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ABSTRACT

The Family Support Act allows states to reimburse child care costs up to the 75th
percentile of the local market price for child care. States are required to carry out surveys to
estimate these 75th percentiles. This estimation problem raises two major statistical issues: (1)
picking a sample design that will allow one to estimate the 75th percentiles cheaply, efficiently
and equitably; and (2) assessing the sampling variability of the estimates obtained.

For the state of Massachusetts, we developed a sampling design that equalized the
standard errors of the estimated percentiles across 65 distinct local markets. This design was
selected because state administrators felt the public day care providers and child advocates would
find it equitable, thus limiting costly appeals. Estimation of standard errors for the sample 75th
percentiles requires estimation of the density of the population at the 75th percentile. We
implement and compare a number of parametric and nonparametric methods of density
estimation. A kernel estimator provides the most reasonable estimates. On the basis of the mean
integrated squared error criterion, we selected the Epanechnikov kernel and the Sheather-Jones
automatic bandwidth selection procedure. Because some of our sample sizes were too small to
rely on asymptotics, we also constructed nonparametric confidence intervals using the
hypergeometric distribution. For most of our samples, these confidence intervals were similar
to those based on the asymptotic standard errors.

Substantively, we find wide variation in the price of child care, depending on age of the
child, type of care and geographic location. For full-time care, the 75th percentiles ranged from
$242 per week for infants in child care centers in Boston to $85 per week for family day care
in western Massachusetts.
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1. Introduction

The Family Support Act requires states to provide child care to employed welfare
recipients and individuals enrolled in federally subsidized employment and training programs.
The Act allows states to reimburse child care expenditures to the extent that the price paid
for care does not exceed the "applicable local market rate.” Regulations implementing the
Act set the applicable local market rate at the 75th percentile of prices for designated types of
care in local areas. States are required to conduct annual "market-rate surveys" to determine
the seventy-fifth percentile for each child care market in the state.

These requirements raise a number of interesting statistical issues. First,
implementation of the act poses an interesting sample design question: What sample design
will allow one to estimate the 75th percentiles cheaply, efficiently and equitably ? Those
administering the Act are interested in administrative as well as statistical efficiency. To
limit appeals, reimbursement rates must be determined in a way that will be generally
accepted as fair and reasonable.

Given a sample, it is simple to find its 75th percentile. However, unless we sample
the entire population of child care providers, the sample 75th percentile is only an estimate of
the population 75th percentile, and it is subject to sampling error like any other estimate.
This raises the second relevant statistical question: How do we assess and report the
sampling variability (uncertainty) "in our estimated 75th percentiles? Here we follow and
compare two different approaches from the statistical literature. First, we can adopt a
nonparametric approach to construct confidence intervals for the population 75th percentile.

Second, we can rely on asymptotic (large sample) results that express the standard error of



the sample percentile in terms of the density of the population at the percentile. This leads
us to the problem of density estimation, to which we apply traditional kernel estimators.
This approach gives sensible answers for samples of size (roughly) 50 or more.

These two statistical problems are obviously related, because the choice of a sampling
design is motivated primarily by the desire to manage sampling variability in the estimates.
We relied on preliminary data to estimate the density at the 75th percentile for each of the -
relevant populations (markets), so that we could express the standard error of the estimated
percentiles in terms of the sample sizes chosen for each market. We then picked sample
sizes, subject to a constraint on the overall number of observations and some other
administratively imposed restrictions, to equalize the standard errors of the estimated 75th
percentiles across different markets. This procedure does not lead to allocating the same
number of observations to each market. Rather, it allocates more observations to populations
in which the 75th percentile is harder to estimate; these are markets that are larger or that
have more price variability.

We addressed these statistical issues in the course of conducting the market-rate
survey for the state of Massachusetts. As in much applied statistical work, the time schedule
was tight. We were given just over a month to develop the sampling plan and questionnaires
and to select the sample to be interviewed. Interviewing took place between January and
April, 1994 and the final report wﬁs delivered to the state at the end of June, 1994. This
paper describes the results of that project and of further subsequent analysis of the data,

including a more thorough investigation of the effects of the choice of kernel and bandwidth,



and the construction of nonparametric confidence intervals using the hypergeometric
distribution as well as the binomial.

The outline of the paper follows; In the next section, we describe t'he way in which
the samples for the study were selected. In section 3, we describe the data collection
process. In section 4, we use kernel methods of density estimation to calculate standard
errors for the 75th percentiles of our samples, and in section 5 we construct confidence
intervals using these standard errors and also using a direct nonparametric approach. The

final section contains our conclusions.

2. Sampling

Sampling theory most often considers the selection of samples to estimate the mean of
the distribution of some variable for some well-defined population. The Family Support Act
implies a different sampling problem since it requires estimation of a percentile rather than a
mean, and since it does not clearly define the relevant populations (local market areas).

Massachusetts requested that we estimate the 75th percentile of market price for
thirteen different areas of the state. Each area contained a child care "reference and referral®
agency (CCRA) that provides information on child care to families and other purchasers of
child care in the area. Since there is a one-to-one correspondence between areas and
CCRA’s we will refer interchangabiy to geographical areas and CCRA’s. The state also
asked that, for each area, we estimate the price for five different types of care (group care
for infants, group care for toddlers, group care for'preschoolers, care for school-age

children, and family day care). These requirements defined 65 distinct markets (5 types of



care in each of 13 different areas of the state). For convenience, we will refer to the 65
distinct markets as "cells". Each of these 65 markets or cells defines a distinct population of
interest, and we therefore needed to provide 65 different estimates of the 75th percentile of
the distribution of price.

2.1 The Sampling Plan

The first statistical decision for the project was the type of sample to select. After-
discussion with state administrators and examination of pricing information available from the
resource and referral agencies, we decided to sample providers of child care (rather than
purchasers of child care), and to choose sample sizes and sampling fractions that were
unequal across markets, with random sampling within each market.

The decision to sample providers of child care rather than purchasers is motivated
largely by the fact that providers of child care are easier to sample than purchasers, since
their identities and locations are known to the state licensing authority (the Office for
Children). However, the decision to take a random sample within each market reflects an
implicit definition of the population of interest as the set of prices charged in a market (one
for each provider), rather than as the set of prices paid (one for each purchaser). This
distinction will matter if providers are of different size and if size correlates with price.
Compared to a random sample of purchasers, a random sample of providers clearly puts less
weight on large providers and more‘ weight on small providers. If the population of interest
were defined as the set of prices paid, one for each purchaser, we could still utilize a sample
of providers, but we would want to sample them with probabilities proportional to their

number of customers.



