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1 Introduction

Since Ho and Lee (1986) initiated work on “arbitrage-free” models of bond pricing,

academics and practitioners have followed increasing] y divergent paths, Both groups
have the same objective: to extrapolate from prices of a limited range of assets ~he

prices of a broacler class of state-contingent claims. Academics study relatively parsi-
monious models, whose parameters are chosen to approximate “average” or “typical”
behavior of interest rates and bond prices. Practitioners, on the other hand, use

models with more extensive sets of time-dependent parameters, which they use to
Imatch current bond yields, and possibly other asset prices, exactly.

To practitioners, the logic of this choice is clear: the parsimonious models used by
academics are inadequate for practical use. The four parameters of the Vasicek ( 1977)
and Cox-Ingersoll-Ross (1985) models, for example, can be chosen to match five points

on the yield curve (the four parameters plus the short rate), but do not reprodl~cr the
complete yield curve to the degree of accuracy required by market participants. Even
complex, multi-factor models cannot generally approximate bond yields with sufficient

accuracy. Instead, practitioners rely almost universally on models in the Ho and

Lee (1986) tradition, including those developed by Black, Derman, and Toy (1990),
Black and ]{arasinski (1991), Cooley, LeRoy, and Parke (1992), Heath, Jarrow, and

Morton (1992), Hull and White (1990, 1993), and many others, Although analytical
approaches vary across firms and even within them, the Black- DernlaI1-Toy model is

currently close to an industry standard.

Conversely, academics have sometimes expressed worry that the large parametf:r
sets of arbitrage-free models may mask problems with their structure. A prominent
example is Dybvig (1989), who noted that the changes in parameter values required

by repeated use of this procedure contradicted the presumption of the theory that
the parameters are deterministic functions of time. Black and Karasinski (1991, p 57)
put it more colorfully: “When we value the option, we are assuming that its volatility

is known and constant, But a minute later, we start using a new volatility. Similarly,

we can value fixed income securities by assuming we know the one-factor short-rate
process. A minute later, we start using a new process that is not consistent with
the old one, ” Dybvig argued that these changes in parameter values through time

implied that the framework itself was inappropriate.

We examine the practitioners’ procedure in a relatively simple theoretical setting,
a variant of Vasicek’s (1977) one-factor C,aussian interest rate model that we refer

to as the benchmark theory. Our thought experiment is to apply models with time-

dependent drift and volatility parameters to asset prices generated by this theory. We



judge the models to be useful, in this setting, if they are able to reproduce prices of a

broad range of state-contingent claims. This experiment cannot tell us how well the
models do in practice, but it allows us to study the role of time-dependent parameters

in an environment that can be characterized precisely. VVefind, in this environment,
that if the world exhibits mean reversion, then the use of time-dependent parameters
in a model without mean reversion can reproduce prices of a limited set of assets,
but cannot reproduce the prices of general state-contingent claims. In this sense,

these arbitrage-free ~models allow arbitrage opportunities: a trader basing prices on,

say, the Black- Derman-Toy model can be exploited by a trader who knows the tr~~e

structure of the economy.

A striking exalmple of misprizing in this setting involves options on long bonds,

Options of this type vary across two dimensions of time: the expiration date of the
option and the maturity of the bond on which the option is written. The Blacl<-

Dermall-Toy model has a one-dimensional array of volatility parameters that can be

chosen to reproduce either the prices of options with any expiration date on one-period
bonds or of options with common expiration dates on boncls of any maturity. But if
the world exhibits mean reversion, this vector cannot reproduce the two-dimensional

array of prices of bond options. If the volatility parameters are chosen to match prices
of options on one-period bonds, then the model overprices options on long bonds.

While we think mean reversion is a useful feature in a model, it illustrates a

more general point: that misrepresentations of fundamentals, whatever their form,

cannot generally be overcome by adding arrays of time-dependent parameters. From
this perspective, the role of academic research is to identify appropriate fundamentals,

which might include multiple factors, stochastic volatility, and/or no~l-uormal interest
rate movements. We conjecture that arbitrage-free models with inaccuracies along

any of these dimensions will misprice some assets as a result.

2 A Theoretical Benchmark

We use a one-factor Gaussian interest rate model as a laboratory in which to examine
the practitioners’ procedure of choosing time-dependent parameters to fit a bond
pricing model to observed asset prices. The moclel is a close relative of Vasicek

(1977). Although in some respects it is simpler than those used by practitioners, its
log-linear structure is extremely useful in clarifying the roles played by its various

parameters.

2



To fix the notation, let ~ be the price at date t of a zero-coupon bond of maturity

71,the claim to one dollar at date t+ TL,By convention fi~= 1 (one dollar today costs
one dollar). Bond yields are

y; = –n-l log b;

and forward rates are

f: = log(b;/b;+’). (1)

We label the short rate rt = Y; = f:.

We characterize asset prices in our benchmark theory, or laboratory, with a prici~~g

kerTLel: a stochastic process governing prices of state-contingent claims. Existence of

such a process is guaranteed in any arbitrage-free environment. We describe the kernel
for our theoretical environment in two steps. The first step involves an abstract state
variable z, whose dynamics follow

~t+l = pzt + (1 – p)6+ &t+l

—
Zt +(1 —p)(J— ~t) +Et+l, (2)

with {Et} distributed normally and independently with mean zero and variance az.

The parameter y controls mean reversion: with y = 1 the state follows a random

walk, but with values between zero and one the conditional mean of future values of
z converges to the unconditional mean 6. Step two is the pricing kernel nt, which

satisfies
– log ~n~+~= z~ + ~E~+I . (:3)

The parameter A, which we refer to as the price of risk, determines the covariance

between innovations to the kernel and the state and thus the risk characteristics of
bonds and related assets.

