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1. Introduction

The life cycle model is a coherent theory of consumption behavior that is theo-
retically attractive primarily because it treats consumption choices as deriving
from an intertemporal maximization problem. The determination of consump-
tion in different time periods can be thought of as analogous to the determination
of quantities of different goods in a demand system. The standard model sug-
gests that households smooth their cbr;spmption across periods of high and low
income to keep expected marginal utiiity constant. However, the observation
that, in many datasets, consumption tracks income as individuals age has been
used as evidence that the life-cycle model cannot explain observed consumption
behaviour (see Carroll and Summers, 1991).

In this paper we argue that once one departs from the simple classroom ex-
ample or ‘stripped down’ life-cycle model! the empirical model for consumption
growth can be made flexible enough to fit the main features of the data. More
specifically, we show that allowing demographics to affect household preferences
and relaxing the assumption of certainty equivalence can generate hump-shaped
consumption profiles over age that are very similar to those observed in house-
hold level data sources, without appealing to alternative explanations (such as
liquidity constraints, myopia or mental accounting).

With flexible preferences it is very difficult to reject the life cycle model using
traditional statistical tests. It is therefore important to establish the plausibil-
ity of estimated preference parameters. While the first order conditions from
the consumer’s optimization problem have been used to estimate structural pa-
rameters for the consumption growth equation, the model has not been used to
describe saving and consumption levels. The main reason for this is the difficulty
in deriving a closed form solution that relates consumption to the state variables
of the problem, except in very simple cases. In addition, we are not aware of

any systematic attempt at quantifying in a precise way the combined effects of

1see Deaton, 1992 for a survey of theoretical and empirical evidence.



demographics, uncertainty and other variables on consumption profiles.

In recent papers Hubbard, Skinner and Zeldes (1995) and Carroll (1994)
show that life-cycle consumption profiles can be hump-shaped because of income
uncertainty. Our paper adds to the picture the effects of demographics and a
non-stationary income process: even though we treat demographic profiles as
known and exogenously given, demographic variables affect the solution to the
dynamic optimization problem because of their direct influence on the marginal
utility of consumption, which is then ‘reflected in perceived income uncertainty.
For example: the same shock to income affects households in different ways
according to their size and composition. Demographics and persistent income
shocks generate both humps and bumps in life-cycle consumption profiles.

The preferences employed in this paper are such that it is not possible to
derive the closed form solution for consumption as a function of the state vari-
ables. It is therefore necessary to simulate the model to compute consumption
paths. The simulation technique we use is an extension of the techniques pro-
posed by Deaton (1991), Marcet and Singleton (1991) and Judd (1992) insofar as
we develop an algorithm that parameterises the effects of second and subsequent
state variables in such a way as to keep computation time to a minimum. The
resulting simulations allow us to construct life cycle and business cycle paths of
consumption in the US, isolate the effects of specific variables and also perform
counterfactual experiments.

The structure of the paper is as follows. In the next section we present the
micro-evidence that needs to be explained — in this case from a US dataset.
Section three describes the simulation methodology and section four presents
simulation results which are compared to the profiles described earlier. Section

five concludes.



2. ‘Life Cycle’ Behavior in the United States

We draw the data used in this paper from the major US survey of household
income and expenditure — Consumer Expenditure Survey (CEX). Data are
available on a continuous basis througout the 1980’s and early 1990’s, and con-
tain detailed information on income, expenditure and household characteristics.
The sampling frame used is representative of the US population and thus can
be aggregated, at least in principle; to estimate aggregate consumption. Un-
fortunately the quality of the income data is worse than that of consumption
but the figures are not totally unreasonable. The correlation coefficient between
aggregate consumption growth and the corresponding aggregate from the micro
data is 0.71.

It should be stressed that the definition of consumption used in the survey is
very different to that used in the National Account Statistics so that a perfect
match is impossible. For instance, National Accounts consumption includes
imputed rents for homeowners while the CEX consumption does not. National
Accounts includes total health expenditure regardless of the proportion covered
by insurance while the CEX includes only out-of-pocket health expenditures.
The correlation coefficient between rates of growth of aggregated micro income
and National Account income is as low as 0.39 for the US (see Attanasio, 1994).

One of the main points of this paper is that the life cycle model with a flexible
and realistic preference specification is able to generate the life cycle behavior we
observe in the data. It is, therefore, important to present the main features of
the life cycle patterns of consumption and other related variables that are found

in this and many other micro data sources, and that require explanation.