From the point of view of the state of Massachusetts as a whole, our sample is a
stratified random sample. However, our reasons for deciding on this type of sample were
not the traditional ones of minimizing the sampling errors of estimates for the state as a
whole. (For excellent discussions of the usual reason for stratification and unequal sampling
fractions, see Kish (1965) or Kendall and Stuart (1976, pp. 182-187).) For the purposes of
the Family Support Act, the distribution of the price of child care in Massachusetts as a -
whole is not of interest. Rather, the distributions of prices in local markets are relevant.
Stratification was dictated by the desire to provide reasonably accurate estimates for each of
our 65 cells. Some of the cells contained very few providers (sometimes less than 20) while
others contained very many (more than 1500). A simple random sample over the entire state
would be unlikely to contain an adequate number of providers from the smaller cells.
Conversely, sampling the same number of providers within each cell would result in more
precise estimates in the smaller cells than in the larger ones. Our sampling plan sought to
equalize the standard error of the estimates across the 65 cells, and generally resulted in
smaller cells having smaller numbers of observations but larger sampling fractions than
larger cells.

The dispersion of the price of child care within cells is also relevant to the accuracy
of estimation of the 75th percentile, andv therefore to the sampling plan. The standard
deviation of the price for a week of child care ranged from under $10 for the part-time (less
than 35 hours a week) care of preschoolers in Western Massachusetts (e.g., Pittsfield) to
over $59 for full time care of infants in group facilities (i.e., day care centers) in the western

suburbs of Boston (e.g., Cambridge, Newton and Wellesley). Obviously it is harder to



estimate the 75th percentile precisely when the data are more variable. Therefore, our desire
to equalize the precision of our estimates across cells implied that more observations were
allocated to cells with high price variability than to cells with low price variability.

The decision to allocate observations to cells in such a way as to equalize precision of
estimation was made basically for administrative and political reasons. Child care providers,
particul;ﬁly the owners and managers of day care centers, are very well organized and well
informed in Massachusetts. Large differences in the accuracy with which price was
estimated might well be perceived as unfair and inequitable. The estimated prices will
determine the rate at which the state will reimburse providers for care. - These rates have
major financial implications for providers, and a perception that rates are set unfairly would
be likely to lead to large numbers of appeals, which are costly both administratively and
politically.

To discuss more precisely the process by which we seek to equalize precision of
estimation across cells, we need a little notation. Suppose that the size of population i is N,
and we have data on a simple random sample (drawn without replacement) of size n, < N;,
forcelli = 1,2,...,65. A standard formula gives the approximate variance of the estimated

75th percentile as:
(D o*(75%ile), = [p(1-p)/(nf (75 %ile))][1-n/N] ,

where p = .75, f(75%ile); is the population density function evaluated at the 75th percentile

for cell i, and the approximation is valid for n; sufficiently large. See, for example, Kendall



and Stuart (1977, pp. 251-254); however, we multiply their formula by the finite population
correction (1-n/N).

Evaluation of the variances in equation (1) requires the population density f(75 %ile);.
We estimated these densities using preliminary price data provided by the areas’ reference
and referral agencies (CCRA’s). These data are not really representative of the population,
but they provide reasonably reliable information on the variability of prices within cells. We
originaily attempted to estimate the densities using a nonparametric (nearest neighbors)
approach, but were unable to achieve results that seemed plausible, probably because the
preliminary data were not sufficiently numerous to support nonparametric density estimation.
Because of time constraints (there were now less than two weeks remaining before interviews
were to begin), we adopted the simple strategy of assuming normality of the populations for
the purpose of density estimation. This simply required estimating the sample variance, say
sZ, from the preliminary data for cell i. The density of a normal population with variance

0%, evaluated at the 75th percentile, is given by
) f(75%ile) = (7)™ exp(-.228) / o .

Thus our estimate of f(75%ile); is proportional to 1/s;. The normality assumption is not
really supported by our data, but later calculations based on the final data set indicate that
density estimates under normality are at'least moderately reliable in these data.

With estimates of f(75%ile), in hand, we can evaluate the variances o*(75 %ile); as a
function of the number of observations n, in cell i, using the expression in (1) above. The

state of Massachusetts initially approved funding for the collection of a total of 1600



observations, and we therefore sought to allocate these to the 65 cells so as to equalize the

sampling variances. This requires the solution of the set of simultaneous equations:
) 2 (75%ile), = X (75%ile), = ... = (75 %ile)ss

with respect to the sample sizes n,, n,, ..., ng, subject to the adding-up constraint £, n, =
1600. Of course, given that the sample sizes n; must be integers, the equalities in (3) cannot
hold exactly. We solved this problem using MATHCAD 4.0, ignoring the integer nature of
the sample sizes, and then rounded the optimal sample sizes to the nearest integer. The
ensuing results satisfied the adding-up constraint and the equality of variances in (3) nearly
held, so we judged that we had adequately solved this problem. In particular, a more
complicated integer-programming approach (minimizing a function of the deviations from
equality with respect to integral sample sizes) seemed unnecessary as a practical matter.
Unsurprisingly, the sampling plan that equalized sampling variability across cells led
to considerable variation in sample sizes and sampling fractions. The state found the degree
of variability in sample sizes and sampling fractions unacceptable and requested that we
impose certain restrictions on them. Basically it was required that no sample contain less
than 7 providers and that sampling fractions be no less than 5 percent and no greater than 50
percent. The state also authorized the inclusion of another 200 providers, raising the total
sample size to 1800. Imposition of the upper bound of 50 percent on the sampling fractions
led to some large values for the standard error o(75 %ile), and 30 of the additional 200
observations were used to allow this restriction to be relaxed for certain cells. Another 67 of

the extra 200 observations were required to be allocated to cells representing group care for



preschoolers, because this category accounts for a large fraction of state subsidies. The net
result is that sampling variability was equalized only approximately across cells. In general
the value of the (ex ante) standard error of the estimated 75th percentile was equalized at
$5.17 for group care for preschoolers and $5.51 for other groups. However, the standard
error was lower (as low as $2.94) for cells where the constraints of at least 7 observations or
sampling fraction of at least 5 percent were binding, and it was higher (as high as $6.30) for
cells where the sampling fractions were constrained to be only 50 percent or slightly higher.
See Witte (1993) for details regarding development of the sampling plan and tables that give
sample sizes, sampling fractions and ex ante standard errors.

The sampling plan just described did not take into account the effects of nonresponse
on the sample sizes and therefore on the standard errors. As will be discussed in section 3,
we ultimately had a nonresponse rate of about 9%, which is high enough to affect the
standard errors of the estimated 75th percentiles in a non-trivial way. If the nonresponse rate
can be predicted in advance, it obviously should be taken into account in choosing the ex
ante sample sizes. If the primary objective is equalization of the ex ante standard errors
across cells, the relevant question is whether we can predict which cells are likely to have
higher or lower nonresponse rates. We intend to address this question in our future work.

2.2 Selection of Members of the Sample

The sampling frame for groﬁp care was Massachusetts’ Office for Children’s licensing
list as of November 1, 1993. For family day care, the sampling frame was the licensing list
as of December 20, 1993. Since the turnover rate for family day care providers is quite

high, it was important to have the most recent licensing list possible. For school-age



programs, the sampling frame contained both providers on the licensing lists on January 5,
1994 and license-exempt, school-based programs.

