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1. Introduction

Microeconomic theory is essentially concerned with the study of market
equilibrium. Agents make plans, in general as a result of solving individual optimization
problems. Then certain variables, typically prices, are assumed to take the values required
for those plans to be mutually consistent. The resulting prices are called equilibrium prices.
All in all, very little is said about the mechanism(s) that make possible, compute, and
finally implement such an equilibrium in the first place. Even less is said about how the
economy would return to equilibrium if the equilibrium were shifted for any reason.
Equilibrium changes are treated in a comparative statics framework, where the values of
some parameters and consequently the equilibrium are shifted. The price moves to the new

equilibrium, and trade can only occur in equilibrium.

Casual observation of financial markets, however, reveals that this paradigm may
not translate very well in markets where (i) prices move constantly, (ii) trading occurs at
very high frequency and at every price and (iii) the volatility of the prices is a crucial
element (see Black (1986)). We attempt to model the price formation process to reflect
these empirical features. Investors trade for portfolio reasons a speculative asset. The
specialist posts a price at which he is required to take the opposite side of the order
submitted. After executing the order, the specialist can adjust the price. Observing the price
being posted, the investor then acts to rebalance optimally his portfolio, trading occurs, the
specialist revises optimally the market price to maximize his expected trading profits and so
on. Instead of prices, strategies constitute an equilibrium. An equilibrium is a specialist's
pricing rule and a sequence of investors' trading strategies that are mutually best response
to each other. The specialist acts as a Stackelberg leader: he receives the investors' demand

function before setting his price.

We show that in equilibrium, the specialist (who controls the price adjustment
process) finds it optimal to add volatility to the price he posts compared to the exogenous
“fundamental value (or price)” of the asset, which is defined as the expected value of the
sum of discounted future dividends. The spread between the market and fundamental value
of the asset drives the expected return of the asset. By adding volatility, the specialist
reduces the holdings of risk-averse investors when high returns are expected, which
benefits him since he is taking the opposite side of the investors’ trades. The model
involves nonlinear strategies but is nevertheless solved in closed form. The price and

volume processes determined in equilibrium provide some microeconomic foundations for



the statistical specifications of price and volume processes in the literature (see Epps and
Epps (1976), Tauchen and Pitts (1983) and Karpoff (1987)).

We then revisit some of the classical empirical asset pricing “anomalies.” The model
can generate in a fully optimizing world many effects, such as excess volatility or mean
reversion in asset prices, which were sometimes interpreted as sure signs of market
irrationality (e.g., Shiller (1981), Summers (1986)). There is no exogenous source of
noise such as noise traders in Kyle (1985), or pure exogenous noise as in Campbell and
Kyle (1993). A nice feature of this model is that these relevant issues in asset pricing can
be interpreted as simple hypothesis tests on one or more of the three parameters of the
model: o which measures how market prices mean-revert to the stochastic fundamental
price, B which measures how the volatility of the market price relates to the spread between
market and fundamental prices and finally 6 which measures the volatility of the
fundamental price itself.

The estimation of the model presents several challenges. A state variable, the
fundamental price, is unobservable to the econometrician, and must therefore be estimated
along with the parameters. The dynamics of the state variables produced by the model are
nonlinear. We are interested in testing hypotheses which involve time series features of the
fundamental price: for example, is the fundamental price less volatile than the observed
market price? We propose to use the tools of conditionally optimal filtering to achieve this
task. Next, we derive closed-form expressions for the conditional moments of the joint
processes determining the market and fundamental prices, and the trading volume,
conditioned on their history. These conditional moments however cannot be used to form
moment conditions in a GMM framework, because the conditioning set contains variables
unobservable to the econometrician (the history of the fundamental price process). We
therefore compute, again in closed-form, the moments of the joint processes conditioned
only on the observable market price and volume processes. These moments are the basis
used to construct a GMM estimator of the parameters of the model. Despite the fact that the
model is written in continuous-time and the data are sampled at discrete time intervals, the

estimator is free of discretization bias.

The paper is organized as follows. Section 2 presents the model and solves for the
equilibrium price and volume processes. Section 3 focuses on the estimation strategy.

Section 4 examines the empirical implications of the model. Section 5 concludes.



2. Equilibrium Dynamics

2.1 Price Formation

Consider a financial exchange where a stock is traded by a specialist? and a price-
taker risk-averse investor. The single investor assumption is a proxy for a continuum of
small identical investors, each one of them price-taker. The investor can buy and sell the
stock as well as lend or borrow at the constant riskfree rate r. There are no constraints on
borrowing or short sales, and the stock carries unlimited liability. Throughout the paper Z;,
i=1,2, denote standard Brownian Motions.

Between t and t+dt each share of the stock pays an exogenously-determined
stochastic dividend D,dt. We assume that Dy is a martingale following dD, =r6dZ,, with
o constant. We define the stock’s fundamental value or price P, to be the expected value of
the sum of discounted future dividends3. We have that:

5, =E, [ [Ter D de ] =["e""VE,[D,]dv=(yr) D, (1)

since E,[D,]=D,. The fundamental price therefore follows the dynamics:
dp, =ocdZ,, (2)

A change in P, reflects the arrival of new information regarding the future cash
flows generated by the stock. We attempt in this paper to model microstructure effects and
do not assume that the stock necessarily trades for p,. Instead let p; be the market price of
the stock at time t. Define the price spread:

S, I—)( - P, (3)

2 In this model, the single specialist enjoys monopoly power on a given stock, a situation typical of
organized exchanges. By contrast in dealer markets multiple markets makers are supposed to compete on a
given stock. However there exists some empirical evidence to justify modeling the market power of market
makers even in a dealer market (for example, collusion and other non-competitive behavior among market
makers on NASDAQ is suggested by Christie and Schultz (1994), and Christie, Harris and Schultz (1994)).

3 We may interpret p, as the price that would prevail for the asset in a pure competitive economy with
risk-neutral agents (Lucas (1978)). We are not assuming this setup here.



The form of the dynamics (2) is common knowledge, and P, is revealed at every instant to
all market participants4. At instant t, the investor desires to hold q, shares, and having
observed P,, submits his demand function to the specialist. The investor is allowed to
condition his trades on price. The specialist then executes the buy or sell order received and
takes the opposite side of the trade3. He therefore is forced to hold -q; shares (the stock is
assumed to be in zero net supply). He may then revise the price by an amount dp,. The
stock then pays its instantaneous rate of return. We denote by F, the information set
consisting of the sequence of past and present fundamental and market prices®. Figure 1

summarizes the price formation in this market.