Given a pricing kernel, we derive prices of assets from the pricing relation

1 = Et(m~+~Rt+l), (4)

which holds for the gross return Rt+l on any traded asset. Since the one-period retllrn
on an 71+ l-period bond is ~+1 /b~+l, the pricing relation gives us

(5)b:+l = Et(?7~t+l~;+l)7

which allows us to compute bond prices recursively, starting with the initial condition

b:=l.

Consider a one-period bond. From equation (5) and the initial condition L? = 1

we see that the price is the conditional mean of the pricing kernel: b: = Elnl,t+l.
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Since the kernel is conditionally lognormal, we need the following property of log-
normal random variables: if log x is normal with mean p and variance az, then
log E(x) = p + 02/2. From equation (3) we see that log ?n~+l has conditional mean

–zt and conditional variance (Aa)2. Thus the one-period bond price satisfies

log b; = –2, + (Aa)2/2

and the short rate is
r~ = –logb; = z~ – (Aa)2/2.

Thus the short rate ~ is the state z with a shift of origin. The mean

6 – (Ao)2/2, which we denote by L in the rest of the paper.

The stochastic process for z, equation (2), implies similar behavior

rate:

rt+l = Tt+(1 –~)(p–

a discrete time version of Vasicek’s (1977) short
short rate are

for n >1, which yields conditional first and

E,(r,+n) = l-, + (1

and w

Tt) + Et+l,

rate diffusion. Future

n

second moments of

– 9“)(P – ~t)

j=l

We return to these formulas later.

Prices of long bonds follow from (5);
properties are conveniently summarized

of the short rate:

(6)

short rate is

for the short

values of ~;~

(8)

(9)

details are provided in Appendix A.1. Their
by forward rates, which are linear functions

[ ( 1;:)2]a,2,f;=rt+(l –w’’)(p–rt)+ A2– A+ (lo)

for all T1~ O. Given forward rates, we can compute bond prices and yields from their
definitions, The right side of equation (10) has a relatively simple interpretation, If

we compare it to (8), we see that the first two terms are the expected short rate r~
periods in the future. We refer to the last term as a risk premium and note that it
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depends on three parameters: the magnitucleof risk (o), the price of risk (A), and

mean reversion (y).

Both the Ho and Lee (1986) and Black, Derman, and Toy (1990) models are
capable of reproducing an arbitrary forward rate curve (equivalently, yields or bond

prices), including one generated by a theoretical model like this one, An issue we
address later is whether this capability extends to more complex assets, With this
in mind, consider a European call option at date t, with

strike price k, on a zero-coupon bond with maturity n

lognormality of bond prices in this setting, the call price is

(1973) formula,
T,n

Ct = b;+”N(dl) – kb:fv(~2),

where N is the cumulative normal distribution function,

~ _ log[b:+n/(b:k)] + v;,n/2
l—

and the option volatility is

expiration date t + ~ and
at expiration. Given the
given by the Blacl<-Sc.holes

(11)

(12)

See Appendix A.4. .Jamshidian (1989) reports a similar formula for a continuous-ti]ne

version of the Vasicek model. The primary difference from conventional applications
of the Black-Scholes formula is the role of the mean reversion parameter ~ in ( 12).

3 Parameter Values

We are trying, in this paper, to make a theoretical point, but we find it useful to

illustrate the theory with numerical examples. The parameter values come from

an informal moment matching exercise based on properties of monthly yields for

[JS government securities computed by McCullocb and Kwon ( 1993). Some of the
properties of these yields are reported in Table 1 for the sample period 1982-91,

We choose the parameters to approximate some of the salient features of bond
yields using a time interval of one month. From equation (7) we see that ~ is the
unconditional mean of the short rate, so we set it equal to the sample mean of the

5



one-month yield in Table 1, 7.483/1200. (The 1200 converts an annual percentage
rate to a monthly yield. ) The mean reversion parameter y is the first autocorrelation
of the short rate. In Table 1 the autocorrelation is 0,906, so we set y equal to this

value. This indicates a high degree of persistence in the short rate, but less than with

a random walk. The volatility parameter a is the standard deviation of innovations
to the short rate, which we estimate with the standard error of the linear regression

(7). The result is a = 0.6164/1200. Thus the values of (p, O, p) are chosen to match
the mean, standard deviation, and autocorrelation of the short rate. We choose the

final parameter, the price of risk A, to approximate the slope of the yield curve. Note

from (10) that mean forward rates, in the theory, are

This tells us that to produce an increasing mean forward rate curve (implying an
increasing mean yield curve) we need A to be negative. The price of risk parameter,
in other words, governs the average slope of the yield curve. One way of fixing A, thent

is to select a value that makes the theoretical mean yield curve similar to the sample
mean yield curve, given our chosen values for the other three parameters. An example

is pictured in Figure 1, where ~vesee that A = —750 produces theoretical mean yields
(the line in the figure) close to their sample means (the stars) for maturities between

one month and ten years. With more negative values the mean yield curve is steeper,
and with less negative (or positive) values the yield curve is flatter (or downward
sloping).

Thus we see that all four parameters are required for the theory to imitate the
dynamics of interest rates and the average slope of the yielcl curve. We use these
benchmark values later to illustrate differences in prices across bond pricing models.

4 Ho and Lee Revisited

We turn now to the use of time-dependent parameters to fit theoretical models to

observed asset prices. We apply, in turn, analogs of the models of Ho and Lee ( 1986)
and Black, Derman, and Toy (1990) to a world governed by the benchmark theory of

Section 2.