Licensing lists may not provide ideal sampling frames. However, they provide a
reasonably good sampling frame in Massachusetts because both group and family day care
providers are legally required to be licensed. Further, Massachusetts provides many benefits
to licensed providers (e.g., courses, financial subsidies, accounting help) which makes it -
beneficial for the majority of providers to comply with the licensing requirements. Previous
work indicates that virtually all group care providers and over 90 percent of family day care
providers are licensed in Massachusetts. Unlicensed family day care providers care for a
few children who are generally related to the provider or live in the neighborhood. They
often charge below market rates for child care (Diner, et al., 1988) and correspondingly it is
not clear that they should be included in a study such as this even if they could be sampled.
A more serious problem is that school-based programs for school-age children are typically
license-exempt. The state provided us with a list of license-exempt school-age providers
from which to sample, and we also obtained data on licensed school-age providers.
However, for school-ége progmms we had no reliable knowledge of the population size (N),
and this affected our subsequent analysis in ways that will be described below.

The main problem we encountered with the licensing lists was obsolescence.
Approximately 10 percent of group‘ care providers and over a third of family day care
providers on the licensing lists were no longer providing care. Overall, 19 percent of the
originally selected sample was found to be no longer providing care. To deal with this

obsolescence, we selected backup as well as regular samples. When a provider selected for
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the regular sample was no longer providing care, the provider was replaced by a randomly

selected provider from the backup sample.

3. Questionnaires and Data Collection

' Separate questionnaires were developed for family day care and group care providers
since there are marked differences between the two types of providers in size (group care
providers typically care for far more children than family providers, who are generally
limited to 6 or fewer children), methods of operation (family day care is provided in a home
while group care is provided in nonhome settings) and pricing policies (family day care
providers typically quote a daily rate while group care providers typically quote weekly
rates). Group care providers were asked for their basic rate for children in each age group
(infants, toddlers, preschoolers and school age children). Family day care providers were
asked the prices charged for up to 6 children currently in care. See Appendix G of Sweeney
and Witte (1994) for copies of the questionnaires.

Providers were allowed to quote rates exactly as they would to prospective clients

(e.g., on an hourly, daily, weekly, monthly or annual basis). They were asked to quote both
rates for full-time care (35 or more hours per week) and rates for part-time care if they
provided both types of care. We bglievc that requesting rates in the same form as quoted to
prospective clients lowered both response and nonresponse bias. It also provided valuable
information regarding the pricing policies of child care providers. However, it required that
we obtain information on hours and weeks of operation in order to be able to convert all

prices obtained to a common time period.
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Interviews were conducted between January and April, 1994 by a professional social
science interview firm, the New England Research Institute, with many years of experience.
Interviewers received extensive training and often had advanced degrees and/or had worked
in child care or related fields. A child care specialist was available to resolve difficult issue
and answer questions. Responses were recorded using Computer-Assisted Telephone
Interviewing (CATI). Interviewers were prepared to provide interviews in English, Spanish
and Portuguese.

Group care providers were called up to seven times and family day care providers up
to fives time prior to classifying a case as "no response.” This number of callbacks exceeds
that for the majority of studies cited by Potthoff et al. (1993). To decrease nonresponse,
providers were called at varying times: days, evenings and weekends. If reached at an
inconvenient time, the provider was asked to select a more convenient time and was called at
that time. The overall response rates for providers in the market was 91 percent. - Most
nonresponse was due to failure to contact. The refusal rate was only 2 percent.

It is common for group care providers to provide care for several of our different
categories of care (infﬁnt, toddler, etc.). Once a provider has been identified and reached,
the extra cost of asking additional questions is relatively low. In order to increase our
sample sizes, we decided to ask any provider who was sampled to give us prices for all types
of care that they provide. Thus, fof example, a provider who was chosen randomly from the
set of providers of group care for infants might also end up providing an observation in the
samples of providers of group care for toddlers, preschoolers or school age children. This

resulted in some moderate increases in our sample sizes, compared to the original sampling
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plan. For example, the original sampling plan called for a total of 415 observations for
group care for preschoolers, and we ended up with 458 observations, even though some of
the original 415 observations did not respond. The disadvantage of this approach is that it
obviously causes the sample to be not entirely representative of the population; in particular,
we have oversampled providers of multiple categories of care.

Since providers were allowed to quote the rate actually charged clients, the data
available contained prices for diverse periods. The most common period of charge for group
care providers was weekly. Family day care providers most frequently quoted daily rates.
Since more children are cared for in group than in family settings, we decided to convert all
prices to a weekly basis. As noted earlier, we collected sufficient information on the
questionnaire regarding such things as hours and weeks of operation that these conversions

could be made accurately. See Sweeney and Witte (1994) for more detail.

4. Estimation of Standard Errors for 75th Percentiles

Recall that our sampling units are "cells” defined by categories of care and
geographic areas. Given the sample for a specific cell, estimation of the 75th percentile is,
of course, very easy, since all that is required is to calculate the 75th percentile of the
sample. Table 1 gives summary statistics for the distribution of price in each of our 65 cells.
Specifically, it gives the sample size (n), the population size (N), the sample mean and
variance, and the sample 75th percentile. (It also gives standard errors and confidence
intervals for the 75th percentiles, as will be discusSed below. Also, as noted above, the

population size is considered unknown and is therefore not reported for the cells
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corresponding to care for school age children.) A more detailed description of these results
is given in Appendix D of Sweeney and Witte (1994). In general, prices of care are lower
for older children than for younger children; for family day care than for group care; and
for locations in the western and southeastern parts of the state than for the western suburbs
of Boston. To give some idea of the numerical magnitudes involved, consider group care for
preschoolers, which is generally less expensive than group care for toddlers or infants, but
more expensive than family day care or care for school age children. Among the 13
geographical areas (CCRA’s) considered, we find 75th percentiles of prices as low as
$101.78 and as high as $178.00 (per week).

We now turn to the statistical issue of how to calculate standard errors and/or
confidence intervals for these percentiles. In this section we will address the calculation of
standard errors, with confidence intervals to be discussed in the next section. Formula (1)
above gives the variance of the estimated 75th percentile, 0?(75 %ile), as a function of the
sample size (n), the population size (N), and the density of the population evaluated at the
75th percentile, which we denoted f(75%ile). We observe the sample size and the population
size, but we need to estimate (75 %ile) inv order to implement the calculation in (1). (For
cells corresponding to care for school-age children, with N unknown, we omit the finite
population correction term (1-n/N), which is obviously equivalent to treating N as infinite.)

