

In reference to the decomposition in equation (l), we have

~ = st+p~-p~,

and

Yt = 8(Py*-pT*)-a(P~-p~.

The relative price of traded goods, ~, is likely to be a stationary random

variable. If all goods in the traded goods price indexes have the same weights at home

and abroad, then

price. Although

can be large and

changes in ~ occur only because of deviations from the law of one

there is considerable evidence that deviations from the law of one price

persistent (SW, for example, Engel (1993), Rogers and Jenkins (1995)

and Wei and Parsley (1995)), they are

arbitrage would rule out the possibility

and would thus pralude a unit root in

tiost certainly stationary. Some type of goods

that these deviations could become unbounded,

%“

Studies which have argued that there may be unit roots in the

have concentrated on the y, term. Pemanent shocks to productivity

real exchange rate

could impart a non-

stationary component to the relative price of non-traded to tmded goods. This approach

builds on the early influential work of Balassa (1964) and Samuelson (1964). Cross-
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sectional studies of prices show that there can be very large differences in non-traded

goods prices across countries. Rogoff (1996) illustrates the point using data

constructed from the Penn World Tables. Prices tend. to me much lower in very low income

countries as compared to industrialized countries.

Engel (1995) uses the decomposition in equation (1) to separate real exchange rate

changes for the U.S. into their A and yt components. That study uses a variety of price

indexes for which data is available on sub-components that can be identfled as traded

and non-traded goods. Here we will pay spaial attention to one measure -- the GDP

deflator for personal consumption expenditures for the U.S. and the U.K. We choose to

examine these series, bwause there are 100-year-long annual series for both countries

(used by Rogers (1995)) for the personal consumption deflators and the nominal exchange

rate and shorter time series on the disaggregated data.

In this section, we make use of quarterly data on sub-categories of the personal

consumption deflator for the years 1970 to 1995.2 The sub-index for the deflator for

personal consumption of commodities in each country is used as the price index for traded

goods, and the deflator for personal consumption of services is used as the price index

for non-~ded goods. This is the assignment used by Engel (1995) and Stockman and Tesar

(1995), although clearly these categories are not precise classifications of ~ded and

non-traded goods.

We shall attempt to deal with some of the measurement error problems later. One

problem that arises is that many services are traded, so that it is probably inaccurate

to classify all spending on services as non-traded spending. Conversely, when consumers

purchase commodities, at least part of what they are paying for is a non-traded marketing

service. That is, the consumer price of a product includes payment for the advertising,

retailing and distribution services that bring the good to market. Some of those

2 All of the 25-year data was obtained from Datastream.
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services are better class~led as non-traded. We will only use our parameter estimates

from this data as a benchmark, and will consider how measurement error is likely to

affect the parameters.

We begin by performing the usual battery of tests for unit roots and cointegration

on these variables. All of the tests we perform in this section on actual data are also

performed on the arttilcial data we construct in section 2. The tests are descfibed in

detail in the Appendix.

The Table 1 summties the results. We cannot reject (at the 5% level) the null of

a unit root in ~ using either a simple Dickey-Fuller (DF) or the Augmented Dickey-Fuller

(ADF) test.

Next, we proc~ to test for cointegration of s, and p,-p~. A lage number of

authors have tested for long-run PPP using cointegmtion techniques, including Baillie

and Selover (1987), Edison (1987), Taylor (1988), Mark (1990), Patel (1990), Kim (1990),

Cheung and Lai (1993) and Edison, Gagnon and Melick (1994).

We consider two models of cointegration. The f~st is the Error-Correction Model

(ECM). This is a single-equation test for no cointegration. The single-equation

methodology incorporates in the null hypothesis the assumption that p~-p~is weakly

exogenous. We shall shortly report some evidence that sustains this assumption. The

second test is the two-equation Honath-Watson (HW) test for no cointegration. Note that

in both instances, we impose the null that the cointegrating vector for St and pt-p~ is

(1,-1).

Table 1 shows that we fail to reject the null hypothesis of no cointegration at the

5 per cent level using the test from the single-equation Error Corration Model (ECM).

We reach the same conclusion using the Horvath-Watson two-equation model of

cointegration.

All of our tests using the twenty-five year data sample fail to reject the null
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that long run PPP does not hold. This is not too surprising. The motivation for

economists such as Frankel (1986), Edison (1987) and G1en (1992) to use very long series

on prices and exchange mtes was that the tests for unit roots (and cointegmtion) have

little power in time series as short as 25 years. Lndd, we shall sw later when we

look at a 100-year long series that is comparable to this data that we can reject a unit

root in the d exchange rate using the ADF test.

We also perform unit roots tests on ~. Table 1 indicates that we fail to reject a

unit root at the 5 per cent level for \ using either the DF or the ADF test. We also

test for cointegration of st with p~ - p~. Both the ECM and HW test fail to reject the

null of no cointegration at the 5 per cent level.

Finally we perform a DF and an ADF test for unit roots in y,. Both fail to reject

a unit root at the 5 per cent level..