2.2 Equilibrium Concept

We model this market’s microstructure as a stochastic differential game, with the
specialist acting as a Stackelberg leader. The investor takes the price adjustment rule as
given and determines his optimal holding of the stock, i.e., his best response, by
maximizing his expected utility. Knowing the demand function of the investor, i.e., the
investor’s best response to his choice of price adjustment, the specialist determines the
price adjustment by maximizing his expected profit’. This is an equilibrium in strategies
(not prices or quantities): each player's choice of an optimal strategy is a control problem in
which he takes into account the effect of his actions on the state, both directly and indirectly
through the influence of the state on the strategies of his opponent. We make all of this

more specific below.

4 There is no asymmetric information in the model --except that the econometrician does not observe the
fundamental value.

5 NYSE Rule 104 specifies that: “The specialist must take or supply stock as necessary (...).” (NYSE
(1995)). In practice, many trades get executed with no formal intervention by the specialist, a fact which is
ignored here.

6 Formally, F, is the augmentation of the increasing family of o-fields generated by the stochastic

processes {ps,ﬁs /0<s< t} .

7 In a Nash Equilibrium, the specialist would not take into account the investor’s best response to his
action when determining his own optimal strategy.



2.3 Optimization by the Specialist

In deciding how to revise the price, the specialist faces two constraints --like most
monopolies, he is regulated. First, he must provide price continuity. The price continuity
rate measures the percentage of all trades occurring with no change in price or a one-tick
change (1/8 on the NYSE). Second, the exchange expects the specialist to stabilize price
movements. The specialist performance is partly assessed through the stabilization rate, the
percentage of shares purchased by the specialist at prices below or sold at prices above the
last different price8. Table 1 reports these two rates for the NYSE.

We incorporate these two requirements in the model by constraining the possible
price revision dp; that the specialist can choose. If the stock’s fundamental value were
constant, we could possibly model price continuity as a constraint that sets the drift of dp,
to zero. However because P, is stochastic in the model, we interpret the price continuity
rule as a requirement that p; be held as constant as possible --but only after adjusting to the
new level of p,. Suppose that news affecting the stock are released, that is a large
realization of dZ,; occurs, so that the fundamental value changes substantially between t
and t+dt. The specialist is still expected to provide price continuity, but it seems natural for
him to be allowed (and even, encouraged) to respond to changes in p,. The NYSE
Specialist’s Job Description stipulates that the specialist should “initiate trading in each
security as soon as market conditions allow, at a price that reflects a thorough, professional
assessment of market conditions at the time.” This could be viewed as saying that the
specialist, faced with a shock to P,, is expected to do whatever possible to move in an
orderly fashion the market price in relation to the new value of P,. The job description does
encourage specialists to learn about the companies (i.e., their P,): “in order to establish a
positive professional relationship with Exchange-listed companies, [the specialist should]
contact during each quarter one or more senior officials [of the company] of the rank of

Corporate Secretary or above.”

To capture this effect, a tractable assumption is to set the drift of dp, to have the
simple linear form: 0P, — p, )dt = ats,dt. In order to satisfy price continuity we constrain
the specialist to not further adjust the price deterministically. The specialist however
controls the price adjustment through its volatility v;:

8 The NYSE fixes a minimal monthly stabilization rate for its specialists.



dp, =P, — p,)dt + v,dZ,, 4)

Controlling v, is how the specialist exploits his monopoly power. The specialist cannot
predict the dividend shock between t and t+dt, and hence we assume that E[dZ“dZZ,] =0.

Given that price adjustment, the instantaneous excess return provided by the stock
is given by:

dH, =D,dt +dp, —rp,dt = {r(P, - p,)}dt + dp, =Ps, dt + v,dZ,, (5)

where we have defined f=r+a. The drift of the excess return depends on the price
spread s;, which from (4) has the dynamics:

ds, =—as, dt+06dZ, — v dZ, (6)

Future excess returns are therefore (partly) predictable, and investors will choose their

trading strategies by taking into account (5) and (6).

We further interpret price continuity and stabilization as limiting the specialist’s
ability to set an arbitrarily large volatility®. However instead of setting an artificial upper
limit to the admissible volatility choice, we assume that the specialist receives a monetary
transfer T from the exchange depending upon the level of volatility that he decides to set.
Large volatility choices get penalized (T<0), low volatility ones rewarded (T>0). Other
things equal, the transfer is higher when the specialist must react to a large change in p,,
i.e., when s, is large in absolute value. This reflects the added difficulty for the specialist of
doing business following a large change in what the NYSE Rules call “market conditions.”
Let T(v,,s,)dt be the amount of the transfer from the exchange to the specialist between t

and t+dt. We therefore want the transfer function T to satisfy:
dT/dv, <0 7
and:

lim, .. T<0, lim, ,,T>0 (8)

v, =0

9 For example, according to the NYSE Rule 104, “the maintenance of a fair and orderly market implies the
maintenance of price continuity with reasonable depth, and the minimization of the effects of temporary
disparity between supply and demand” (NYSE (1995), 2104.10).



and be such that in equilibrium the specialist earns zero expected total profit. We give in the
Appendix a particular case of a transfer function which has the advantage of allowing for a

closed-form solution to the equilibrium and satisfies (7), (8) and the zero profit condition.

The specialist chooses his optimal volatility level, hence his price adjustment rule
(3), by maximizing his total expected profit. Total profit consists of both the transfer from
the exchange and the specialist’s trading revenue:

max, ., E [ I{*"‘ e {T(VT,ST)dT + dHT} ] )]

where dIT; is the trading revenue derived from his stock holdings between t and t+dt. As
indicated, the specialist recognizes that the number of shares q; demanded by the investor
will depend on his choice of volatility. The specialist is not allowed to trade independently
for his own account, but instead must clear the market according to the investor’s desires
and therefore holds -q; shares of the stock. Given the investor’s demand function
q. =9q(v,.s,), the specialist’s trading revenue dIT; is:

dI1, = —q(v,,s,)dH, (10)

From (5) and E,[ dZ,_ | =0, it follows that:
E, [ J'[+°°e‘ri dIT, ] =E, [ J‘t+°°e—rr {_q(vt,st)ﬁst}dt] (11)

To summarize: the specialist chooses {v;} to maximize (9), subject to the dynamics
of the state variable s, given by (6). We now describe how the investor determines his
demand function q, = q(v,,s,).