Density estimation is, in the;, words of Wegman (1982, p. 309), "an extremely popular
though somewhat controversial subject.” At the outset, there is a fundamental distinction
between parametric and nonparametric approaches. A parametric approach assumes a

particular distributional form, such as normal, for the data. This implies a specific
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functional form f(x,6) for the density, where @ is the set of parameters that characterize the
distribution (e.g., p and ¢ under normality) and x is the point of evaluation. One can then
estimate the parameters § and evaluate the density at any desired point (x), such as the 75th
percentile of the distribution. We followed this procedure in Section 2 above to estimate
f(75 %ile) from our preliminary data, assuming normality. In general, the parametric
approach is very straightforward, but there is the considerable question of how to choose the
distribution. Our assumption of normality was an assumption of convenience, and it was not
really supported by the data. Indeed, we have 65 different data sets (cells) and it seems
unlikely that any one distribution would be adequate for all or most of them. For example,
prices for infant care tend to be negatively skewed; prices for preschooler care and toddler
care are approximately normally distributed in some areas; and prices for family day care
are often positively skewed, sometimes quite markedly. It did not seem reasonable to select
a single distribution for the prices observed for various types of child care in various areas of
Massachusetts, nor did it seem reasonable to try to find an appropriate distribution for each
of our 65 cells.

A nonparametﬁc approach to density estimation does not make distributional
assumptions, though other more or less arbitrary decisions must still be made. The most
common and perhaps standard type of nonparametric density estimator is a kernel estimator.
Suppose that we have a random sample X,, X,, ..., X, from a distribution with density f, and
that x represents the point at which we wish to estimate f; in our case x is the 75th

percentile. Then a kernel estimator of f(x) takes the general form:

@) f(x) = ' L., WK[(x-X)/h]
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where K is a kernel function satisfying § % K(u)du = 1, and where h is a bandwidth
parameter the choice of which will be discussed shortly. Our final results were obtained

using the Epanechnikov kernel:

&) K@) =0.75(1-uv)for |u| <1; Kw=0for |[u|] > 1.
However, we also used the Gaussian (normal) kernel:

(6) K(u) = 27)* exp(-12u?)

There are no clear rules for the choice of which kernel to use, though Epanechnikov (1969)
shows that his kernel is optimal in a particular sense. Ultimately, we chose the
Epanechnikov kernel simply because it seemed to give results that were more sensible than
those given by the Gaussian kernel.

No matter which kernel is used, the bandwidth parameter h must be chosen.
Statistical theory gives only limited guidance on this point. The kernel estimate g(x) is
consistent for the density f(x) provided that h is chosen in such a way that h - 0 but nh - oo
as n —» oo, Basically, the requirement that h should go to zero in the limit is necessary to
ensure that only points sufficiently close to x are used to estimate f(x), while the requirement
that nh should go to infinity is necessary to ensure that the weights given to observations
don’t go to zero faster than the nurﬁber‘of observations grows (loosely, that the weighted
number of observations grows with the sample size). For a given sample size, these rules
are not literally useful. However, it is still true that we must balance our desire for a small

bandwidth, so that only observations close to x have a strong influence on f(x), with our
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desire for a larger bandwidth, so that our estimate of f(x) is based on a large enough number
of observations.

The effect of the choice of kernel and bandwidth can be seen in Table 2, in which we
present estimates of the density f(75%ile) and the standard error o(75 %ile) of prices for
infant care for the South Shore area (CCRA 717). The number of observations is n = 21.
We use bandwidths h = 10, 25 and 50 with both a Gaussian and an Epanechnikov kernel.
For comparison, we also present the estimates that assume a normal distribution for prices.
These results make clear that the choice of kernel and bandwidth can have strong effects.
For this data set, the Epanechnikov kernel results in larger estimates of f(75 %ile), and
therefore smaller estimates of o(75 %ile), than the Gaussian kernel. This is not a general
result, however. For this data set, larger bandwidths result in smaller density estimates and
larger estimates of the standard error of the 75th percentile; again, this is not a general
result. The prices of full-time infant care in this CCRA ranged from $104 to $200, with a
mean of $169.76 and 75th percentile of $185, and were negatively skewed. At least for the
Epanechnikov kernel, we can discuss the choice of bandwidth in terms of how many and
which observations will enter into the estimation of the density, since the weight given to an
observation X; is nonzero if and only if its distance from x is less than h. Given that the
largest observation is only $15 largcr than the point at which we wish to evaluate the density,
a bandwidth much larger than $15 (e.g.', h = 50) would seem to be clearly too large. It
would lead to the density being estimated using predominantly observations that lie below the
point of evaluation, rather than symmetrically distributed around it, which is not sensible.

However, choosing h = 10 would result in the estimate of f(75 %ile) being based on only
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nine observations. The choice of h = 25 is arguably reasonable for this data set, though a
slightly smaﬂer value like h = 15 or h = 20 would also be reasonable. With h = 25 and
the Epanechnikov kernel, we estimate f(75 %ile) as 0.0175 and o(75 %ile) as $3.77. Using a
slightly smaller bandwidth would make the estimate of (75 %ile) slightly smaller. In either
case the estimate is less than the estimate of (75 %ile) based on the normal distribution,
which is $4.97. The latter estimate is clearly unreliable in this case given the obvious non-
normality of the data.

In the remainder of the paper we will report estimates using the Epanechnikov kernel
and the all-purpose bandwidth choice h = 25. An attractive alternative to such an all-
purpose choice, or to the use of judgement for each data set, is the use of "automatic,” data-
based bandwidth selection procedures. See, e.g., Jones, Marron and Sheather (1994) for a
readable survey. These are procedures that yield a selection for the kernel bandwidth, h,
based on the data and the optimization of some criterion function. According to Andrews
(1991), there are basically two types of techniques: cross-validation and plug-in methods.
We will focus on plug-in methods, because they are generally regarded as superior (e.g. Park
and Marron (1990)). 'For information on cross-validation techniques, the reader is referred
to Silverman (1986).

The plug-in techniques we use are derived by the minimization of the mean integrated
squared error (MISE) for a kernel-based estimate of an unknown density. In the case of
density estimation, the MISE criterion is preferred to the usual mean squared error (MSE),
because it ensures global accuracy of the density eétimate (Silverman (1986)). Additionally,

the MISE is highly tractable relative to other measures of estimation discrepancy. Using the

18



same notation as before, the asymptotic representation of the MISE as n -» o, h - (0 and nh

- oo is given by:
D M(h) = n'h'R(K) + h*ull,/4 - hopop,ly/24
where, forj =0, 1, 2, ....,

®) RK) = [(K@Pdx, p = [xK@dx, I = [{f00}dx .

For the Gaussian kemnel, R(K) = 0.2821, u, = 1 and g, = 3, while for the Epanechnikov
kemel, R(K) = 0.6, p, = 0.2 and p, = 0.0857. The [; unfortunately are functions of the
unknown density. However, by substituting or “plugging-in" kernel-based estimates of the L;, -
equation (7) can be minimized with respect to h to yield an asymptotically optimal bandwidth
estimate.

We consider two such estimates of the optimal bandwidth. The first, hg; , is due to
Sheather and Jones (1991), while the second, hyg,, is due to Hall, Sheather, Jones and
Marron (1991). These estimates differ in their rates of convergence to the optimal
bandwidth: hg convei‘ges at a rate of n¥%, while hyg;, has a faster n''2 rate. They also
differ in terms of their kernel-based estimates of the I in equation (7) and in terms of their
methods of calculation. We now summarize the calculation of each of these bandwidth
estimates.

