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When investment decisions cannot be reversed and returns to capital are uncertain, the
firm faces a higher user cost of capital than if it could reverse its decisions. This higher user
cost tends to reduce the firm’s capital stock. Opposing this effect is the irreversibility constraint
itself: when the constraint binds, the firm would like to sell capital but cannot. This effect tends
to increase the firm’s capital stock. We show that a firm with irreversible investment may have
a higher or a lower expected capital stock, even in the long run, compared to an otherwise
identical firm with reversible investment. Furthermore, an increase in uncertainty can either
increase or decrease the expected long-run capital stock under irreversibility relative to that under
reversibility. However, changes in the expected growth rate of demand, the interest rate, the

capital share in output, and the price elasticity of demand all have unambiguous effects.
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1. Intreduction

When a firm facing uncertainty chooses its capital stock
knowing that its investment is irreversible, the firm faces a higher
user cost of capital than if its investment were reversible. The
user cost under irreversibility is higher the more uncertain are the
returns to capital. Do these results necessarily imply that
irreversibility and uncertainty reduce investment in the long run
and therefore reduce capital accumulation? We show that the
answer to this question is no, and that the implications of
irreversibility and uncertainty are not so simply characterized. In
fact, there is an opposing effect inherent in the irreversible
investment model under uncertainty which tends to increase
capital accumulation -- the more so the higher is uncertainty.

When investment is costlessly reversible as in the standard
neoclassical model, the optimal investment policy maintains the
marginal revenue product of capital equal to the user cost derived
by Jorgenson (1963). However, when investment is irreversible,
the optimal investment policy is to purchase capital only as
needed to prevent the marginal revenue product of capital from
rising above an optimally-derived trigger. This trigger, which is
the user cost of capital appropriately defined to take account of
irreversibility and uncertainty, is higher than the Jorgensonian
user cost. Thus, if the firm currently has no capital and faces a
given marginal revenue product schedule (as a decreasing

function of the capital stock), the optimal capital stock under



irreversibility is smaller than the optimal capital stock under
reversibility. This result, which we will call the "user-cost" effect,
occurs because the firm anticipates that the irreversibility
constraint may bind in the future and thus is more reluctant to
invest today;! this finding has been emphasized by Bertola (1988),
Pindyck (1988), Dixit (1989), Bertola and Caballero (1994), and
Dixit and Pindyck (1994). A related result is that an increase in
the variance of the shocks facing the firm tends to increase the
user cost under irreversibility without affecting the user cost in the
standard reversible case. This increase in the user cost due to
increased uncertainty tends to further reduce the optimal capital
stock under irreversibility.

The results described above apply to a firm that currently has
zero capital, such as a new firm just getting started. But what are
the effects of irreversibility and increased uncertainty for an
ongoing firm? To address this question we focus on the long-run
capital stock. Of course, in the presence of uncertainty the capital
stock does not converge to a constant in the long run. Therefore,
we focus on the current expectation of the capital stock X, at a
future date ¢ and then examine long-run behavior by letting ¢
approach infinity.

The user-cost effect described above suggests that the

introduction of irreversibility tends to reduce the current

Tnis important for this result that the marginal revenue product of the firmis a
decreasing function of the capital stock, as noted by Pindyck (1993) and Abel and
Eberly (1993). If the marginal revenue product does not depend on the capital stock,
then current and future marginal revenue products are unaffected by today’s
investment, so the link from today’s investment to future returns is broken. The firm is
then no more reluctant to invest under irreversibility than with reversible investment.



expectation of K, However, there is an effect working in the
opposite direction because the firm has a past as well as a future.
The firm will arrive at any future date with a capital stock
representing the cumulation of investment prior to that date
(taking account of depreciation). If demand for the firm's output
is extremely low at date ¢, the firm would like to sell some of its
capital at a positive price. However, under irreversibility, the firm
cannot sell capital, and it would be constrained by its own past
investment behavior to have a capital stock that is higher than it
would choose if it could start fresh at date r. This dissonance
between the firm's actual capital stock and the level that it would
choose to hold does not reflect any failure of rationality. Instead it
reflects the firm's optimal response to favorable circumstances in
the past. We refer to this effect as the "hangover"” effect to
indicate the dependence of the current capital stock on past
behavior, especially behavior that later the firm would like to
reverse.2 The hangover effect can lead to a higher capital stock
under irreversibility than under reversibility.

The user-cost and hangover effects have opposing implications
for the current expectation of the long-run capital stock. With
irreversibility, the user-cost effect tends to reduce the expected
capital stock whereas the hangover effect tends to increase the
expected capital stock. The two effects also give opposing

answers regarding the effect of increased uncertainty on the

2 The hangover effect is an example of "hysteresis” in irreversible investment
discussed by Dixit (1992). Dixit emphasizes the finding that with irreversibility past
events affect current investment behavior.



expected long-run capital stock. As we have discussed, the user-
cost effect implies that increased uncertainty tends to reduce the
expected long-run capital stock under irreversibility. However,
the hangover effect implies that increased uncertainty tends to
increase the expected long-run capital stock. In this paper we
analyze the effects of irreversibility and uncertainty on the
expected long-run capital stock taking account of the user-cost
and hangover effects together.

The literature on irreversible investment under uncertainty has
attempted in various ways to assess the long-run or average effects
of irreversibility and uncertainty on the capital stock. Bertola
(1988) and Bentolila and Bertola (1990) examine the long-run
distribution of the marginal revenue product of capital and
conclude that the mean of this distribution is reduced by the
presence of irreversibility -- and reduced further the higher is
uncertainty.3 Dixit and Pindyck (1994, p.372-373) consider a
model similar to ours and focus on the effect of uncertainty on
investment, Specifically, they calculate the expected change in
the logarithm of the capital stock. They conclude that in this case
"a larger o means a lower long-run average growth rate of the
capital stock, and thus less investment on average” (p. 373),

where o measures uncertainty.

