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1. Introduction.

There is by now a large empirical literature on the post-deregulation airline industry. This
literature has focused on a number of issues regarding the provision and pricing of airline
services.! One of the most debated aspects of the industry restructuring is the almost complete
shift in network organization, from “point-to-point” to “hub-and-spoke.” Hub and spoke
networks, in which passengers change planes at a hub airport on the way to their eventual
destinations, have been criticized as increasing entry barriers and driving up prices for hub-
originating passengers (e.g., Borenstein, 1989, 1991).2 Others, including some airline executives,
have suggested that hub-and-spoke networks reduce costs (e.g. Caves, Christensen and Trethway,
1984; Brueckner, Dyer and Spiller, 1992, hereafter, BDS; Brueckner and Spiller, 1994).* The
claim of the cost-efficiency of hubs has been challenged by the success of non-hub carriers, like
Southwest.*

These two effects, increasing markups and reducing costs, though, are not mutually
exclusive (Berry 1990). Airline hubs could raise prices for some consumers by substantially
increasing markups over marginal cost, while at the same time reducing costs. In this paper, we
use a differentiated products supply-and-demand model to disentangle the separate effects of hubs
on costs and markups. We think of hubs as shifting out the product specific demand curve for
flights of the hubbing airline out of its hub city. Flights originating at hubs and provided by the
hub-airline may appeal especially to relatively price inelastic consumers. This shift in the level and
elasticity of demand can lead to both higher output levels and prices for the hubbing airline,
consistent with previous empirical results. On the cost side, we allow for economies of "spoke
density:" more densely traveled spokes may have lower marginal costs. Economies of spoke

! Deregulation removed restrictions on entry and exit and gave carriers the freedom to set

fares. For discussion of the impact of the new regulatory environment on airline operations, see
Bailey and Williams (1988), Bailey, Graham and Kaplan (1985), Brueckner and Spiller (1994),
Levine (1988), Moore (1986), and Morrison and Winston (1986).

2 Critics also mention several other negative features of hub-and-spoke networks, like

increased number of connections, and the increase in hub airport congestion (as planes land and
depart in bunch).

> For an industry defense of the hub-and-spoke system, see Michael Levine’s editorial page
article in Northwest Airlines’s February issue of its in-flight magazine.

*  Southwest has been the only consistently profitable carrier since deregulation. See, US

Department of Transportation, Air Carriers Financial Statistics Quarterly, various issues.
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density will lead to economies of scope across itineraries that share a common spoke.®* These
economies of scope in turn imply network economies, so that itineraries that include a hub airport,
by increasing spoke density, may have lower costs (see BDS).

In this paper we provide estimates of a model of airline competition which capture the two
major features of the industry: product differentiation and economies of density. On the demand
side, we attempt to capture the fact that airline customers are heterogenous by allowing
customers’ preferences over various product specifications to be drawn from a binary distribution.
On the cost side, we estimate a very flexible spoke marginal cost function, so as to allow
economies of density to vary across different ranges.

Our estimates not only provide support to some of the traditional common wisdom in the
industry, but are also useful to understand major puzzles concerning the evolution of the industry
and its operational, marketing and pricing practices. First, we provide estimates of the differential
willingness to pay for different air travel features by what might be called tourist and business
travelers. Indeed, our results are consistent with the existence of two very distinct types of
passengers, one with the standard attributes of a tourist traveler (i.e., high price sensitivity, low
willingness to pay for frequent flyer features, low willingness to pay for frequency, low disutility
from connecting flights, etc) and another with a strong business-traveler flavor (i.e., low price
sensitivity, high willingness to pay for frequent-flyer features, high willingness to pay for
frequency, high disutility from connecting flights, etc). These estimates are the key to uncovering
the ability of hub-airlines to increase their markups in hub-originating flights. In this regard, we
provide evidence that hubs provide two major competitive advantages to companies: they reduce
costs and allow for higher markups on hub originating passengers.

Second, our estimates show that a hubbing airline’s ability to raise prices at its hub is not
universal, but rather is focused on tickets that appeal to relatively price-inelastic consumers, (i.e.,
business travelers). Indeed, we find that hub airlines do not find it profitable to raise prices much
to non-business travelers. Thus, business travelers’ higher willingness to pay for flying a hub-
airline coupled with their price inelastic demands, provides hub airlines with the ability to offer
higher priced products to which business travelers will self-select.

5 For example, the itinerary New York-Chicago-San Diego shares a spoke with New

York-Chicago-Seattle. Thus, an increase in demand for the airline’s New York-San Diego
service, increases traffic in its New York-Chicago leg, and if economies of density are present, it
reduces the marginal cost of providing service in the New York-Seattle market. See Brueckner
and Spiller (1991, 1994).
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Third, our estimates suggest that in spite of the higher markups of the hubbing airlines, the
price inelastic consumers (i.e., business travelers) drastically move their flying patterns towards .
the origin hub airline, even though they have to pay an average premium of 20% or so over the
prices charged by the non-hub competitors.

Fourth, our estimates show that the existence of a hub airline does not provide a
“monopoly umbrella” to the other non-hub airlines serving the hub airport. Indeed, non-hub
airlines competing with a hub-airline face the workings of a particularly strong competitive
scissor: a reduction in the proportion of their travelers who are price insensitive, and a reduction
in market share. Both are the result of the shift of the price insensitive passengers (business
travelers) towards the hub airline. The increased price sensitivity of their average passenger,
however, reduces the non-hub airlines’ average yield and, as a consequence, the profitability of
serving all routes connected to that airport. Thus, competing airlines will reduce service out of an
airport where a competitor starts operating a hub. Our results, then, provide a possible
explanation for the increase in airport concentration that has taken place following airline
deregulation (Brueckner and Spiller, 1994). Such increase in airport concentration, however, is
not necessarily the result of increased entry-barriers, but rather of the price insensitivity of
business travelers’ demands and of their valuation of flying the hub-originating airline.

Finally, on the cost side, we find strong evidence of economies of density. Indeed, airlines
operating large hubs are found to have, on average, significantly lower marginal costs, out of the
hub, than their competitors in the same routes. We show, however, that economies of density
may depend on the nature of the route. In particular, we do not find economies of density at
distances less than 500 miles or so. This may help to explain the “Southwest effect,” which
relates to the apparent profitability of Southwest Airlines, a non-hubbing airline offering frequent
flights on short routes. According to our estimates, the “Southwest effect” may not be
exclusively the result of lower labor costs, but rather may be the result of Southwest’s having
found a particularly effective “cost” niche.®

2. Costs and Demand: Preliminaries

Costs. The cost efficiencies of hubs may arise from the use of large, cost-effective aircraft
on the densely trafficked spokes of a hub-and-spoke system. This idea relies in part on an

¢ This result puts in question Southwest’s recent strategy of moving “national.” Such

move implies moving into a range where economies of density, and hence, hub-and-spoke
networks, may be more efficient.
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engineering argument that larger planes are cheaper to fly per seat mile, at least on longer routes.
For a given flight frequency, more "dense" spokes can efficiently use larger aircraft. Economies
of scale at the level of airline spokes in turn imply network economies, for hubbing airlines can
combine passengers who have different final destinations on a single large plane that flies to a hub
city. At that hub the passengers switch to different planes, which in turn combine passengers
from various initial origins.

There is some empirical evidence in favor of hubs reducing costs. Caves, Christensen and
Tretheway (1984), for example, estimate economies of density by analyzing the relationship
between airline total costs, route structure, and total passenger traffic. They find that, holding the
airline's route structure (e.g., the number of points served) constant, total cost increases only 80%
as rapidly as total traffic, indicating significant economies of traffic density. While this is an
important finding, the underlying methodology ignores details of a carrier's route structure that
critically affect density levels, an omission that may bias the estimate of economies of density.” In
order to capture such detail, a more disaggregated approach is needed that makes use of density
information at the individual route level. Use of such detailed output information, however, is
impossible within the traditional cost-function framework because the required cost accounting
data are not available at the route level (indeed, route-level total or average cost is not even well-
defined.) Therefore, estimation of economies of density using disaggregated data must proceed in
a way that does not require direct cost information.*

Brueckner and Spiller (1994) provide an alternative method to estimate economies of
density that is not based on traditional cost function approaches, but rather directly model the role
of spoke densities. In their model, the marginal cost of adding a passenger to a given spoke
changes with an airline's total traffic, or density, on that spoke. The marginal cost of a multi-
segment passenger is then found as the sum of the marginal costs of each segment. This marginal
cost in turn affects price. Thus, the high spoke densities that are a feature of hub-and-spoke
networks are allowed to affect costs and prices in a natural way. Brueckner and Spiller (1994)
focus on flights that pass through hub airports, rather than originating at hubs. (This is an attempt
to control for the higher markups that may be found on flights out of hub airports.) They find

7 For example, holding the number of endpoints fixed, densities will fall as the number of

hubs operated by the airline increases.

8 We are not the first to estimate an oligopoly model, including a marginal cost function,

without dlirect cost information. For prior attempts, see, for example Porter (1983) and, more
generally, Bresnahan’s (1989) survey of structural estimation of oligopoly models.
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evidence that by funneling passengers through a hub airport, the switch to hub-and-spoke
operations raised traffic densities and allowed carriers to reduce their costs.