The bandwidth hg ignores the third term of equation (7), so we only need a kernel-
based estimate of I,. Sheather and Jones recommend a formulation based on higher order

derivatives of the Gaussian kernel. The kernel used to estimate the L need not be the same
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as the kernel, K(x), used for the actual density estimation. They obtain the bandwidth, hg,,

that minimizes M(h) as the solution to the equation:

®) [RK)/{u} Sp(&(h)}""n**-h =0

where

(10A) Sp(@) = {n(n-1)}'e’" B B 0®{(X; - X)/a},
(10B) &,(h) = 1.357{Sp(a)/Tp(b)}"h%",

(10C) Tp(®) = -{n(n-H}'b"C, 5 @{(X; - X)/b},
(10D) a = 0.920An" and b = 0.912:\n"",

Here ¢? is the j* derivative of the Gaussian kernel, A is the sample interquartile range (the
difference between the 25th and the 75th percentile prices) and Sp(a,(h)) is the kernel-based
estimate of I,.

Our second estimate of the optimal bandwidth, hyg, includes the third term of
equation (7) necessitating estimation of both I, and I,. The bandwidth, hyq,, is calculated

using an asymptotically equivalent expression to produce a closed-form solution:

(11) hygm = (jl/n)us + jz(jlln)w

where

(12A) §y = RK)/(4 I,

(12B) §; = padsl(20p,1)),

(12C) I, = {n(@-D}'o’oL B LO(X; - X)/a},
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(12D) I, = -{n(-1}'B7DL DL 0 O{(X, - X)/8).

(12E) a = 4.29An"" and 8 = 0.91An" .

Here the ij estimate the I, and are not functions of h, so solution of hyg;,, does not require
numerical analysis. Also, L® is the fourth derivative of an optimal pilot kernel selected by

the authors, which is supported on the interval (-1, 1):
(13) L®x) = 135135(-184756x™® + 504900x® - 491400x°* + 200200x* + 29700x? + 756)/16384

In Table 2, we can see the results for these bandwidth selection procedures for the
data set corresponding to infant care in the South Shore area (CCRA 717). For the Gaussian
kernel, we find hysy = 11.4 and hg, = 10.7, which imply estimated dehsities of
approximately 0.018 and estimated standard deviations for the 75th percentile of
approximately $3.60. For the Epanechnikov kernel there is more difference across methods.
We obtain hys, = 24.6 and hg, = 46.4. These lead to density estimates of 0. 0177 and
0.0122, respectively, and standard deviations of $3.73 and $5.40. It is not surprising or a
matter of concern that the optimal bandwidth choice by a given method (e.g., hg;) should be
different for different. kernels (Gaussian versus Epanechnikov), but it is disappointing that
different bandwidth choices should lead to substantively different results for a given kernel,
as they do here for the Epanechnikov kernel.

One way to choose among keméls and bandwidths is to calculate the integrated mean
square error M(h) in equation (7). For the data set considered in Table 2, we obtain the
following results: for the Gaussian kernel, M(hys,) = 0.0179 and M(hg) = 0.0183; for

the Epanechnikov kernel, M(hys) = 0.0177 and M(hg) = 0.0077. This would indicate the
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choice of the Epanechnikov kemel and hg;. Unfortunately, for the 65 data sets considered,
no one procedure-kermnel combination consistently resulted in the lowest value of M(h).
However, the combination of the Epanechnikov kernel and the Sheather-Jones bandwidth hg;
most often resulted in the lowest value of M(h), so that is the procedure-kemnel combination
for which we will report results in the rest of the paper. The bandwidth hg is reported in
Table 1 for each of our 65 data sets. We can see that hg; is generally larger than our "all-
purpose” choice h = 25. The use of hg generally (but not uniformly) results in larger
estimates of o(75 %ile) than the choice h = 2§, though the differences in the estimates are
usually not substantial.

In most cases the estimated standard error is in the range of $3 to $6, which is at or
slightly lower than the level predicted ex ante in setting up the sampling plan. (See Section
2.1 above.) In fact, the similarity between these ex post standard errors and the ex ante
standard errors calculated in formulating the sampling plan is both remarkable and

comforting.

5. Construction of Confidence Intervals
It is a standard result that sample quantiles are distributed normally asymptotically (as
n - o). Furthermore, subject to some’restrictions on the way the bandwidth is chosen, the

A

kernel estimate f(75%ile) is a consistent estimate of the density f(75 %ile), and the variance
formula (1) is correct for large n, so o(75 %ile) is a consistent estimate of (75 %ile).
Therefore, for n large enough to rely on asymptotic results, a 95% confidence interval for

the population 75th percentile is just the sample 75th percentile plus or minus 1.96 times
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;(75 %ile). Table 1 reports these 95% confidence intervals, under the heading "Conf. Int.
(kernel)," based on the Epanechnikov kernel, for both the Sheather-Jones bandwidth hg; and
our all-purpose bandwidth h = 25. For example, for infant care in CCRA 717, the 95%
confidence interval for h = 25 is $185 + (1.96)(33.77) = [$177.61, $192.39].

As is usual, the degree to which one can rely on asymptotic properties of statistical
procedures depends both on the sample size‘ and on distributional characteristics of the d:fa.
Since the sample size is not always very large in our data (in fact, it is as small as 7), this is
a potentially serious worry.

With this motivation, we next consider methods of constructing confidence intervals
which do not rely on distributional assumptions or on asymptotics. We first discuss a
standard method based on the binomial distribution; see, e.g., Conover (1980, pp. 111-116).
Let 6 be the population 75th percentile, which is the parameter of interest. Given a random
sample X,,...,X, taken with replacement from a population with this percentile, the binomial
distribution yields probability statements about the number of observations that are greater
than or less than §. These probability statements can be inverted to yield confidence
statements about 6, given the data.

To be more explicit, let the sample be arranged in increasing order, so that X, < X,
< ... < X,. Let S be defined as the number of observations that are less than or equal than
6. Then the distribution of S is binomiﬂ, with number of trials n and probability of

"success" of 0.75:

(14) P(S = s) = B(s | n,.75) = [n!/s!(n-s)!](.75)*(.25F".
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To find a 95% confidence interval for 4, we find integers k and £ such that
(15) Pk<S =<1 ==L,B(|n.75 2095 ;

then a 95% confidence interval for 6 is [X,, X,].

There will generally be different values of k and ¢ that satisfy equation (15). One
method that is often recommended is to pick k and ¢ so as to minimize the range (£-k). We
choose a slightly different method. We define k to be the largest integer such that P(S < k)
< 0.025 and ¢ to be the smallest integer such that P(S > f) < 0.025. This ensures not
only that [X,, X,] is a 95% confidence interval for 8, but that X, is a lower bound for § with
confidence level 97.5% and that X, is an upper bound for 8 with confidence level 97.5%.
This seems important in the present application, since policy makers may be interested in
either upper or lower bounds; someone who is primarily interested in the lower bound wants
- the tightest lower bound for a given confidence level, not thé shortest interval.