2.1. Life-time profiles for consumption, income and demographic in-
dicators

Although the CEX is a panel data set each household is observed only only 4

times (over a period of one year). Therefore, to study life cycle behavior we



Table 2.1: CEX Cohort Definition
Cohort Number Year of Birth Age in 1980 Cellsize

1 1955-59 21-25 735
2 1950-54 26-30 658
3 1945-49 31-35 562
4 1940-44 36-40 420
5 1935-39 41-45 342
6 1930-34 46-50 317
7 1925-29 51-55 323
8 1920-24 56-60 331

divide our sample into more or less homogeneuous groups that can be followed
over time. This procedure allows us to study the dynamics of group averages for
the relevant variables. One obvious grouping criterion when studying life cycle
behavior is the year of birth of the household head. Forming groups (typically
called ‘cohorts’) on the basis of such a variable allows us to study the life cycle

2. Of course, other

behavior of individuals that come of age at the same time
variables beside birth year can be used to form groups or sub-groups. In what
follows we use the educational attainment of the household head, but one could
use region of residence, race and so on. The tradeoff is between within group
heterogeneity and cell size. Given the large amount of unobserved household
heterogeneity, it is essential to work with cells of reasonable size.

We start by presenting life cycle profiles for several variables ignoring any
variable other than year of birth to form cohorts. These are the data used in the
estimation of the Euler equations in the next section. The cohorts are defined
by five year bands, their definitions being given in Table 2.1.

In Figure 2.1, we present the life cycle profiles of log non-durable consump-
tion and three other variables which are going to be relevant in our analysis:

log disposable household income, log family size and wife’s annual hours of work

21t has been pointed out in several papers that, in the presence of strong generational effects,
interpreting cross-sectional age profiles as life cycle profiles would be extremely misleading.



Figure 2.1
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In the graph, each variable is plotted against age and the data points of each
cohort are joined by a continous line. Because a cohort is defined by a five year
interval and the period covers more than five years the profile for each cohort
will overlap with that of the adjacent cohort®. The averages are taken quarterly
and are used in the estimation of the Euler equation discussed below.

Notice that, in the top two panels both consumption and income profiles are
hump shaped. This observation, and the fact that the shape of the two profiles
seems to covary across occupation and education groups,has been interpreted
as evidence against the life cycle model. In the bottom two panels we plot log
family size and female annual hours of work (not conditional on participation).
Notice that family size is also hump shaped. Two features are noticeable about
female labor supply. First, there is substantial variability of female labor supply
over the life cycle and strong cohort effects can be identified. Second, there is no
visible dip in average female labor supply corresponding to child bearing ages.

In Figures 2.2 to 2.5, we present the life cycle profile for the same variables for
the four education groups considered in the simulations in the following section:
high school dropouts, high school graduates, some college and college graduates®.
As stressed in the introduction, the fact that differences in income profiles are

mirrored in differences in consumption profiles has been interpreted as evidence

3The idea of drawing age profiles for cohorts of individuals born in the same year was
developed in Browning, Deaton and Irish (1985) and is consistent with the life-cycle theory. At
any point in time individuals of different age also differ in their year of birth. Cross-sectional
age profiles reflect both genuine age effects, and differences across year-of-birth cohorts, or
cohort effects With at least two points in time, cohort effects can be controlled for, by taking
separate averages over individuals of a certain age according to their year-of-birth. These
averages will differ if individuals born later have access to higher life-time resources, say, but
may also differ because the sampling period is not the same (take individuals 30 years of age:
those sampled in 1980 would be born in 1950; those sampled in 1985 would be born in 1955.
If we find a systematic difference between the two groups of 30-year old we may attribute it
to cohort effects or to the different sampling period). The latter is a business cycle effect.
We interpret the vertical distances between age-profiles as pure cohort effects. This way we
neglect the business cycle interpretation, which may be relevant when the vertical distance
varies across cohorts in the same way over time.

4These cohort data are computed using annual averages to maintain an adequate number
of observations in each cell once we split by education group.
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against the life cycle model. It is therefore interesting to notice that the life
cycle pattern of other variables such as family size and female labor supply is
also considerably different across education groups. Notice, for instance, that
the life cycle profile of log family size is lower and steeper for higher educated
individuals. Furthermore, the peak occurs considerably later in the life cycle than
for lower educated individuals. On the other hand, college graduates, is the only
group for which there is a visible decline in female labor supply corresponding
to child bearing ages. g

In Figure 2.6 we present age profiles for a new variable: disposable income
net of ‘precommitted expenditure’, or net income. This variable is the relevant
income measure for the simulations we discuss in the what follows, and is defined
as the difference between household disposable income and the sum of expen-
diture on durable goods, education and health. This last component, health
expenditure, is of particular relevance for elderly households, and explains why
the net income profile keeps falling well into retirement age. Relatively small
cell size is responsible for some of the bumps among the relatively old, but we

shall only take a smoothed out version of these profiles in our application.