For the cost side of our model, we take an approach similar to Brueckner and Spiller
(1994). We model the effect of density on the marginal costs of each spoke in the network. The
marginal cost of flying a given itinerary is then the sum of the marginal costs of the spokes
defining that itinerary. A product’s marginal cost is “observed” as price minus a markup that is
derived from our model. In practice, then, we make inferences from the effect of density on
prices, holding markups constant via the techniques discussed below.

There are several issues to be faced in using such a model. First, depending on demand
conditions, airlines may respond to increased density by increasing flight frequency rather than by
increasing plane size. Therefore, in the empirical work we try to control for flight frequencies.
Second, high traffic, and thus low cost, on some spokes may be a consequence of high demand
for associated itineraries, resulting in low prices as well as high markups. This suggests that
densities are endogenously determined, together with price. Our estimation procedure tries to
account for this endogeneity. Third, density may affect fixed as well as marginal costs, an effect
that we will simply not capture. Finally, marginal cost may vary with factors that we do not
observe, such as capacity levels that vary across time of day. We do not observe these factors and
so cannot account for them.

Demand. Many authors have suggested reasons why flights on hubbing airlines
originating out of hub airports may be associated with higher markups (e.g. Borenstein, 1989,
Levine, 1987). It has been suggested that various marketing programs, such as frequent flier
programs and non-linear travel agent commission programs, both build brand loyalty and may
exploit various principal-agent problems. Hubbing airlines may also offer superior service via
their control over airport resources: for example more convenient gates and better departure
times.

Evidence for this markup effect has been provided in various regressions of price on
characteristics of routes and markets, including whether the flight originates from a hub.
Borenstein (1989), for example, finds that flights on airlines with a hub at one or both endpoints
command higher prices. This effect seems to be particularly large at the high end of the price
distribution. Borenstein (1989) does not provide a model! of costs or demand, but attempts to
control for market-level unobservables by, for example, introducing city-pair level fixed effects.

In Borenstein (1991), he introduces directional city-pair effects, looking at the difference between
routes into and out of the hub city. He finds higher prices on flights out of the hub which might,
for example, be consistent with the effect of marketing efforts such as frequent flyer programs.
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Reduced form regressions, however, do not allow us to make statements about how prices
relate to costs, or what are the determinants of markups over cost. Our approach is to introduce
hubs as one characteristic in a differentiated products model of demand for airline flights. When
combined with the cost model and a notion of market equilibrium, we will obtain estimates of
markups for various products. In such a model, high markups can result both from a lack of
competition and from high levels of product-specific demand.

To obtain an empirically implementable model of product differentiation, we adapt recent
advances in empirical models of such markets (Berry, 1994, Berry, Levinsohn and Pakes, 1995 --
henceforth BLP). In these models, consumers differ in their valuations of the characteristics of
different products. In particular, we model two types of potential consumers ("business" and
"tourist", perhaps) who differ in their "taste" for direct flights, low fares, and other features of
airlines' products. A ticket on a direct flight with few restrictions, for example, can be sold to
business travelers at a high price, while other tickets may be sold primarily to tourists at low
prices. Our model of markups allows for the possibility that flights out of hub airports are offered
at higher prices, even if costs are low.

We believe that the restrictions placed on tickets, such as advance purchase requirements
and Saturday stayover rules, are an important explanation for the wide variety of fares offered
within given routes. Unfortunately, our data do not contain information on ticket restrictions.
Previous authors have generally used this same data set and have not been able to control for such
restrictions. We introduce an explicit unobserved product characteristic, which is correlated with
prices, to help control for these unobserved restrictions.

Equilibrium. Following Berry’s (1990) equilibrium model of airline prices, we assume
that prices are set according to a static Nash equilibrium in prices. It is this equilibrium
assumption, together with the models of cost and demand, that allows us to construct markups for
various products. The equilibrium accounts for a wide variety of interactions across and within
firms. In particular, we take account of the multi-product nature of production. A given airline
frequently offers a variety of products (defined, for example, by different itineraries and
restrictions) within a given market. In a Nash equilibrium, the optimal price vector for the firm
takes into account the positive effect a price increase on the sales of other products offered by the
same firm. Similarly, a given spoke carries passengers who have paid for many different products.
A change in the price of any one of these products affects the costs of all products sharing this
spoke.
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3. The Model.

Our general strategy is to model costs and demand for individual products within a cross-
section of markets. The model outlined in this section is "structural" both in the sense that it is
derived from economic primitives like cost and utility, and in that unobservable factors are
explicitly discussed. The use of economic primitives allows us to separate out cost and demand
effects. As for unobservables, some discussion of these is always important in empirical work, for
the properties of the various possible estimation strategies rely on the properties of the
unobservable "errors” of the model. Even more important, perhaps, we believe that our data
simply do not measure a number of important variables, such as the restrictions placed on a ticket.
Ignoring such unobserved factors might lead to substantially misleading results.

We should note, however, that the model suffers from a reliance on a variety of functional
form and behavioral assumptions. We are able, though, to substantially relax the very restrictive
functional form assumptions that have been frequently employed in past work on airline markets
(such as in Brueckner and Spiller or Morrison and Winston). The estimation strategy employs a
number of exogeneity restrictions, but in contrast to much past work we treat prices and spoke

densities as endogenous variables.

We begin by defining notions of markets and products. Many of our definitions and
modeling choices are motivated by the available data, so in this section we sometimes indicate the
general nature of our data. A later section will provide details on the data.

Markets and Products. Markets are defined as round-trip air travel between an origin and
a destination city. Thus, one market is for round-trip travel with New York as the origin and San
Francisco as the destination. Our markets are directional origin-destination markets: New York-
Los Angeles is a different market than LA-NY. This allows characteristics of the origin city to
affect demand.

Within each market there is a set of products. Motivated by our data, we define products
as a unique combination of airline, fare and itinerary. Thus three products in the NY-LA market
might be (1) a direct United flight at $399, (2) a direct United flight at $299 and (3) a United
flight through Chicago, also at $299. Our data, most unfortunately, do not provide information
on restrictions such as advance purchase requirements, Saturday night stayover rules and limits on
the number of seats sold. To deal with this, we introduce an explicit, unobserved variable to
capture restrictions; this variable explains why different fares co-exist on the same airline-itinerary.

For each such product, we observe (with some sampling error) the number of passengers.
Note that the number of passengers associated with a single product does not correspond directly
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to spoke density. Spoke density is defined as the sum of the number of passengers taking all
itineraries that include the given spoke as one flight segment. The density of United's NY-
Chicago spoke thus includes passengers with many destinations out of New York apart from
Chicago.

Demand. Following earlier authors, such as Morrison and Winston (1986), we adopt a
discrete choice model of demand. Morrison and Winston use similar definitions of market and
products and assume that within each city-pair market the utility of consumer i for product j is
given by

.= XD - R
u'] x]ﬁ apj y

where x; is a vector of characteristics of the product and market (such as distance between the
cities, whether the origin is a hub for this airline, flight frequency, etc.) and p, is the fare. The
parameters to be estimated are  and a. The term ¢; captures the variance in tastes for different
products. In Morrison and Winston, this term is assumed to be distributed i.i.d. extreme value
across consumers and products. This yields the familiar logit formula for the expected market

shares, s, of each product:

e xja-apj

J Zk e xB-op,

where the sum in the denominator is over the set of products offered in this market.

Following BLP (1995), we extend the classic logit model in several directions. First of all,
we want to allow for the possibility that price increases can drive consumers out of the market for
air travel. To do this we introduce an explicit "outside" good, which might include auto travel
and the use of the phone. The outside good has utility

The mean of this utility, then, is normalized to zero. Coefficients on market level factors that
enter the utility for "inside" the market goods are therefore interpreted as being relative to the
outside good. Market shares now are defined as the share of a given product out of all potential
trips between these two cities. The number of such potential trips is not observed, although we
believe it to be related to the population of the cities.
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Formally, we assume that in origin-destination market n there is some number of potential
passengers who consider air travel. In the empirical specification, this number is assumed to be.
proportional to the geometric mean of the population of the origin and destination cities. The use
of the geometric mean has both empirical and (weak) theoretical precedents in the literature on
travel demand. Denoting this mean population as M, and the factor of proportionality as u, the
number of potential passengers is then uAf,. Note that M is data, while p is a parameter to be
estimated. We realize that the "number of potential trips" is a rather abstract concept, but we
must introduce some such concept to allow for the outside good in the model. We will generally
think of each potential trip as representing a different consumer, although this need not be so if a
single consumer might take several trips in the same market. For simplicity, we will not model
any correlation in tastes across potential trips.

Second, we recognize that the publicly available data do not tell us what restrictions are
placed on a ticket. To account for this, we follow Berry (1994) and introduce an unobserved (to
us) product characteristic, §, The term §, which is perfectly observed by firms and consumers,
will also capture other unmeasured characteristics of the product, such as the quality of the food
and the service. This characteristic enters utility in much the same way as the observed x's. Since
there is one unobserved characteristic for each product, we cannot consistently estimate the
from product level data. Therefore, as the estimation section will make clear, to estimate the
model we must place some restrictions on their distribution. We could assume some parametric
distribution for the unobserved product characteristics, but instead we will use the weaker
assumption that the §; are uncorrelated with some vector of instruments.

We do not want to assume that the unobserved product characteristics are uncorrelated
with price, because we believe that tickets with different restrictions have systematically different
prices. We will assume that the E,- are uncorrelated with other observed demand variables, such as
the distance between the two cities and a dummy variable for whether the flight is direct.