A disadvantage of this procedure is that it fails to give an upper bound for the
confidence interval when n < 12. This is so because P(all n observations < §) > 0.025 for
n < 12. (For exampie, (.75) = 0.032.) The lower bound always exists provided n > 3,
Some of our cells do have numbers of observations less than or equal to 12, so we end up
with one-sided confidence intervals only. However, it is doubtful whether any technique
should be expected to yield crediblé confidence intervals based on such a small number of
observations. QOur sampling plan allocated small numbers of observations to some cells
because only a small number of observations was necessary to make the standard error

a(75%ile) of reasonable size. However, the sampling plan did not recognize that
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construction of a credible and useful confidence interval, either from an estimate of
o(75%ile) or using the methods just described, may require more observations. In retrospect
we probably should have allocated more observations to small cells.

The confidence intervals based on the binomial distribution do not contain any sort of
finite population size correction. In fact, they are based on the assumption of sampling with
replacement, and as such they yield confidence intervals that are more conservative than need
be when the population size is finite. When the population size is finite and sampling is
without replacement, we should be able to achieve narrower confidence intervals by using the
hypergeometric distribution rather than the binomial distribution. The method we use is a
slight adaptation of Wilks (1962, p. 333).

Consider a population of size N, where J is the number of population elements less
than or equal to 6, so that the number of elements greater than 4 is N-J. The probability that
n < N trials without replacement from this population result in exactly S observations being

less than or equal to 4 is given by the hypergeometric probability:

(16) PGS =9 = H(s | n,N,J)

= [JV/s!3-s)'JIQN-1)!/(n-s)! (N-J-n+s)!][NV/n! (N-n)! ],

for s < J and n-s < N-J. For this parti.cular application J must be chosen so that § is the
75th percentile, and so we let J = INT(0.75N), where INT(x) is the largest integer less than
or equal to x.

Just as in the binomial case, to find a 95% confidence interval for 6, we find integers

k and ¢ such that
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(17) Pk <S =< ¢) =L HG| n,NJ) = 0.95;

then a 95% confidence interval for 6 is [X,, X,]. Selection of k and ¢ is as defined earlier.
This procedure suffers from the same problem as the binomial procedure: for small samples
the upper bound is undefined. However, in this case the sample size lower limit is a
function of the population size. For instance, in a population of size N = 25 we must have
n = 10 to ensure that an upper bound can be found, and for a population of size N = 10 we

must have n = 7. Sample size requirements for the existence of an upper bound for various

population sizes are tabulated below.

Population size (N) Minimum sample size (n)
104 - 13
44 - 103 12
28 - 43 11
20-27 10
15-19 9
12 - 14 8
10- 11 7
8-9 6
7 5
6 4

Notice that N = o requires n = 13 which coincides with the analogous binomial result.
Our confidence intervals for the 75th percentile based on the binomial and

hypergeometric distributions are given in the last two columns of Table 1. The
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hypergeometric confidence intervals must always be at least as narrow as the binomial.
However, they are usually not very different, and in most cases they are relatively similar to
the corresponding confidence intervals based on the kernel density estimates. For example,
returning to the case of infant care in CCRA 717, the confidence intervals based on the
kernel estimates are [$174.42, $195.58] and [$177.61, $192.39], for hg; = 46.4 and h = 25
respectively, while the confidence interval is [$175, $190] based on the binomial distribution
and [$180, $190] based on the hypergeometric distribution. This case (cell) is more or less
typical in terms of the degree of similarity between the different confidence intervals.
However, in some cases the confidence intervals based on different methods are rather
different. Most of these cases fit one of two patterns. First, there are cases in which the
sample size is rather small (e.g., group care for infants, CCRA 701, n = 7). With very
small sample sizes, we should expect differences in technique to have large effects, and this
is an argument for larger sample sizes. Second, there are cases in which the sample size is
close to the population size (e.g., group care for toddlers, CCRA 702, n = 32, N = 39).
Here the finite population correction in the kernel standard errors makes a large difference,
and so does the use of the hypergeometric distribution rather than the binomial. In such
cases the binomial distribution should clearly not be used. In fact, for our application, the
only cases in which the use of the binomial distribution makes sense are those for care for
school-age children, for which the hypergeometric distribution is not available, because the
population size is unknown.

However, there are a few other cells where choice of technique matters considerably

and that do not fit either of these patterns. For example, in family day care, CCRA 888, we

27



have n = 129, N = 826, and yet rather different confidence intervals for the various
techniques ([$87.74, $112.26] versus [$94.26, $105.74] versus [$90, $125]). This data set
has a large number of observations clustered at or just below $100, and then a gap, with only
one observation between $100 and $125. Again it is not clear what to conclude, except that
the choice of technique will naturally matter more when the underlying distribution of prices
in very unusual.
As a general rule, we prefer the nonparametric (hypergeometric) confidence intervals
for small to moderate size samples (say n < 50), but parametric intervals appear quite
reasonable for larger sample sizes. Nonparametric intervals indicate that for very small
samples 95% confidence intervals have no upper bound, which seems to be a more
straightforward statement than to report a bound that depends strongly on the choice of
kernel or bandwidth. For our application, the nonparametric confidence intervals for
moderately sized samples (say 15 < n < 50) are typically asymmetric around the 75th
percentile, having a wider upper than lower interval. This seems reasonable since when

estimating the upper bound for the 75th percentile one uses information for the sparse upper

tail of the data.

6. ancluding Remarks
We believe that our work iﬁ connection with Massachusetts’ market-rate survey
provides useful insights for future market-rate surveys required under the Family Support
Act, and more generally for applied work using order statistics in similar settings. We have

focused on the problem of the estimation of standard errors and construction of confidence
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intervals for the 75th percentile of market prices, because the 75th percentile is legally
relevant, and because the assessment of its sampling variability is important. This is true for
at least two reasons. First, some idea of the size of the likely sampling errors is necessary to
derive a sensible sampling plan. We showed how to use preliminary estimates of the
standard errors of the sample percentiles to develop a sampling plan that would equalize
these standard errors across cells, given a constraint on the overall sample size. Second, as
in virtually any estimation problem, it is hard to know how much credence to put on point
estimates unless the sampling variability is known. Decision makers should want to know
not just that our estimated 75th percentile of price is $185, but also how sure we are that the
population percentile lies within some reasonable range about this estimate.

We considered standard errors based on a parametric assumption, such as normality,
and also standard errors based on the asymptotic variance formula (1), with the density
estimated using kermel methods. We do not recommend a parametric approach for problems
similar to ours, essentially because of the problem of choosing an appropriate distribution.
The kemnel estimates depend on the choice of kernel and bandwidth, and an important
practical question is how strong this dependence is. All methods of choosing the kernel and
bandwidth contain an element of arbitrariness, and the practical usefulness of kernel methods
is enhanced if the results are at least reasonably robust to these choices. Our estimates were
in fact reasonably robust to the choice of kernel and bandwidth, except perhaps for the
smallest cells. We primarily used the Epanechnikov kernel, but the Gaussian kernel gave
broadly similar results, and we have no strong basis for recommending one kernel over

another. Both automatic bandwidth choice procedures and more judgemental methods of
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choosing the bandwidth seemed to work adequately; naturally, the automatic methods are
easier to apply.