2.4 Optimization by Investors

The investor’s portfolio holdings q, and consumption c, at date t are determined by
maximizing his expected utility. In doing so, the investor takes as given the rule of price
adjustment (4) determined by the specialist. Assuming exponential utility!©
u(c,) = —exp(~ac,) with Arrow-Pratt coefficient of absolute risk aversion a and discount

factor p, the investor's objective is:

10 Exponential utility makes demand exempt from wealth effects.



max, . .4 E,[J‘[M—exp(——p'c—act)d‘c] (12)

subject to (6) and the dynamics of his wealth:

dW, =rWdt —c dt + q,dH,
(13)
= {I‘W‘ + Bst q.— Ct}dt + qtvtdzll
When formulating his demand for the stock, the investor will exploit the
predictability of the (risky) excess returns (5) to the maximum extent permitted by his own
risk-aversion. At time t+dt each investor will trade the quantity dq, required to insure that
his investment q;.q; in the stock is optimal at that point in time, given his holdings q; an
instant earlier, that is: dq, = q,,4 —4,-

2.5 Computation of the Equilibrium

We first solve the investor’s optimization problem, obtaining his best response
function to every possible choice of volatility by the specialist. Then we find the optimal
volatility choice by the specialist (acting as a Stackelberg leader) given the investor’s best
response function. The result is summarized as:

Proposition 1:

(i) The investor's optimal stock holdings in response to the specialist’s choice of volatility

vy is:

qlsovi)= alrv 20

t

2.2/ 2.2 _
s_t[Lz_'_\/1+4[302/rvt 1 (14)

(ii) The specialist, who as a Stackelberg leader takes into account the investor’s best

response, chooses volatility optimally as:

v, =v(s,)=1/02+Bsf (15)

(iii) Therefore in equilibrium:

S B +\/1+4[3202/r2(02+[3sf)—1

=2

q, =q(st’v(st))_ a T(O'z"'BS,Z) 202

(16)

Proof: see Appendix.



The basic intuition for the result is the following: when s>0 (resp. s;<0), positive
(resp. negative) excess returns are expected, and the investor desires to hold (resp. short)
more shares of the stock: see (14). This is detrimental to the specialist, who must take the
opposite side of the trade: see (10). By inputting volatility into the price process when s20
(see Figure 2), the specialist manages to reduce the holdings of investors when excess
returns are expected. Since investors are risk-averse, they indeed respond to the extra
volatility by demanding fewer shares of the stock than they would under constant volatility
(see Figure 3). The specialist exploits optimally the rent derived from his monopoly power.
In equilibrium he makes zero expected profit. The Exchange exactly compensates him for
having to face the trades of an investor who can optimally exploit the predictability of

future returns.

2.6 Empirical Implications

We now show that the equilibrium produces the stylized facts cited in the literature
as the main characteristics of the joint distribution of price and volume data (see Karpoff
(1987) and Gallant, Rossi, Tauchen (1992)): serial correlation in the conditional volatility
of price changes (the ARCH effect), contemporaneous correlation between trading volume
and absolute changes in prices, and excess kurtosis of price changes!!.

In order to examine these effects, we need to derive some properties of the

moments of s,:
Proposition 2:

(i) The price spread s, is strictly stationary and the first four conditional moments of s, ,

given s, are given in closed-form for any time interval A>0 by:

11 Skewness of price changes, while less apparent in the distribution estimated from the time series of
stock prices, is however typically present in the distribution of stock price changes implicit in the prices of
traded stock options (the "smile" effect).
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Efs,,, I5]=se™

2 2
E[sf+A Is,] = 20 + 512 _ 20 o -(20-B)a
200—B 20— B

E[s3 s ]: 60_251 e ™ 43— 60'25. e-(3u-3B)A ‘

t+A t 2(1 _ 3B t —za _ 3B

120'4 SZ 20.2 o
E S?+ Is,|= +12¢6? t - e (20-B)a (17)
[ 1] [(20—3[3)(2&—[3)} ((Za—SB) (2(1—[3)]

. (84 _120*(0” ~ (200~ 3B)s3)]e_2(2a_3B)A
' (20-5B)(20.-3B)

(ii) The stationary unconditional distribution 7t(s) of s, is given by:

n(s)=/[(202+[i H o/ Hl/ 20 +Bu? ”“/B} } (18)

It admits finite moments up to order n if and only if 200> (n—1)B, where o and B are
treated as independent parameters. Assuming 20 > 3B, the first four unconditional

moments of s_are:
E[s,]=0, E[s’|=20%/(20.-B), E[s}]=0, E[s{]|=120*/((20.-B)(2e-3B))  (19)
Proof: see Appendix.

Serial correlation in price volatility follows from the fact that s, is serially correlated
(from (6)), and thus so is v; (from (15)). Specifically, by It6’s Lemma, the conditional
variance of price changes follows:

dv? =((20t+B)o” — (20— B)v? )dt +2,/B4v? — 0% (0dZ,, - v,dZ,,) (20)

and is therefore mean-reverting around its mean value E[vf] =0’ (20+B)/(20.-B).

As for the second effect, define the trading volume as the change |dq, | in the
investor’s holdings. Because the Brownian increments dZ; are Gaussian random variables
it follows that!2:

12 This is a standard result for the correlation of the absolute value of two jointly Gaussian random
variables; see e.g., the appendix in Wang (1994) for a derivation.
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corr(|dp,}, |dq,|) = (1——)( \/1 corr dp,,dq)) >0 (21)

Therefore the magnitude of the price change is positively correlated with the trading
volume. According to the Wall Street adage, it “takes volume to move prices” which is

what (21) demonstrates for this model.

Finally, to show that the model generates a leptokurtic distribution for price
changes, we compute the conditional moments of price changes (see Figure 4). We derive
below as part of the estimation procedure the exact expressions of the conditional moments
of (Pi,a>Prea) Eiven (p,,P.)- While the moments are available in closed-form, the excess

kurtosis can most easily be seen from the first terms in the Taylor series expansions:

E[(pl+A —pt) l ﬁ P, ]= as A+O(A)

E[(pt+A - pt)2 l ﬁ, P. ] (0' + BS )A + O(A)

< *Ip 2 2 (22)
E[(pt+A pt) lpt P: ] 3ais (0' +BS )A +O(A )

LE[(pt+A SN )4 l ﬁt’pt] (0' + BSt ) A2 + o(Az)

We then derive the unconditional moments of price changes by applying the law of

iterated expectations and using (19):

( )
E[(pt+A - p,)zl =0 [2(“- EJA +0(A)
{ E[(p..s - )] = o(&") (23)
o] g o)