Whether these exogeneity restrictions are reasonable depends on the economic process that
generates restrictions on tickets. To give one extreme case, if the same restrictions are offered
on each airline/itinerary, then the exogeneity restrictions are correct. For example, an airline
might always offer an unrestricted fare, an advanced-purchase Saturday night stayover fare and an
advanced purchase fare with no stayover restriction. In this case, there will be no correlation
between the (un)restrictiveness of the ticket and x. On the other hand, it is not hard to think of
stories which would violate our exogeneity restriction.

As a third extension, we generalize the distribution of tastes across consumers (see
Hausman and Wise, 1978 and BLP, 1995.) In particular, we consider a random coefficients
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framework in which the taste for product characteristics and prices, (B, &), varies across
consumers. For example, we might assume that utility is given by .

u, = xp, —op + & + g,

where (B, o) is assumed to have some distribution across consumers. Unlike the logit model, this
allows markups to systematically vary with observed characteristics. In the random coefficients
model the tastes of consumers who purchase a product vary systematically with x and p. Thus, a
change in price will have systematically different effects on products with different characteristics
and prices. For example, a high priced product will be purchased, on average, by consumers who
do not care much about price. Thus, a price increase may not have a large effect on the demand
for this product. In contrast, in the logit model price effects (measured by the slope of demand)
are always equal for products with equal market shares, regardless of the values of x and p.
Indeed, this last feature is true of any discrete choice model in which consumer tastes enter only
as an additive i.i.d. term.

There is an important question of how to model the distribution of the random
coefficients. One traditional model would assume that (B, «,) are distributed i.i.d. normal across
consumers. The correlation of tastes across characteristics is often assumed to be zero for
simplicity (as in BLP). However, we believe that the distribution of consumer tastes may be bi-
modal. This is because there is a group of business travelers for whom the price of a ticket is not
an important consideration in their decision to fly. There is another, probably much larger, group
of potential travelers for whom the price of a ticket is, however, an important factor.’
Furthermore, business travelers may have systematically different tastes for observed x's, such as
flight frequency and whether the flight is direct. This last point suggests that tastes are correlated
across characteristics.

We adopt the simplest distribution that is bi-modal and features correlation in tastes across
characteristics.’® This is a two point distribution. We estimate two different taste parameters, (B,,

®  This difference in price sensitivity may arise from several factors including the urgency or

need of the trip, tax considerations (travel is a deductible expense for business but not for
tourists), and even the extent by which business travelers fully internalize the costs of their tickets.

19 There is some evidence that the distribution of fares may be a bi-modal mixture of

distributions. Looking at the distribution of fare per mile (available from the authors upon
request) we observe that such distribution has a fat upper tail, which is inconsistent with a normal
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«,) and (f3,, &,), together with the probability, v, that a potential-consumer is of "type one".
Note that this distribution has 2K+ / parameters if there are K characteristics with random
coefficients. In contrast, the simplest normal distribution would have 2K parameters -- a mean
and a variance of tastes for each characteristic. Our discrete distribution also has the advantage
that it will provide a simple closed form expression for market shares. In contrast, the normality
assumption requires numeric integration to obtain market shares.

There are obvious extensions of our two point discrete distribution. For example, one
could model tastes as being drawn from two different normal distributions. This would allow for
within type variance in tastes, as seems reasonable, but would also return us to the problem of
numeric integration. Alternatively, we could allow for more than two discrete types of
consumers. Although this specification would lose any neat interpretation as "business" and
"tourist" travelers, it might more accurately reflect the data. Each of these extensions, however,
would require a significant increase in the number of parameters to be estimated.

Random coefficients introduce a correlation in utility between products with "similar"
characteristics. We believe that the outside good is not at all similar to the inside goods, so we
also want to introduce correlation among the utilities of the "inside" goods. To do this in a simple
way, we use a nested logit framework, where the only "nesting" groups products into an inside
group and an outside good; the latter group, of course, has only one element. Note that the
nested logit assumption could be extended to include other nests -- on airports within cities, firms
within markets, etc. -- but we have not yet estimated such a model.

The Final Form for Utility and Market Shares. With all of these extensions, the utility
function becomes:

u, = xP, - op + & + v,A) + e,

distribution. Fitting fare per mile to a mixture of normal distributions we find that it provides a
much better fit than a simple normal distribution (adj R* of .999 against 0.972). The linear
combination is given by Fare = 0.5987*N(0.2375,0.0781) + (1-0.5987)*N(0.5946,0.2752). Itis
interesting to note that the fare/mile means from the the full estimation match these distributions
fairly well. As will be presented in more detail below, our full estimation provides a typel mean
fare/mile of 0.237 the same mean as estimated through this method. The type2 mean fare/mile
from the full estimation is 0.414, against 0.589 using this method. The proportions are a bit
different, 0.73 are from the “typel” distribution in the full estimation and only 0.598 using this
simple estimate.
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To summarize, the characteristics of the product are x;, p, and §;. The fare is denoted by p, and
the vector x, contains the other observed product characteristics and market-level demand factors.
The term &; captures unobserved (to us) characteristics of the product, such as advance purchase
restrictions. The "taste" vectors [3; and «; vary across the two types of consumers.

The additive error, represented by the sum v; + Ag; is chosen to yield the familiar nested
logit market share function (see McFadden, 1978 and Cardell, 1992). The distribution of this
sum is parameterized by A, which is to be estimated. As in the logit, € captures idiosyncratic
tastes for a particular product; for example, consumer I may prefer a particular departure time.

In contrast, v; does not vary across products and represents the random taste for air travel,
relative to the outside good. Cardell (1992) gives the distributional assumption that implies the
nested logit market share function, conditional on values of B; and &, Under this assumption, as A
goes to 1 the within market correlation goes to zero while as A goes to zero, the correlation of
choices within the market goes to one.

Conditional on B, and «;, the nested logit market share function is given by the product of
the within group market shares (the share of this product out of the total number of tickets sold)
times the group share (the number of tickets sold in the market divided by the number of potential
consumers). For consumer type 1, the within market share is:

S ., =
g Z e(xjp] ““,P,*Ej)”*
J

whereas total share of the market, the group share, is

where the term D, is just the denominator of s',,. The market share of product j is then given by
the appropriate weighted average across the two types of consumers:

s = ¥/ + A-V)sipxk),
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where v is the proportion of type 1 consumers in the population and s'; is the share of type 1
consumers who purchase product j.

Costs. In our model, the total and marginal cost, respectively, of operating a given
spoke, s, are given by C(Q,w,) and ¢(Q,w,), where (O, is spoke density and w, is a vector of
exogenous variables. These exogenous variables include distance between the endpoint cities and
characteristics of the origin and destination airports. In addition to modeling spoke costs, we
assume that there is a random, idiosyncratic component to product cost. In particular, we will
assume that the product specific component of total cost for product j in market m is given by
;g The only reason for this particular specification is so that marginal cost of product j will
have a linear random error term, w,,. This makes for a convenient empirical specification.

Total variable cost for the firm is the sum of the total costs of each spoke flown by the
firm plus the product-specific costs. Let S,be the complete set of spokes flown by firm £, S(j,m)
be the set of spokes in the itinerary of firm f for product j in market m, and J(f,m) be the set of
products offered by firm fin market m. Then total firm cost is given by:

Cf B E’esf C(Q‘ Wer ) + z:m ZjeJ(ﬁm) wjmqjm + FCf

Note that fixed costs, FC,could be affected in some way by hubbing, but our empirical work will
make use only of estimates of marginal cost and so will not capture any such effect.

In this specification, there are common costs across products because the same spoke can
enter into the production of many demand-side products. Thus, is it not possible to speak of a
well-defined total cost for any given product. However, product marginal cost is well-defined and
is given by sum of spoke marginal cost across the spokes in the itinerary, plus the product-specific
component.

My = [ X, csim QW) ] + .

To derive an estimator, we will assume that w is uncorrelated with the exogenous variables of the
model. We treat price and spoke density as endogenous, and other observed variables as
€XO0genous.

Our prior belief is that there may be a complicated relationship between distance, density.
and flight frequency. At shorter distances, air travel competes heavily with auto travel (and, in a
few places, with trains). There may be pressure in these markets to use any potential cost savings
that stem from density to increase flight frequency, so as to the better compete with auto travel
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that allows travelers to choose a fairly precise departure and arrival time. We think of the East
and West Coast air shuttles, as well as Southwest airlines, as potential examples of this.!' Also,in
shorter markets it may not be cost effective to fly larger planes, because a large fraction of cost
involves take-offs and landings. In short markets, this fixed-cost with respect to distance is not
offset by large savings once in the air. We do not have a model of flight frequency, but we do
have data on the number of flights flown per quarter on each spoke. Ideally, we would like to
treat flight frequency as an endogenous variable, but in this paper we merely include it in some
specifications as an exogenous cost shifter.

To avoid imposing much structure on spoke costs, we want to use a fairly flexible
functional form in distance, density and flight frequency. In the empirical work reported below,
we use polynomials of these variables. Consider, for example, a case where spoke costs are
quadratic in distance and density and d, is the distance of spoke s. Then, for a multi-spoke ticket,
product marginal cost is given by a linear combination of Zd, 2.0, 2d’ X0’ and £d.Q, plus
the error term .

Note that we provide no role in costs for capacity constraints or for firms’ uncertainty
about future costs and demand. This is in large part because we have no information at the level
of individuals flights at a particular day and time. The data are aggregated to the level of the
airline/route/fare on a quarterly basis. Therefore we cannot identify which flights might be subject
to capacity constraints. Nor can we tell how uncertainty about the number of passengers on a
flight is resolved as the time of departure approaches.