We have argued that it is likely that A is stationary while y, might have a unit

root. Some support for this view comes from the estimated degr= of persistence of the

two variables. For example, the estimates of p from the DF test (equation (Al)) and the

ADF test (equation (A2)) for A are, respectively, .9184 and .8721. For y,, the

corresponding estimates are .9677 and .9668. WMe the estimates are not statistically

si~lcantly different (for example, we could not reject a unit root in any case), they

are consistent with the view that y~ is more persistent and is more likely to have a unit

root.

Further support for that view comes from Figure 1. This Figure plots the variance

ratio statistics, as in Cochrane (1988), for ~, A and yt.3 That is, for ~ (and

likewise for ~ and y), the Figure plots Var(~+~-@/Var(A+ ~-~ for horizons of k = 1

to k = 75. If a series follows a random walk, the (population) vtiance of the k-

3 These variance ratios were calculated using Cochrane’s formula, which corrects
for small-sample bias.
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difference in that series will be k times the variance of the f~st difference. For a

stationary series, the variance ratio approaches a limit. From Figure 1, we can see that

the variance ratio statistics for yl rise much more steeply th~ for L or %, ~dica~g

more persistence. 4 It is also noteworthy that the variance ratios for A and ~ are

nearly identical, particularly at the shorter horizons, wtich is a reflection of the

small contribution that yt makes to movements in ~ over the short and medium run.

Our model for the components of the real exchange rate is sttightforward. We

assume that the y, component follows a simple random walk: 5

(4) Y,+l - y, = aq+l,

where A is an i.i. d., N(O,1) random variable. This equation determines the movements of

the relative prices of non-traded to tmded goods. We can think of the shock Ut+1 as

incorporating shocks to tastes and technology which cause this relative price to change

permanently.

Define Zt to be the relative price levels, unadjusted for the exchange rate:

so, ~ = St- Zt.

We posit a simple error-correction representation for ~ and s,:

(6) S,+l- S, = - ~(St-~ + b~+l + CVL+l,

(7) Zt+l - Zt = T(s[-@ + dc~+l + fv~+l + m+l.

The nominal exchange rate in our model can be affwted by the ~ shock from above,

as well as a monetary shock, Vt. The monetary shock does not tifect the relative price,

yt, but is incorporated in the nominal exchange rate.

A At the very long horizons (k > 75) all of the statistics drop off sigtilcantly,
but these statistics should probably be ignored since they were calculated using very few
data points. So, they are not included in Figure 1.

S We suppress the intercept terms in the presentation of the model for
expositional clarity. Intercept terms were included when the model was estimated,
although all of them were insigtilcantly different from zero. The arttilcid data
created for the Monte Carlo exercises does not include intercept terms.
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~ is a nominal variable whose dimensions are the same as the nominal exchange

rate. We allow the ~ and v, shocks to affect ~. In addition, there is a shock, Et,

which is a source of shocks to the PPP relationship in traded goods prices. It might

represent shocks to the degree of market segmentation.

Vt and c1 are also i.i. d., N(O,1) random variables.

Equations (6) and (7) imply that z, and s, are cointegrated, with cointegrating

vector (-1, 1). Together they imply that the relative price of traded goods, ~, is

stationary and follows a simple AR(1) process:

(8) K+~ = (1-P)% -d~t+, + (c-~v,+ [ + (b-g)%+l ,

where p = 3 + T.

The system (4), (6) and (7) was estimated by an iterative GH procedure. The

coefficients estimates are reported in Table 2. Standard errors are constmcted from the

inverse of the estimated information matrix.

There are several things of note about these estimates. First, among the

coefficients on the random emors, ; is nearly five times larger than the next largest

coefficient. Nominal exchange mtes are much more variable than nominal prices.

Then, ~, from the equation for q is next largest, while ; and ~ are not much

smaller. The other coefficients on the random errors -- ~ and ~ -- are nearly zero.

The implication of these estimates is, f~st, that nominal prices are much less variable

than the nominal exchange rate (~ and ; are much smaller than ;.) Swond, there is some

correlation between shocks to the two terns involving ordy nominal prices, yt and ZL(~

is non-zero. ) Third, there is almost no correlation between innovations in nominal

exchange rate and nominal prices ~ and ? are near zero. )

Also note that the estimate of 7 is actually negative, but not sigtilcantly

different than zero. The fact that it is near zero helps justify our assumption above

when performing the ECM test that prices are weakly exogenous. The persistence of A cm
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be ascertained by the sum of $ and ~, with S = .07698, This implies a high degree of

persistence, but lower than the usual measure for ~. The estimated half-life of \ is

about nine quarters.

None of these results are surprising in the light of Engel (1995). That study does

not estimate a formal model of exchange rates and prices, but does decompose the mean-

squared error of q~+j-%for j = 1, 2, . . . , 100 (using quarterly data), into A’S share

and y~’s share. First, we note that such a dwomposition is nearly unambiguous because

A and y, are nearly uncorrelated, which is consistent with the finding that ~ and ? are

close to zero.