The price changes CXhlblt excess kurtosis. Indeed, we can see from (23) that
E[(p[+A p,) ]/(E[ (Pesa — pt)Z]) >3 if and only if B>0 (i.e., if the specialist optimally
adjusts volatility in response to investors' trades). The model therefore reproduces these
three major empirical facts: serially correlated price volatility, correlation between trading
volume and absolute price changes, and excess kurtosis of price changes.
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3. Estimation of the Equilibrium Price and Volume Processes

The objective of this section is to estimate jointly the system of stochastic
differential equations specifying the evolution of the price and volume variables. We first
concentrate on the price dynamics alone. Recall that s, = P, — p, and that Proposition 1
produced the following stochastic dynamics:

dp, = ()c(ﬁt - pt)dt + \/0'2 + ﬁ(ﬁt - pt)de“ (24)
dﬁt = GdZ?—‘

Direct estimation of the parameter vector Os(a, O',ﬁ) in the system (24) is not
feasible because P, is unobservable to the econometrician. Only the market price p, is
observed. We propose the following approach to estimate the system. We start by
determining the dynamics of the first two conditional moments of P, given p, (Proposition
3). Second, we derive expressions of the conditional moments of p,,, given p, and P,
(Proposition 4). We then use the law of iterated expectations to obtain the conditional
moments of p,,, given p,, using our estimates of the moments of P, given p,. Finally we
estimate the parameters by the generalized method of moments using the conditional
moments of p,,, given p, that were just derived, and the unconditional moments of p,.
The same procedure is repeated once transaction volume data are introduced --instead of
conditioning on the market price alone, we then condition on the full set of observables:

market price and volume (Proposition 5).
3.1 Estimation of the Fundamental Value from Data on Market Price Only

The first step is to filter the fundamental price at time t from observations of the
market price up to that time, assuming full knowledge of the joint dynamics (24), i.e., for a
given set of parameter values 0. Intuitively, knowledge of the joint dynamics of the prices,
associated with observations of the market price up to t collectedin 9, ={ p,/0<s<t¢ },
should reveal information on the unobservable underlying fundamental price. If we
minimize the conditional expected estimation error R, = E[ (ﬁ, - ﬁt)z 19, ], the resulting
estimate p, of P, is clearly given by the conditional expectation of the fundamental price
given the market price observations: P, = E[ p‘t| U, ]

The theory of nonlinear optimal filtering for diffusion processes is described in

detail in Lipster and Shiryayev (1977, Chapter 8). However the equations of optimal
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filtering can seldom be solved. Other than some specific cases, they can only be solved for
linear dynamics, yielding the Kalman-Bucy (1960) filter. Furthermore, the equations can
be formulated only when the volatility of the observable process dynamics do not depend

on the unobservable process!3. This is a major hindrance in our problem since the

instantaneous volatility v, = \/ o’ + B(ﬁ - p[)2 depends upon both the observable process
p: on the unobservable process P,. To address these limitations, multiple suboptimal
filtering methods have subsequently been developed. Pugachev and Sinitsyn (1987)
present an account of these developments. We use an extended Kalman-Bucy filter!4. This
filter is obtained by expanding the dynamics (24) through a Taylor series expansion of their
drift and diffusion for P, in the vicinity of its filtered value p,. In the extended Kalman-
Bucy filter, the expansions of the diffusion terms are limited to the first order term. We

solve for the filter and obtain:
Proposition 3:

(i) The extended nonlinear Kalman-Bucy filter follows the stochastic differential

equation:

dp, =

oR, ey
il oI 2

where the conditional estimation error R, follows the Ricatti equation:

2 2
R ={o?-— %R 4 (26)

o’ + B(ﬁl - p[)

(ii) In the special case where =0, i.e., when the specialist does not input additional
volatility to the market price relative to the fundamental price, the filter (25) reduces to the
linear Kalman-Bucy filter with dynamics: dp, =(0tR[/02){dp[ ——a(ﬁl - p[)dt} where
R, =(0’/a)(e*™ —1)/(e*™ —1). The steady state limit is: R = o’ /a.

Proof: See Appendix.

Note that, as required, (25)-(26) make it possible to compute fil recursively at any t

from a record of observations on the past market price changes. It is interesting to explore

13 See equation (8.44) page 307 in Lipster and Shiryayev (1977).

14 See Pugachev and Sinitsyn (1987), Section 8.3.2.
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how the optimal estimator of the fundamental price is updated as new information becomes
available. Equation (25) shows that the estimator ﬁ, is updated in response to the market
price change dp, that was just recorded. But it is only revised in response to the increment
in the market price that is uncorrelated with its past values, that is dp, — oc(f), - p,)dt.
Indeed n, =p, - J; a(ﬁs - ps)ds is an innovation process!5 for the market price process
p,- In other words, the estimator of the fundamental price changes only when new
unpredictable information arrives. When a change in the market price dp, is observed, part
of it is attributed to a change in the fundamental price (and consequently used to update the

fundamental price estimate), and part of it to noise.

Finally, an appealing feature of the estimator is that the estimation error made when
replacing the unknown fundamental price by its filtered estimate is bounded above by a
finite constant, and therefore does not grow as a power of t when t increases. As could be
expected, less noise in the processes (¢ smaller) and/or more reversion of p to p (o larger)
make the error smaller. Note also that if dZ; and dZ, were correlated with correlation
coefficient p;; then in the case B=0 the conditional estimation error would become
R, =(c*/a)((1+p,)e*™ - 1)/((1+p,)/(1-p,,)e* —1), with steady state limit
R =(1-p,,)(6”/ct). Therefore R is smaller when the correlation coefficient p,, between
the stochastic components of the respective fundamental and market price increments is
closer to one. Intuitively, as p,, gets closer to one, movements in the market price tend to
reflect more closely movements in the underlying fundamental price process, so it becomes
easier to estimate the value of the fundamental price by observing only the market price. In
the limit of perfect correlation, observing the market price fully reveals the fundamental

price at every instant.
3.2 Parameter Estimation

In this section, we construct a consistent and asymptotically normal estimator of the

unknown parameter values in (24).

15 A random process n, is an innovation process for a process p, iff: (i) at any t=0, n, is a functional of

B, E{ p,/0<s<t } and (ii) at any 0<t<t<s, the increment n_ - n, is uncorrelated with p_.
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Proposition 4:

The conditional means and (co)variances of the pair (p,,,,P,.,) given (p,.p,)-.are given in
closed-form for any time interval A>0 by:

(E[B... PP, ] =P,
E[p!+A I ﬁl’pl] = e—lm(pt - ﬁt) + ﬁl
E[P.., |P.P.|=P; +0°A

E[I_)HAPHA I I—)upJ =e™ (Gz/a + I_)z(pz - I—)z )) + (5,2 - (52/(1) + (52A (27)
E[p?.. 150p )= P*((p, - )" - 267/(20:~B)) + 2¢™(c*/e + Fo(p, - P.)
| + (7! —2(c*/or)(oe— B)/(20 - B)) + oA

Proof: see Appendix.