Capacity constraints, together with demand uncertainty, have been proposed as possible
explanations for some features of airline pricing, such as the apparent price discrimination in favor
of tickets purchased in advance. Other features of pricing, such as Saturday stayover rules appear
to be harder to explain as purely cost-based phenomena. In any case, there is always that
possibility that some of what we label as a markup in fact represents a shadow price of capacity.

As another caveat, our estimation techniques can at best identify only the parameters of
marginal cost. One of the cost reducing effects of hubs may be to reduce fixed cost, but we will
not capture any such effect.

Markups and the Pricing Equation. To close the model, we assume price-setting
behavior by the multi-product firms in each origin and destination market. In the pricing equation

1" Southwest Airlines is not in our data set, as it reports all its sales as being composed of

one way tickets. As a consequence, it does not fit our product definitions. See Data section
below.
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that we derive, each firm takes into account the effect of a change in price on the demand and cost
of its own products in this market, and (through the spoke densities) on the cost of its products in
other markets.

Our assumption of a static Nash equilibrium in prices is obviously a simplification. Airline
“yield management” techniques attempt to allocate seats across different fare classes in a
complicated fashion that depends on the sales history of a particular flight. Therefore, the true
equilibrium involves more choices than just prices and it has some dynamic component. This
dynamic component would be even more complicated if, as some allege, airlines engage in some
form of tacit collusion. Unfortunately, these interesting extensions to our equilibrium model are
very difficult to implement and are left for future research.

In our model, profits of firm £, which in each market m produces the products in the set
J(f,m) are given by the sum over the revenue generated by each product minus total cost:

Ty = Em EjeJ(/Zm) qu(P)pjm - Zsesf C(Qs’ws) - Em Eje./(;:m) wjmqjm(p) - F Cf

Differentiating with respect to the price of product j in market m gives a first order
condition of

or,
ap

jm

aqk
qjm E EkeJ(fm) ap - wjm _z,es(k,m) C(Q, ,W‘f)] =0
Jm

But since the marginal cost of product & in market m is

mck = [ZJES(k,m) C(Q,’w,)] + wk’

we can rewrite the first order condition in the more familiar form of

oq

f k

—(p, -mc,)=0.
ap Jm qjm Ekep 3 P k k)

Then, following BLP, define the matrix A which has elements (j,k) equal to &, / P, ifj
and k are produced by the same firm, and equal to zero otherwise. In vector notation, the pricing
equation is then:

p=ATs + mc



March 1996 BERRY, CARNALL AND SPILLER Page 16

where the first term on the right-hand side is the markup.

To derive the matrix A, note first that it is possible to get analytic forms for the derivatives
of shares conditional on each type, &',/ ap; and &,/ b, Let A, be the matrix of derivatives of
market share with respect to mean utility for consumers of type one, (with j k elements not
produced by the same firm again set to zero). Then, using the analogous definition for A,, the

derivative matrix is:

A = yo,A + (1-V)a4,

which is enough to give us the markup term. The markup depends only on the derivatives of
market shares with respect prices and therefore does not depend on any cost-side parameters.

Remember that we should not confuse markups with profits. Airlines may not be
profitable even if markups over marginal cost are large, because fixed costs are potentially large
and because marginal may be declining in output over a substantial range.

4, Estimation.

The estimation techniques are taken from Berry (1994) and Berry, Levinsohn and Pakes
(1995). These depend on an assumption that the two "errors" in the model, § and w, are mean
independent of some vector of observed instruments. (This is analogous to the OLS assumption
that the error is mean independent of x.) We want to allow for the endogeneity of price and
density, so we do not include these in the instrument vector. However, we do treat the other
product characteristics (and indeed the network structure of each firm) as exogenous. While our
econometric assumptions are still restrictive, they are in many ways less restrictive than the
assumptions found in previous work.

Estimation of the parameters of the model is undertaken by the method of moments, which
exploits the mean independence assumption on the errors of the model. In particular, at the true
parameter vectors, the errors of the model should be orthogonal to the vector of instruments.
Thus, we choose the vector of parameters which sets the covariance of the errors and the
instruments “as close as possible" to zero.

' Entry into airline networks was modeled in previous work undertaken separately by two
of the current authors. These attempts, though, involved much less detailed models of product
markets and, in any case, did not endogenize the entire network structure. See, Berry (1990) and
Reiss and Spiller (1989).
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Because the basic procedure is described in much detail in BLP (1995), we will not
belabor it here. The method of moments framework requires us to solve for unique values of the
unobservables as a function of the data. On the demand side, unique values of § are guaranteed
by a result in Berry (1994). We calculate them using a slight variation of a contraction mapping
technique used in BLP. This calculation requires us to compute the market share function itself.
Unlike the BLP specification, our assumptions on demand give us analytic market share and so,
unlike BLP, we do not require any Monte Carlo integration techniques. Given the size of our
data set, this is fortunate. On the cost side, we note that marginal cost can be computed simply as
price minus the markup, where the markup is a function of demand side parameters and of . The
cost side unobservable is then just a linear term in marginal cost.

Thus, for any values of the parameters, 6, we can compute two vectors of unobservables,
£(6) and w(0). At the true value of 0, these unobservables have mean zero, conditional on our
assumed vector of instruments. This is the restriction that drives the estimation procedure.

To calculate standard errors of the estimates, we have to make some assumptions on the
correlation structure of the errors. Across markets, the errors are assumed to be independent.
Within markets, we assume a factor structure for the demand and cost errors. Both errors have a
market-specific component and these components are correlated across demand and cost. Thus,
demand and cost errors are assumed to be correlated within markets. The factor structure is used
in calculating the variance matrix of the moment conditions, which is one component of the
formula for the variance of the estimates.

Berry (1994) makes a simplifying assumption that the econometrician observed the
expected market share. In actual data, we observe this only with sampling error. In BLP (1995),
this sampling error in observed market shares was not large, because the shares were calculated as
a fraction of the population of U.S. households, which on the order of 100 million. In this paper,
we also have a large sample size, of more than one million. Unfortunately, this sample is divided
into more than 120,000 products across more than 14,000 markets. Thus, the average number of
sampled passengers choosing a given product is less than 10. While in other contexts a sample
size of one million might lead one to ignore sampling error, in our case it is not so obvious.
However, we must leave the topic of how to correct our standard errors for this source of
variation for future research. Our current standard errors correct for the very large variation
across products and markets.

Instruments. Our estimation procedure requires us to specify a vector of exogenous
instruments. As noted, we treat product price, product market shares and spoke densities as
endogenous, but treat all other product and market characteristics as exogenous shifters of cost
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and/or demand. Instruments for spoke densities include population and network characteristics at
the endpoint cities. Additional instruments for price and markups include the characteristics of *
other products in the market. To create our instrument vector, we experimented with various
combinations of the exogenous data on simple versions of our model on a 10% sample of our
data. We then held this vector fixed as we moved onto estimating our full model on the entire
data set

“Identification”. Some readers of early versions of this paper have inquired as to how
data can identify two unobserved types of consumers. Note that our model is a special case of a
general random coefficients discrete choice model; our random coefficients are assumed to take
on one of two values. There is an extensive literature on why such models are likely to fit data
better than models without random coefficients, see, e.g. Hausman and Wise (1978), McFadden
(1981) and BLP (1995). We will only briefly review that literature here, in the context of our
data.

Let us begin by considering what sort of data would allow us to estimate two different
coefficients on price, while the other coefficients were held equal across consumer types. Imagine
two identical city-pair markets, with products that are identical except for price. The first market
has two products, one priced at $200 and one at $100. The second market has three products,
one at $200 and two at $100. In a logit model without random coefficients, it is well known that
if the two market shares in the first market are equal, then the three market shares in the second
market will also be equal. The general problem carries over to any discrete choice model in which
the error structure is additive i.i.d. across products. However, in real markets the two low-priced
products in the second market are likely to compete for many of the same consumers and the
market share of the $200 product will be higher than the individual shares of the $100 products.
Our model will fit this sort of data by estimating two coefficients on price. The farther apart are
these coefficients, the better substitutes are similarly priced goods. In our dataset the prices and
product characteristics vary a lot (see Table 1). Therefore, it is easy for us to pick up violations
of the i.i.d. error model and easy to estimate two coefficients on price.

Estimating two coeflicients on price also has an affect on markups. In the case without
random coefficients, markups and prices will not respond to the number of similar products in the
market. With random coefficients, markups will change: introducing similar products will drive
prices down.

Now let us consider letting several coefficients change across consumer types. It may be
obvious from the prior argument that we could find large and small coefficients on both price and
on our “hub” variable. But should the large coefficient on hubbing be associated with the price
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sensitive type or with the price insensitive type? If the price sensitive type likes hubs more (less),
then the derivative of market share with respect to hubbing will be larger (smaller) for low priced
goods. In our data, we can see how market shares change with hubbing for both low and high )
priced goods, and so, intuitively, the estimation procedure can assign the hub-loving coefficient to
the “correct” type.

