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1. Introduction

Derivative securities are contingent claims whose payoffs depend upon another asset's
payoff. Stock options, futures, swaps, caps, floors, bonds, callable bonds, convertibles,
bond options, all fall into this category. Derivative securities are widely traded both over
the counter and on exchanges, and more often than not the volume traded is much larger

for the derivative securities than the underlying assets that sustain them.

The theory of derivative security pricing relies essentially on continuous-time
arbitrage arguments since the pioneering Black and Scholes (1973) paper. As further
demonstrated by the work of Merton (e.g., Merton (1973, 1990)) pricing derivatives in the
theoretical finance literature is generally much more tractable --as well as elegant-- in a
continuous-time framework than through binomial or other discrete approximations. The
empirical option pricing literature however has not followed suit. It is typical there to
abandon the continuous-time model altogether when estimating derivative pricing models.
This paper develops tools to estimate the actual model used in the theoretical construction
(which is in continuous-time) by using only the data available (which are in discrete-time).
We will then estimate the short term interest rate process and subsequently price bonds and

bond options.

The underlying process of interest {r, N P O} is a diffusion represented by the It6

stochastic differential equation:
(1.1) dr, =p(r,)dt+o(r,)dW,

where {W‘,t ZO} is a standard Brownian motion. The functions W(.) and 62(.) are

respectively the drift (or instantaneous mean) and the diffusion (or instantaneous variance)
functions of the process. It has long been recognized in the finance literature that one of the
most important features of (1.1) for derivative security pricing is the specification of the

function 02(.).

As a consequence every model has tried to specify 62(.) correctly. To price interest
rate derivatives, Vasicek (1977) specifies that the instantaneous volatility of the spot rate
process is constant. The Cox-Ingersoll-Ross (1985b) (CIR thereafter) model of the term
structure assumes that the instantaneous variance is a linear function of the level of the spot
rate r, so the standard deviation is a square-root. There are many other models in the
literature for the instantaneous variance of the short term interest rate, all being in general
mutually exclusive (see Table 1). In the absence of any theoretical rationale for adopting



one particular specification of the diffusion over another, the question must ultimately be
decided by taking the models to the data.

The statistical literature contains methods appropriate for a continuous-time record
of observations (e.g., Basawa and Prakasa-Rao (1980), Florens-Zmirou (1993)). Nelson
(1990) studies the limiting behavior of discrete approximations as the sampling interval
goes to zero. Banon (1978) examined the estimation of the drift when the diffusion is either
a constant or a known function. With discrete data, an approach based on maximum-
likelihood estimation of the parameters is due to Lo (1988). This method however requires
that a partial differential equation be solved numerically for each maximum-likelihood
iteration --except in the few cases where it is known explicitly: see Pearson and Sun (1994)
for an application to the CIR model. Duffie and Singleton (1993) propose a method of
moments where sample paths are simulated for given parameter values and the moments
computed (see also Gouriéroux, Monfort and Renault (1993)). Parameter estimates make
the simulated moments close to the sample moments. This requires that new sample paths
be simulated every time the parameters are adjusted. For a particular parametrization of pi(.)
and 62(.), this method could be applied with sample paths simulated from (1.1). Hansen
and Scheinkman (1995) derive theoretical moment conditions characterizing the

infinitesimal generators of Markov processes.

A commonly used method to estimate (1.1) consists in first parametrizing pL(.) and
62(.), then discretizing the model in order to estimate the parameters using for example
Hansen (1982)'s General Methods of Moments (e.g., Chan et al. (1992)). Discretization-
based methods implicitly assume that more data means more frequent data on a fixed period
of observation. This hardly matches the way new data are added to the sample: we typically
add today's interest rate at the end of the sample, not the 3 PM interest rate on January 15,
1992 in between two already existing observations in the sample. Even if such data were
available, it is likely that market micro-structure problems, such as the bid-ask spread, the
discreteness of the prices observed, and the irregularity of the intra-day sampling interval
would complicate considerably the analysis of high frequency data compared to daily or
weekly data. Furthermore, identification of the drift is generally impossible on a fixed
sampling period, no matter how small the sampling interval. In contrast to this approach
we will not require that the sampling interval shrink to obtain asymptotic properties for our

estimators.