Our first example is a (;aussian analog of Ho and Lee’s (1986) binomial interest
rate model. The analog starts with a state equation,

6



with time-dependent parameters {CYt} and normally and independently distributed

innovations {qt} with mean zero and constant variance 92. The pricing kernel is

– log T?lt+l = ~t + 7TL+1. (14)

lVe use different letters for the parameters than in the benchmark theory to indicate
that they may (but need not ) take on different values, Our Ho and Lee analog differs
from the benchmark theory in two respects, First, the short rate process does not
exhibit mean reversion, which we might think of as setting ~ = 1 in equation (2).

Second, the state equation (13) includes time-dependent “drift” parameters {at}.

Given equations (13,14), the pricing relation (5) implies a short rate

and forward rates

(15)
j=l

for rZ~ 1. See Appendix A.2, Note that (10) differs from (15) of the benchmark in
two ways. One is the impact of the short rate on long forward rates. A unit increase

in r is associated with increases in f“ of one in Ho and Lee, but (1 — pn) < 1 in the

benchmark. The other is the risk premium, the final term in ecluation (1,5).

Despite these differences, time-dependent drift parameters allow the Ho and Lee
model to reproduce some of the features of the benchmark theory. One such feature

is the conditional mean of future short rates. The future short rates implied by this
model are .

which implies conditional means of

71

Et(rt+n) = ~t + ~ ~t+j (17)
j=l

for 71>0. If we compare this to the analogous expression for the benchmark theory,
equation (8), we see that the two are equivalent if we set

n

(18)
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Thus the time-dependent drift parameters of the Ho and Lee model can be chosen to
imitate this consequence of mean reversion in the benchmark theory.

In practice it is more common to use the drift parameters to fit the model to the

current yield curve. To fit forward rates generated by the benchmark theory we need
[compare (10,15)]

5 at+j = (1 -~’’)(p -r,) + [A’ - (A+(l -~’L)/(l -~))’] cJ2/2
j=l

- [72 - (7+ ~)’] P2/2 (19)

The drift parameters implied by (18) and (19) are, in general, different. Since

we can equate the two expressions when y = 1 by setting ~ = a and ~ = J. But

when O < v < 1 the two expressions cannot be reconciled. This is evident in Figure 2,
where we graph the two choices of cumulative clrift parameters, ~~=1 a~+j, using the

parameters estimated in Section 3, with ~ = a, ~ = A, and r = 3.0/1200. The drift

parameters that reproduce the conditional mean converge rapidly as the effects of

mean reversion wear off. But the drift parameters that fit the current yield curve get
steadily smaller as they offset the impact of maturity on the risk premium in this

model. This results, for the range of maturities in the figure, in a declining term
structure of expected future short rates, while the benchmark implies the reverse,

The discrepancy in the figure between the two choices of drift parameters is a
concrete example of

Remark 1 The parameters of the Ho and Lee model can be chose~t to match the

current yield curve, or the conditio~tal means of future short ratesj bllt they ca~l~lot

ge~lerally do both.

This property of the Ho and Lee model is a hint that time-dependent drift parameters
do not adequately capture the effects of mean reversion in the benchmark theory.
Dybvig (1989, p ,5) makes a similar observation. A closer look indicates that the
difficulty lies in the nonlinear interaction in the risk premium between mean reversion
and the price of risk. In the benchmark theory, the risk premium on the ~~-period

forward rate [see equation (10)] is
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In the Ho and Lee model, equation (15), the analogous expression is

If we choose ~ = A and ~ = a the two expressions are equal for ~1= 1, but they move

apart as 71grows. The discrepancy noted in Remark 1 is a direct consequence.

A similar comparison of conditional variances also shows signs of strain. The
conditional variances of future short rates implied by the Ho and Lee model are

Vart(rt+m) = n~z.

If we compare this to the analogous expression in the benchmark theory, equation (9),
we see that they generally differ when ~ # 1. With y < 1 and ~ = CJ,the conditional
variances are the same for n = 1, but for longer time horizons they are greater in the

Ho and Lee model. We summarize this discrepancy in

Remark 2 The parameters of the Ho and L~e model cannot be chosc:u to re])roduce

the conditional variances of future short rates.

Thus we see that additional drift parameters allow the Ho and Lee model to

imitate some of the effects of mean reversion on bond yields. They cannot? however,
reproduce the conditional variances of the benchmark theory, Dybvig (1989, p 5)
summarized this feature of the Ho and Lee model more aggressively: “[T]he Ho

and Lee model starts with an unreasonable implicit assumption about innovations in

interest ratesj but can obtain a sensible initial yield curve by making an unreasonable
assumption about expected interest rates. lJnfortunately, while this ,.. give[s] correct

pricing of discount boncls..., there is every reason to believe that it will give illcorrert
pricing of interest rate options. ” Dybvig’s intuition about options is easily verified.
The Black- Scholes formula, equation (11), applies to the Ho and Lee model if we use
option volatility

v; ~ = Var,(log b~+~) = ~(n~)’. (20)
This formula cannot be reconciled with that of the benchmark theory, equation ( 12),
for all combinations of ~ and n unless y = 1. If we choose the volatility parameter
~ to reproduce the option volatility ZJI,Iof a short option on a short bond, then

we overstate the volatilities of long options on long bonds. As a result, the model
overvalues options with more clistant expiration dates ancl/or longer underlying bonds.

We see in Figure 3 that call prices CTI1implied by the Ho and Lee model can
be substantially higher than those generated by the benchmark theory. The figure
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expresses the rnispricing as a premium of the Ho and Lee price over the price generated

by the benchmark theory. Benchmark prices are based on the parameter values of

Section 3. Ho and Lee prices are based on drift parameters that match current bond
prices, equation (19), and a volatility parameter p = a that Imatcbes the option
volatility VI,1 of a one-period option on a one-period bond. Both are evaluated at

strike price k = bj/bJ+”. For ~ = 1 the two models generate the same call price, but

for options with expiration dates 12 months in the future the Ho and Lee price is
more than ,50 percent higher.