The major finding of Engel (1995) is that the mean-squared error of ~+j-q~ is

almost completely attributable to movements in A+j-%J even when j is very large. This

is compatible with the model presented in equations (4), (6) and (7), given the

coefficient estimates. The model does imply that eventually, for j large enough, the

variance of ~+j-% must be dominated by the variance of yt+j-yt, since Yt is the utit

root component of ~. But, 25 years is too short a time span for the y, component to

dominate, That is, f~st, because the innovation variance of A is much larger than that

of y,. The innovation variance of L is (c-f)* + (b-g)2 + d2, which is estimated to be

.002667, as compared to .0000328, which is the estimate of az, the innovation variance of

y,. Second, as we have noted, L is fairly persistent (though it is modeled to be

stationary.)

The next section uses the model estimated above to simulate 100 years of data for

St and pt-p~, and then conducts Monte Carlo tests to assess the true size of the DF, ADF,

ECM and HW tests of long-run PPP.
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2. Monte-Carlo Measurements of Size of Tests for hng-Run PPP

In this section, we report the results of Monte Carlo exercises to measure the true

size of the DF, ADF, ECM and HW tests for long-run PPP. The details of the Monte Carlo

exercises are in the Appendix. The baseline case we consider is based on the parameter

estimates from the 25 year data sample that we used to estimate the model of section 1.

Each a.rt~lcial series we create has 400 data points. We choose 400 observations

because that corresponds to a 100-year data sample (given that our parameters are

estimated on quarterly data.) Several rwent studies of real exchange rate behavior have

used comparable samples to conclude that long-run PPP holds. See, for example, Frankel

(1986), Edison (1987), Edison and Klovland (198’7), Kim (1990), Abuaf and Jorion (1990),

Ardeni and Lubian (1991), Glen (1992) and Cheung and M (1994).6

For each series, we perform aU four tests. We record whether we would reject the

unit root with a five per cent test.

For each set of parameters, we also calculate the fmction of the variance of

~+a-q, that should theoretically be attributed to the unit root component. While

there is some ambiguity about this decomposition in general,because ytand A are

correlated, in practice the comelation is small enough that the d=omposition is not

very dependent on how the correlation is treated. We will report the calculation for

b Two recent studies use even longer time series. hthian and Taylor (1996) use
200 years of wholesale price index data, while Froot, Kim and Rogoff (1995) use 700 years
of commodity price data. However, the data used in both of these studies are constructed
from a limited number of goods. The price data do not incorporate the non-traded goods
prices that, according to our model, account for the non-stationary component of the real
exchange rate. So, while there rejection of a unit root is more convincing than with the
100-ya data series, there tests should more properly be considered tests for unit roots
in the A component.
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v~(Yt+400-Yt) 400a2=
var(~+~-q + var(yt+~-yJ ~-Psoo

[ 1~ (b-g)2+(c-f)2+d2 +400az

We will refer to the variance of the 400-quarter change as the “long-run variance”. Of

course, this phrase does not have its usual meaning in this context -- the limit of the

vtiance in the k-period change as k goes to infinity. Since ~ has a unit root, that

limit does not exist.

Our findings are summtied in Figures 2A-D, 3A-D and 4A-D. Before turning to

those, it is useful to discuss the baseline case. For

section 1, the unit root component, y~, accounts for

variance. So, it is not insignificant in terms of the

the parameters estimated in

42.12 per cent of the long-run

long-run movements of the real

exchange rate. Yet, using a nominal size of five per cent, all four tests almost always

reject a unit root (or, equivalently, no cointegration of St and pt-p~). The true size

for the DF test is

HW test, .9066.

Thus, if the

quarterly data, we

would not. What

.9808; for the ADF test, .8978; for the ECM test, .9434; and for the

data generating process estimated in section 1 produced 100 years of

would almost always conclude that long-run PPP holds, even though it

is happening here that makes the tests so wrong? Informally, of course,

the issue is that there is a lot of persistence to the A component, and it has a large

innovation variance. Movements in L are so large that they mask movements in y,. At

longer horizons, y, contributes more to the movement in ~, but the tests allow for only

ftite dynamics. If enough lags were allowed to capture the importance of yt, the size

of the tests would improve but the power would be si@lcantly diminished. So, we can

think of the problem as one of near observational equivalence (as in Cochrane (1991) and

Blough (1992).)

series, yt, that is

We are taking a stationary series,

relatively unimportant in terms of

13

T, and adding to it a non-stationary

its contribution to changes in ~.



Somewhat more formally, rewrite equation (4) as

yt+t - Yt = ‘t+l,

where W[+~ = a%+~, and write equation (8) as

%+1 = @%+ mt+l,

where # = 1-P and mt+l = -dc[+l + (c-f)v~+l + (b-g)q+l. Then, the univariate ARMA

representation for the real exchange rate is

Aq = @Aq.l + <t + P“<r-l,

where

2r: + (1 + @2)r;+2(1 ++)amw-~(1-@2)2a:+4(1 -#)2cT:r:+4(l-@2)(l -@)r:mmw
P=-

2r: + 2@: + 2(1 +@)mmw

Here, c: is the variance of m,, a; is the variance of Wt, and c~W is their covariance.