2.2. Preferences and estimation of the life-cycle model

The maximization problem we consider is the following:

T
MGIBZ,BJU(CHJ',Zt+j,Wt+j,Ut+j) (21)

=1

st Aprjtr = (14 Rerjnr)(Aets + Yetj — Ceaj)

where C, y, A and R are consumption, income, assets and interest rate
respectively. The definition of consumption is discussed below. Z is a vector of
observable endogenous variables (such as the labor supply of various household

members), W is a vector of observable variables that are considered exogenous



for the determination of consumption but that can affect the marginal utility of
consumption; v represent unobservable preference shocks. As usual in this kind
of study, we will be limited to preferences which imply the presence of additive
shocks for the first order conditions we consider.

We specify the within period utility function in the following way:

1 -
U(Cg, Zt, Wg, ’Uc) = —1__7 cl 7exp(0;W¢ + 6’2Z¢ + ’Uf,) (22)

where 7y is the reciprocal of the ela‘éi:icity of intertemporal substitution. We
could, in addition, make y a function of a number of observable demographic
variables as in Blundell, Browning and Meghir (1994) for the UK?.

One possible interpretation of the role of the W and Z variables in equation
(2.2) is as determinants of the discount factors. The level of utility achieved by
a given amount of consumption expenditure depends upon both family composi-
tion and other demographic and labor supply variables. Rather than parametriz-
ing adult equivalent schemes and the way in which labor supply choices affect
utility in a precise way, we prefer the relatively flexible specification in (2.2).
This is equivalent to letting the data determine the way in which demographic
variable enter the utility function and to modeling preferences conditional on
labor supply behavior (see Browning and Meghir (1992)).

Implicit in the formulation used above is the assumption that the components
of expenditure excluded from C influence utility in a separable way.

From equations (2.1) and (2.2) it is possible to derive an Euler equation for
consumption which is linear in the parameters and in the residuals. This proce-
dure in standard in the literature; examples of applications of these techniques
are, inter alia, the papers by Altug and Miller (1991) and Attanasio and Weber
(1993). The individual Euler equation can be then aggregated for a particular

5We experimented with allowing demographic variation in the estimation of both + and 8
but found insufficient information in the data to identify separate effects. Although we did not
test formally where to include demographic variation we use the ‘taste shifters’, 8, because of
their intuitive appeal.



group (such as a cohort) and estimated on average group data. Therefore, to es-
timate preference parameters it is not necessary to have panel data; a time series
of cross sections is sufficient. The advantage of having micro data consists in the
ability to control the aggregation process directly. Consistency is obtained let-
ting T, the number of time periods, go to infinity: there is no need to assume the
existence of complete markets, as done by Altug and Miller (1991) who achieve
consistency keeping T fixed and increasing the number of households V.

‘The residuals of the Euler equatioﬁ for consumption consist of three compo-
nents. The first is an expectational error which arises from the difference between
the expected and the actual marginal utility of wealth. The second derives from
the presence of unobservable taste shifts in the utility function (v:), while the
third arises from the fact that the cell size is finite and reflects the difference be-
tween sample and population means. The first component is presumably white
noise and should be uncorrelated with all the information available at time t.
Because we take averages of levels and subsequently compute first differences
the third component is an MA(1) with a coefficient of minus unity. Note that if
the size of the year cohort cells is large enough, this component becomes negli-
gible. The stochastic properties of the second component are not obvious. We
assume that this residual is uncorrelated with the (group) instruments we use.
The presence of the MA(1) component forces the use of instruments dated t-2
and earlier.

The labor supply variables on which we condition are treated as endogenous
and therefore instrumented. The instrument set includes three groups of vari-
ables: first, deterministic variables such as seasonals and a polynomial in age,
second, the second to fourth lag of consumption and income growth, the interest
rate, and the inflation rate; the second and third lag of the demographic vari-
ables used in the equation. The standard errors are computed using standard

formulae robust to the presence of heteroscedasticty.



2.3. Estimation of structural parameters

In view of the main task of this paper which is to simulate a life cycle model,
the specification of the Euler equation is very parsimonious. Relative to other
studies which have analyzed the same data, the specification presented below
differs in two respects. First, the demographic and labor supply variables that
affect the discount rate are very few. They are, however, able to capture the
main features of the data and eliminate the evidence of excess sensitivity.