5 Black, Derman, and Toy Revisited

Black, Derrnan, and Toy ( 1990) extend the time-dependent parameters of Ho and

Lee to a second dimension. They base bond pricing on a binomial process for the
logarithm of the short rate in which both drift ancl volatility are tilne-(le~]elldetlt.

We build an analog of their model that retains the linear, Gaussian structure of
previous sections, but includes these two sets of time-dependent parameters. Given
a two-parameter distribution like the normal, time-dependent drift and volatility can

be used to match the conditional distribution of future short rates exactly and thus
to mitigate the tendency of the Ho and Lee model to overprice long options. The

question is whether they also allow us to reproduce the prices of other interest-rate

derivative securities.

Our analog of the Black-Derman-Toy model adds time-dependent volatility to the
structure of the previous section: a random variable z follows

Zt+l = ~t + ~t+l + qt+l (21)

and the pricing kernel is

– log ?n~+~= z~ + yqt+~ . (22)

The new ingredient is that each qt has time-dependent variance ~~~. This structure
differs from the benchmark theory in its absence of mean reversion (the coefficient of

one on zt in the state equation) and in its time-dependent drift (the CY’S)and volatility
(the ~’s).

We approach bond pricing as before. We show in Appendix A.2 that the short
rate is

r~ = – log (EtT?z~+~)= z~ – (~pt+~)2/2
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and forward rates are

for 71~ 1. Equation (23) reduces to the Ho and Lee expression, equation (15), when

@t = @ for all t. AS in the Ho and Lee model, forward rates differ from the benchmark
in both the impact of short rate movements on long forward rates and the form of

the risk premium.

We can use both sets of time-dependent parameters to approximate asset prices

in the benchmark theory. Consider the conditional distribution of future short rates.
The short rate follows

so future short rates are

Their conditional mean and variance are

Et(rt+n) = ~t + 72(P?+l–P:+,z+l)/2 +fat+,
j=l

This model, in contrast to Ho and Lee, is able to match the conditional variances
of the benchmark theory, which we do by choosing volatility parameters that decline
geometrically:

This implies conditional variances of

the same as ecluation (9) of the theory. Similar patterns of declining time-dependent
volatilities are common when these methods are used in practice, Black, Derman, and
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Toy’s numerical example included (see their Table I). To match the conclit ional mean

of the benchmark theory, equation (8), we choose drift parameters that satisfy

Thus we see, as Black, Derman, and Toy (1990, p :33) suggest, that we can fit the

first two moments of the short rate with two “arrays” of parameters:

Remark 3 The parameters of the Black-Derman-Toy model caTl bc chosen to repro-

duce the conditional means and variances of future short rates.

Given the critical role played by volatility in pricing derivative assets, this represents
an essential advance beyond Ho and Lee.

Despite time-dependent volatility parameters, the model cannot simultaneo~lsly
reproduce the conditional moments of the short rate and the forward rates of the
benchmark theory. The drift parameters that reproduce the forwarcl rate curve,
equation (10), are

= (1 - pn)(p - r,)+ [A’ -(A+ (1 - y“)/(1 - y))’] 0’/2
j=]

Comparing (28)

the difference in

and (29) we see that the two are not equivalent, in general. ii~e note

Remark 4 Give71 volatility parameters (27) that reproduce the conditional variaTlces
of future rates, the drift parameters of the Black- Derman-Toy model can be choserl

to match the current yield curve, or the conditioltal means of future short rate.~, but

they cannot generally do both.

Figure 4 plots the difference between (29) and (28). The parameter values are those
of Section 3, with ~ = A, p~+j = y ~–la, and r = ;3.()/12()(). The differences are smaller

than those of Figure 2 for the Ho and Lee model, but are nonzero nonetheless.

Remark 4 is a hint that the Black-Dermall-Toy analog cannot generate accurate

prices for the full range of state-contingent claims in the benchmark economy, but we

12



can see this more clearly by looking at specific assets. Consider European call options
on zero-coupon bonds. Once more the lognormal structure of the model means that
the Black- Scholes formula, equation (11), applies. If we choose drift parameters to fit

the current yield curve, then any difference between call prices in the model and the
benchmark theory must lie in their option volatilities. The option volatility for the

Black-Derman-Toy analog is

V;,l= ‘n2 ~ ~~+j.

j=l

see Appendix A.4. If we restrict ourselves to options on one-period bonds (so that
71= 1), we can reproduce the volatilities of our theoretical environment by choosing
~6’s that decline geometrically with time, the same choice that replicates COI]ditional
variances of future short rates, equation (27).

However, the Black- Dermal~-Toy analog cannot simultaneously reproduce prices
of options on bonds of longer maturities. If we use the geometrically declining pa-

rameters of equation (27), the option volatility is

From (12) we see that the ratio of option volatilities is

BDT Volatility nz

Benchmark Volatility = (1 + ~ + . + ~“-l)z

This ratio is greater than one when O < w <1 and n > 1, and implies that when the
Blacl~-Dernlall-Toy analog prices options on short bonds correctly, it will overprice
options on long bonds. We see in Figure 5 that this rnispricing gets worse the longer

the maturity of the bond, and is greater than 150 percent for bonds with maturities

of two years or more. As in Figure 3, benchmark prices are based on the parameters
of Section 3, the drift parameters of the Black- Dernlall-Toy analog are chosen to

reproduce the current yield curve, the strike price is k = b~/b~+”, and the expiration
period is r = 6. Thus we have

Remark 5 The parameters of the Black-Derman-Toy model cannot

prices of call options o~t bonds for all maturities a~ld expiration dates.