Inspection of this expression for P shows that when the unit root component is

small, p approaches -1. Spec~lcally, as m: and rmWgo to zero, p goes to -1. v also

goes to -1 when the stationary component is very persistent -- that is, as @goes to

unity, irrespmtive of the values of r: and UnW.

In our case, both of these circumstances are nearly true, so that ~q follows an

ARMA(l, 1), and the coefficient on the moving average component is nearly -1. That is

exactly the situation investigated in detail by Schwert (1989). He found that there was

a large size distortion in the Phillips-Pemn test for a unit root. His findings about

the size are very similar to ours -- even in very long samples, the tests reject a unit

root over 90 per cent of the time when there is one present.

The baseline stochastic process that we simulate may not produce a representative

100-year series for a number of reasons. In the remainder of this section,

alternate parameterizations to get an idea of the scope of the size problems

for long-run PPP.

we consider

with tests
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First, we consider the issue of whether the degree of nominal exchange rate

variability that we estimate from our 1970-1995 sample is representative of the exchange

rate variance over the 100-year sample. The dollar/pound rate over the latter sample has

been quite volatile, but over the past 100 years there have b~n periods in which it was

very quiet, and in which the real exchange rate also was quite stable. One approach to

dtig with this issue is to model switches of regime

volatility states, and examine the consequences of this

of real exchange rate tests. 7

from low volatility to high

heteroskedasticity for the ske

Here, we undertake the simpler exercise of investigating the consequences of

different values of the parameter c from equation (6). So, we fm all of the other

parameters at their values reported in Table 2, but then conduct Monte Carlo exercises

for various values of c. The results of those exercises are summtied in Figures 2A-2D.

For example, Figure 2A reports the results on the simple Dickey-Fuller test. We

graph the true size of the test against the fraction of the long-run vtiance accounted

for by the unit root component. The baseline case is c = O.051. Most of the values of c

that we investigate are smaller, allowing for the effect of more quiescent nominal

exchange rates. Figure 2A is quite striking -- the probability of rejecting a unit root

remains very high even when the unit root component accounts for a very large fraction of

long-run real exchange rate movements. For example, when y, accounts for 84.1% of the

long-run vtice of ~, the probability of rejwting a unit root using a five per cent

test is still 67.9 per cent.

Figures 2B, 2C and 2D show the comparable results for the ADF, ECM and HW tests,

respectively. The ECM test has the worst size bias -- here, in the case where yL

accounts for 84.1 % of long-run movements in ~, the probability of rejection is 72.9%.

7 hthian and Taylor (1996) address this issue with long time series on wholesale
prices.
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The ADF test is the least size-biased, but the bias is still considerable. Again, when

84.1 % of the movements of q, in the long-run are attributable to y,, the probability of

rejection is 55.1%.

Next, we consider whether we have understated the variance of the y, process.

Engel (1995) discusses why this measure of the relative price of non-traded goods may

understate the importance of y~. In particular, if there is a large non-traded component

in ~ (due perhaps to marketing and distribution costs, as discussed above), then the

true variance of changes in y~may be understated by the measure used here. So, we

pefiorm Monte Carlo exercises for various values of the parameter a from equation (8).

These results are reported in figures 3A-3D.

As in Figures 2, there is a trade-off between the fraction of ~’s long-run

variance attributed to yt and the true size of the test. In all cases, the tests appear

to be very badly sized. The worst size bias is in the simple Dickey-Fuller test in this

case. The other three tests are ftily comp=bly sized. For all of the tests, the true

size is above 50 per cent even when the unit root component accounts for over 85% of the

long-run movements in the real exchange rate.

When a is set to zero, there is no unit root component in the real exchange rate.

Then, the probability of rejection measures the power of the test -- the probability of

rejecting a unit root when there is none. The simple Dickey-Fuller test has the greatest

power for this data generating process, but all four of the tests have impressively high

power. The worst of them, the ADF, still has a 95% chance of rejecting the null when the

null is false.

Next, we allow for different values of ~ from equation (6). In our baseline

simulations, we set a equal to .077. Figures 4A-4D trace the outcome from Monte Carlo

simulations for values of ~ ranging from .01 to .09. For values of a that are quite

small, the tests appear to have less stie bias. So, when ~ is equal to .01, the size of

16



the tests is sound .10 for all of the tests. However, the reason the tests have smaller

size bias in this instance undoubtedly is not because they detect the unit root component

yt. Certainly what is occurring is that \ is very persistent in the case where ~ is

small. Even if the y, component were not present, the tests would fail to reject the

null of a unit root in A (or the null of no cointegration between S[ and ZJ.

Given that we have set 7 from equation (7) equal to zero (see the Appendix), when a

is also set to zero, both A and y~ are unit root processes. The real exchange rate

follows a simple random walk. In this case, we fmd (not surprisingly) that the size of

the tests is corrmt: .047 for the DF; .050 for the ADF; .049 for the ECM; and, .048 for

the HW.