The real point of estimating the standard errors of the 75th percentiles was to
construct confidence intervals. The confidence intervals constructed from these standard
errors rely on asymptotics because the sample 75th percentile is only asymptotically normal,
because the variance formula (1) is only asymptotically valid, and because we rely on the
consistency of the kernel estimates of the density that appears in (1). The reliance on
asymptotics is problematic in some of our smaller cells. We also considered nonparametric
confidence intervals based on the hypergeometric distribution, and these agreed reasonably
well with the confidence intervals based on standard errors estimated using kernels, except
for the smallest cells. In retrospect, in designing the sampling scheme, we should have
allocated more observations to the smallest cells. Our sampling scheme allocated enough
observations to each cell to allow precise estimation of the relevant standard error, but not
necessarily enough to allow credible inference. We probably should have imposed a
minimum sample size of 15 or 20, even for cells for which the population size was very
small.

We believe that we were successful in constructing reasonably precise estimates of the
population 75th percentile of daycare prices, and reliable measures of the precision of these
estimates. As with many successful applied statistical exercises, the essential requirements
were a thorough understanding of the substantive problem and the ability to find and apply a

variety of different, relevant statistical techniques. None of the techniques we used involved
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any significant methodological innovation, but this was not a "cookbook" exercise:

techniques were combined and applied in a novel way, based on the nature of the problem.
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Table 1

Percentiles, Standard Errors and Confidence Intervals

Group Care for Infants

Bandwidth Conf. Int. Conf. Int. Conf. Int. Conf. Int.

CCRA n N mean c 75%ile hg; (kernel, hg;) (kernel, h=25) (binomial) (hypergeometric)
701 7 21 142.72 25.78 166.44 79.4 [132.64,200.24) [145.72,187.15) [125.00, ***»* (125.00, **** j
702 23 47 162.32 29.52 176.25 60.4 [162.81,189.69) (165.46,187.04) [169.00,200.00) (169.00,190.00])
704 33 64 187.52 13.42 197.75 26.2 [192.41,203.09) (192.51,202.99] [190.00,205.00] ([190.00,205.00)
708 27 46 214.77 59.23 241.25 66.4 [227.65,254.85) [232.50,250.00) [234.00,262.00) [234.00,251.27)
709 6 21 145.30 36.15 163.50 107.1 [115.77,211.23) [148.48,178.52) [144.80, **+** | (144.80, *#*#x»

710 28 81 194.74 30.88 215.94 49.8 [203.86,228.02) ([207.15,224.73]) [205.00,225.00] {207.00,224.00]
714 9 14 148.79 28.44 164.88 75.4 [144.49,185.26] ([153.47,176.28] [140.62, **** ] [160.00,173.21]
715 11 21 143.68 19.45 153.75 51.9 [139.11,168.39) (142.07,165.43) [135.00, **+*+x ) (140.00,168.45])
716 5 14 144.00 32.09 137.50 58.7 [106.78,168.22) (122.22,152.78) [130.00, *#*+xx* (130.00, ##*x»

717 21 41 169.76 24.89 185.00 46.4 [174.42,195.58) (177.61,192.39) [175.00,190.00) {180.00,190.00}
720 14 18 154.13 27.30 160.00 61.3 [149.17,170.83) (152.01,167.99) (150.00,202.00) {147.00,173.00}
721 23 37 172.06 28.55 185.00 53.7 [174.34,195.66) [179.24,190.76] [179.00,198.65) [180.00,190.0C)
888 36 66 209.46 46.78 242.49 80.4 ([227.56,257.42) (233.37,251.61) [221.00,254.27} {225.00,251.27)

Group Care for Toddlers
Bandwidth Conf. Int. Conf. Int. Conf. Int. Conf. Int.

CCRA n N mean o 75%ile hg; (kernel, hg)) (kernel, h=25) (binomial) (hypergeometric)
701 15 30 131.36 26.85 150.00 76.9 [130.81,169.19) (136.85,163.15) [130.00,168.00]) [140.00,155.65)
702 32 39 144.72 30.85 160,00 50.1 [153.19,166.81) (152.05,167.95) [140.00,189.00]) [150.00,168.13)
704 41 78 160.06 17.52 172.25 28.8 [166.96,177.54] ([167.20,177.30] [165.00,180.60] (168.00,178.98]
708 45 86 193.92 35.35 212.82 54.9 [203.32,222.32] [204.45,221.19) [202.54,230.25] [209.01,224.48)
709 8 26 128.79  28.23 140.00 24.7 ([130.18,149.82) [130.07,149.93] [135.00, #*%*% ] [137.50, *#=

710 36 121 176.10 29.20 195.00 49.2 [183.61,206.39) (187.25,202.75) [186.00,203.23) [186.00,200.00)
714 17 22 136.64 23.63 158.63 62.2 ([148.22,169.03) ([151.13;166.12] [137.50,162.00] [145.03,160.00]
715 12 15 126.31 19.68 130.00 45.9 (121.87,138.13) ([123.70,136.30] [125.00, **** ] [130.00,140.00]
716 9 15 125.92 12.92 129.25 32.7 [120.08,138.42]) [121.31,137.19]) [120.00, #**#x» [125.00,131.25)
717 25 48 149.29 24.35 164.50 44.8 [154.71,174.29) ([157.72,171.28] [160.00,172.80] [160.00,172.00]
720 16 19 142.52 23.81 150.00 47.2 [143.15,156.85) (144.67,155.33) [140.00,170.00]) (145.00,150.00]
721 34 45 150.63 26.62 161.83 44.1 [155.42,168.25]) (156.33,167.33]) [155.00,180.00) ([157.00,165.00)
888 52 84 172.28 31.74 194.00 48.9 [185.91,202.09]) (187.58,200.42) [185.00,206.70) ([191.22,206,.24)



CCRA n
701 22
702 41
704 46
708 62
709 14
710 54
714 25
715 21
716 11
717 29
720 19
721 46
888 68
CCRA n
701 11
702 21
704 33
708 36
709 13
710 40
714 22
715 18
716 10
717 24
720 19
721 41
888 26

* N
* &
* &
* &
* R
* &
* &
LR
* &
* &
* &
L2
* &

100.77
114.90
124.90
162.42

88.68
139.21
115.14
105.46
109.39
123.97
127.79
119.51
134.52

52.76
55.81
58.14
59.36
45.50
56.53
37.23
45.67
38.48
51.63
53.30
53.86
58.82

15.77
26.95
13.88
26.49
17.50
30.46
19.07
19.91
14.61
20.44
20.68
24.79
30.68

14.05
25.86
19.39
21.21
15.69
21.32
14.72
15.60

9.72
30.70
31.11
15.84
30.60

Percentiles,

75%ile

111.00
128.04
134.50
178.00
101.78
156.60
126.67
112.81
115.00
139.25
130.00
131.00
152.31