We have obtained in Proposition 3 both E[ﬁt Ip,] and E[ﬁf Ip,]. We now apply
the law of iterated expectations to derive the conditional mean and variance of the market

price at time t+A conditioned only on the observed variable at t:

E[p... IP.]=¢"(p, —E[P, Ip.])+ E[B, I p.] (28)

E[p'2+A I pl] = e_(za_ﬁ)A (E[(pt - ﬁt)z I px] - 2(52/(2(1 - B))
+ 2e—uA (Gz/a + E[ﬁt(pt - ﬁ:) I pt]) (29)
+(E[p! 1p.]-2(c*/a)(—B)/(20.~ B)) + 57A

The unconditional variance of the price process is given by:

E[p!]-E[p.]' = 0*{2¢ /0 - 2¢"* P (20~ B) - (V) (e~ B)/(20t ~ B) + t} (30)

The parameter vector 6 can now be estimated. In (28)-(29), the estimates for E[p, | p,] and
E[ﬁf I p[] are given by p, and E[ﬁf Ip,]=R, + B/ respectively, which are both functions
of p, and (a,3,0) as determined in Proposition 3 by (25)-(26). We then use GMM to
estimate (o,,0) using the moment conditions (28)-(29)-(30). Each conditional moment
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contributes two orthogonality conditions: itself, and its product with p,. The estimator is

consistent and asymptotically normal from the classical results of Hansen (1982)!16.

3.3 Estimating the Equilibrium Price From Market Price and Transaction
Volume Information

When volume data are available, the fundamental price estimator can be improved

by filtering out p, from both p, and q,, instead of p, only. By It6’s Lemma:

2
dq, = 4s 4 L2

=3 X (6% +v7)dt 31)

where q, is given in equilibrium by (16), and the price spread follows (6). Note that this
expression yields the market depth defined as the order flow required to change the market

price by one dollar, i.e., 1/y, in the equation E[dp,] =, E[dq,].

While the model determines exactly the transaction volume equation (31), we
estimate the following simplified expression, derived by retaining only in (16) the first

order term for small price spreads s;:

dq, = —Aos,dt + A(6dZ,, —v,dZ,,) (32)

Proposition 5:

The conditional mean and variance of the observed transaction volume q,,, —q, over any

discrete time interval of length A>0 are:

E[(q.s —a.) 1P =-MB, - p.)(e ™ -1)
El(a., -a) 1p.2}=¥e i - 26 +1)(B,~p.)’ (33)
+2c5273(1 —e P2 ) /(2a -B)

Proof: see Appendix.

16 We assume that the market price series satisfies the minimal regularity conditions needed to guarantee
the existence of the Central Limit Theorem. For example, assume that the price series is B-mixing at an
exponential rate of decay strictly greater than one. It is important in practice to choose the GMM weighting
matrix optimally because of the difference in scales between the prices and the squared prices (in the
empirical application that follows, the mean price level is $67).
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As for the market price process, apply the law of iterated expectations to obtain
E[(qHA - q() I p‘] and E[(qt+A - q()2 | pt], as functions of p; and the filtered fundamental
price and its conditional estimation error. Then use the resulting moments to form
orthogonality conditions, and add them to those derived from (27).

In the extended Kalman-Bucy filter, the fundamental price estimate is now revised
by a linear combination of the innovations in both the market price change dp, and the
transaction volume dq,. It can be shown that the steady state limit of the conditional
estimation error is R < R. In other words, the estimator of the fundamental price obtained
from data on both the market price and transaction volume is always more precise than the

estimator obtained from observations on the market price only.

4. Applications and Empirical Implementation
4.1 The Data

The implications of the model are examined on transaction data for AMR, the parent
company of American Airlines, during the month of January 1993 (Monday 1/4 to Friday
1/29: 20 trading days). The source for the data is the NYSE TAQ Database, which lists all
trades and quotes for the NYSE, Amex and NASDAQ and the regional exchanges. These
transactions are submitted by participants on exchanges. We sign trades here as a buy or
sell trade based on their relative proximity to the bid and ask quotes prevailing five seconds
before!7. We also aggregate successive trades of the same sign into a single trade. This
trade is time-stamped at the average of the individual trade times, weighted by trade size.
The aggregation results in a final sample of 2,229 trades. Table 2 reports the descriptive
statistics for this sample. Figures 5 and 6 plot AMR's signed transaction volume and the

time between trades.

During the sample period, the main events affecting the fundamental value of AMR
stock (to be viewed as large realizations of the Brownian Motion Z, determining the change
in p) have been gathered from the Wall Street Journal and are given in Table 3.

17 See Lee and Ready (1991) for various approaches to signing transaction volume.
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4.2 Estimation of the Equilibrium Dynamics

The estimation procedure has two distinct steps. All the parameters of the structural
system (24) are estimated and the best estimate of the fundamental price is computed at
every date. The parameter estimates are reported in Table 4. Figure 7 reports the observed
changes in the market price (dp;) used to construct the fundamental price filter in (25).
Figure 8 gives the market price of AMR and the estimated fundamental price. It can be seen
on the graph that large differences between the two prices tend to precede an adjustment in
the market price that is consistent with the model. When the market price is significantly
below the estimated fundamental price at t, the market price tends to go up subsequently,
and vice-versa. This suggests graphically some predictive power, a question which is
examined more carefully below.

The accuracy of the filter is determined by the conditional estimation error R;in
(26), which we plot in Figure 9. As discussed in Section 3.1, the conditional estimation
error is bounded above, a fact which becomes apparent on the graph. We finally report in
Figure 10 the stationary distribution of the price spread s; given by (18). This is the
unconditional distribution of the difference between the market and fundamental prices. It
measures the likelihood, in steady-state, of observing deviations of any given magnitude

between the market and fundamental prices.

A nice feature of this model is that relevant issues or “anomalies™ in asset pricing
can be interpreted as simple hypothesis tests on one or more of the three parameters of the
model, o, B and 62, and we now focus on each of them.

4.3 Mean Reversion in Stock Prices

The extent to which stock prices tend to revert to their mean over long horizons has
been the subject of long-standing attention in the finance literature, as part of a broader
study of departures from the random walk hypothesis. On the empirical side, the
investigation of mean-reversion in stock prices has generally focused on the autocorrelation
at various frequencies of security returns. The idea that market prices would fluctuate
around fundamental values, defined as the discounted cash flows that the stock gives title
to, dates back at least to the classical books by Graham and Dodd (1934) and Williams
(1938). This line of research includes Cowles (1933), Kendall (1953), Summers (1976),
Fama and French (1988), Lo and MacKinlay (1988) and Poterba and Summers (1988).
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The empirical findings concentrate on long horizon returns and generally find significant

mean reversion.