We also consider various values of the parameter d in equation (7). However,

varying this parameter had little effect on our conclusions about the size of the tests

for long-inn PPP. Monte-Carlo expexirnents were petfomed for values of d ranging from

zero to 15 times the baseline value, and the true size of all tests for long-run PPP were

at least .89 when the nominal size is .05.

Finally, we consider some simulations in which the parameters of the stochastic

process in (4), (6) and (7) are calibrated to a 100-year data sample. This data, from

Rogers (1995), consists of the nominal dollar/pound exchange rate, and the personal

consumption deflator in the U.S. and U.K. from 1892-1992. The description of the data in

Rogers, and in the original source, Mitchell (1988), is sparse. The exchange rate is

described as a period average, and the prices appear to be end-of-period data. All of

the data is annual. In this one-hundred year data, we reject the null of a unit root in

real exchange rates at the 5 per cent level using the ADF test.

We choose parameter values to match thrw moments in the data -- the f~st-order

autocomlation coefficient of the d exchange rate, and the variances of the annual

difference in the relative price levels and the three-year difference in the nominal

17



exchange rate. 8 The Appendix describes how we create art~lcial series whose moments

match those from the true data.

Table 3 shows the sets of parameter values we use to perform our analysis of the

size of the long-run PPP tests. As it turns out, the value of the pweter c is about

the same across all of the sets, but there is quite a bit of variation in the other

parameter values. As the table shows, the unit root component, yt, accounts for as

little as 0.9 % of the long-run variance of ~ to as much as 89.4%, depending on the

particular parameter values.

The true size of the tests is, nonetheless, fairly consistent across all the sets

of pwmeter values and all of the tests. As shown in Table 3, the size ranges only from

0.290 to 0.423. So, for ti parameter values, there is considerable size bias in all

four tests.

3. Tests of Stationarity

We have argued that standard unit roots tests for real exchange rates assume under

the null hypothesis that the frost difference of the real exchange rate has a stationary

autoregressive representation. They are not designed to handle the case we are

interested in, where the real exchange rate is composed of a sum of a unit root process

and a persistent stationq process. In this case (repeating equation (1) for

convenience:)

qt=xt+Yt>

the change in the real exchange rate has a moving average component.

8 During the periods of “freed” nominal exchange rates, the occasional
devaluations yield distant outliers in the l-year changes in exchange rates. The
variance of the 1-year changes in these periods is quite large -- generally larger than
for floating rate periods. Taking the variance of 3-year changes gives a more reasonable
picture of the amount of exchange rate volatility. Of course, as we mention above, it
would be best to model explicitly these jumps in the nominal exchange rote.
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Intuitively, it is easy to understand why we cannot design a test whose null is

that ~ has a unit root in this case. To reject the null, one would need to reject the

hypothesis that y, (the unit-root component) has a non-zero vtiance. But, as Blough

(1992) and Cochrane (1991) have pointed out, it would be essentially impossible to rule

out a yt process with an arbitiy smaU variance. In Blough’s formulation, the

maximum power of any such test against the alternative that yt has zero variance is just

the size of the test. Since a process for ~ in which y, has zero variance looks just

like one in which y, has an arbitrarily small variance; if we are willing to tolerate,

say, a 5 per cent chance of rejecting the nul

size is 5 per cent), then we can only have a

the null is not true but is arbitrarily close to

of a unit root when the null is true (the

5 per cent chance of rejecting the nu~ when

being true (the power is 5 per cent).

On the other hand, it seems quite reasonable to formulate a test whose null is that

the vtiance of the yl component is zero. While it s~ms like we could really never

prove the y, component does not exist, it does s=m possible under some circumstances to

prove the claim that it does exist. That is the motivation of the test for stationtity

of Kwiatkowski, Phillips, Schmidt and Shin (1992). That test, in essence, is a test of

the null hypothesis that yl has a zero variance.

We consider, however, whether the KPSS test has much power to reject the null of

stationarity in our case. As in section 2, we perfom Monte Carlo simulations of the

rd exchange rate based on the model of swtion 1. However, since the null is

stationtity and the art~lcial series really have a unit root, when we tabulate the

fraction of times the null is rejected we are calculating the power of the KPSS test.

The details of the Monte Carlo simulation are in the Appendix.

Unfortunately, the KPSS test has very low power to detwt the unit root component.

For the baseline model, we reject the null only 8.6 per cent of the time. Figures 5A-C

show the power of the test for various values of the parameters c, a and a (from the
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model of equations (4), (6) and (7)). We also tried varying the parameter d, although

these results are not reported graphicdy. In addition, we have constructed arttilcial

series whose moments match those of our 100-year data (as we did at the end of Section 2

above). These results are reported in the last line of Table 3.

In the best case among all of the different parametetitions, the KPSS test

rejected the null a mere 13.3 per cent of the time. In most cases the power was much

lower, even though in some of the parameterizations the unit root component accounts for

a very large share of the “long-run” variance.