3 Bertola (1992) considers a deterministic model of employment with hiring and firing
costs. He finds that with positive discounting and/or attrition, hiring costs tend to
reduce average employment, while firing costs increase average employment.
Obviously, he does not consider the effects of uncertainty.

4 Specifically, Dixit and Pindyck calculate the expected long-run average change in
the log of the capital stock.



We calculate directly the expected future value of the capital
stock. For a firm starting with a zero capital stock, the user-cost
effect initially causes the firm to accumulate less capital, an effect
that is magnified by increased uncertainty. As the firm
accumulates capital, however, it becomes more likely that during
a low-demand episode the firm would like to sell capital, if it
could. The hangover effect is then operative, increasing the
capital stock under irreversibility relative to that under
reversibility. In the long run, we find cases in which the user-cost
effect dominates, and others in which the hangover effect
dominates. Increasing uncertainty does not resolve this
ambiguity, but instead deepens it. We show that in the long run,
increased uncertainty increases the expected capital stock under
both reversibility and irreversibility.> Whether the increase in the
expected long-run capital stock is larger under reversibility or
under irreversibility depends on the choice of parameter values.

In the next section of the paper, we construct a simple model
of a firm with an infinite horizon and characterize its optimal
investment decision with irreversibility and uncertainty. In
Section III, we calculate the expected value of the capital stock,
comparing the irreversible investment case to the reversible
investment case and decomposing the user-cost and hangover

_effects. Section IV focuses on the effects of uncertainty on the

long-run capital stock, while Section V considers the effects of

5 This result holds for M(6)-preserving increases in uncertainty (a concept that is
introduced in section IV) for positive values of #less than one. In particular, it holds
for the types of increases in uncertainty examined by Caballero (1991) and Pindyck
(1993), which are M(&)-preserving with = 1/¢.



growth, the interest rate, capital share in production, and the price

elasticity of demand. In Section VI we offer concluding remarks.

II. The Firm's Optimization Problem

We develop a simple model of the firm in order to focus on the
key elements of our question: the effects of irreversibility and
uncertainty on capital accumulation in the long run. Accordingly,
we assume that investment is irreversible, returns to capital are
uncertain, and the firm has an infinite horizon. The specific
functional forms we use are chosen for their tractability, and are
also used by Bertola (1988), Bertola and Bentolila (1990), Dixit
(1991), and Abel and Eberly (1995).

Consider a firm that faces an isoelastic demand curve

Qr = X,P ¢ D

where Q, is the quantity of output demanded, P, is the price of
output, X, is a stochastic demand shock, and &> 1 is the price
elasticity of demand. The firm produces nonstorable output O,
according to the Cobb-Douglas production function

o = L/ Pkf @

where L, is labor, X, is the capital stock, and the capital share 3
satisfies 0 < #< 1. Ateach point of time the firm chooses L, to

maximize its operating profit P,Q, - wL, where w is the wage rate,



which is assumed constant. The maximized value of operating

profit is given by
nK,X,)= ——h—X,’K,‘“’
1-y 3)
yE
wherel . ___ 1 __jand;_( —y)(l) (re—1)="w'r=
£ 1+Ae-1 Ye

Because the instantaneous operating profit of the firm depends
on the firm's capital stock X, and on the stochastic component of
demand X, the evolution of the operating profit depends on the
evolution of X, and X, over time. Assume that the demand shock
X, evolves exogenously according to a geometric Brownian motion
d—;(i =udt +odz, ©>0 C)

t

where X >0, and dz is an increment to a standard Wiener
process, with E{dz} = 0 and (dz)’ = dt.

The firm can purchase capital at a constant price & > 0 but is
unable to sell capital. The capital stock does not depreciate.®
Therefore, the evolution of the capital stock K, depends only on
the firm's purchases of capital.”

6 This assumption greatly simplifies the calculation of the expected future capital
stock. Specifically, for any time ¢ at which the firm does not purchase capital, the
capital stock equals the capital stock at date s, where s is the latest time prior to ¢ that
the firm purchased capital. If there were depreciation, then the capital stock at time ¢
would have to be adjusted for depreciation since time s, and this adjustment would
require information about the length of time (2-5) since the firm's most recent purchase
of capital.

Because the cost of adjustment is linear, the rate of investment (i.c., investment per
unit of time) can be infinite. The capital stock therefore follows a continuous, but non-
differentiable (with respect to time), path.



Assume that the firm is risk-neutral and discounts future cash
flows at the constant rate » > 0, where » > 4.8 The investment
policy that maximizes the value of the firm is derived in Appendix
A. This policy is easily expressed in terms of the marginal
revenue product of capital and the user cost of capital, which we
present below. The marginal revenue product of capital is hy7
where y = X/ K. The user cost of capital is

CE[]—Ler (5a)
Qy

where ay is the negative root of the quadratic equation
p(q)s—%ojnz—(y—%azjrﬁrzo- (5b)

The user cost of capital in equation (5a) is the natural extension of
the Jorgensonian user cost of capital to the case of irreversibility
under uncertainty. More precisely, it can be shown (see Abel and
Eberly (1995)) that ¢ is the sum of: (1) the interest cost »b; and (2)
the expected capital loss on a marginal unit of capital ®

The optimal investment policy is a "barrier control” policy
according to which the firm purchases capital as necessary to
prevent the marginal revenue product of capital from rising above
the user cost c. When the marginal revenue product of capital is
Tower than c, it is optimal not to purchase capital. Only when the

marginal revenue product of capital equals the user cost is it

8 . o .
The expected present value of operating profits, E, {.J:) e ’II(K,”,X,“)dS}’ is

finite if 4 < r. Appendix A provides a rigorous treatment of this issue.
More generally, the user cost contains a term reflecting the physical depreciation of
capital, but in this model we have assumed that capital does not depreciate.