5. Data.

The spoke density data used in the empirical work are drawn from the Department of
Transportation's Service Segment Databank DB27R, which shows a carrier's total monthly traffic
on each nonstop route segment that it serves (traffic is aggregated across individual flights). Data
on fares and traffic levels in individual city-pair markets also used below, are drawn from
Databank 1A (DB1A) of the Department of Transportation's Origin and Destination Survey
(O&D). This databank shows fare and route information for a quarterly 10% sample of all airline
tickets sold in the U.S. Each record of the databank contains an airline itinerary (a route flown on
a given carrier, with the direction of travel indicated), a dollar fare, the distance of the trip, and a
number of passengers flown on the itinerary at the given fare during the quarter.

We follow the earlier studies of spoke density, BDS and Brueckner and Spiller (1994), by
using data from the fourth quarter of 1985. However, these two studies focused on 4-segment
round-trip flights that do not originate out of hub cities. This restriction is intended to avoid
demand-side effects of hubs. In the present work, we allow for markups which vary with hubs
and so we do not restrict ourselves to non-hub origins, nor to 4-segment fares. We do use only
round-trip itineraries. We eliminate itineraries that are chosen by only one passenger, as these
may represent coding errors. For similar reasons, we eliminate very low and very high prices
from the data.

Our data set contains 122,871 unique Origin-Destination-Carrier-Fare products in 14,122
unique Origin-Destination directional markets. These products comprise 4,963 unique Carrier-
Legs flown by 32 carriers from 262 Origins representing the itineraries of 1,107,894 passengers.
Approximately 30% of the markets have only one product and another 30% have between one
and five products. About 1% of the markets have more than one hundred products, the maximum
number being 874 products in the New York City to Miami market. In approximately 50% of the
markets with more than one product, fares vary less than 20% from the mean fare but in 10% of
the markets fares vary more than 50% from the mean.
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As noted, the "population potential”, or market size, M,,, of each market is measured as
the geometric mean of the population of the endpoint cities, measured in millions (in the tables, -
this variable is MPOP.) Sampled output of each product is the number of passengers (NPASS) in
the O&D sample. Price (or FARE) is the observed fare in the O&D.

The x variables that determine consumer utility relative to the outside good include a
constant, distance between the origin and destination cities (MDIST), distance squared and a
dummy variable (DIRECT) equal to one if the flight is direct. To capture the possibility that
consumers may avoid congested airports we include a variable (CONGEST-D) equal to the
number of the origin or destination airports (0, 1 or 2) that are slot controlled®. We have
experimented with a number of measures of hub size, including a dummy variable for hubs and the
number of points served by an airline out of an airport. However, neither of these measures
accounts for the relative importance of the city-pair. Therefore, if an airport is a hub for a given
carrier, our HUBSIZE variable is equal to the sum of the population potential for all city-pairs
connected -by that airline- through that hub. If the airport does not serve as a hub for a carrier,
then the hubsize measure is zero. Our measure of appeal to tourists is the (signed) January
temperature difference (TEMPDIFF) between the origin and destination. Since TEMPDIFF is
the same for all products in a given market, it has no power to explain the choice between
products, but it helps explaining the choice between flying and the outside good. Furthermore, it
may help separate customer types. There is no direct measure of flight frequency in the data.
However, from the Service Segment Databank, one observes the number of trips (per quarter)
between the two cities comprising the route. As a demand-side flight frequency variable (TRIPS-
D) we include the minimum number of such trips across the one or two segments of the flight.
We allow the coefficients on the direct, hub size, tourist and flight frequency variables, together
with the coefficient on price, to vary across consumer types.

On the cost side, segment marginal cost depends on a the number of spoke end-points (0,
1 or 2) that are congested (CONGEST-C), segment distance (DIST) and spoke density (DENS).
CONGEST-C is equal to the number of take offs and landings, (0, 1, 2, 3 or 4), on the route
which occur at "slot controlled” airports. We also include a second cost-side measure of
congestion, (DOT-CONGEST), equal to the number of takeoffs and landings which occur at one

P The FAA has established slot allocation mechanisms at Chicago O'Hare, Kennedy and La

Guardia in New York City and Washington National in Washington D.C.



March 1996 AIRLINE HUBS Page 21

of the twenty-four airports which operate under FAA "flow control."'  Finally, a cost-side flight
frequency variable (TRIPS-C) is included in some specifications. This is just the segment number
of trips per quarter from the Service Segment Databank.

Remember that product marginal cost is the sum of spoke marginal costs, so that a linear
specification for marginal cost would include the sum of distance and density across segments.
We include a constant (equal to one) in the specification of segment marginal cost and so the
number of segments (NSEG), which is just the sum of this constant across segments, enters
product marginal cost. The mean of any product-specific marginal costs that are unrelated to
segment costs (i.e. the mean of w) is then captured by including a additional constant in the
specification for product marginal cost.

Since we expect that any cost-reducing effect of density would be greater at longer
distances, we experiment with different functional forms for the interaction between distance,
density and frequency. In particular, we use second and third order polynomials as
approximations to more general functional forms. A quadratic specification adds the sum across
spokes of squared distance, the sum of distance times density and so forth.

Table 1 presents some descriptive statistics on the data, including means, maximums,
standard deviations, etc, as measured across products in the sample. (The spoke 2 densities are
set to zero on direct flights.) The variables in Table 1 are scaled so as to give easy-to-present
coefficients in the later tables. Table 2 presents some simple correlations between exogenous
variables, taking products as the unit of observation. (The two densities are for up to two
outbound segments.) Note that in the raw sample, densities are positively correlated with price,
which is consistent with the idea that it is necessary to correct for the effects of markups and
distance if we are to find any evidence of economies of density.'*

Table 3 presents some simple regressions of price on other variables. These regressions
are for descriptive purposes only, as the estimated coefficients bear little necessary relationship to
the parameters of the model. There are two price regressions. The first involves only the "cost"
variables of distance and density. Density has the expected sign, but a small magnitude, about a
$9 decrease in price for a 100,000 passenger increase in spoke density. As measured by the R,

" This list of 24 airports also includes Orange County and Long Beach, California, each of

which is under strict local limits on takeoffs and landings.

5 When we look only at a subsample of small 4-segment markets, consistent with the

Brueckner-Spiller sampling framework, we do find a negative raw correlation between price and
density.
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distance and density do not "explain" much of the variance in price. When some demand variables
are added, the magnitude of the coefficient on density decreases further. Both direct and the .
hubsize variable are positive and significantly different than zero. The positive coefficient on
hubsize is consistent with early descriptive regressions that have been used to support the
"Borenstein" effect of hubs on markups. The magnitude of the coefficient on direct is fairly large,
about $75.

These results suggest room for improvement, and we turn next to results from our model.

6. Results.

We begin by briefly characterizing the demand and cost parameters and then move on to
the more interesting implications of those parameters.

The Estimated Parameters. Table 4 summarizes the results for the demand side for
various versions of thé model. Table provides the estimated parameters and standard errors for
both demand and cost for the various estimated models. In each case marginal cost includes a
cubic in distance and density. In addition, the marginal-cost specification includes the number of
segments in the itinerary and the two variables measuring airport congestion. In both Tables the
first column provides estimates for a special case with only one type of consumer. The second
column lets the coefficient on price vary across two types of consumers, while the third column
lets a number of the demand parameters vary. The fourth column differs from the third in adding
flight frequency ("trips") to the cost function.

There are so many parameters to be estimated that Table 5 is broken into three panels.
The first two panels present the demand parameters, while the third panel presents the cost
estimates.

Columns one of Tables 4 and § give results from a nested logit with only one type of
consumer. We can reject the pure (non-nested) logit model, as the coefficient A is less than one,
indicating the expected result that the values of within market choices are correlated. The other
demand-side coefficients are of the expected sign. The coefficient on FARE applies to the
negative of price; the positive coefficient indicates that consumers do not like price increases.
They prefer direct flights out of uncongested airports on the hubbing airline. The signs of DIST
and DIST? have the expected inverse U shape: as distance increases, air travel becomes more
attractive relative to auto travel, but total demand for travel may fall. At short distances we
expect the first effect to dominate, but the second to dominate at longer distances.
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In columns two, we allow the coefficient on FARE to differ across two groups of
consumers. The coefficients on the other variables continue to have sensible signs. Looking at*
the coefficient on FARE, we find evidence in favor of the existence of different types of
consumers with differing disutility from price increases. The type one consumers place a much
greater negative weight on price increases, as the coefficient on price is nearly ten times as large
for group one as opposed to the group two. The price sensitive consumers make up about
92.4% of the potential travelers. However, such price sensitive potential consumers are much less
likely to actually buy a ticket; we shall see in the last panel of the table that they make up a much
lower percentage of the actual travelers.

Column three allows the coefficients on FARE, DIRECT, HUBSIZE, TEMPDIFF and
TRIPS to vary across customer type. This additional differentiation reduces the population of
type 2 customers from almost eight percent of the population to less than three percent of the
population. The price insensitive type 2 consumers exhibit tastes, relative to type 1, that we might
expect from business travelers. They care more about direct flights, more about the size of hub at
the origin and more about flight frequency. Their valuation of the tourist variable, TEMPDIFF, is
a little less than that of type 1 customers, but is less precisely estimated. Thus, even though we
have no customers’ characteristics in our data set, the data and the model together can identify
two types of consumers that can sensibly be labeled “tourist” and “business.”

In column four, the demand side specification does not vary but the cost side specification
does: the trips variable is added to the cubic portion of segment marginal cost. Here the only
puzzling result is that the type one HUBSIZE coefficient is larger than the type two coefficient.
This puzzle can be resolved by considering the marginal willingness to pay for HUBSIZE. Our
linear utility specification implies linear indifference curves in HUBSIZE/FARE space, with a
slope given by the ratio of the coefficient on HUBSIZE to the coefficient on FARE. It is easy to
see that the marginal willingness to pay for increases in hub size is much greater for the type 2
business traveler.