It is interesting that the KPSS test has low power here. One might be tempted to

conclude that since the DF, ADF, ECM and HW tests reject a unit root, and the KPSS test

fails to reject stationtity, that

no unit root. But, in fact, all

the DF, ADF, ECM and HW

there is mutually reinforcing evidence that there is

of the tests lead to the wrong inference -- the size of

tests are bad, and the KPSS test has low power.

4. Conclusions

We have found that there can be large she biases in tests for long-run PPP. There

may be a sigtilcant unit root component that is not detected by these tests. We

associate that component with the y~term above, which represents the element

corresponding to the relative price of non-traded goods in the real exchange rate.

There is additional evidence that the relative relative prices of non-traded goods

are not stationary. If these prices were non-stationary, we would expect to see some

large variation in a cross section of aggregate price levels (corrected for the nominal

exchange rate), pticularly because the non-stationary component accounts for such a

large fraction of the A exchange rate movement in the long run in our model. That is

exactly the finding of

across countries using

Rogoff (1996), who discovers enormous

data from Summers and Heston (1991).
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countries have price levels that are an order of magnitude higher than small countries.

Indeed, consider the following experiment. The cross-sectional variance in the log

of the relative prices of consumption deflators in the Summers-Heston data is 0.2686. If

we fit an AR(1) model to our 25 years of U.S. /U.K. real exchange mtes, the variance of

the quarterly innovations is 0.00263. Suppose each real exchange rate relative to the

U.S. from the Summers-Heston panel follows an identical AR(1) with innovation variance of

0.00263. What value of the quarterly autocomelation coefficient would produce a cross-

sectional variance of 0.2686? The answer is 0.995 (that is, 0.00263/(1-0.995) = 0.2686.)

So, while it is, of course, possible that the Summers-Heston data was generated by

stationary real exchange rate series, it seems very possible that there is a unit root

component in some of the real exchange rates.

But, if this unit root component is present, is it important? In our baseline

case, we fmd that the unit root component accounts for 42.1 per cent of the variance of

the change in the real exchange mte over a 100-year period. But over a 20-yw period,

this component would only account for 12.7 per cent of the real exchange rate variance.

This is consistent with the Engel (1995), who finds that the yi term does not account for

very much of the mean-squared error of ~, even for time intervals as long as

However, the question of whether or not there is a unit root component

important, even for short-run formatting. Consider rewriting equations (4)-(7)

20 years.

in~is

as:

where Xt = -dc,+l + (C-~Vt+ ~ + (b-g)q+,, and @ = l-~. From equation (9) we can

interpret the real exchange rate as following a stochastic process where ~ temporarily

deviates from an equilibrium value, yt, but is “mean-reverting”. Under the theory of

long-run PPP, the equilibrium value is a constant, but here we have ugued that we cannot

reject the hypothesis that yt is a slow-moving process with a unit root.

Why might it make a difference whether yt is a constant or a very slow-moving unit
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root? For the moment, consider the case where we know y is constant. When we estimate

equation (9), our estimate of y is the mean value of ~ in our data. If @is small, then

the mean value of ~ is a praise estimate of y. But, when @is close to one, the sample

mean of qt is an imprecise measure of y. This is the case we are concerned with, since

we believe @is nearly unity.

We could improve our forecasts in this stationary case, however, if we brought in

some outside information. Here, we have a good idea what the mean of ~ would be if it

were stationary. Thary suggests that if the real exchange rate settles down to any

long-run value, the most plausible one is the purchasing power parity value. So, for

short-run forwasting purposes, we could take the PPP value of q as our measure of y.

However, if we do not know whether y, is a constant or a slow-moving random w&,

we cmot bring in this outside information. For if y, is a random walk -- even one

whose innovation variance is very sm~ -- it could be very far from the PPP value of the

real exchange rate. In concrete terms, suppose we try to forecast the yen/dollar

exchange rate using the fact that the real exchange rate has a stationary component.

Should we formast that the exchange rate will regress to its PPP value, or to some other

value?

Consider these additional bits of evidence. Both Mark (1995) and Chinn and M=se

(1995) fmd that they can forecast the nominal exchange rate at long hofions by

predicting it returns to a target level -- but the target level is not the PPP value.

Mark and Choi (1996) explicitly a.Uow for the target component of the rd exchange

rate to move over time according to various models of long-run real exchange rate

determination. They fmd that models in which long-run PPP holds are sigtilcantly

outperformed, in terms of out-of-sample forecasting power, by models that allow the long-

run rd exchange mte to vary over time. In fact, their preferred models take exactly

the form of equation (9), with the target real exchange rate having a unit root.
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In this study, we do not at all address the recent tests for PPP, such as Frankel

and Rose (1996) and Wei and Parsley (1995), that look at a cross-section of countries.

It seems plausible that these tests would suffer from similar stie problems as the ones

addressed here. On the one hand, the size problems might be worse, since these studies

use shorter sample periods which are less likely to pick up the movements of the yl

component. On the other hand, if the y, component were correlated across real exchange

rates, it might be more detectable in the cross-sectional studies.