The difference in option volatilities, and hence in call prices, between the two
models stems from two distinct roles played by mean reversion in determining prices
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of long bonds. Mean reversion appears, first, in the impact of short rate innovations
on future short rates. We see from (9) that the impact of innovations on future short,

rates, in the theory, decays geometrically with the time horizon ~, This feature is

easily mimicked in the Black-Dernlan-Toy model, as we have seen, by using volatility
parameters {~f} that decay at the same rate. The second role of mean reversion
concerns the impact of short rate movements on long bond prices. In the Black-

Dermall-Toy model, a unit decrease in the short rate results in an 71unit, increase in
the logarithm of the price of an ~~-period bond; see Appendix .4.2. In the benchmark

theory, the logarithm of the bond price rises by only (I+p+. ~.+p’’-’) = (1–p’’)/(l –
y); see Appendix Al. This attenuation of the impact of short rate innovations on long

bond prices is a direct consequence of mean reversion. It is not, however, reproduced
by choosing geometrically declining volatility parameters and is therefore missing from
call prices generated by the Black- Derman-Toy analog. Stated somewhat differently:

the Black- Derman-Toy analog does not reproduce the hedge ratios of the benchmarl{
theory.

As a practical matter, then, we might expect the Blat.k-Dernlall-Toy procedure to

work well in pricing options on short term instruments, including interest rate caps.
For options on long bonds, however, the model overstates the option volatility and

hence the call price. A common example of such an instrument is a callable bond.
This procedure will generally overstate the value of the call provision to the issuer,

in the theoretical environment, and thus understate the value of a callable long-term
bond.

The discrepancy between option prices generated by the benchmark theory and

the Black-Dernlan-Toy analog illustrates one difficulty of using models with tinle-

dependent parameters: that a one-dimensional vector of time-dependent volatility
parameters cannot reproduce the conditional variances of bond prices across the two

dimensions of maturity and time-to-expiration. We turn now to a second example of
misprizing: a class of “exotic.” derivatives whose returns display different sensitivity
than bonds to interest rate movements,

Consider an asset that delivers the power O of the price of an n-period bond one
period in the future. This asset has some of the flavor of derivatives with magnified

sensitivity to interest rate movements made popular by Bankers Trust, yet ret sins
the convenient log-linearity of bond prices in our framework. As with options, we
compare the prices implied by the benchmark theory,

log ~ = - (.,+ (Aa)2/2) +Hlogb;+
(’+’11::)2a2’2

–@(l–pn)(p– r,), (30)

14



with those generated by the Black- Derman-Toy analog,

n

–6’ ~ [(n– j)(~t+j+l – Qt+j ) -(~+ n - j)2(P?+j+l - Pt+j)2/2] - (31)
j=l

Both follow from pricing relation (4) with the appropriate pricing kernel.

Suppose we choose the parameters of the Black-Dernlall-Toy analog to ulatch
the conditional variance of future short rates [equation (26)], the current, yield curve
[equation (29)], and the price of risk [y = A]. ~~an this model reproduce the prices of
our exotic asset for all values of the sensitivity parameter 9? The answer is generally

no. When n = 1 the two models generate the same price d) for all values of H,just as
we saw that the two sets of cumulative drift parameters were initially the same (see

Figure 4 and the discussion following Remark 4). For longer maturities, however, the
prices are generally different. Figure 6 is an example with 7Z= 60 and r = ~3.00/1200.

We see that for values of O outside the unit interval, the Black-Dermall-Toy analog
overprices the exotic, although the difference between models is smaller than for
options on long bonds. Thus

Remark 6 The parameters of the Black-Derman-Toy model can be chosrn to match

both the current yield curve and the term structure of volatility for options ort onc-

period bonds, but they cannot generally replicate the prices of more exotic derivatives.

These examples of rnispricing illustrate a more general result: that the Blacl<-
Dermall-Toy analog cannot replicate the state prices of the benchmark theory. This

result is stated most clearly using stochastic discount factors,

which define n-period-ahead state prices. We show in the Appendix that the benchm-

ark theory implies discount factors

and the Black- Derman-Toy analog implies
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As long as y # 1 and a # O, the seconcl expression cannot be made e(luiva]ent to the

first:

Proposition 1 The time-depende.?lt dTift an,d volatility parameters of th~ Black-Dcr-

ma?t-Toy model cannot be chosen to reproduce the stochastic discount factors of th~

benchmark theory.

A proof is given in Appendix A.3. The difficulty lies in the innovations,

There is no choice of volatility parameters {@t} in Blaclt-Dernlall -Toy that can repli-
cate the nonlinear interaction of mean reversion (y) and the price of risk (A) in the

benchmark theory.

In short, the time-dependent drift and volatility parameters of a model like the

Black-Derman-Toy analog cannot replicate the prices of derivative assets generated

by a model with mean reversion.

6 Arbitrage and Profit Opportunities

In the laboratory of the benchmark theory, the Black-Dermall-Toy analog systenlati-

cally misprices some assets. In this section we consider strategies that might be used
to profit from traders using prices indicated by the Black-Dermall-Toy model.

One way to exploit someone trading at Black-Derman-Toy prices is to arbitrage
with someone trading at benchmark prices. If, as we have seen, a Black- Dern~all-

Toy trader overprices options on long bonds relative to those on short rate, and a
benchmark trader does not, then we can buy frolm the latter and sell to the former,

thus making a riskfree profit. This is as clear an example of arbitrage as there is. Bllt
since such price differences are so obvious, they are unlikely to be very common.