optimal to purchase capital. Under this barrier control policy the
marginal revenue product of capital, k)7, is a regulated geometric
Brownian motion, where hy” < ¢, or equivalently y < (¢/m)!/Y = Yy
To describe its behavior more formally, we first characterize the

behavior of ya where @ is an arbitrary positive constant. Using
Ito's Lemma and recalling that y = X'/ K, the behavior of ya fory

<y, is given by
dy® = M(8)y°dt + S(6)y°dz (6a)
1 _|ax?® 1
where Af(g) = = E{F} =Ou+s d6-1)d* (6b)
and 5(6) = 6o (6¢)

Thus, M(6) is the expected rate of drift in y°, and S(8) is the
instantaneous standard deviation of ya. The behavior of the
marginal revenue product of capital, more precisely, d(hy’ )/ (),
is given by equations (6a,b,c) by setting &= y. Bertola (1988)
shows that the marginal revenue product of capital will have a
nondegenerate ergodic distribution if and only if A/(») >
(1/2)[S(y)]2. Using equations (6b,c) this condition can be written

as
uU>30. )

For the remainder of this paper we restrict attention to cases in
which the marginal revenue product of capital has a
nondegenerate ergodic distribution and therefore we assume that

equation (7) holds.



ITI. The Expected Value of the Capital Stock

The optimal investment policy of the firm is to purchase
capital whenever it is needed to keep the marginal revenue

product of capital, 437, from rising about the user cost c.
Recalling that y = X'/ K, the marginal revenue product of capital

is h(X/K)”, and the condition that the marginal revenue product of
capital is always less than or equal to ¢ implies

X, < (clh) Y K, ®)

Because we have assumed that capital does not depreciate, we

have

K = (c/h)_w max X, )

Suppose that the firm is born at time 0 (without any initial
capital) and normalize the demand process XI such that X 0 1. In
this case, the expected value, as of date 0, of the capital stock at

any date t >0 is

E{k} =(c/11)‘”’15{32555X,|X0 = 1} (10)

The expected value of the maximum in equation (10) is!?

10pe expected value of max,, ., X, given.X; = 1 can be calculated by defining
W =InX and observing that oy ¥ = exp(max W ) The distribution of the
osr f ogsst  *

maximum of W (an arithmetic Brownian motion) is taken from Harrison (1985), p.
13, equation (8):

_ W=yt wigh o[ =W = H#wt ). The
F,(w)=Pr{m&)’(s!:!’,Swm=0}=¢(#J'em ’ (p( a,,,t“’w J

i tion i =1t=["e"F Tedious calculati
desired expectation is E{w} X;l X, = 1} = L e'F (w)dw edious calculation
shows that this equation is equivalent to equation (11) in the text. Alternatively, the

10



,u+%02 u+

E{max x,Jx, =1} -

where ®(') is the standard normal c.d.f. The expected value of
the capital stock at any date £ > 0 can be calculated by substituting

equation (11) into equation (10) to obtain

, ,u+—10'2 #+loﬁ
E{K }=(crh)™"| —2 22 |expl ]
u o
(12)
1
1z 1
+# 2 cb—# 2__
u o

In order to focus on the effect of irreversibility, we introduce
the case of costlessly reversible investment for comparison.
Introducing costless reversibility also simplifies notation because
we can express expected future capital stocks under irreversibility
relative to the corresponding expected values under the
benchmark of reversibility. In the standard case of costlessly
reversible investment analyzed by Jorgenson (1963), the firm

continuously adjusts its capital stock to maintain the marginal

desired expectation can be taken from Goldman, Sosin, and Gatto (1979) where, using
their notation, S(t) is a geometric Brownian motion and

E{max ., S(8)5(0) = 1} = £V, _[1,1,]- Setting S(s) =M(s) = 1, and setting r
equal to u in their equation (10) on p. 1116 yields our equation (11) in the text.

11



revenue product of capital equal to the Jorgensonian user cost of
capital. In the absence of depreciation, and with a constant
purchase price of capital, the Jorgensonian user cost, ¢  » equals rb.
This equality of marginal revenue product and user cost implies
that X = (¢ 5 /h)”" KR always, where the superscript "R" indicates
the case of costless reversibility. Therefore,

Ef{k*}=(c,/n)y"" E{x|x, =1} (13)

Under the geometric Brownian motion in equation (4), the
expected growth rate of X: is ¢ which implies that
E{X \ lx, = 1} = e¢*. Therefore, the expected capital stock under
reversibility in equation (13) can be written as

E{KR}=(c,/h)""e" (14)

Now define x(#) as the ratio of the expected value of the
capital stock at date ¢ under irreversibility to the expected value of
the capital stock at date ¢ under costless reversibility. Using this
definition along with equations (10) and (13) we have

E{k |x, =1}
0= Frp, =y - 0

(15a)

where
-1y -y
CE[LJ =[ _L) <1 (15b)
<, ay
and
E X =1
E{thXO = 1}

12



The inequality in equation (15c¢) holds strictly for ¢ > 0.

Equations (15a,b,c) illustrate the two opposing effects of
irreversibility on the expected capital stock: the user-cost effect
measured by C and the hangover effect measured by H(f). The
introduction of irreversibility increases the user cost of capital
relative to the user cost in the standard case of costless
reversibility. This increase in the user cost tends to reduce the
optimal capital stock -- as reflected in the value of C less than one.
Working in the opposite direction is the hangover effect. Under
irreversibility, the capital stock at any date ¢, X, is proportional to

max X, whereas under reversibility the capital stock at any date ¢
0gsst

is proportional to the contemporaneous value of the demand shock
X, The historical peak of X is at least as large as the
contemporaneous value of X, and this consideration, which is
reflected in a value of H(¢) greater than (or equal to) one, tends to
increase the expected value of the optimal capital stock under
irreversibility. To see which effect--the user-cost effect C or the
hangover effect H(#)--is dominant, we need to compute the effect
of irreversibility on the product C x H(?).