Second, we do not consider the po‘ssibility of varying the elasticity of in-
tertemporal substitution. The presence of variables affecting the elasticity of
intertemporal substitution would imply the presence, in the log-linearized Euler
equation that we estimate, of log- consumption terms interacted with the vari-
ables we consider to be the determinants of the elasticity. The consideration of
interaction terms that do not exhibit much variability (at least in our US data)
would introduce a substantial amount of collinearity in the equation making the
overall estimates rather imprecise.

The Euler equation is estimated on quarterly average cohort data with sea-
sonal] preference shifts. The estimation is performed on several cohorts simulta-
neously allowing the identification of life cycle effects which could not be mea-
sured on aggregated data. Details about the econometric problems relevant in
this context can be found in the papers cited above.

The results are reported in Table 2.2. After some specification search we
allow the discount factor to depend on the log of family size and the log of
the number of annual leisure hours of the spouse, computed as 5000 minus the
number of work hours. The equation is estimated using data from the 1982-1990
CEX Survey. Similar results were obtained adding the 1980 and 1981 data. In
estimation, we use 8 cohorts, each defined by a 5 years band. The synthetic panel
is unbalanced in that some cohorts enter the sample later than 1980 and others
leave it earlier than 1990 because in estimation we do not consider individuals

younger than 25 or older than 60.



Table 2.2: CEX Euler equation estimates

Variable Coefficient Standard Error
S1 0.0463 0.0111
S2 0.0473 0.0114
S3 0.0632 0.0115
Constant -0.0449 0.0116
log(family size) 0.7935 0.3744
log (spouse’s leisure) - 0.0902 0.0725
Real interest rate 207324 0.4218

Sargan test of over-identifying restrictions = 11.74 (17 df)

The coefficient on the interest rate, which measures the elasticity of intertem-
poral substitution, is estimated at 0.73 with a fairly large standard error (0.42).
The coefficient on log family size is quite significant while that for female labour
supply is estimated without much precision. The Sargan criterion for overiden-
tifying restrictions does not reject the null hypothesis.

We have considered additional demographics and labor supply variables as
possible determinants of the discount factor. The parameters were not estimated
with much precision and the main results did not change. Therefore, we prefer
to report the more parsimonious specification.

We have also investigated, without much success, the possibility of estimating
the Euler equation separately for different education groups. The estimates
turned out to be extremely noisy, probably because the relatively small size
of the cells increases the variance of the measurement error component of the
residuals considerably.

Given the estimated parameters, one can construct an estimate of the dis-
count factor in equation (2.2) with the v, term set to its mean value of zero —
exp(0 W, +04,2;). Even though we assume that households in different education
groups have the same preference parameters, the discount factors can differ sub-

stantially because of differences in the life-cycle patterns of demographics and

10
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labor supply variables.

In Figure 2.7 we plot the unsmoothed quarterly profiles for the discount
factors of the four education groups. Even though the small cell size makes
these pictures quite noisy, substantial differences among the four groups are
evident.

In Figure 2.8, we plot the annual smoothed profiles used to solve the model.
These profiles are computed, for each education group, as follows. First, we
aggregate the quarterly data to obtain annual series. We then smooth the com-
ponents of the discount factor for each education group by regressing the average
cohort data for that component on a 5th order polynomial in age and cohort spe-
cific intercepts. We finally take, for each component, the smoothed profile for an
arbitrarily chosen cohort and construct the discount factors using the estimates
from table 2.1. Notice that because what matters for the solution is the rate of
change in discount factors over age, the choice of the cohort is immaterial.

The discount factors are extremely important in determining the shape of
the life-cycle profile of consumption. Notice that these average profiles are ex-
tremely different across education groups and, in particular, are much steeper
for more highly educated individuals. There is nothing in the estimation of
the Euler equation, in which we imposed the same coefficient on the education
groups, which guarantees these differences in the profiles. They are generated
by differences in demographics and labor supply behavior.

3. Simulation of the life-cycle model

In this section, we show how a flexible version of the life cycle model can be used
to characterize and quantify the differences in consumption and saving behavior
across countries and over time. In Section 3.1, we outline the model and the
estimation technique used. In section 3.2 we discuss the solution and simulation

techniques.
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3.1. Solution and Simulation Techniques

Having estimated the structural parameters in (2.1) and (2.2) we first solve the
model by a backward recursion method and then simulate it. To implement this
methodology, however, we need to be specific about the processes which gen-
erate income, interest rates and demographics and make a number of stringent

assumptions which we list below without justification. We assume that:

e Households lives are finite and life length is known in advance. We also

assume that households leave no bequest.
e The life-cycle profile of demographic variables is deterministic and known;

e Net income (Y) until retirement is made of two components: a deter-
ministic one (T') which is calibrated on the basis of available data and a

stochastic one (W).
Y. =T:W, (3.1)