It is less easy to exploit a Black-Derman-Toy trader when trades take place only
at prices dictated by the model. Since Black- Derman-Toy prices are consistent with
a pricing kernel, they preclude riskless arbitrage. We can often devise, however, dY-

namic strategies whose returns are large relative to their risk. One sllch strategy
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involves call options on long bonds, which (again) the Black- Dernlall-Toy model gel]-
erally overvalues. If we sell the option to the trader at date t,and liquidate at t + 1,

we might expect to make a profit. This seems particularly likely in the option’s final

period, since the option is overvalued but the bonds on which the option is written
are not.

Before we evaluate this strategy, we need to explain how the Blacl~-Dernlal] -Toy

trader prices assets through time. .4 trader using the Black-Dermall-Toy model gel]-

erally finds, both in practice and in our theoretical setting, that the t,iI~le-del]ell(iellt
parameters must be reset each period. In our setting, suppose the trader chooses
volatility parameters at date t to fit implied volatilities from options on short bonds.

As we have seen, this leads her to set {~~~+1,~t+z, ~t+3, . .} eclual to {a, pa, y20, . . .}.

If the parameters were literally time-dependent, then in the following period logic dic-

tates that we set {~~+2, ~t+3, /~~+4,. . .} equal to {pa, V2a, W30, . .}. But if we calibrate
once more to options on one-period bonds, we would instead use {cJ, pa, ~2a, .}.
This leads to a predictable upward jump in the volatility parameters from one pe-

riod to the next, as in Figure 7. Similarly, the drift parameters must be adjusted

each period to retain the model’s ability to reproduce the current yield curve, These
changes in parameter values through time are an indication that the model is im-

perfectly imitating the process generating state prices, but they nevertheless improve

its performance. In this sense the internal inconsistency noted by Dybvig (1989) is a
symptom of underlying problems, but not a problem in its own right. Thus our trader

prices call options using drift and volatility parameters that match, each period, the
yield curve and the term structure of volatilities impliecl by options 011 one-period
bonds, equations (29) and (27), respectively.

Now consider a strategy against such a trader of selling a ~-period option on an

~t-period bond and buying it back one period later. The gross one-period return from
this strategy is

Rt+l = –c;;;’’’/c;’n,

for r z 1, with the convention that an option at expiration has value c~)” = (~ – k)+.

The profit from this strategy is not riskfree, but it can be large relative to the risk
involved. In the world of the benchmark theory, the appropriate adjustment for risk
is given by the pricing relation (4). We measure the mean excess risl{-adjusted return

by
a = E (7nt+l Rt+l) — 1,

using the pricing kernel nt for the benchmark economy. This measure is analogolls to

Jensen’s alpha for the CAPNI and is the appropriate risk adjustment in this setting.
For the trading strategy just described, and the parameter values of Section :3, the

returns are in the neighborhood of several hundred percent per year; see Figurt~ 8.
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The returns in the figure were computed by .Monte Carlo, and concern two-period
(~=2) options on bonds for maturities (n) between 1 and 24 months. The returns are

greater with ~ = 1, but decline significantly as ~ increases. For ~ >6 the overpricing

is difficult to exploit, since the overpricing of a five-period option the following period

is almost as great.

7 Mean Reversion and Other Fundamentals

We have seen that the time-dependent drift and volatility parameters of analogs of
the Ho and Lee (1986) and Black- Dermall-Toy (1990) models cannot reproduce the

prices of state-contingent claims generated by a model with mean reversion. This
thought experiment does not tell us how well these models perform in practice, but

it indicates that extra parameters are not a solution to all problems: they need to b~
used in the context of a structure with sound fundamentals.

We focused on mean reversion because we find it an appealing feature in a bond

pricing model, yet it is missing from the most popular binomial interest rate mod-
els. The estimated autocorrelation of 0.906 reported in Table 1 is not substantially

different from one, but a value of one has, in the benchmark theory, two apparently
counterfactual implications for bond yields, The first is that the mean yield curve

eventually declines (to minus infinity) with maturity. In fact yield c,urves are, on

average, upward sloping, Figure 1 being a typical example. A second implication
was pointed out by Gibbons and Ramaswamy (1993) and may be more telling: with

y close to one, average yield curves exhibit substantially less curvature than we see
in the data. .An example with p = 0.99 is pictured in Figure 9, where we have set
A = –200 to keep the theoretical 10-year yield close to its sample mean. These two

implications illustrate the added power of combining time-series and cross-section

information, and suggest to us that random walk models overstate the persistence
of the short-term rate of interest. For these reasons, we feel that mean reversion is
suggested by the properties of bond prices.

For similar reasons, Black and l{arasinski (1991), Heath, Jarrow, and h’Iorton
(1992), and Hull and White (1990, 1993) have developed ways of introducing mea~~-
reversion into arbitrage-free models. Despite these developments? mean reversion is

generally ignored by all but the most sophisticated market participants. Financial

professionals do not generally reveal their methods, but they can be inferred frol~~
other sources. One source is books on fixed income modeling. Tuckman ( 1995) is
aimed at quantitatively-oriented MBA students and is used in Salomon Brothers’
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sales and trading training course, yet devotes only four pages to models with mean

reversion. Sundaresan ( 1996) targets a similar audience and disregards mean reversion

altogether. Perhaps a better source is Bloomberg, the leading purveyor of fixed
income information services. Calculations on Bloomberg terminals of the “fair value”
of interest rate derivatives are based on a log-normal analog of the Ho and Lee model,
and calculations of “option-adjusted spreads” for callable bonds use the same model

as the default (Bloomberg 1996), with Black, Derman, and Toy (1990) and Hull and

White (1990) available as alternatives.