First we study the properties of C and H(¢) separately.

Proposition 1: 0.367879 = el<elmcC<1.
Proof: See Appendix C.

Proposition 2: H(0)=1and ] < H(0) = 1+£i <2.
u

Proof. Inspect equations (11) and (15¢) using the facts that
E{X)X =1} = exp(ut), ®(c0) =1, and ®(-o0) =0, and the

13



assumption that u > (1/2)0‘2 . q.e.d.

Notice that the ratio of the expected capital stocks at time 0,
x(0), equals C x H(0) = C < 1. Therefore irreversibility reduces
the expected value of the initial capital stock because only the
user-cost effect is operative for the initial capital stock; the
hangover effect is inoperative because the firm has not yet
accumulated any capital in the past. However, as time proceeds,
the hangover effect becomes operative. Depending on the
parameters of the problem, the expected capital stock under
irreversibility may eventually exceed the expected capital stock
under reversibility, or it may turn out that even in the long run the
expected capital stock is lower under irreversibility than under
reversibility. We illustrate various possibilities later in Figures 1
and 2.

IV. The Effects of Increased Uncertainty

In this section we examine the effects on the expected capital
stock of an increase in uncertainty. In analyzing these effects we
would like to focus on mean-preserving increases in uncertainty,
but we must decide which variable has its mean preserved. The
answer to this question is fairly obvious for a competitive firm
facing uncertain demand, because such a firm is a price-taker.
The natural--indeed only--demand variable to focus on is the price

facing the firm, and thus investigations of the effect of uncertainty

14



in a competitive framework typically focus on mean-preserving
increases in the variance of price.!!

In the current model, the firm faces the downward-sloping
demand curve in equation (1), and two natural choices emerge as
candidates for a mean-preserving spread. It is evident from
equation (1) that if we interpret demand shocks as changes in the
quantity demanded at any given price, then the relevant shock is
Xr; in this case, we will study the effects of increases in
uncertainty that leave the expected value of X, unchanged.
Alternatively, the demand curve in equation (1) can be rewritten
asP =X IUSQI'” £ This formulation of the demand curve indicates
that if we interpret demand shocks as changes in the price
associated with any given quantity of output demanded, then the

relevant shock is X'U % in this case, we will study the effects of

increases in uncertainty that leave the expected value of X t”'s
unchanged. To accommodate both of these cases in a more
general framework, we will examine changes that leave the
expected value of X “unchanged, recognizing that 9= 1 and 6=
1/¢ represent the two natural cases discussed here,12

Observe that E{X | X = 1}= exp[M(8)1] so that changes in 4
and o that leave M(6) unchanged also leave E{Xﬁ X' =1}
unchanged. Setting M(8) equal to a constant, Mo’ in equation

(6b) and applying the implicit function theorem yields

1gee, for example, Hartman (1972) and Abel (1983).

As we see below this choice is not just a normalization; it has both qualitative and
quantitative importance for the resuits. In their analyses of investment under
uncertainty, Caballero (1991) and Pindyck (1993) adopt the second formulation
discussed above, i.e., = /&

15



al Ly (16)
dc*lug-n, 2
When £=1, the expression on the right hand side of equation (16)
equals zero, which means that an increase in o holding u fixed is
a mean-preserving spread on X. However, when 8= 1/¢< 1, the
right hand side of equation (16} is positive so that an increase in o
must be accompanied by an increase in u in order to leave the

mean of X'/

unchanged.
In Appendix B we calculate the response of the root e, to a

M(6)-preserving increase in o , and we show that

day >0 if@> 0. 17

d02 M{8)=M,
Using this result, we derive the effect of o*onCin Proposition 3:
Proposition 3: If 8 > 0, then _‘!_q_ <0

g PN

Proof: Observe from the definition of C in equation (15b) that C
is a decreasing function of a,,. According to equation (17), a
M(8)-preserving increase in o increases a,, which in turn
decreases C. g.e.d.

According to Proposition 3, a M(6)-preserving increase in o
reduces C and hence tends to reduce the expected capital stock
under irreversibility relative to the expected capital stock under
reversibility. This occurs because an increase in o increases the
user cost of capital under irreversibility but has no effect on the
user cost with reversibility. Recall, however, that C captures only

the user-cost effect. We must also take into account the effect on
the hangover factor H(?). For simplicity we focus on H(co).

16



Proposition 4: If 8 > 0, then

dH (o) [, &
do-z —2—ﬁl[1—2—#+02—”]>0‘

lM(o)=Mo

Proof: Differentiate the expression for H(co) in Proposition 2

with respect to o using equation (16). The sign of the resulting
derivative is obtained by applying the inequality in equation (7).
q.e.d.

Recall that x{c0) = C x H(c0). We have shown that C < 1

under uncertainty and that increases in the instantaneous variance
o” decrease C. Working in the opposite direction, however, are
the facts that H(co) > 1 under uncertainty and that H(co) is an

increasing function of the instantaneous variance .

Whether x{o) is less than or greater than one, and whether x{co)
is an increasing or decreasing function of o depends on whether
the user-cost effect operating through C or the hangover effect
operating through H(c) is dominant. Figures 1 and 2 illustrate
that in some cases the user-cost effect is dominant while in other
cases the hangover effect is dominant.

Both figures present results for an example in which the
interest rate, », equals 0.05, the expected growth rate of demand,
4, is 0.029, the capital share in the Cobb-Douglas production
function, B, equals 0.33, and the elasticity of demand, &, equals
10. Together the values of #and ¢ imply that y= 0.251889.

These values are not chosen necessarily for their realism, but to

17



illustrate that for admissible parameter values, a wide variety of
results is possible.

In Figure 1, we examine changes in the instantaneous standard
deviation o that leave the mean of X unchanged. Recall that
holding the mean of X fixed corresponds to a mean-preserving
spread on the shocks to the quantity of output demanded at any
given price. Panel a of Figure 1 shows that as o increases, the
user-cost factor C decreases and the hangover factor H(co)
increases, as stated by Propositions 3 and 4 respectively. The
behavior of l(‘(oo) is not monotonic, however, as shown in panel b.