So, what the tests for long-run PPP probably can tell us is that there is some sort

of “mean-reversion” in real exchange rates. What is not yet clear is whether there is

convergence to PPP in the long run.
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Appendix

The Monte-Carlo tests of section 2 (and the tests on the actual data in section 1)

examine long-run PPP using four different tests.

First is the simple Dickey-Fuller (DF) test for unit roots in the rd exchange

rate, ~. We estimate the equation:

(Al) q=a+pq., +~,

The null hypothesis is P = 1.

Next is the Augmented Dickey-Fuller test. Here, we estimate the equation

(A2) q, = a + ~~-1 + ~l~~.l + ~2A~-2+ .. . + ~jA%_j+ vt.

The lag length j, was chosen by an iterative data-based procedure, as recommended by Ng

and Perron (1995). We start with a maximum number of lags (12) and test for the

sigtilcance of ~,2. If it is sigtilcantly different from zero, then j = 12.

Othemise, we drop the 12th lag, reestimated the regression, and proceed until ~j is

sigfilcantly different from zero. The null hypothesis is again B = 1.

In the test performed in section 1, we end up choosing a lag length of six. For

each iteration of the Monte Carlo procedure of section 2, we do the iterative procedure

to choose the lag length. The number of lags actually chosen vtied from zero to twelve.

Approximately 35-40 per cent of the time (depending on the pmeters used to generate

the artfilcial data), a lag length of zero was chosen.

Our fust cointegration test defives from the Error Correction Model (ECM) test

proposed by Kremers, Ericsson and Dolado (1992). We estimate the equation

(A3) As, = a - B%.l + aOA(p,-p~)+ ~lA(p,-l-p~-l) + ~zA@,-z-P~-2)+

. . . + ~jA@t-j-Pf-j) + TIAst-l + T2Ast-2+ . . . + ~jAst.j+ Ut.

Note that we constfi the number of lags of A@,-p~)and Ast to be equal. The lag

length is chosen by the same type of data-based iterative procedure as in the ADF test.

24



Here, in each iteration we test the joint null ~j=0, ~j=0. Again, when we do the Monte

Carlo procedure, we

arttilcial data.

The ECM test

ECM method aLlows

use this itemtive procedure to choose the lag length for each set of

is valid in this case if pt-p~ is weakly exogenous. In general, the

for estimation of the cointegmting vector, although here we have

imposed that it is (1,-1).

The null hypothesis in this case is P = O. Following Zivot

(1995), the test statistic for the ECM test depends on the long-run

J

(1995) and Hansen

covariance matrix of

Vt and VI + ~ aiA(pt+i-p~+i). This matrix is calculated in the standard way, using a
ino

Bartlett kernel, with the selection rule for the order of the kernel weight function

chosen as in Andrews (1991). The critical values are presented in Hansen (1995).

In each iteration of the Monte Carlo, then, we compute the long-run covariance

matrix and use it to compare the test statistic to the critical value from

table.

The second cointegration test is based on the procedure suggested

Watson (1994). Here we estimate the system of equations given by:

(A4) ASt = al - Plq.l + ~llA@t.l-pT-l)+ ~12A(pt-2-pf-J+ ... +

~IjA@t-j-Pf-j) + TIlAs1.l + T,2A\-2 + . . . + ~ljA~.j + Vlt,

A(Pt-P:) = % - B2%-1 + ~21A(Pt-1-P;-1) + a22A(Pt-2-p:_2) + . . . +

the Hansen

by Homath and

a2jA@t-j-PT-j) + ~21Ast-1 + T22As,-2+ ... + ~2jAst-j+ V2L.

Note that we impose that the cointegrating v~tor is (1, -1). We also impose that the

lag length on A(p,-p~) and Ast are the same in for both vtibles in both regressions.

We choose the lag length again by an iterative data based criterion. Here, in each

iteration we test the joint nu~ that ~Ij = O, ~lj = O, ~2j = O, and ~2j = O.

The null hypothesis here is that PI = O and B2 = O. We compare the test statistic
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to the critical values reported in Horvath and Watson.

We construct 5000 replications of data series with 400 observations each. In each

case, we actually constructed 450 data points, and took the last 400 points to avoid any

bias from start-up values. The start-up values for all the variables is zero, which is

equal to their unconditional mean given that there are no intercept terms included in the

simulations. The error terms q, v, and c, are assumed to be N(O,1), and were created

using the “mdn” command in Gauss version 3.01. For each of these 5000 artificial

series, we perform the four tests.

One issue arises in our Monte Carlo simulations for cointegration using the

Horvath-Watson test. The estimated value of 7 from equation (7) is actually negative,

but not significantly different from zero. If we construct our art~lcial data using

this negative value, there would be some problems of kterpretation with the HW test.

Suppose for example that -~ = a. Then ~, and therefore ~, has a unit root even if y,

were zero. But the HW test would conclude that the vtiables were cointegrated, because

it tests the joint hypothesis that 7 and ~ are non-zero. So, in our simulations, we set

~ equal to zero, and setour measure of a qual to the estimated value of a + y. ~s

leaves the persistence of the % component unchanged.