However, we think the central issue is not, mean reversion, but whether pricing
models — arbitrage-free or not — provide a good approximation to the fundanlell-
tals driving bond prices. Mean reversion, in this context, is simply an example of

a fundamental that cannot be mimicked by time-dependent drift and volatility pa-
rameters. A second example is multiple factors. Work by, among others, Brennau
and Schwartz (1979), Chen and Scott (1993), Duffie and Singleton (1995), Dybvig

(1989), Garbade (1986), Litterman and Scheinkman (1991), and Stambaugh (1988)
clearly indicates the benefits of additional factors in accounting for the evolution of

bond prices through time, Longstaff and Schwartz (1992) are representative of a
growing number of studies that identify a second factor with volatility, whose varia-

tion through time is apparent in the prices of options on fixed income instruments.

Yet another example is the fat tails in weekly interest rate changes documented by
Das (1994), who introduced jumps into the standard diffusioll-basecl models, We
would guess that models that ignore any or all of these fundamentals will, as a direct

consequence, produce inaccurate state prices.

We argue, in short, that fundamentals matter, and that poor choice of fundanlell-

tals cannot generally be rectified by judicious use of time-depenclent parameters.

8 Final Thoughts

We have examined the practitioners’ methodology of choosing time-dependent pa-
rameters to fit an arbitrary bond pricing model to current asset prices. We showed,
in a relatively simple theoretical setting, that this method can systematically mis-
price some assets. Like Ptolemy’s geocentric model of the solar system, these models

can generally be “tuned” to provide good approximations to (in our case) prices of
a limited set of assets, but they may also provide extremely poor approximations for
other assets. As Lochoff (1993, p 92) puts it: ‘LEven bad models can be tuned to give
good results” for simple assets.
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Whether these theoretical examples of misprizing can be used to direct trading
strategies in realistic settings depends on the relative magnitudes of the misprizing

and the inevitable approximation errors of more parsimonious models. We would not

be willing, at present, to bet our salaries on our benchmark theory. Nevertheless, we
think the exercise indicates that it is important to get the fundamentals right. In our
thought experiment, fundamentals were represented by the degree of mean reversion
in the short rate, and we saw that a mistake in this dimension could lead to large

pricing errors on some securities. The extra time-dependent parameters, in other

words, are not a panacea: they allow us to reproduce a subset of asset prices, but do

not guarantee accurate prices for the full range of interest-rate derivative securities.
In more general settings, we expect a model with 71arrays of parameters to be able to

reproduce the term structure of prices of rt classes of assets, but if the fundamentals
are wrong there will be some assets that are mispriced.

The difficulty in practice is that even the best fundamental models provide only

a rough approximation to the market prices of fixed income derivatives. That leaves

us in the uncertain territory described by Black and Karasinski (1991, p 57): “[~>ne]
approach is to search for an interest rate process general enough that we can assume

it is true and unchanging. ... While we may reach this goal, we don’t know enough to
use this approach today. ” Best practice, we think, is to combine current knowledge

of fundamentals with enough extra parameters to make the approximation adequate

for trading purposes.
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A Mathematical Appendix

W’e derive many of the formulas used in the text. For both the benchmark theory
and our analog of the Black-Derman-Toy modelt we derive the stochastic discount

factors implied by the pricing kernels listed in the text, and the implied bond prices,
forward rates, and prices of call options on discount bonds. The result is effectively

a mathematical summary of the paper.

A.1 Benchmark Theory

We characterize bond pricing theories with stochastic cliscount factors,

or —log ~ft,t+~, = – ~;=l log nLt+j. Given the pricing kernel ~n of our benchmark

theory [equations (2) and (3)], the stochastic discount factors are

for n z 1. Given the discount factors, we compute bond prices from fi~ = EtIWt,~+,Z
[a consequence of (5)]:

–log~ = nd+

Forward rates [see (1)] are

l–~” 2
A+— n2/’2,

l–p

which includes a short rate of rt = j: = Zt – (Aa)2/2.

It is conventional to express discount factors, bond prices, and forward rates in

terms of the observable short rate T rather than the abstract state variable z, which
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is easily done given the linear relation between them. Since p = 6 — (~a)z/2, we get
discount factors

bond prices

and forward rates

as stated in equation (10)

A.2 Black, Derman, and Toy

We approach our Gaussian analog of the Black-Dern~an-Toy model the salne way,
using equations (21 ) and (22) to define the pricing kernel. Our analog of the Ho and
Lee model is a special case with ,Bt= ~ for all t. The stochastic discount factors are

They imply bond prices of

71

– log b: = nzt + ~(n — j)at+j — ~(v + n - j)2Pt+j/2
j=l j=l

and, for n 2 1, forward rates of

Sillce the, short rate is ~t = ~~ = Zt — (y@t+l )2/2, we can rewrite these relations as
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and

as stated in equation (23). With,flt+j= P thisreducesto

equation (15) of the Ho and Lee model.

A.3 Nonequivalence of Discount Factors

Our examples of assets that are mispriced by the Black-Dernlall-Toy model indicate
that E31ack-Derman-Toy cannot generally reproduce the stochastic discount factors of

our benchmark theory:

Proposition 1 The parameters {y, at, Pt} Of the Black-DermaTl-Toy model CUILILOi

be chosen to reproduce the stochastic discount factors of the benchmark theory.