Also note in panel b that, depending on the value of g, x{co) may
be greater than, less than, or equal to 1.

Figure 1:
The Long-run Effect of Uncertainty on x (8= 1)

a. The user-cost and hangover effects

2 T T

Hs.o)

o)
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b. The total effect of uncertainty on x

1.013 T T
1.009L —
x(e) 1.005~ -
1.001f~__ —

1 |

0.1 0.2

0.997
0

0.3

a
Figure 2 presents results for the case in which the mean of X Ve
is held fixed, which corresponds to a mean-preserving spread on
shocks to the price at any given quantity of output demanded. In

this case, # =0.029 when o= 0.01, but as o increases, u increases
in order to keep M(6) constant. As in Figure 1.b, x{c0) is not

monotonic in the instantaneous standard deviation o, and x{cc)
may be greater than, equal to, or less than one.
Figure 2:
The Long-run Effect of Uncertainty on x (8= 1/¢)

a. The user-cost and hangover effects

1.4 T T
H(U’m)l.z— ~
(o) L
GO 4

0.8 | | I

0 0.05 0.1 0.15
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b. The total effect of uncertainty on x

1.001 /
l = —

x(6)0.9991~ -

0.998- —

0.997

In both of these figures, x(cc) does not differ greatly from one,
though it can be greater or less than one depending on the value of
the standard deviation, o. For other parameter values, however, x
(o) can be much greater or less than one. For example, if the
interest rate is 0.10, x(c0) in Figure 1b is 1.21 when 0=0.24
and k(o) in Figure 2b is 1.04 when o= 0.18. If the expected
growth rate of demand, g, is then decreased by 0.005, with =1
as in Figure 1b, x() is 1.24 when o = 0.21; however, with =1/
£ as in Figure 2b, x(c0) falls below 0.55 as o reaches its
maximum.!3

Figures 1 and 2 and the above calculations suggest that there
is considerable ambiguity both in the magnitude and the sign of
the long-run effects of an increase in uncertainty. However, this
analysis focuses on x(?), the ratio of the expected capital stock
under irreversibility to the expected capital stock under

reversibility. In the case of a M(6)-preserving spread with 0 < <

13 The maximum allowable value of o comes from the restriction in equation (7) that
u> (1/2)02. In this calculation 4 = 0.024 when o= 0.01, and u increases as o
increases in order to maintain M{( ) fixed.

20



1, we can derive unambiguous results about the long-run effect of
uncertainty on the /evels of the expected capital stock under
irreversibility and under reversibility. Specifically, when 0 < 8<
1, a M(6)-preserving increase in o also increases M, the drift in
X. Eventually, the increase in the drift dominates any other
effects and increases the expected capital stock. This result is

based on the following lemma.

Lemma 1: Let y (r)=a(t)e*” +b (1) where aj(t) >0 and bj(t)
are finite for all £, and j = 1,2. If Hy> #y 20, then for sufficiently
large ¢, 7 o> 2'2(’)-

Proof: y,(t)- z,(t) = a,(t)e” —a,(t)e” +b,(¢) -b, (1) =

e““[a1 (£) - a,(t)e" " 1+ (b, (¢) —bz(t))e"“"] . For sufficiently

large ¢, the term in square brackets is positive. g.e.d.

Proposition 5: If0 < §< 1, then dEo{of?}
d

- ¢ and, for

M(8)=M,

dE,{K,}

sufficiently large ¢, >0-

M(6)=M,

Proof: Observe from equation (16) that a M(6&-preserving spread
increases u. The effect on the expected capital stock in the
reversible case then follows directly from equation (14), and the
effect on the expected capital stock in the irreversible case follows
applying Lemma 1 to equation (12).

q.e.d.

Proposition 5 applies to a mean-preserving spread in the

distribution of shocks to the price associated with any given
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quantity of output demanded (&= 1/¢), but it does not apply to a
mean-preserving spread in the distribution of shocks to the
quantity of output demanded at any given price (¢=1). For the
cases covered by Proposition 5, an increase in uncertainty
unambiguously increases the expected long-run capital stock
under irreversibility. This result is not due to irreversibility alone,
however, since the expected capital stock increases under
reversibility as well. Because an increase in uncertainty can either
increase or decrease x{e), we cannot determine in general
whether the expected long-run capital stock increases by more

under irreversibility or under reversibility.

V. The Effects of Demand Growth, the Interest Rate, the
Capital Share, and the Price Elasticity of Demand

We have seen that the expected long-run capital stock under
irreversibility can be larger or smaller than under reversibility.
Also, an increase in uncertainty can either increase or decrease
the expected long-run capital stock under irreversibility relative to
its value under reversibility. In contrast to these findings of
ambiguity, in this section find that other parameters
unambiguously move the expected long-run capital stock under
irreversibility relative to its value under reversibility. Specifically,
we show that a higher expected growth rate of demand, a higher
capital share, and a higher price elasticity of demand all tend to

reduce the expected long-run capital stock under irreversibility
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relative to that under reversibility, while a higher interest rate has
the opposite effect.

The expected growth rate of the demand shock, X, , is given by
the drift parameter x in equation (4). We first show that an
increase in the expected growth rate of demand increases the
expected capital stock under irreversibility and under reversibility.
However, this effect is weaker under irreversibility, so that an
increase in the expected growth rate of demand decreases the ratio
of the long-run expected capital stock with irreversible investment
to that under reversible investment.
dE,{K*}
7

Proposition 6: > 0 and, for sufficiently large ¢,

dE,
ALANN
du
Proof: Inspect equation (14) and apply Lemma 1 to equation (12).
g.e.d.