The thid panel of Table 5 gives the estimated parameters of segment marginal cost. Given
the flexible functional form on our cost side, it is hard to interpret the these parameters. In all
specifications but the last, congestion appears to raise segment marginal cost. The negative sign
on NSEGS indicates a negative intercept in the segment marginal cost function, which may
indicate problems with the cost specification for distances and densities near zero. The estimated
coefficient on the linear term in DIST is positive, which seems reasonable. The coefficient on the
linear term in DENSITY is also positive, which by itself does not support economies of density.
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However, the other terms do lend support to the presence of economies of density at many
distances and densities, as we will see below. .

We turn next to the economic implications of these parameters. The demand parameters
have important implications for pricing behavior and markups, while the cost side parameters
determine the extent of economies of density.

Implications of the demand parameters. In this section we focus on implications of the
demand side results in column III of Table 4. The last panel of that table summarizes the demand
side results. First note that both types of consumers are important in the market. While type 2
consumers make up less than three percent of the potential travelers, the column III estimates
imply that they make up more than a quarter of actual passengers (and this percentage increases
to almost 40% in column IV.) These proportions are consistent with the results of a recent
Gallup survey which reports that in 1993, 8 percent of air travelers accounted for 44 percent of all
trips.'6

Based on results shown in column III, the mean price paid by type 1 consumers is $204
while the mean price paid by the “business” travelers is almost $150 higher. However, the
business traveler is getting something for these extra dollars. In particular, consider the demand
unobservable, £, which captures, for example, the unrestrictiveness of the ticket. Across all
products, § is mean zero (i.e. its mean is captured by the constant in the utility function.)
Passengers have a preference for high "quality" flights and so the mean across all tickets sold is
estimated to be about 0.98. The level of § is 30% higher for type two customers and about 12%
less for the type ones.

Table 6 considers the implication of the parameters for the relationship between prices,
markups and hubs. Specifically we examine in some detail the effect of a carrier's usage of an
airport as a hub on the demand and fare paid for products in markets originating at those airports
Given our estimates, for each product in each market we can estimate the proportion of each type
of consumer buying the product. We can then discuss the average product characteristics bought
by different types of consumers flying different airlines in different markets.

Table 6 presents a summary of product characteristics across categories of markets,
consumers and airlines using the results of Table 5 Column III. Within a market, we take
weighted averages of product characteristics, where the weights are the predicted number of

16 See, Air Travel Association, Air Travel Survey 1993, Washington, DC, 1993.
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passengers of each type. The weighted product characteristics are separately averaged (within
market) across hubbing and non-hubbing airlines. These market averages are then averaged
across market (weighting by the number of passengers in each market) to produce summary
statistics. The point of taking averages of within market averages is to control for across market
variation in distance, populations size and other market characteristics. However, such variation
in market-level variables makes it dangerous to compare levels the different market categories
(i.e. across the vertical panels of the table.) Therefore we will focus on the hub/non-hub
differences within market categories.

The first (horizontal) panel of Table 6 divides the products into three categories of
markets. The first category, non-hub markets, includes all markets in which no carrier uses the
origin as a hub airport. The other two categories are comprised of all hub markets, those in which
at least one carrier uses the origin as a hub. The hub markets are distinguished by the size of their
connected network, as measured by HUBSIZE. Large hub markets include all those in which at
least one of the hub carriers has a HUBSIZE of 0.01, approximately the largest third of all hubs.
Small hubs then include all other hub markets. The second panel of the table divides the
customers into the two estimated types (with average percentage of each type given in the third
panel.) The fourth panel then further separates the products into the products of non-hubbing and
(where appropriate) hubbing airlines. The next panel then gives the averaged product
characteristics

Note that although 82% of the markets are non-hub markets, these markets include only
31% of the total passengers flown. The remaining markets and passengers are distributed almost
evenly between the large and small hub markets. The makeup of the passengers in each type of
market is also notable, with non-hub markets having the highest percentage of Type 1, "tourist",
passengers, and the large hub markets having the highest percentage of Type 2, "business",
passengers.

Even more interesting is the distribution, within hub markets, of customer types between
the hub and non-hub carriers participating in each market. In small hub markets the distribution
of customer types, "Pct of Car Tot", is almost identical for each carrier type. In the large hub
markets, however, the hub carrier, or carriers, serve a substantially higher percentage of TYPE 2
customers, 33.0% versus 23.2% for non-hub carriers. In all markets the fare paid by TYPE 2
customers is higher than that paid by TYPE 1 customers. In the small hub markets these fares are
almost identical for hub and non-hub carriers. In the large hub markets, however, the average fare
realized by the hub carriers is almost 19 % higher than that of the non-hub carriers for TYPE 2
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customers and only 5% higher for TYPE 1 customers. This advantage is labeled the "Hub
Premium" and is shown not only for fare but also for estimated Marginal Cost and markup. .

Also shown in TABLE 6 are the average values of DIRECT, TRIPS and then unobserved
characteristic, £, for each customer type in each market. Note that in small hub markets, where
the non-hub carriers carry 60 percent of the passengers, average TRIPS is higher for non-hub
carriers than for hub carriers. In all markets, however, TYPE 1 customers fly, on average, less
frequent products than do TYPE 2 customers. Similar comments can be made about DIRECT.
Hub carriers generally provide a higher percentage of direct flights and TYPE 2 customers
consume more direct flights than TYPE 1 customers from both carrier types. In the small hub
markets, the products of non-hub carrier's products have 14 to 18 percent higher values for the
unobserved characteristic. In large hub markets, however, their products have values 35 percent
smaller than those of the hub carriers.

The last panel of Table 6 then decomposes the fare premium obtained by hubbing airlines.
In large hubs, type 2 passengers are paying 19% more ($305 vs. $255 ) originating from a large
hub on the hubbing airline. However, the average cost of the hubbing flights is 20% less ($94 vs.
$118). An interesting part of the “hub premium” is then that markups are 53% higher ($211 vs.
$137). Another way to present the results is to take all the differences as a percentage of non-
hub average fare. In this case, the 19% hub premium is found by subtracting an approximately
10% marginal cost advantage from a 29% markup premium.

Figure 4 provides these results in a visual way.”” We see that for small hub markets, hub
carriers are able to charge type 2 customers 4% above non-hub carriers. Hub carriers also have
4% lower marginal costs for these traveler types. On the other hand, the average type 1 customer
pays the same to a hub or a non-hub carrier. Furthermore, carriers have similar marginal cost of
providing type 1 service. Because the hub premia for type 2 customers is so small, type 1 and
type 2 customers divide themselves evenly between hub and non-hub carriers.

In large hub markets, however, we observe the working of the hub premium. First, type 2
customers are not just willing to pay the 20% premia that hub airlines charge, but that price
differential does not deter them from flying more often with a hub than a non-hub carrier. Hub
carriers are even able to extract a small premium over type 1 customers (5%).

"Some readers have found this representation useful and some have not; in any case all the

relevant numbers are in Table 6.
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Figure 4 shows, then, the origins and the workings of the origin hub premium. The hub
premium originates in type 2 (business) customers. They value flying an airline with a larger
network much more than type 1 customers do. In large hubs, then, hub-airlines are able to charge
type 2 customers a substantial premium over non-hub airlines. That premium, however, is very
small for type 1 (tourist) travelers.

The ability to charge a large premium and still capture a larger share of the business travel,
implies that non-hub airlines in hub markets have a strong competitive disadvantage. Not only
does the hub airline not create a "monopoly umbrella" (the price non-hub carriers are able to
charge type 1 or type 2 customers is indeed found to be smaller than in non-hub markets), but the
hub airline takes a larger share of the type 2 customers. Thus, the average yield of a non-hub
airline is smaller in hub markets than in non-hub markets, reducing the profitability of serving hub-
markets.

This result may suggest a dynamic explanation (untested here) to the increase in airport
concentration that has taken place since deregulation. Once an airline decides to develop a major
hub in a given airport, their competitors find business customers moving away, reducing their
average yield. Marginal airlines, then, will find it profitable to drastically cut service to that city.
On the other hand, hubs do provide substantial price and cost benefits to airlines, facilitating entry
out of hubs into new city-pair markets, thus potentially explaining the decrease in market level
concentration that has taken place since deregulation (for a start on empirical models of airline
entry, see Reiss and Spiller (1989) and Berry (1991).).

Implications of the Cost Parameters. We have just seen that flights by hubbing airlines
out of hubs are associated with lower costs. Our proposed explanation for this is economies of
density. Figure 1 and Figure 2 present plots of estimated marginal cost, corresponding to the
estimates in columns II and III, in distance and density space. Information similar to that depicted
in the figures is also found in Table 7. Although there are some differences between the two
figures, the basic shape is the same. The surface of the plot is shaded where the partial derivative
of Marginal Cost with respect to density is less than zero. Darker areas indicate higher returns to
density. At distances less than 500 miles, marginal cost increases as density increases up to about
150,000 passengers per quarter and then begins to decline. Increasing returns to density are
thought to result from the ability to carry additional passengers through the use of larger, more
efficient aircraft. At short distances this may not possible, because over short distances the
increased cruising efficiency of larger aircraft may not make up for their higher takeoff and
landing cost. Increases in density must in that case be met with increases in frequency. We call
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this result the "Southwest Effect," after the largest non-hubbing airline that offers frequent service
on shorter, dense routes. .