The stochastic component is a random walk with MA(1) innovations.
Wt = Wt_ 1% (32)

vy = el (3.3)

This specification is roughly in accordance with the available evidence on
earnings found in micro data (see MaCurdy (1983) and Abowd and Card
(1989));

e The retirement age is exogenous. However, even after retirement net
income uncertainty persists, because of unpredictable changes in health
which affect committed expenditure. The deterministic component of net
income is given by a smooth approximation of observed net income (shown

in Figure 2.6);

12



e The interest rate can be fixed or stochastic; however, it does not exhibit
persistence. Our methodology allows the introduction of a persistent in-

terest rate in a straightforward manner.

Of crucial importance to our analysis is that durable expenditure as well
as other components of consumption such as health and personal education ex-
penditure are considered exogenous. For this reason we subtract these items
from disposable income, and use net income instead. Therefore, the measure
of income we use both to find solutioﬁs and in simulation is given by total la-
bor income (inclusive of transfers) minus what we call 'committed expenditure’.
Alternatively one could assume that the utility function in (2.1) is defined in
terms of total consumption (which differs from total expenditure) and use total
income. The problem with this latter approach is that the consumption figures
obtained out of the simulations are not directly comparable to any immediately
observable variable.

The approach we take to solve the model is to construct an approximation
of an age dependent consumption function which satisfies both the first-order
condition derived from (2.1) and an intertemporal budget constraint. At each
age one takes the consumption function at the following age as given. The model,
therefore, needs to be solved backwards starting from a consumption function
for the last period of life. The method we use is an extension of that used by
Deaton (1991).

It is convenient to rewrite the intertemporal budget constraint in terms of

what Deaton defines as ’cash-in-hand’ (X; = A, +Y}):

Xit1 =1+ Rep))(Xe — C) + Vi (3.4)

The nature of the problem implies that the consumption function at each age
is a function of two state variables: the current value of cash-in-hand (to income

ratio) and the current shock to income. This latter variable is relevant only

13



because it gives information about future income. In the absence of autocorre-
lation, one state variable would suffice. When this is the case, Deaton’s method
consists in choosing a grid of points for the state variable and solving for the
consumption function at each of these points by standard non linear methods.
The consumption function at points others than those on the grid is obtained
by interpolation.

Consumption in the last period T is given by the no bequest condition. Con-
sumption in T-1 is a function of XT'_"I- and has to satisfy the Euler equation
between T-1 and T. Omitting the demographic variables and the deterministic

component of income for notational simplicity, we have that:

Crly = F(Xr_1,T—1)"" = E[C7"8(1 + Rr)) (3.5)

where, in turn, Cr is given by:

Cr = Xr = (1 + Rp)(Xp-1 — F(Xr-1,T = 1)) +yr (3.6)

Because the income process is non-stationary, the maximization problem
faced by the consumer needs to be re-written so to obtain an Euler equation
in terms of stationary variables. Given the homotheticity of the utility func-
tion and the linearity of the budget constraint, this can be achieved if all the
variables are expressed in terms of ratios to current income. Because the rate
of income growth is a stationary stochastic process this gives an Euler equation
which involves only stationary variables.

We denote the variables expressed as ratios to current income with smaller

cases and re-write equations (3.5) and (3.6) as follows:

erly = F(zr-1,T = 1) = Ef(grer)"B8(1 + Rr)] (3.7)
gier = (1 + RT)(.’BT_1 - F(.’BT..l,T - 1)) + garyr (38)

14



where gr = yr/yr-1.

Substituting (3.8) into (3.7) yields an equation for F(z) that can be solved
numerically for each of a number of values of z. The integrals in equation (3.7)
are computed using Gauss-Hermite quadrature formulae.

Having solved for the consumption function in T-1 for each point on a grid
of values for .., we can go back one period and solve for consumption at T-2.
The consumption function at time T-2Z is a function of zr_s. Now, however,
consumption in the next period is not given by the first identity in (3.6) but
by the consumption function at T-1. Finding the solution for Cr_s involves
evaluating the consumption function at T'—1 at points which are not necessarily
on the grid used to find the solution at T'— 1. These values of the consumption
function are obtained by interpolation.

Having solved for T-2, we can repeat the process for T-3, and so on, back to
the first period. We found that to compute a sensible solution it is important
to use a wide and wisely chosen grid for cash-in-hand. It is also advisable to
move the grid as one goes backward in finding a solution for consumption. It
is important that at each point in time ¢ — 1, consumption at ¢ is evaluated at
points inside the grid used to find the solution at ¢.