According to Proposition 6, an increase in the expected growth
rate of demand increases the expected long-run capital stock
whether investment is reversible or irreversible. To see whether
the effect is larger under reversibility or irreversibility, we must
examine the effect of expected growth on the user-cost effect C
and on the hangover effect H(f).
ac C

d_ﬂ - (}’—aij'(aN)

Proposition 7: > 0 and

dH(CO) = -._o.-_z_ <0
du 214
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Proof: See Appendix D,

Notice that an increase in the growth rate of demand tends to
reduce the strength of both the user-cost effect and the hangover
effect, that is, both C and H(c) become closer to unity as u rises.
In this case, however, the sign of the net effect can be determined,

as shown in the following corollary.

Corollary to Propesition 7: .‘.1% <0-
7

Proof: See Appendix D.

A higher expected growth rate of demand therefore increases
the expected long-run capital stock by more in the case of
reversibility than in the case of irreversibility. This means that in
a firm with high expected demand growth, we are more likely to
find that irreversibility reduces its capital stock in the long run
than in a firm with low expected demand growth. This result may
seem surprising since the higher is demand growth, the more
similar are the user costs calculated in the Jorgensonian and
irreversible investment cases.!4 That is, the rules governing
investment become more alike as u rises, so it may seem that the
irreversibility constraint should become less important in a high

growth environment. This demonstrates the importance of the

14 From Appendix B, equation (B.3), an increase in 4 reduces the value of the root,
25, < 0 ,which from the definition of the user cost in equation (5a), reduces the user
cost in the irreversible case, driving it closer to rb, the Jorgensonian user cost.
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hangover effect, though, since this effect is weakened even more
than the user-cost effect as 4 rises. Thus, even while the
irreversible investment rule becomes more like the reversible rule
when growth is high, the expected irreversible capital stock is
nonetheless driven down compared to the expected reversible
capital stock.

The effect of the interest rate on the long-run capital stock is
determined solely by its effect on the user-cost effect, since the
hangover effect is independent of the interest rate (at any
horizon). Thus, we obtain the effect of the interest rate on the
relative expected capital stocks directly from the following

proposition.

Proposition 8:

de(t) _dC p \y_ dC day —x(t) 0.

dr dr da, dr ay(y-ay)o(a,)

Proof: See Appendix D.

This proposition means that a higher interest rate tends to
increase the long-run expected capital stock under irreversibility
relative to that under reversibility by weakening the user-cost
effect. Note that while the user cost under both irreversibility and
reversibility rises with the interest rate -- which tends to reduce
the long-run capital stock in both cases -- this effect is weaker

under irreversibility than under reversibility.!> Since firms

15 From the definition of the J orgensonian user cost in Section II, the elasticity of ¢;
with respect to » is one. Differentiating equation (5a) and using equation (B.4), the
corresponding elasticity in the irreversible case is given by

25



discount the costs associated with the inability to sell capital in the
future, greater discounting tends to reduce the strength of the
user-cost effect. This finding is consistent with the "discounting
effect” emphasized by Bertola (1992) in a model of employment
under certainty.

Together, the capital share, S, and the price elasticity of
demand, &, determine the concavity of the profit function,
measured by the coefficient y. Here we examine the effect of
changing y on the expected long-run capital stock under
irreversibility compared to reversibility. Notice that the hangover
effect, H(f), in equation (15¢) is independent of ¥, so we need only
examine the user-cost effect, C, to determine the effect of ¥ on the

expected capital stock at any horizon.

Proposition 9:

ax(n) =d—cH(t)=@|:ln[l—lj—L:| >0-
dy dy 7’ ay) r-oy

Proof. See Appendix D.
Thus, an increase in ytends to increase the capital stock under
irreversibility relative to that under reversibility. This occurs

because as y rises, the profit function becomes more concave

der ry . Using equation

=1~
dr c G—ZL]aN’p '(aw) (a,,, - V)aNP '(an)

N
(B.1) and the fact that o, 0 (ay ) = p(ay)-(r+40Pad) = —(r +40%a%, ), this

canbesimpliﬁedto££=1_ r Y __, which implies 0<££<1.
dre r+idtal r-ay, He

Thus while in both cases the user cost increases with the interest rate, the elasticity in
the irreversible case is less than that in the reversible case.
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(observe that with y= 0 the profit function is linear in K) and thus
deviations from the optimal reversible capital stock are more
costly to the firm.!¢ Thus the value of C increases toward 1 and
the expected capital stock under irreversibility increases relative to
that under reversibility. Notice from the definition of y in
equation (3) that yis negatively related to the capital share g and
the price elasticity of demand & Thus, a reduction in either the
elasticity of demand or the capital share will be associated with an
increase in the expected capital stock under irreversibility relative
to the expected capital stock under reversibility. This result
occurs because with relatively inelastic demand or a low capital
share, it is more costly for the firm to deviate from the optimal
reversible capital stock, so the user-cost effect C increases toward

one.

VL Concluding Remarks

When investment is irreversible, firms cannot disinvest even
when the marginal profitability of capital is low. Anticipating
that this constraint may bind in the future, firms apply a higher
user cost of capital to current investment decisions. Qur analysis
of the expected long-run capital stock demonstrates that both the
"feared event” (inability to disinvest, summarized by the hangover
effect) and the firm's reaction to it (a high user cost, summarized
by the user-cost effect) are important features of capital

16 This does not imply that the firm does not choose its capital stock optimally, but
that it chooses its optimal capital stock conditional on the irreversibility constraint.
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accumulation. Relative to the (Jorgensonian) case of reversible
investment, the inability to rid itself of capital increases the firm's
capital stock during "bad" times, and decreases it during "good"
times. In the long run, either effect can dominate, so that the
expected capital stock may be higher or lower under irreversibility
than under reversibility.