At distances of 500 to 1,500 miles there are returns to density throughout the range of
density. However, above distances of 1,500 miles, marginal cost is increasing except at very low
levels of density. We interpret this last result as perhaps stemming from the tendency of
polynomials to curl up (or down) at the corners of the data. Alternatively, the increasing marginal
cost at high distances may be due to a similar loss of flexibility which occurs when the leg distance
limits the choice of aircraft to the largest types. Since there are no larger, more efficient aircraft
than those already in use, increases in density can only be met with increases in frequency.

FIGURE 3 is the same plot shown in FIGURE 2 except that the predicted marginal cost of
each unique leg-carrier combination is plotted on the surface. It is readily apparent that most legs
are either under 500 miles in length, or within the area where there are returns to density. Very
few points actually fall in the high distance, high density area where marginal cost increases
rapidly. However, the magnitudes of the estimated derivatives of marginal cost with respect to
density in Table 7 are fairly large. This may reflect problems with the polynomial specification
resulting in a cost surface that is too “curvy”. Thus, while we take our results as consistent with
the idea of economies of density over a wide range, we will not perform the kind of detailed
analysis of implications for the cost side that we performed for the demand side.

7. Conclusions.

In this paper we take a new approach to the empirical analysis of differentiated product
markets. We attempt to estimate the tastes of a discrete set of unobserved (by us) consumer
types and we provide an explicit model of economies of scope at the network level. Our methods
show signs of success, particularly in distinguishing economically interesting consumer types.

We have not addressed all the issues of potential importance in the airline industry. There
may be important dynamic aspects in the pricing and production decisions. On the pricing side,
there may be some sort of tacit or explicit collusion. On the production side, some of what we
call markups or marginal cost may reflect capacity constraints on some flights at some times of
day. Also, network structure may affect entry and exit decisions in important ways. Finally, we
have not modeled any agency problems related to frequent flier programs or travel agent
commissions. These marketing devices might exploit differences in incentives between decision-
makers and the ultimate consumers of the product.
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This paper, though, provides a first attempt to analyze the role of hub-and-spoke
operations in a product differentiation framework. Our results confirm that hubs are an important
production and marketing tool for the airlines. First, the existence of economies of density implies
that hubs provide important cost savings. Second, hubs provide the airlines with an ability to
charge a hub-premium. Their ability to raise prices, however, is much greater for price-insensitive
business-type travelers. When flying out of large hubs, these travelers pay a premium of
approximately 20%, while the hub-premium for non-business travelers is estimated to be only 5%
or less. The welfare consequences of this hub premium need not be negative. Business travelers
are seen to receive a higher quality good, in terms of observed and unobserved (by us)
characteristics and, indeed, business travelers represent a higher percentage of total passengers for
hub-carriers than for non-hub carriers. Add to this the low demand elasticities of business
travelers and, aside from the unmodeled issues mentioned in the last section, the negative welfare
consequences of hubs appear to be rather small.
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TABLE 1
DESCRIPTIVE STATISTICS
122,871 Unique Origin-Destination-Fare-Carrier Observations *
MEAN STDDEV MIN MAX
FARE ($100) 2.764 1.488 0.110 18.33
NPASS (Passengers) 9017 31.299 1.000 2798.0
DIRECT (Fraction) 0.466 0.498 0.000 1.000
HUBSIZE 0.017 0.045 0.000 0.210
TEMPDIFF (10°F) 0.286 2.077 -6.520 6.520
TRIPS-D (MIN 1,000/QTR) 0.293 0.179 0.001 1.595
CONGEST-D(# of airports) 0.202 0.413 0.000 2.000
MDIST (1,000 MI) 1.009 0.608 0.030 2.776
DIST (15" Outbound Leg) 0.710 0.503 0.021 2.704
1,000 M1
DIST (2"° Outbound Leg) 0.351 0.479 0.000 2611
1,000 MI
DENS (157 Qutbound Leg) 0.593 0.475 0.00003 4.553
100,000 PASS/QTR
DENS (2"° Outbound Leg) 0.361 0.493 0.000 4.553
100,000 PASS/QTR
TRIPS-C (1" Leg) 0.349 0.214 0.001 1.595
1,000 DEP/QTR
TRIPS-C (2"° Leg) 0.212 0.249 0.000 1.594
1,000 DEP/QTR
TABLE 2
CORRELATION OF ENDOGENOUS VARIABLES
PRICE QUANTITY DENS(1) DENS(2)
PRICE 1.000 -0.063 0.084 0.122
NPASS 1.000 0.068 -0.120
DENS(1) 1.000 0.164

DENS(2) 1.000
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TABLE 3
REGRESSION OF PRICE ON COST AND DEMAND VARIABLES .
Cost only Cost and Demand
Parm SE. Parm SE. Mean

CONSTANT 1.704 o0.013 1.545 0022 1.000

NSEGS - 113 o013 -0.011 o0.017 1.533

CONGEST-8 0.084 0.007 0.082 0.008 0315

CONGEST-C 0.012 o.00s 0.012 0.005 1.766

DIST 1.004 0.008 1.004 ©.008 1.062

DENS -088 o0.012 -0.094 0.012 0.954

TRIPS-C 0.362 0.029 0310 0037 0.561

CONGEST-D 0.009 0013 0.202

HUBSIZE 2.097 0094 0.017

TEMPDIFF -0.011 0.002 0.286

TRIPS-D 0.019 0.040 0.294

R™2 0.173 0.177

TABLE 4
SUMMARY OF DEMAND RESULTS
I I m v
Single Type 2 Types of 2 Types of 2 Types of
of Consumer Consumers Consumers Consumers
Differ only No Trips Leg Trips
in Price in MC in MC

VARIABLE TYPE1 TYPE2 TYPEl TYPE2 TYPE1 TYPE2
FARE 0.455 0696 0.068 0.829 0.077 0.986 0.111
DIRECT 0.656 0.542 - 0414 1014 0.293 0.876
HUBSIZE 0.437 0.213 - 0285 0.761 0.616 0368
TEMPDIFF 0.050 0.049 - 0.052 0.049 0.049 0.050
TRIPS 0.551 0.393 - 0329 0954 0388 0493
PERCENTAGE OF 100% 70.99% 29.01% 73.19% 26.81% 60.13% 39.87%
PASSENGERS
PERCENTAGE OF 100% 92.35% 1.65% 97.48% 2.52% 9521% 4.7%%
POPULATION
AVERAGE FARE - $205 $338 $204 8351 $191  $323
AVERAGE £ - 097 1.19 086 130 087 122
AVERAGE TRIPS - 039 036 037 039 039 036
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TABLE 5
RESULTS OF ESTIMATION .
1 1 I v
Single Type 2 Types of 2 Types of 2 Types of
of Consumer Consumers Consumers Consumers
Differ only No Trips Leg Trips
in Price in MC in MC

Parm SE. Parm SE. Parm SE. Parm S.E.
LAMBDA 0.605 0020 0.638 0020 0.599 0027 0617 0026
MU 4766 0464 8.652 2079 8.651 24 9.532 1625
PROB TYPE 1 1.000 Fixed 0924 o018 0975 o013 0.952 0019
DEMAND
FARE | 0.455 0039 0.696 0054 0.829 0075 0.986 0084
FARE 2 - - 0.068 o014 0.077 o017 0.111 o024
DIRECT 1 0.656 0023 0.542 o022 0414 0060 0293 0063
DIRECT 2 - - - - 1.014 o007 0.876 0070
HUBSIZE 1 0.437 0026 0213 o013 0.285 0047 0.615 0075
HUBSIZE 2 - - - - 0.761 0423 0.368 0127
TEMPDIFF 1 0.050 0.003 0.049 0003 0.052 0005 0.049 0.007
TEMPDIFF 2 - - - - 0.049 0017 0.050 0.016
TRIPS-D 1 0.551 o0.058 0.393 0041 0.329 0055 0.388 0.6l
TRIPS-D 2 - - - - 0.954 0395 0493 0231
CONSTANT -10.305 0034 -10.621 0033 -10.207 0034 -10.172 0034
CONGEST-D -0.158 0030 0215 o030 -0.186 0031 -0.203 0030
MDIST 0.528 o007 0.562 0069 0.772 oom 0.752 o070
MDIST"2 -0.126 0.029 0.176 o0.028 0.206 0029 -0.209 0029
COST
NSEGS -1453 oi1s7 -0.922 o.088 0.656 0095 0.081 0234
CONGEST-S 0.125 o003 0.046 0017 0.060 o019 -0.033 0015
CONGEST-C 0.041 o.012 0.073 0007 0.071 o008 0.072 o010
DIST 4510 0395 2965 o023 3.181 o241 0.155 o631
DIST™2 2117 o024 -1.297 o136 <1420 0147 1.117 o446
DIST"3 0402 o004 0.168 0247 0.178 o0.027 0410 009
DIST*DENS 5229 om4 -3.540 o0.448 -3.891 0486 5.651 1287
DIST"2*DENS 1419 0254 1.045 0143 1270 o0ass 2986 0454
DENSITY 2.060 0.506 1.818 o282 1.584 0307 4827 1259
DENSITY" 2 0.376 0384 0252 o213 0.164 0232 1.537 os22
DENSITY"3 -0.379 0.8 -0.102 0046 -0.238 0050 -1.012 o034
DENS™2*DIST 1.140 o27m 0.564 0.5 0.524 o169 0.392 0361
TRIPS - - - - - 4.544 2536
TRIPS"2 - - - 13.540 4326
TRIPS"3 - - - - -13612 2524
TRIPS*DIST - - - 6.989 3.868
TRIPS*DIST2 - - - -5.075 1374
TRIPS"2*DIST - - - - 4913 2360
TRIPS*DENS - - - -14.381 3247
TRIPS"2*DENS - - - 9237 214
TRIPS*DENS"2 - - - - 2.008 1.605
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TABLE 6
COMPARISON OF SHARES AND FARES .
Based on Column III, Table 5
Market Type Non-Hub Small-Hub Large-Hub
31% of Pass. 32% of Passengers 37% of Passengers
82% of Mkts 9% of Markets 9% of Markets
Av Dist 800mi Avg Dist 954mi Avg Dist 842mi
Avg Pop 3.8 Million Avg Pop 3.0 Million
Customer Type Typ 1 Typ2 Type 1 Type 2 Type 1 Type 2
Pct of Mkt 75.8% 24.2% 73.2% 26.8% 70.4% 29.6%
Carrier Type N/Hub N/Hub Hub N/MHub| Hub N/Hub Hub N/Hub| Hub  N/Hub
Pct of Car Tot 100% 100% 736% 73.0% |264% 27.0% 670% 768% |33.0% 232%
Pct of Typ 100% 100% 400% 60.0% |393% 60.7% 623% 37.7% |729% 27.1%
AvgFare § 224 296 206 206 306 295 215 205 319 268
AvgMC$ 93 111 96 95 111 106 91 109 98 133
Avg Markup 58.6% 62.4% 534% 538% 163.7% 63.9% 57.8% 46.7% | 69.2% 50.4%
Ave Fare $/mi 0.387 0.488 0301 0302 0398 0.398 0.336 0313 0474 0403
AvgE 0.601 1.005 0650 0771 0942 1074 0875 0.566 1.321 0836
Avg Direct 0.522 0.542 0792 0778 | 0809 0.819 0922 0.622 0.927  0.665
Avg Tnips 336 340 399 404 410 430 469 362 484 371
Hub Premium Fare | 0.1% 3.7% 5.0% 19.0%
Marginal Cost| -1.1% -4.5% 16.8% 26.1%
Markup | -0.8% 3.3% 29.9% 63.4%