In this model, the market price can be interpreted as reverting at every instant to the
stochastic level p, (recall (24)). Because the fundamental price is itself a stochastic
process, we propose two nested definitions of mean-reversion: (i) no mean-reversion in the
strong sense, corresponding to the joint hypothesis Hg: o.=0 and ¢ =0, and (ii) no
mean-reversion in the weak sense, corresponding to the hypothesis Hy,: ao=0 only. In
this framework, define a market price series to be strongly mean-reverting if the joint
hypothesis Hg, as well as the two individual hypotheses, are rejected, and weakly mean-
reverting if only Hy, is rejected. A strongly mean-reverting market price reverts to a non-
stochastic value. A weakly mean-reverting series reverts to a randomly changing level. A
market price series that is not weakly mean-reverting is essentially a random walk.

The two null hypotheses can be tested in the GMM framework spelled out in
Proposition 4. We use the Wald statistics!8. The test results are in Table 5. Neither Hg nor
the two single hypotheses (in particular Hy, ) are rejected at the 95% level.

4.4 The Predictability of Stock Price Changes

A closely related question is whether stock price changes are predictable. In this
model, the fundamental price estimate makes it possible to predict market price changes at
every instant, by replacing the unobservable drift of the market price process in (24) with
the estimated drift, yielding an estimate at t of the change between t and t+dt:

E[dp, 19, ]=6(p,—p,)dt (34)

with the same notation as before: & is the unconstrained estimate and p, = E[p, 9, ]. At
every instant t (sufficiently far from the beginning of the sample), observations on
{ps /0<s< t} and the corresponding volume are used to form & and P,. Then the

I3 Asymptotically, the Wald, Likelihood Ratio and Lagrange Multiplier statistics are equivalent, but the
Wald statistics does not require that the constrained parameter be computed and is therefore easier to
implement. A disadvantage of the Wald statistics, however, is that it is not invariant to reparametrizations
of the null hypothesis. This should not be a concern here, since the economic hypothesis to be tested (say,
mean-reversion) leaves very little leeway regarding what specification of the statistical hypothesis is natural
(0=0 in that case).
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expected market price change is computed according to (34). The forecasts can be

compared to the random walk forecasts:
B[ dp,19,]=0 (35)

The null hypothesis H,: oo =0 is rejected at the 95% level. An alternative easily
interpretable test of forecasting power could be conducted by counting the proportion 7T of
instants in the sample for which (34) is closer to the actual market price change recorded
between t and t+dt than the random walk (35). Under the null that market changes are
unpredictable given the past and present market prices in ¥,, the probability that (34) be
closer to the true market price change than (35) is t=1/2, as the predicted departure from
(35) given by (34) is uncorrelated to the actual departure under the null. We would test
H,:m=1/2 vs. H,:w>1/2. The sample probability & would have the binomial
distribution ~/T (& —1/2) — N(0, 1/4) under the null.

4.5 Do Market Prices Move Too Much?

To examine whether market prices move too much to be justified by changes in the
fundamental price, it suffices to test the null hypothesis H,, : B =0. Under H,, the market
price is not more volatile than the fundamental price, as both have the same volatility .
The null is rejected at the 95% level. Note that this is not a statement that the filtered
fundamental price is smoother than the market price. At the filtering stage (Proposition 3),
the value of B is not yet determined and could well have been zero. The parameters are only
estimated at the GMM stage (Proposition 4), and as the parameter values are updated so is
the filter.

This evidence is compatible with the classical result of Shiller (1981) and LeRoy
and Porter (1981), who found that the volatility of stock prices was too high to be justified
by changes in future dividends (see Cochrane (1991) for a critique). Shiller showed that
under his assumptions the market price must have a lower volatility than the perfect
foresight price, so finding the opposite result yielded the conclusion that markets are
inefficient / irrational. An important difference is that there is no constraint here on the
relative size of the market and fundamental price volatilities. Rejecting H, has no
implications for market efficiency in this model. Every market participant is rational, yet

market prices could be more volatile than fundamental values.
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4.6 The Possibility of Fads and Bubbles, and Market Efficiency

This model provides a natural framework to examine the development and growth

of fads and bubbles. An efficient (E,e) market can be defined as one where
P(lp‘—'p'JZEp(lﬁt)Se (36)

for all dates t. A bubble or fad can similarly be defined as a deviation between the market
price and the fundamental price that exceeds a certain arbitrary level (e.g., E=20%) and
persists for more than a certain arbitrary amount of time (e.g., a week). All these
probabilities can be computed directly from the joint transition densities of the market and

fundamental price processes.

5. Conclusions and Extensions

The results suggest that it is possible to replicate, in a fully rational world, some of
the empirical findings that have been labeled as market “anomalies.” There is no question
however that this model is simplistic, and that many other puzzling empirical regularities
are beyond its scope. Three extensions can be considered. First, the theoretical model
could be extended to incorporate asymmetric information (Detemple (1986), Gennotte
(1986), Wang (1993)). For example, the fundamental price could be revealed only to the
specialist. The investor would receive a signal on the fundamental price and then trade
based on the signal, in addition to the price set by the specialist. In equilibrium, the market
price would not be a sufficient statistics for all relevant market information, and the
resulting model would have a noisy rational equilibrium flavor (Grossman and Stiglitz
(1980), Hellwig (1980), Diamond and Verrecchia (1981)).

Secondly, the model could incorporate a bid-ask spread, as a source of profit to the
specialist (see Glosten and Milgrom (1985)). This could serve as an additional motivation
for our assumption that the specialist is constrained in setting the drift of the price
adjustment, but controls its volatility. With a bid-ask spread, the specialist would have an
incentive to “move prices around,” i.e., control the price volatility, as liquidity investors
would then readjust their portfolios more often --thereby generating bid-ask profits for the
specialist. Thirdly, the model predicts that market price changes exhibit additional volatility
compared to those of the fundamental value of the stock. Instead of relying on a particular

parametrization, this excess volatility function could be estimated nonparametrically.
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Appendix

Proof of Proposition 1:

(i) The investor's optimization problem has the two control variables c, and q,,

and the two state variables are W, and s . Let V(t,W,,s() be its value function. The

Bellman Equation is:

O=sup, . {-—e_""“‘ + aa\t/ aav {rW, +Bs,q,—¢ }+———{—0cs }
10 o’V
2l et} o 1)

since var(dW,) = var(q,v,dZ,,)=q}vidt, var(ds,)=var(6dZ,, - v,dZ,)={c” + v} }dt
and cov(dW,,ds )= cov(q,v,dZ,,,6dZ,, - v dZ, )= —q,v/dt.