Uncertainty does not ease the ambiguity regarding the long-
run effect of irreversibility, but rather deepens it. Higher
uncertainty strengthens both the hangover and user-cost effects,
but which effect becomes relatively stronger again depends on
characteristics of the firm and its environment. Higher
uncertainty increases the level of the expected long-run capital
stock under both irreversibility and reversibility (for 0 < §< 1),
but in which case the expected capital stock increases more is
ambiguous.

While in general it is not possible to determine whether
irreversibility increases or decreases the expected long-run capital
stock of a firm, other characteristics of the firm provide some
clues. We find that a high growth rate of demand decreases the
expected long-run capital stock under irreversibility relative to
that under reversibility. On the other hand, high interest rates, a
low capital share in production, and a low elasticity of demand
have the opposite effect -- tending to increase the expected long-
run capital stock with irreversibility relative to that under
reversibility. Together, these results suggest that a firm's long-run
expected capital stock is most likely to be decreased by the

presence of irreversibility in an environment with high demand
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growth, low interest rates, a high capital share, and highly elastic
demand.

These results are obtained in a specific framework, using
particular functional forms and assumptions. They may not be
general, in that the introduction of equilibrium considerations,
different specifications for uncertainty, operating profits, or
investment costs, or other generalizations may affect our findings.
Simple models such as the one we use, however, have been
employed to illustrate the importance of irreversibility and
uncertainty for investment and hiring dynamics. Our results
demonstrate that even in such models, where changes in the user
cost due to irreversibility and uncertainty change investment and
employment flows in sometimes dramatic fashion, these effects
may be dampened or even reversed when translated into the
expected long-run stock. Thus, the effect on the expected long-
run stock of capital or labor may be smaller or even of the
opposite sign than the effect of irreversibility and uncertainty on

the user cost would indicate.
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Appendix A: Optimal Investment of the Firm

Assume that the firm is risk-neutral and discounts future cash
flows at the constant rate » > 0, where » > .17 The fundamental

value of the firm is
V(K. X,)=max;, , E'{ [e[Ak.... x,..)ds - b dKu,]}'(A' D
0

Since K; is not differentiable, the last term in equation (A.1) is to
be interpreted as a Stieltjes integral.

The value function in equation (A.1) is homogeneous of
degree one in K‘ and X‘ . Therefore, the marginal valuation of
capital, VK(K o X t) is homogeneous of degree 0 in Kt andX‘ and
can be written as a function of y, = X, / K,. Define

9v,) =V (K, X,) (A2)
as the marginal valuation of capital. Optimality requires

rq(y) =hy” +%E{dq} (A3)

17Under optimal policy the marginal revenue product of capital, £X’X 7, satisfies

hX K" < ¢ where c is the user cost of capital. Recalling that 0 < y< 1, so that (-
1)/y <0, this inec,uality is equivalent to KV yrigter 5 -y Multiplying this
inequality by (M7K1))X and recalling that (K, X) = (W/(1-9))X’K7, we obtain
,,(X’ K) > (h"' /(1 - y))c("l)/’X- Since the expected growth rate of X is z, the
operating profit of the firm is bounded below by a process with expected growth rate
equal to 2z Therefore, in order for the expected present value of operating profits,

E, {J': e'"ﬂ(K,“,X,“)ds}’ to be finite we must assume that z < r.
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where the left hand side is the required return on the marginal
unit of capital, and the right hand side is the expected return on
the marginal unit of capital, which consists of the marginal
revenue product, 4y”, and the expected capital gain (1/df)E{dq}.

When the marginal valuation of capital, g(y), is less than the
purchase price of capital b, it is optimal not to purchase capital. It
is optimal to purchase capital only if g(y) reaches the boundary 5.
The value of y at this boundary, y,;, is given by the smooth-

pasting condition!8

a(y,)=b. A4
In addition, g(y) and y;; must satisfy the high-contact condition

7(%)=0. (A5)

To calculate the expected change in g apply Ito's Lemma to
q(») and use the high-contact condition in equation (A.5) to
obtain!?

1
%E {da}=wq'(y) +3 ?y'q"(y) (A.6)

18gee Dumas (1991) for a clear presentation of the smooth-pasting and high-contact
conditions used below.
19 1 , JS.ndK 1 "

Nowthat —E{dg} = mg'())-ya' () +25. 0" (y): Wheny # 30
dK =0, wheny=y_,g'(y) =0 by the high-contact condition. Therefore, g/()dX = 0
always, and we obtdin equation (A.6).
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Substituting equation (A.6) into the optimality condition in
equation (A.3) yields a second-order differential equation that g()
must satisfy

]
ra(y) =hy” +wq'(y)+ 2 &y'q"(y) (A7)

The solution to the differential equation (A.7) is20

h
q(y)= Ay’ +JJy™,where 4= m >0 (A.8)
Y

and o, is the positive root of the quadratic equation in equation
(5b), and J is a constant that will be determined by the boundary
conditions. Using equation (A.8) in the boundary conditions,
equations (A.4, A.5), we obtain

hyl =c= (1_L]rb (A.9)
Ay
and
q(y)= 4y’ __V_b(l] (A.10)
A —Y \ W

20The general solution to the differential equation (A.7) contains a third term Ly ¥,

where L is a constant, Note that as y approaches zero, this term approaches infinity
because a,, < 0. However, the marginal valuation of capital remains finite as
y=X/K approaches zero. Therefore the constant L. must equal zero.
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Appendix B. Properties of the negative root of p(n) =0 in
equation (5h)

Recall thatp(,,)E_%d?,f —(y—%a’]rﬁr:O- Note that

p(m) is strictly concave, p(0) = r >0, and p(1) =r - 4> 0 so that
2(» >0. Also, note that o(7) = 0 has two distinct roots, ap > 0

and ay, <0, which satisfy o, <0<y <1< a, . The concavity of

p(n) implies that

p'(aN)=-olaN-y+_;oz >0 B.1)

Totally differentiating o(7) with respect to », 4, 02 , and r, and

evaluating the derivatives at 7 = o, yields

p'(ay)da, - a,du +%aN(1— a,)dd® +dr=0. (B2)

Equation (B.2) implies

doy __ay (B.3)
du  p'(ay)

da,, 1

— = <0 (B.4)
dr P ’iaNi
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Now we calculate the effect on the root o, of a M(6H)-preserving
increase in o*. Observe from equation (16) that for a M(6)-
preserving change ’
1
dy=5(l—9)do’2 (B.5)

Substituting equation (B.5) into equation (B.2) yields

day _layay-9) (B.6)
do’ Mo)=M, 2 p '(aw)
Note from equation (B.6) that if 8> 0, then 9%y >0
40’ |y(o)-u,

Lemma B.1: If 1> (1/2)0%, then oy, <-1.