In the case of two state variables one could work, in principle, with a two
dimensional grid. While this extension is conceptually trivial, its computational
cost can be daunting. If we have NV points on the grid, and have to solve a non
linear equation for each of them, we would have N? points on a bidimensional
grid and would also face a more complicated interpolation problem.

Therefore, rather than following this procedure we devised an alternative
method that proved to be efficient and reliable. We still consider a grid of values
for cash-in-hand and we assume that, for each point of the grid, the consumption
function is given by a polynomial in the second state variable, which is the
(stationary) innovation to income. We then evaluate the Euler equation at ¢+1

points for the second state variable, where g is the degree of the polynomial
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considered. This gives us ¢ + 1 equations in ¢ 4+ 1 unknowns (the coefficient
of the polynomial) which can be solved by standard non linear methods. The
advantage of this method is that one has to solve for N * (¢ + 1) rather than
N? coefficients. The method can be trivially extended to cases in which there
are more than two state variables. Having solved for the consumption function
at each point on the grid for the first state variable, one can interpolate each of
the coefficients of the polynomial on the second asset variable to evaluate the
consumption functions at points not on the grid.

The choice of cash-in-hand as the first state variable (for which we con-
sider a grid) and of the shock to income as the second is not arbitrary: income
shocks are completely exogenous and their range is fully determined by the as-
sumptions on the stochastic process e;. The only role played by the shock to
income is to provide information about future income. Cash-in-hand, instead,
is an endogenous variable which summarizes all the information about the level
of consumption. We, therefore, want to have greater flexibility in the way the
consumption function depends on cash in hand than on the shocks to income.

The assumption that the utility function is isoelastic implies that optimal
consumption is always bounded away from zero. This means that the consump-
tion function, F, should be positive and such that Cr is positive with probability
one. The latter part means that consumers will not want to borrow more than
what they will be almost certain to be able to repay by time 7' — 1, so that
they can afford a positive level of consumption in the last period. It turns out
that the solution algorithm is more efficient if one supplies it with this kind of

information by choosing an appropriate functional form. We parametrize F' as:

¢ir(y)

F(X‘ii Y, t) = m(xt + gmin(y’ t)) (39)

where: »
bi(y) = exp(u + Zl Biiey’) (3.10)

]=
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and Ymin(y,t) reflects the minimum present discounted value of income in the
remaining periods of life under the hypothesis that income and interest rate
realizations are consistently the worst the consumer can expect conditional on
income at time ¢.

Having found the solution for consumption in terms of the state variables,
we can simulate the model and study the aggregate behavior of consumption
implied by our preferences and by the pattern of our forcing variables. We can
simulate random draws from the income (and interest process) and, using the
consumption function, study the reaction of both micro and macro consumption.
A number of issues, however, need to be resolved.

As we stressed above, demographic variables play a crucial role in the de-
termination of consumption. To simulate aggregate consumption we can either
solve and simulate the model for an average path of demographics or solve and
simulate it for many different patterns and aggregate. The latter alternative is
obviously more satisfactory, but is more complicated. in this paper we present
only simulations for average patterns and a few experiments to study the effects
of changes in various demographics on the level of consumption.

Finally, not all parameters can be estimated. For instance, the pure discount
rate cannot be identified from the log linearized Euler equation we estimate
in the next subsection. Therefore, we fix that parameter at ‘plausible’ values.
The variability and persistence of income (which are crucial parameters to the
determination of the consumption function) are extremely difficult to estimate.
The main problem lies in the difficulty in distinguishing between uncertainty as
perceived by the individual and as measured by the econometrician. In the end,
we decided to calibrate these parameters using the results obtained by other

authors and to check how our results change when we vary them.
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4. Simulation Results

In this section we focus on two aspects of the simulation results — the relative
shapes of the consumption profiles across education groups and the relative im-
portance of precautionary saving versus demographic variables. The first set of
simulation results aims at establishing whether the life-cycle model, with the
preferences specified and estimated above, is able to generate the kind of life cy-
cle profiles for different education gfoups reported in Section 2. As we mention
above, we solve and simulate the model for the average discount factors for each
education group. We, therefore, neglect the aggregation across households with
different demographic and labor supply profiles.®

The first step in the simulation process is to solve the model to get policy
functions for the estimated parameters. As stressed above not all parameters
can be estimated. Initially, we set the 'pure’ discount rate equal to 0.03 (i.e.
we set the discount factor 3 in (2.1) to 0.97). The discount factors used in
the solution in this first exercise are those plotted in Figure 2.8. The process
for deterministic income minus ’committed consumption’ is calibrated using the
average cohort data. We regressed this variable on a 5-th order polynomial in
age and cohort specific intercepts and used the profile for an arbitrarily chosen
cohort. The profiles used for the four education groups are plotted in Figure 4.1.