The first order conditions give the investor’s optimal investment strategy qy:

oV o’V ., 9V ,
- =0
aw Pt GwT I T s, v

and consumption policy ci:

v _
W,

—-pt-ac, __

Replacing the control variables by their optimal values in the Bellman Equation
leads to a partial differential equation to be satisfied by the value function. The solution can
be found in the form: V(t,W,s,)=—(I/r)exp(—pt—arW, —ah(s,)), where

h(s,) = h, + h;s, + h,s] with constant h;’s. We obtain that:

q(s,v,) = S—'[l]+-w and ¢, = rW, +h(s,)

a I'V'2 r

and so the Bellman Equation evaluated at the optimal policies becomes:
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O=r—p- ar{BStq! - h(st)} +aol’ (S,)S, + %azrzqfvtz
' 1 ' t
a5 o+ e o) et s o 4]

The solution for h(.) in the value function is:

r
4ac’

h, = ——|/1+4B°*/r*v; ~1], b, =0, b, =i[(oz +v; Jah, +(p~r)]

It satisfies the transversality condition lim, _,_, E{V(t,W,,st )} = 0. The optimal investment

policy simply follows by replacing h' (s,) by 2h,s,, which yields (2.14).

(i) The specialist acts as a Stackelberg leader. His objective is to maximize over
{v.121t}:

E, [ J.(Me'" {T(vt,sr) - q(vr,sr)Bsr}dT ]

taking into account that the investor will react optimally to his choice of volatility:
q, =4(s,,v,), given by (2.14). To obtain a closed-form solution to the specialist’s problem
we specify the transfer function T as:

211 A1+4B%%/r*v? —1 2 4 v? 2 4 Bs?
T(V“s')=&_{\/ B 2/r v, +E G+ V] +__1_ 26% + fs!

a 20 r| (302 +Bs7+v2) VI (40’ +Ps2)

This function satisfies the properties (2.7), most notably being decreasing in v, on R+.
Note that if the investor is infinitely risk-averse (a=<c) he never holds the stock, no trade
ever takes place, and the transfer function is identically zero. Similarly, if the stock price
does not mean-revert to the fundamental price (B=0) the specialist receives no transfer.

Let V(t,s,)=e™k(s,) be the value function. The Bellman Equation is:
1
O=sup,, {T(v.s.)—a(v..s,)Bs,} - pk(s,) + K (s, {05} + Ek” (s {0’ +vi }}

{stf [ o’ +V’ 20° +Bs’ }

ar (30‘2 +PBs? + vf)2 - (40‘2 + [5s,2)2

k() s+ 1 ) )}
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The optimal control v; to be set by the specialist solves the first order condition:

) 2vl(()'2 + le2 - vf)
l (3()'2 +Bs? + vf)3

=2k (s)

The complete solution is: v = 6” +Ps] and k(s,) =0, which satisfies the transversality
condition lim,_,_ E{e™k(s,)} =0.

(iii) is immediate given what precedes.

Proof of Proposition 2:

i) Defme (s) exp{J 20Lu/ > +PBu )du} m(s 1/( 0' +Bs (s )) the scale
measure T(s J"c u)du and the speed measure M(s) = j (u)du. The process s, is
strictly stationary on D=(-c0,4c0) and both +eo and -0 are entrance boundaries if and only
if at both boundaries the scale measure T(s) diverges, the speed measure M(s) and the
cross-integral N = J‘ST(v)dM(v) both converge (see Karlin and Taylor (1981), 15.6). This
properties are satisfied here since near infinity (s) o s°*'?,

Let p(t,s, I'sy) be the conditional density of s; given so. To compute the conditional
moments, we define the moment generating function ¢(t,0) = E[e‘esl Iso]. For notational
simplicity the dependence of ¢ on sg is omitted since sg is held fixed in what follows. We
have that:

90(t,0) _ = _o, 9p(L:S, Isy)
R R0l
L ot ;

e {g[aslpo,st sl {20+ Bl 1),
=-L, -05, {(—)as +-0 (20 + Bs? )} (t.s, 1'sy)ds,

where we have successively applied the Kolmogorov forward equation (see for example
Karlin and Taylor (1981), 15.) and integrated by parts. Therefore, we have obtained that:

30(1,6) _ ., 30(16) : 9°0(1.6)
- 0o ——~ % += 9(20¢(t,9)+[} 0 ]
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where:

(-1)" M = E[s Is,]=C,(t) and ¢(t,0) =1.
08" g0
Differentiate both sides of this equality with respect to 0, and evaluate the result at
6=0, to obtain:

= —(20.— B)C,(t) +20?
= -3(a-B)C,() +60°C,(1)
= 2(20.-3)C, (1) + 126°C, (1)

Solving these first-order ordinary differential equations with the initial conditions
C,(0) =s; yields the conditional moments E[s:‘ Iso] for n=1,2,3 and 4.

(ii) In equilibrium, the price spread dynamics are given by (6) with the volatility
(15): ds, = —as, dt + 6dZ,, — /6’ + BsZdZ,, . The stationary distribution of s, is determined
from the drift -ois, and the diffusion (26 +ps’) , with the normalization constant &

determined to insure that the density integrates to one:

B £ ex ¢t —20u .
")= 2o+ p9) p{ | orrp)’ }
&

- (202 + [3s2)1+m/la

1

(20” +ps’ )Ha/ﬁ T{l/(Z(}'2 + Buz)lwﬂ}du

—00

Therefore near infinity 7(s) o< (Bsz)—l—am and ru"n(u)du oc B"0/Bgn1=22/B converges if
and only if 2t >(n—1)B. The unconditional moments U_= E[s{'] (independent of t by
stationarity) can be computed either directly from the expression of the unconditional
density m(s), or more easily by appealing to the ergodicity of the process. That is:
n(s)=1lim,, p(s.tls,) and hence U, =lim,_,,_C,(t). The result for U, is immediate

given the expression of the conditional moments Cy(t).
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Proof of Proposition 3:

(i) The Extended Kalman-Bucy filter is derived from the following joint dynamics

for the (unobservable) equilibrium and (observable) market prices:

dp, =odZ,,

—_ 2 2
dp, = (P, - p,)dt +\/02 +B(p. ~p,) dzZ,
(see Pugachev and Sinitsyn (1987) page 448).