Proof: Observe that p(0) =r >0 and
p(—l) =pu+r-o*>2u-o* >0. Therefore, aNis not in the

interval [-1,0]. q.e.d.

34



Appendix C: Proof of Propesition 1

Lemma C.1:
-y
If ofy) = 1,,( _Lj _ __lln(l_Lj <o then o) = L.
ay ¥ ay a,
Proof: Apply L'Hopital's Rule to the ratio N(»)/D(y) where
N(y)= —1n[1__7:_j and D(y)= y. Observe that
ay
N'(y) = 1/ay sothat N'(0) = lVa,. AlsoD'(0)=1.
X
xy
Therefore, @(0) = N'(0) / D '(0) = lax,,
g.e.d.
Lemma C.2:
-y
If o(y) = ln(l_Lj - _lln(l_J_’_J, then @ '(y) > 0 with
Ay 4 Ay
strict inequality for y> 0.
Proof:
w'(y)=_121..[1_L]+lﬂ=L2 1..[1_L]+_7_ﬂ -
4 ay) v 7 oay) -1
aN aN
1 |- z
Therefore, o/(y) =— ‘{._7_) , where (z)=1In(1+2) T
Yo o\Qy z
Note that 10) =0 and ,(;)— _Z__ so that z)>0 forz>0.
(1+z :
Therefore, @' (») > 0.
g.e.d.
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Proof of Propasition 1: It follows from the definition of C in
equation (15b) and the assumption that ¥> 0 that C < 1. Lemma
C.2 and the assumption that ¥> 0 imply that C = e™n 5 ™0
Using the expression for o(0) in Lemma C.1 yields C > "/~
Lemma B.1 implies that e > e™ =0.367879.

q.e.d.
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Appendix D: The Effect of Demand Growth, the Interest
Rate, the Capital Share, and the Price Elasticity of Demand on
the Expected Long-run Capital Stock

Proof of Proposition 7: Differentiating the expression for H(ew)
in Proposition 2 with respect to u yiclds

du 2u
Turning now to iig note that x enters the expression for C in
du

equation (15b) only through its effect on the root oy, .
Differentiating equation (15b) with respect to a, yields

c_1.C r__C _,  ®

day r1-L aNZ aN(V_aN)
Ay

Differentiating equation (15b) with respect to 4, and using
equations (D.2) and (B.3) yields

gg_ dac daN _ C >0 (D3)
du da, du (7—aN)p '(aN)

q.e.d.
Proof of Corollary to Proposition 7: Using equations (D.1) and
(D.3) and the fact that H(co0)= 1 + 0*/(24) yields

&
dr(e) dc , . dH(=) HE—;‘ c 2 (D4)
A0 Hwo)y = - _co O
du T T T-aplay) 2P

which can be rearranged as
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d"(°°)= C 1 —i B ’ .5
du /‘(}’—GN)p'(aN)[‘u+2°2 2/‘(7 ay)p (aN)]

Define G = i > (0 and rewrite equation (D.5) as

2u
di(e0) _ C [liG.c p'(aw)_Gp'(aN)] D.6)
du (r—aN)p'(aN)LH T "a

Recall that p'(e,) > 0. Thus, to show that dx(w0)/ dy <0 it
suffices to show that l+G+GaNp ‘(aN)/,u <0.

Evaluate the expression for p(#) in equation (5b) at 77 = -G'1 to

obtain
p(—G’l)E —%o‘zG"2 +(,u—%oj)G'l +r=r-u>0(@D.7)

where the inequality follows from our assumption that » > 4. The
concavity of p(7) and the fact that p(-G'l) > 0 imply a, < -G'l,
which implies that

-aNG > 1. (D.8)
Observe from equations (B.1) and (D.8) that

L0"')=—2Gaz,,~l+G>l+G (D.9)
u

It follows from equations (D.8) and (D.9) that

ay) <0. (D.10)
7

1+G+GaNp
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As discussed below equation (D.6), the condition in equation
(D.10) is sufficient to prove that dx(0)/ du <0.

q.e.d.

Proof of Proposition 8: Notice from the definition of H(f) in
equation (15c¢) that it is independent of  for all ¢. Also, from
equation (15b) r affects C only through its effect on the root, ) .
Thus, using equations (B.4) and (D.2) we obtain

ax(t) =£H(t) =_£.£ZALH(1)
dar ar daN dr ] (Dll)
= —x(t) >0

aN(}" aN)p ’(aN)
q.e.d.

Proof of Proposition 9: Notice from the definition of H(f) in
equation (15c) that it is independent of ¥ for all 1. Also note that
pA(n) is independent of yso that a; is independent of y. Thus,
using the definition of C in equation (15b) and differentiating
with respect to y, we obtain

M=d_c‘.1{(t)=ﬂ h{l__Z_J_L D.12)
dy dy Y Ay ) V- Qy

The expression in equation (D.12) will be positive if and only if

D(ay) > 0 where
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D(aN)Eln[l———y—J___y_ (D.13)

Ay y-ay
Observe that p (g, ) = —Lz >0 which implies that
Ay (aN -y
Dlety) > D(-<e)=In)~0=0. o140
q.e.d.
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