In Figure 4.2, we show a typical consumption profile simulated for a household
where the head is a high-school graduate, and the average profile for 1000 such
households. Details of this simulation are discussed below, but a few interesting
features are worth noticing. First, individual consumption profiles display both

‘humps’ and ‘bumps’. The humps arise because of both precautionary saving

8Solving and simulating the problem for individual (rather than average) demographic
profiles and then aggregating the corresponding consumption paths would be more appealing
and would allow us to evaluate the extent to which the consumption function aggregates
and what the effects on consumption of marginally changing demographic and labor supply
patterns are. However, reproducing the cross-sectional variablility of demographic patterns,
while leaving the average group profiles unchanged, is not easy and is left as a topiv for future
research.
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and demographic effects; we assess the relative importance of these factors below.
The ‘bumps’, on the other hand, are attributable to the information about future
income contained in the current income shock: by taking a high-memory income
process we can simulate a high degree of income tracking in consumption. As
we do not assume income shocks are common across households these bumps
average out in the aggregate profiles.

Before presenting results for other education groups we describe the details of
our simulation procedure. In the first set of simulations below, we set the value of
the persistence parameter, & in (3.3), at -0.2 and consider values for the standard
deviation of log income innovations of 0.025 and 0.05. These are considerably
lower than those reported in some of the best known studies of the time series
properties of microeconomic income processes (see MaCurdy (1982) and Abowd
and Card (1989)). However, both these studies use models for earnings while
the relevant concept for us is disposable non-asset income (minus committed
consumption) and they do not consider different education groups separately.
Furthermore, it is not obvious how to distinguish that part of earnings variability
which is due to measurement error and unobserved heterogeneity from that which
reflects genuine uncertainty as perceived by the household”. Initially, the mean
of the interest rate and the pure rate of time preferences are both fixed at 0.03.
The standard deviation of the interest rate (which is assumed to be i.i.d. log
normal) is set equal to zero since the results obtained in the cases with interest
rate uncertainty are remarkably similar.

Given all these elements, it is possible to apply the techniques described
in Section 3 to solve the model. We assume that when income innovations
are persistent, the polynomial in equation (3.10) is of order two. We solve for
thirty values of the cash-in-hand to income ratio, ranging between -1.75 to 7

in the penultimate period. We check that both during the solution and in the

"The issue of how to compute conditional variances for use in a consumption growth equa-
tion from repeated cross-sectional data on income is addressed in Banks, Blundell and Bru-
giavini (1995)
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Table 4.1: Actual and simulated consumption profiles, §; = r = 0.03
Age of Peak and ratio of peak consumption to that at age 25

Education Actual Data Simulation 1 Simulation 2 Simulation 3
Age Ratio Age Ratio Age Ratio Age Ratio

High school dropouts 37 1.27 36 1.07 40 1.15 53 2.22

High school graduates 41 1.33 36 1.17 39 1.23 59 2.84

Some college 45 1.52 40 1.34 44 1.44 56 317

College graduates 50 2.05 39 1.43 44 1.56 73 3.51

Note to Table

Simulation 1 has no uncertainty in income profiles.

Simulation 2 has 2.5% income uncertainty.(with -20% persistence)

Simulation 3 has 5% income uncertainty (with -20% persistence)

simulations the cash-in-hand to income ratio stays within these extremes.

Having solved the model for each education group, we simulate the model for
1000 draws of income and average the consumption profiles. The seeds for the
random number generator are constant across education groups. In Table 4.1 we
report, for each education group, the age at which the consumption peaks and
the ratio between the peak and age 25 consumption for the actual and simulated
data.

Consumption profiles of better educated individuals are higher and steeper
relative to those for less highly educated individuals both in actual and in sim-
ulated data. However, in the simulation without uncertainty (simulation 1) the
peak age for earnings increases only slightly with education. In actual data, the
peak age goes from 37 for the less educated to 50 for college graduates. When
we allow 2.5% income uncertainty (simulation 2) we find higher ratios of peak
consumption to age 25 consumption, closer to the values observed in the CEX
data. Increasing uncertainty even further — to 5% in simulation 3 — pushes
these effects to unreasonable levels. Therefore we take simulation 2 as our first
benchmark case.