Notes on Table 6

Markets There is a total of 14,122 Origin-Destination markets in the data. Of that number, 778 are markets,representing 5.2% of total passengers, in
which only Hub carriers participate. These markets are not used in the compilation of these tables.

Market Type The distinction among market types is based on the maximum HUBSIZE of all carriers participating in the market. The specific
division used is:

Non-Hub - HUBSIZE = 0.0 (93.5% of all unique Origin-Carrier combinations).

Small-Hub - 0 < HUBSIZE < 0.01

Large-Hub - HUBSIZE >= 0.01 (Approximately 34% of all unique Origin-Carrier combinations with non-zero HUBSIZE)

See Description of Variables for a complete description of HUBSIZE. See Appendix 1 for a list of all Origin-Carrier combination withnon-
zero HUBSIZE.

Averages are calculated as follows: first the passenger weighted average is calculate for each of the O & D markets within each market type. The
average, weighted by the total number of passengers in the O & D market, of these averages is then calculated to produce the final values. This
method was chosen to best the average relationship among the various components of each market.

Markup is calculated as (Avg Fare - Avg MC) / Avg Fare.

Hub Premlums are calculated as follows:

Fare: [Fare(Hub) - Fare(N/Hub)] / Fare(N/Hub).
MC: [MC(N/Hub) - MC(Hub)} / MC(N/Hub).
Markup: [Fare(Hub) - MC(hub) - Fare(N/Hub) - MC(N/Hub)] / [Fare(N/Hub) - MC(N/Hub)].
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TABLE 7
DERIVATIVE OF MARGINAL COST WRT DENSITY
$100/100,000 PASS/QTR
BASED ON COLUMN III TABLE 5

DIST\DENS 0.25 0.50 0.75 1.00 1.50 2.00

250 Mi 0.794 0.808 0.733 0.568  -0.27 -0.980

500 Mi 0.125 0.204 0.194 0.096  -0.369 -1.190
1,000 Mi -0.737 -0.527 -0.406 -0.373  -0.576 -1.135
1,500 Mi -0.964 -0.623 -0.371 -0207  -0.148 -0.446
2,000 Mi -0.556 -0.084 0.299 0.593 0914 0.879
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APPENDIX
DESCRIPTION OF VARIABLES .
Descriptions are for product j, in market i, carrier k.
DEMAND VARIABLES

MPOP Population Potential' for market /.

FARE Fare paid for product j. UNITS - $100.00

DIRECT" 1 if product j is a direct flight, O otherwise

HUBSIZE® If the origin is a hub airport for carrier k then HUBSIZE is the Population Potential for all city pairs
connected through the origin city. If the airport does not serve as a hub for carrier & then
HUBSIZE is zero.

TEMPDIFF" Difference between origin and destination mean January temperatures. UNITS - 10 Degrees
Fahrenheit

TRIPS® Minimum of the number of trips flown by carrier &k on each leg of the route. UNITS - 1000
Departures/Quarter

CONSTANT" 1.0

CONGEST-D”  Sum, over the origin and destination, of a dummy variable indicating that an airport is "slot
controlled™

MDIST" Great circle distance between origin and destination airports. UNITS - 1000 Miles

MDISTA2* MDIST squared.

COST VARIABLES

NSEGS Number of segments in the route of product j . (1 or 2)

CONGEST-C"  Number of takeoffs and landings at "slot controlled® airports in the route of product j.

DOT-CONG™  Number of takeoffs and landings at airports which operate under FAA "flow control™

DISTANCE Sum of actual leg distances over the one or two legs of the route. UNITS - 1000 Miles

DENSITY Sum of the number of passengers per month flown by carrier k on each leg* of the route. UNITS -
100,000 Passengers/Quarter

TRIPS Sum over both legs of the number of trips flown per quarter by carrier k. UNITS - 1000 Departures /

Quarter.

1

SQRT(origin population * destination population).

2 The FAA has established slot allocation mechanisms at Chicago O'Hare, Kennedy and La Guardia in New York City
and Washington National.

* This list of 24 airports also includes Orange County and Long Beach, California, each of which is under strict local
limits on takeoffs and landings.

* Because trips are round trips, we measure densities as the sum of the two directions.
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APPENDIX -- CONT

DESCRIPTIVE STATISTICS DEMAND/COST VARIABLES

Variable Mean Std Dev Minimum  Maximum
MPOP 227387.12 192268.08 1130.40 1191781.00
FARE 2.7638407 1.4880484 0.1100000 18.3300000
DIRECT 0.4666602 0.4988892 O 1.0000000
TEMPDIFF 0.2864697 2.0774947 -6.5200000 6.5200000
TRIPS 0.2934735 0.1795864 0.0010000 1.5950000
HUBSIZE 0.0170110 0.0448443 0 0.2106280
CONGEST 0.2022039 0.4130535 O 2.0000000
MDIST 1.0090688 0.6084302 0.0300000 2.7760000
MDIST*2 1.3884041 1.5944844 0.000500  7.7061760
NSEGS 1.5333398 0.4988892 1.0000000 2.0000000
CONGEST 03149401 0.6041807 0 3.0000000
DOT-CONG  1.7655997 0.9916804 0 4.0000000
DISTANCE 1.0621377 0.6249192 0.0300000 5.0610000
DIST~2 1.1119420 1.2418665 0.000900  12.8130210
DIST3 1.5190454 2.6297537 0.0000270 32.4545279
DIST*DEN 0.6679041 0.7026942 0.00001674 5.2785213
DIST"2*DEN 0.7055024 1.1366410 4.67046E-6 13.0132275
DENSITY 0.9544737 0.7384137 0.0000300 7.9023200
DENSITY”2 09511442 1.3970802 9E-10 31.9492227
DENSITY”3  1.3074138 3.5029454 2.7E-14 131.9727217
DENS~2*DIST 0.6751575 1.1904563 5.256E-10 11.4191792
TRIPS 0.5610866 0.3638758 0.0010000 3.0850000
TRIPS~2 02753029 0.3046792 1E-6 4.7639170
TRIPS*3 0.1679641 0.3080066 1E-9 7.3647064
TRIPS*DIST 0.3382569 0.2554679 0.00012900 2.2982620
TRIPS*DIST~2 0.3175201 0.3843447 98E-6 3.3692860
TRIPS~2*DIST 0.1479861 0.1695250 1.29E-7 2.8692971
TRIPS*DENS 0.4777567 0.5866136 3E-8 12.1272763



FIGURE 1

PLOT OF MARGINAL COST VS DISTANCE and DENSITY
Without Leg Trips (Col Il Table 4)

Note: Shaded areas
indicate returns to

density.




FIGURE 2

PLOT OF MARGINAL COST VS DISTANCE and DENSITY
Without Leg Trips (Col Il Table 4)

Note: Shaded areas
indicate returns to

density.
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FIGURE 3

PLOT OF MARGINAL COST VS DISTANCE and DENSITY
Without Leg Trips (Col Il Table 4)

Note: Shaded areas
indicate returns to

density.

Plotted Points are the
predicted MC
coresponding to the
distance and density of all
unique leg-carrier
combinations.