At the end of section 2, we perform simulations based on our 100-year data sample.

We search for combinations of the four parameters -- a, c, d and a -- that produce 100-

year Mlcial series whose moments match those of the data. To construct the 100-year

series for the nominal exchange rate, we produce 400 data points and averaged every four

together. This is meant to replicate the construction of the actual data, which is an

annual average. For the prices, we also produce 400 data points, and use every fourth

number, since the actual price data is end-of-year data. The Monte Carlo exercises used

to choose these values of a, c, d and ~ employ 5000 replications of each series.

We use a hill-climbing technique to fmd these parameters. We begin with an
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initial guess at a set of parameter values, construct 5000 art~lcial time series, and

calculate the statistics of interest. We adjust the pmeters, and construct new

tilcial time series, until we find a set of parameters that produce the desired

statistics.

To construct the KPSS test, we calculate ~ - ~ - q, where q is the sample average
,

of q,. Then, define S, = ~ u,. The KPSS statistic is calculated as:
i=1

where ~ is an estimate of the long-xun variance of ~. We calculate this variance as we

did in calculating the long-run variance of v, for the HW statistic described above.

Again, each Monte Carlo expetient involved construction of 5000 art~lcial data series

of length 400,
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Table 1

Unit-Roots Tests and Cointegration Tests on Disaggregated Data

Tests on St and p,-p~:

~t Statistic ~ Critical Value
Dickey-Fuller 2.120 2.89
Augmented Dickey-Fuller 2.802 2.89
Emor-Comection Model 2.631 2.81
Horvath-Watson 7.921 10.18

Tests on s, and p~-p~:

Dickev-Fuller
~ Statistic M Critical Value

2.115 2.89
Augm~nted Dickey-Fuller 2.823 2.89
Error-Comation Model 2.653 2.81
Horvath-Watson 6.387 10.18

Tests on y,:

~ Statistic ~ Critical Value
Dickey-Fuller 1.710 2.89
Augmented Dickey-Fuller 1.732 2.89
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Coefficient

a

a

b

c

g

f

d

Table 2

Utirnates of the Coefficients from Equations (4), (6), and (7)

Estimate

0.080382

-0.003415

0.005725

0.001088

0.050770

0.006109

0.000632

0.011286

standard error

0.03812

0.00849

0.00038

0.00509

0.00361

0.00113

0.00113

0.00085
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Table 3

Size of brig-Run PPP Tests with Parameters Calibrated to hng-Run Data

1 2 3 4 5

0.0010 0.0030 0.0060 0.0090 0.0120
: 0.0189 0.0193 0.0195 0.0193 0.0186
c 0.0415 0.0415 0.0417 0.0420 0.0427

0.0240 0.0244 0.0257 0.0281 0.0320
:arl 0.0092 0.0773 0.2587 0.4591 0.6289
DF 0.3074 0.2900 0.3048 0.3130 0.3436
ADF 0.3078 0.2986 0.3120 0.3152 0.3358
ECM 0.3886 0.3810 0.3954 0.3726 0.3738
H-w 0.3116 0.3002 0.3164 0.2984 0.3096
KPss 0.0062 0.0046 0.0054, 0.0128 0.0138

0.0150 0.0180 0.0210
0.0174 0.0155 0.0126
0.0438 0.0456 0.0484
0.0382 0.0476 0.0609
0.7550 0.8405 0.8941
0.3560 0.3938 0.4226
0.3264 0.3478 0.3566
0.3626 0.3432 0.3200
0.3040 0.3040 0.3020
0.0204 0.0350 0.0502

Notes:

The letters a, d, c and a refer to pmeter values from quations (4), (6) and
(7) .

“varl” refers to the fraction of the 100-year change in the real exchange rate
accounted for by the unit root component for each set of parameter values.

The numbers reported in the rows DF, ADF, ECM, and HW are the true size for a test
of nominal size of 5 per cent for the Dickey-Fuller, Augmented Dickey -FuHer, Emor
Correction Model and Honath-Watson tests, respectively.

The numbers reported in the KPSS row are the power of a KPSS test for stationarity
with a size of 5 per cent.
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Figure 2B: Augmented Dickey-Fuller Test as c Varies
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Figure 2C: Error-Correction Model Test as c Varies
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Figure 3A: Dickey-Fuller Test as a Varies
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Figure 3B: Augmented Dickey-Fuller Test as a Varies
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Figure 3C: Error-Correction Model Test as a Varies
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Figure 3D: Horvath-Watson Test as a Varies
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Figure 4A: Dickey-Fuller Test as Delta Varies
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Figure 4B: Augmented Dickey-Fuller Test as Delta Varies
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Figure 4C: Error-Correction Model Test as Delta Varies
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Figure 4D: Horvath-Watson Test as Delta Varies
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Figure 5A: KPSS Test as c Varies
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Figure 5B: KPSS Test as a Varies
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Figure 5C: KPSS Test as Delta Varies
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