This comparison of simulated to actual peak ages in this table suggests that
the pure rate of time preference® could well be different across education groups

(more highly educated individuals may well be less impatient than less educated

8In a model with time-varying demographic variables, this is the discount rate only if
demographics stay constant.
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Table 4.2: Actual and simulated consumption profiles (§p variable)
Age of Peak and ratio of peak consumption to that at age 25

Education Group Actual Data Simulation

Age Ratio b Age Ratio
High School Dropouts 37 1.27 040 38 1.06
High School Graduates 41 1.33 025 41 1.29
Some College 45 1.52 025 45 1.52
College Graduates 50 2.05 010 48 1.90

indiviuals). Therefore in Table 4.2 we show results for the case where the pure
discount rate is chosen to vary acorss education groups in order to match peak
ages as closely as possible. Given our chosen degree of uncertainty and the
variability in demographic characteristics across education groups, we must allow
the pure discount rate to fall from 4% a year for the least educated to 2.5% for
High School graduates and those who have some college education and to 1% for
college graduates. When we do this, we get a close match in peak ages, and a
reasonable match in the ratios of peak consumption to consumption at 25 (with
some downward bias for the least educated). These values will be used in the
counter factual simulations of the next section.

These simulations show that the empirical evidence presented by Carroll
and Summers (1991) is fully consistent with the life cycle model if patience
and education correlate in the way one might expect (higly educated people are
more patient, i.e. more willing to postpone their consumption). We should stress
that this result is obtained by using preference parameters estimated using the
restrictions implied by an Euler equation. There is nothing in the process of
estimation which yields this result. The Euler equation is estimated exploiting
high frequency variation and the preference parameters are constrained to be

the same across education groups.

4.1. Counter-factual simulations

One of the advantages of a simulation algorithm is the ability to artificially re-
strict demographic variation or uncertainty in the construction of counter-factual
experiments. In this section we use this technique to assess the degree to which

the ‘humps’ observed in the profiles of average consumption are attributable
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Table 4.3: Counter factual simulations, High-school graduates (6, = 0.025, = 0.03)
Age of Peak and ratio of peak consumption to that at age 25

Scenario Peak Age Ratio
Actual data 41 1.33
1. Uncertainty on, demographic effects on 41 1.29
2. Uncertainty on, demographic effects off 62 1.47
3. Uncertainty off, demographic effects on_ 37 1.21
4. Uncertainty off, demographic effects off 75 1.15

solely to either time-varying demographic effects or uncertainty. We choose the
group of high-school graduates to illustrate these effects.

Figure 4.3 shows the results of these counter-factual experiments. Perhaps
the most noticeable feature that emerges from Figure 4.3 is the key role played
by demographic variables in changing the age profile of consumption: if we
compare scenario 2 (no demographics) to the benchmark case (scenario 1) we see
that demographics move the peak age back by a very large amount. Comparing
scenario 3 (no uncertainty) to the benchmark case we find a sizeable effect of
the precautionary savings motive on the actual peak, but a very minor effect on
the peak age.

Results of these simulations are presented in a comparable way to those of
the previous section in Table 4.3 below. Asin the figure, we define four scenarios.
The first allows full demographic and uncertainty effects and just reproduces the
simulation for this group in table 4.2. In scenario two, however, we do not allow
demographic variables to affect intertemporal discount rates (setting 8, to zero in
(2.2). The resulting profile is steeper and peaks much later than the benchmark
case in the first scenario. On the other hand, when we allow for demographic
effects but turn off the uncertainty the profiles are flatter and the peak age is
earlier. If we allow neither to affect consumption growth then we get a steadily

rising profile corresponding to the ‘stripped down’ life-cycle model with 6 < r.
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Figure 4.3: Counterfactual simulations
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5. Conclusions

It is a noted feature of household-level data that the age -profile of consumption
is hump-shaped and tracks the age-profile of income. This is in apparent contrast
to the life-cycle model of consumer behaviour, which in its simplest formulation
predicts a smooth consumption profile independently of the shape of the income
profile.

In this paper we have considered a life-cycle model with uncertainty and time-
varying demographic factors. We have shown that this model is quite capable of
generating both the hump and the income tracking of the consumption profile:
the hump is partly attributable to precautionary savings, and partly due to
demographics; the tracking (whereby consumption jumps with income) is instead
due to the permanent nature of the income shocks.

We have used US household-level data to estimate preference parameters
and income profiles, and simulated consumption profiles for different education
groups. We have found that the key features of the data can be closely matched
in simulation. We have also shown that neglecting uncertainty produces con-
sumption profiles that are ‘too flat’, whereas neglecting demographics generates

consumption profiles that peak ‘too late’.
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