Our objective is to find the stochastic differential equation followed by:
f= E[ f(p,)! 13,] with P, and p, given above. Using results from the theory of optimal
filtering (e.g., Pugachev and Sinitsyn (1987), (15) page 388), it can be shown that

o

where at this stage we have allowed for the sake of generality the two Brownian Motions to
be correlated: E[dZ, dZ, ] =p,,dt.

f, = E[ £(p,)19,] follows the following stochastic differential equation:

= El:lef—(ﬁt)oz
2 dp

df, -

P

ﬂ[]dt + E[f('ﬁ, ){a(ﬁ[ ~7P, )} + Efgi‘—)pno\/oz + B(ﬁ, ~P, )2

: (02 + B(ﬁ, - P, )2 )nl{dpt ~a(p, - p[)dt}

Apply this to f(z)=z, hence f = E[ f(p,)! 13,] =7P,, to obtain the stochastic
differential equations (25) for p,. Then apply it to f(z) = z*, and subtract P, to obtain the
equation (26) for the conditional estimation error R,.

(ii) In the special case where =0, the extended Kalman-Bucy filters reduces to the
optimal Kalman-Bucy linear filter. The conditional estimation error then follows a
deterministic Riccati equation:

EB[__oz _[ R, +p1202 2
dt c

with initial condition Ry = 0. It is immediate to verify that the solution of the Riccati

equation is:
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R, =(1+py,) %2 {exp(20t) - 1}/{(%&

— P2

)exp(Zat)+ 1}

conditioning on the initial fundamental value p, assumed known, that is R, = 0. Its steady

state solution is:

2

6]
= lim R, = (l—pu)g

t—>too

Proof of Proposition 4:

Let p(t,B,.p, | P, Po) be the conditional density of the pair (P,,p,) given (By.Po)
and define the moment generating function ¢(t,8,6)= E[e'eﬁ"e"‘ |§0,p0]. Applying the
multidimensional Kolmogorov forward equation, we have that:

9 _ 9% _ 9o 0 % _, % B2,2
at eo‘(ae ae) 2 ( A ﬁ(aez 28" zaeae]}’ oo

where:

wm [ 070(1.0,8) |
(-1) [W]:E: E[Prp" | Po.Po] = C,m(t) and (1,0,0)=1.

Differentiate both sides of this equality with respect to 8, and evaluate the result at
6 =8=0, to obtain:

Cy'(t)=0
Cy' (t) = —0Cy, (t) + 0C,(t)
{C, (t) =02
C,,' (1) =—aC,, (1) + oCy(t)
Cp' (1) = —(20‘ B)Co(t)+2(c—B)C,,(t) + BCyy(t) + 0

Solving these first-order ordinary differential equations with the initial conditions
C..(0)=7P,p; yields the desired conditional moments.
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Proof of Proposition 5:

Using the same method as in the proof of Proposition 4, for the two state variables
st and q; with respective dynamics (6) and (32), we obtain:

E[ql+A Isl’qt] =q,~ )\’S!(e—m& - 1)
E[ql.s 1509.]=af —2Me™ —1)gs, + (e P* — 2™ 4 1]
+20°A7 /(20— B)

The expressions for the conditional moments of the observed volume, i.e., the change in
the investor’s holdings between t and t+A, q,,, —q,, follow.
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Year Price Continuity Rate Price Stabilization Rate
1994 97.4% 76.3%
1993 97.1% 77.6%
1992 96.4% 78.3%
1991 95.9% 80.9%
1990 95.8% 83.1%

Table 1: Price Continuity and Stabilization (Source: NYSE 1994 Fact Book).

Market Price I\il,?_li.i(:t r{zﬁgﬁ:ﬁ bTerIt‘lvl::aZn
Change rades
Unit Dollars Dollars Number of Minutes
Shares
Mean 66.970 -0.001 -86 3.579
Standard Deviation 2.189 0.165 15,350 5.889
Minimum 61.750 -0.875 -162,000 0.017
25% Percentile 65.000 -0.125 -2,100 0.617
50% Percentile 67.375 0.125 100 1.667
75% Percentile 68.750 0.125 2,000 4.200
Maximum 70.250 1.000 173,000 108.517
Lag 1 Autocorrelation 0.996 -0.499 -0.129 0.085

Table 2: Descriptive Statistics

Note: Same-side trades (buy or sell) are aggregated for the purpose of computing trading
volume and time between trades.
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Trading
Date Day Event

Jan. 7 4 UAL announces drastic cost-cutting measures. Along
with other airline stocks, AMR jumps 7/8 to close at 68
3/4.

Jan. 12 7 Northwest Airlines launched a new fare war. AMR off 1
5/8 at 67 3/4.

Jan. 14 9 Threat of wholesale fare war recedes. AMR leaps 2 to
69.

Jan. 18 11 County NatWest increases its 1992 estimated loss for
AMR from continuing operations to $4.50 from $2.80 a
share.

Jan. 20 13 AMR reports its worst loss ever ($935m) for 1992 and
announces spending cuts of $300m for 1993. AMR
stock down 3/4 to 67 1/8.

Jan. 25 16 Possible OPEC production cuts announced. Fuel prices
up. AMR loses 1 7/8 to 64 1/8.

Jan. 26 17 AMR announces delayed delivery of eight Boeing jets.
AMR down 3/8 to 64.

Jan. 28 19 Delta and UAL announce large 1992 losses. AMR down
1 1/4 to 62 1/4 along with the other airlines' stocks.

Table 3: Potential Shocks Affecting the Fundamental Value of AMR during
January 1993
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Parameter Coefficient 95. %
Confidence
Interval
Price Processes o 1.36 101 [0.028,0.25]
c? 6.28 101 [0.47,0.79]
B 8.41 102 [0.008,0.16]
Volume Process A 4.50 10+5 [17351,72649]

Table 4: Parameter Estimates

Note: The price processes are given by (24). The trading volume process is given by (32).
In these estimates the unit of time is one trading day. Prices are measured in dollars, and

volume in number of shares traded.

. Null Wald
Economic Issue Hypothesis Statistics
Mean Reversion of Prices? o=0 and g2=0 64.2
62=0 5.95
Predictability of Price Changes? o=0 4.62
Do Prices Move Too Much? B=0 59.1

Table 5: Test Statistics

Note: The Wald Statistics are distributed as > for the joint hypothesis on (0,62), and x’

for the others. The 95% critical values are respectively 5.99 and 3.84.
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Figure 4
Conditional Moments of Price Changes
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