The proof consists of comparing the two discount factors, (A 1) for the benchmark
theory and (A2) for the Black-Derma~l-Toy model. The deterministic terms of (,41)

and (A2) are relatively simple. For, say, the first n discount factors, we can equate

the conditional means of (Al) and (A2) by judicious choice of the n drift parameters

{~t+l,~~~,Q,+,,}. The stochastic terms, however, cannot generally be ecluated. We

can represent the initial stochastic terms for the benchmark theory in an array like
this:

j=l j=z j=~

n=l ~ct+l

n=z (A+ l)Et+, A&t+2
?1= :3 (A+ 1 + y)&t+, (A+ l)&,+2 AE~+~
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For the Black-Derman-Toy model the analogous terms are

j=l j=~ j=:~

n=l 7qt+l
TL=z (7+ I)?/t+] yvt+2

n=~ (7+ ~)qt+l (7+ 1 )qt+2 ‘i7t+3

If a = Othe model is riskless and replicable with drift parameters alone. Alternatively,
if p = 1 we can replicate the benchmark theory by setting ~ = ~ and T~~+j= ct+i,

which implies ~t+i = a for all j. But with a # O and v # 1 it is impossible to
choose the price of risk y and volatility parameters {~t+l, ~t+2, ~t+3} to reproduce the
benchmark theory. Suppose we try to match the terms sequentially. To match the

term (n, j) = (1,1) we need

~~t+l = ~&t+l,

which requires ~~t+l = ~0. Similarly, equivalence of the (2, 1) terms,

(7+ l)qf+l = (~+ l)~t+l,

tells us (for nonzero A) that the parameters must be ~ = A and ~~~+1= a. The (13,1)

term now requires
y+2=A+l+y,

which is inconsistent with our earlier parameter choices when y # 1. (When A = O
the same conclusion holds, but the argument starts with the (2, 1) term.) Thus we

see that our attempt to reproduce the discount factors of the benchmark theory with

those of the Black-Dermall-Toy model has failed.

It is easy to imagine similar problems

example, let ~ depend on time. But for

cannot reproduce the discount factors of

A.4 Bond Options

with extensions of the model. We could, for

similar reasons, this one-dimensional array

the benchmark mode].

Any stream of cash flows {ht} can be valued by

?Z

j=l

using the stochastic discount factors M. We use

options on zero-coupon bonds.

this relation to price European
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Consider a European call option at date t with expiration date t + ~. The option
gives its owner the right to buy an n-period bond at date t + T for the exercise price
k, thus generating the cash flow

h ,+, = (b;+. - ~)+,

where x+ = max{O, x} is the nonnegative part of ~. The call price is

“n = E, [Mt,t+,(v+.– ~)+]Ct (A3)

Computing this price involves evaluating (A3) with the appropriate discount factor
and bond price.

Both of our theories have lognormal discount factors and bond prices, so to

evaluate ( A3) we need two properties of lognormal expectations, Let us say that

log z = (log xl, log Zz) is bivariate normal with mean vector p and variance matrix Z.
Formula 1 is

E [Z11(X2 – k)] = exp(pl + a~/2)LN(d),

with
~= P2–logk+a12

1V2

where N is the standard normal distribution function and 1 is an indicator function

that equals one if its argument is positive, zero otherwise. A similar result is stated
and provecl by Rubinstein (1976, Appendix). Except for the J$Tterm, this is the usual

expression for the mean of a lognormal random variable. Formula 2 follows from 1

with a change of variables (X1X2 for Z1):

with
~=P2–logk+a12+a:

Q2

Our application of these formulas to (A3) uses Mt,t+. as xl and ~+T as 12.

For the benchmark theory, we use discount factor (A 1) ancl evaluate (A3) using
the expectation formulas. To keep the notation manageable, let

25



Now we look at the discount factor and future bond price. The discount factor is,

from (Al),

It has conditional mean given by the first two terms and conditional variance 2.47.
The future bond price can be represented

An enormous amount of algebra gives us the call price

T,?l
Ct = b;+nN(d~) – kb;fv(~2),

with

~1 _ log[b:+’’/(b;k)] + v:,,,/2—
VT,n

d2 = d, – VT,n

and option volatility

the conditional variance of the logarithm of the future bond price.

The call price for the Black-Dermall-Toy model follows a similar route with dis-
count factor (A2). If we choose the model’s parameters to match bond prices, then

the only difference in the call formula is the option volatility,

‘r

V2 =T,n n2 ~ ~~+j.
ICI

Whether this is the same as the benchmark theory depends on t,he choice of volatility

parameters {~t }.
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The difficulty with the Black- Derman-Toy model with respect to pricing options

in our benchmark economy is similar to that with stochastic discount factors (Propo-
sition 1). Volatilities are defined over the two-dimensional array indexed hy the length

~ of the option and the maturity n of the bond on which the option is written. This

array cannot be replicated by the one-dimensional vector of volatility parameters

{p,}.
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Table 1

Properties of Government Bond Yields

Data are monthly estimates of annualized continuously-compounded zero-coupon US

government boncl yielcls computed by MCCU11OC1Iand I{\von (1993). The sample
period is January 1982 to February 1992.

Maturity Mean Standard Deviation Autocorrelation

1 month

3 months
6 months

9 months
12 months
24 months

36 months
48 months

60 months
84 months
120 months

7.483

7.915

8.190

8.372

8.563

9.012

9.253

9.405

9.524

9.716

9.802

1.828
1.797
1.894

1.918

1.958
1.986
1.990
1.98:3

1.979
1.956

1.864

0.906

0.920

0.926

0.928

0.932

0.940

0.943

0.946

0.948

0,952

0.950
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Figure 1. Mean Yields in Theory and Data
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Figure 2. Two Choices of Ho–Lee Drift Parameters
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Figure 3. Ho and Lee Call Price Premium
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Figure 4. Black-Derman–Toy Drift Parameters
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Figure 5. Black–Derman–Toy Call Price Premium
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Figure 6. Black–Derman-Toy Exotic Price Premium
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Figure 7. Initial and Revised Volatility Parameters
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