75%ile

60.60
60.00
70.00
73.00
56.58
70.00
50.70
45.00
42.25
60.00
66.36
64.00
70.00

Table 1, continued

Group Care for Preschoolers

Bandwidth Conf.

hg,

34.5
44.0
23.0
41.6
46.7
50.2
40.7
38.3
36.3
39.7
27.3
33.5
37.6

Int.
(kernel, hy))

(101.24,120.76)
(117.33,138.75)
(129.24,139.76)
(169.31,186.69)
( 85.41,118.41)
[144.95,168.25)
(116.29,137.01)
(101.58,124.05]
(101.66,128.34)
(128.18,150.32)
(120.74,139.26)
[(122.75,139.25]
(144.89,159.73)

Conf. Int.
(kernel, h=25)

(102.46,119.54)
(118.00,138.08]
(129.04,139.96)
(170.27,185.73]
( 89.97,113.58)
(145.32,167.88)
(118.17,135.18)
(102.86,122.76]
(103.79,126.21)
(129.82,148.68)
(120.97,139.03)
(123.27,138.73]
(145.04,159.58)

Care for School Age Children

Bandwidth Conf.

hg,

32.9
35.6
35.0
41.4
40.1
35.4
35.9
19.8
25.4
42.6
62.0
27.4
53.0

Int.
(kernel, L))

46.17,
47.27,
59.73,
61.41,
41.11,
59,18,
38.69,
37.33,
31.51,
45.15,
43.42,
56.80,
52.61,

75.03)
72.73)
80.27)
84.59)
72.04)
80.82)
62.71)
52.67)
52.99)
74.85)
89.30])
71.20]
87.39])

P P g e e ey e g e e P

Conf.
(kernel,

Int.
h=25)

46.82,
49.01,
60.38,
62.29,
45.16,
59.36,
40.42,
36.26,
31.61,
48.74,
35.41,
57.03,
60.29,

74.38)
70.99)
79.62)
83.71)
67.99)
80.64)
60.98)
53.74)
52.89)
71.26)
97.32)
70.97)
79.71)

P Py ey e g e e e e e e

Standard Errors and Confidence Intervals

Conf. Int.
(binomial)

(105.00,115.
(115.00,150.
(130.00,140.00)
{171.00,187.85)
90.00,110.00)
[147.00,175.00]
[116.67,138.80)
{100.00,138.57)
[105.00, #*#*w«
[130.00,145.73)
[120.00,160.00)
(124.25,135.90}
(144.00,160.00)

00}
00)

Conf. Int.
(binomial)

45.00, ***x ]
50.00, 75.10)
65.63, 72.45)
66.97, 85.50)
50.00, 60.00]
59.58, 75.00]
39.26, 55.00)
41.25, 80.00]
37.50, **ww

54.00, 90.00)
40.00,120.00)
57.50, 70.00]
65.00, 75.10]

P A e g P gy Py Py

Conf. Int.
(hypergeometric)

(105.00,115.00]
(121.00,137.00]
(130.00,140.00]
{171.00,185.77)
[ 90.00,110.00)
(149.00,172.06)
(120.00,132.75)
(100.00,138.57]
(105.00,118.00)
(130.00,145.73)
(125.00,150.00)
(124.25,135.00]
(145.00,158.08]

Conf. Int.
(hypergeometric)

**
* &
xR
* &
* &
* &
* &
*x
* &
* &
* &
* &
* &



CCRA n
701 56
702 77
704 100
708 82
709 44
710 121
714 21
715 48
716 15
717 43
720 26
721 62
888 129

* &

* % ok

Population size is unknown for providers of care for school age children.

95% confidence intervals based on the binomial distribution have no upper limit when n < 13.

858
1228
1624

760

515
1836

645

613

287

629

391
1140

816

mean

97.70
117.83
112.80
142.32

76.98
124.62
121.36
110.80

85.65
128.16

89.01
123.57

99.69

14.40
30.32
41.13
49.37
21.04
37.98
14.23
34.54
20.08
31.26
24.23
28.46
35.26

Percentiles,

75%ile

100.00
135.00
140.00
179.06

85.00
150.00
128.75
122.50

90.00
150.00
105.56
149.38
100.00

Bandwidth Conf.

hy,

20.3
38.0
45.9
71.4
16.1
46.9
24.8
41.0
17.0
56.3
53.8
49.8
10.3

Table 1,

continued

Family Day Care

Int.
(kernel, hg)

[ 94.73,105.27)
(126.01,143.99)
(128.19,151.81)
(160.08,198.05)
( 80.73, 89.27]
(141.03,158.97)
(119.70,137.80)
(110.55,134.45)
[ 82.90, 97.10)
(133.99,166.01]
[ 89.44,121.67)
(137.79,160.96)
[ 87.74,112.26)

Conf. Int.
(kernel, h=25)

{ 94.44,105.56)
(127.07,142.93]
(129.99,150.01)
[154.10,204.03]
[ 79.44, 90.56)
(142.31,157.69)
(119.70,137.80)
(111.51,133.49)
[ 80.90, 99.10)
(132.31,167.69)
( 89.98,121.13)
(139.23,159.52)
[ 94.26,105.74)

Standard Errors and Confidence Intervals

Conf. Int.
(binomial)

{100.00,101.25)
(125.00,140.00]
(125.00,145.00]
(155.00,200.00)
( 84.00, 90.00]
(146.25,157.50]
(118.75,140.00)
(112.50,130.00])
[ 87.45,105.00)
(135.00,170.00)
( 85.00,120.00]
(137.50,157.50]
{ 90.00,125.00]

Conf. Int.

(hypergeometric)

(100.00,101.25)
(125.00,140.00)
(125.00,145.00)
(155.00,200.00]
[ 84.00, 90.00]
(148.75,157.50)
(118.75,140.00)
{112.50,125.00)
[ 87.45,105.00)
(135.00,150.00])
[ 85.00,120.00]
(137.50,157.50}
[ 90.00,125.00)

No ."finite population size"
corrections were made, and confidence intervals based on the hypergeometric distribution are not
available.

Simjlarly,

95% confidence intervals based on the hypergeometric distribution have no upper bound when n is
sufficiently small,



Table 2

Estimated Densities and Sampling Errors for Weekly Prices

Infant Care, South Shore (CCRA 717)

Method £(75%ile) o (75%ile)
Assume Normal Distribution#* 0.0133 $4.97
Gaussian Kernel, h = 10 0.0187 $3.52
Gaussian Kernel, h = 25 0.0117 $5.63
Gaussian Kernel, h = S0 0.0070 $9.38
Gaussian Kernel, hygy = 11.4 0.0179 $3.69
Gaussian Kernel, hy = 10.7 0.0183 $3.60
Epanechnikov Kernel, h = 10 0.0214 $3.08
Epanechnikov Kernel, h = 25 0.0175 $3.77
Epanechnikov Kernel, h = 50 0.0116 $5.71
Epanechnikov Kernel, hy,, = 24.6 0.0177 $3.73
Epanechnikov Kernel, hy = 46.4 0.0122 $5.40

* Sample mean = $169.76; sample standard deviation = $24.89.
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