Our setup has three characteristic features. First, the precise form of the diffusion
function of the interest rate process is crucial to price options, as demonstrated by the
extensive literature trying to capture a correct specification. Second, it is hard to form an a



priori idea of the functional form of the diffusion function, as the instantaneous volatility of
financial series is not observed. Third, long time-series of daily data on spot interest rates
are available. These three elements together, importance of the specification, lack of a priori
information regarding that specification, and availability of the data, constitute the perfect
setup to try to estimate the instantaneous volatility function nonparametrically. This is the
objective of this paper. It is achieved by density-matching: the instantaneous drift and
diffusion functions of the short rate process are derived to be consistent with the observed

distribution of the discrete data.

The paper is organized as follows. The first part examines the identification and
estimation of the drift and diffusion functions of a continuous-time process. Section 2
identifies nonparametrically the diffusion given a restriction on the drift function. Section 3
then constructs the actual estimator, and describes its properties. The second part of the
paper uses the results of the first to derive nonparametric option prices for interest rate
derivative securities (Section 4). Section 5 computes these prices successively for discount
bonds and options on discount bonds. Section 6 concludes. Technical assumptions and

details are in Appendix 1-4 while proofs are in Appendix 5.

2. Nonparametric Identification of the Diffusion Function
2.1 Identification via Density-Matching

When estimating the CAPM, it is known empirically (see Merton (1980)) that the
estimates of expected returns tend to have low precision when the observation period is
finite, even though the diffusion can be estimated very precisely when the sampling interval
is small. For example, suppose that a stock price were to follow dX, /X, = pdt +cdW,
with 1 and G constant. The maximum-likelihood estimate of | from observations between
dates 1 and n at interval A is the average of the log-returns, [l = (l/n)ZLILn(Xl). But

}1=(Ln(Xn)—Ln(X,))/n is independent of the sampling interval A and cannot be

consistent as A—0 for fixed n. The only hope to identify the drift y of the continuous-time
process from the data consists in letting the sample period n increase. We will therefore

rely on increasing n to derive identification and estimation results.

Identifying without restrictions both the drift and diffusion functions from
discretely sampled data is impossible in general. In particular, without further constraints, a
pair of functions (i,062) cannot be distinguished from (ap,ac?) for any constant a, with

data discretely sampled at a fixed interval. To identify fully the process, we therefore



impose a restriction on the form of the drift function so that we can leave the diffusion
function unrestricted. Since nothing so far is parametrized, the drift function cannot be
restricted simply by fixing some parameter values. Instead, the restriction operates at one
extra level of generality. It takes an otherwise completely unrestricted drift function and

makes it belong to a smaller class of functions, namely a parametric class.

We will then use an essential property of stochastic differential equations. Consider
a discrete normal random variable. Its distribution is obviously entirely characterized by its
first two moments, mean and variance. The continuous-time process r in (1.1) in general is
not normally distributed. However, because the Brownian increments are Gaussian, it
turns out that under regularity conditions an analogous property will hold for stochastic
differential equations: the distributions of the process (marginal and transitional densities)
are entirely characterized by the first two moments of the process, here the drift and
diffusion functions. By the Markov property, it suffices to consider only one set of
transitions of the process; longer transitions can always be derived by iterating the shorter

transitions.

In particular, the joint parametrizations of (j,062) adopted in the literature imply
specific forms for the marginal and transitional densities of the process. For example, an
Ornstein-Uhlenbeck process dr, = B(ow—r, )dt +ydW, generates Gaussian transitional and

marginal densities. The stochastic differential equation dr, = B(o - r, )dt + yr,”*dW, yields a

non-central chi-squared transitional distribution while the marginal density is a Gamma
distribution (Feller (1951)). The former parametrization for the spot interest rate has been
used by Vasicek (1977), while the latter has been derived in a general equilibrium
framework by Cox-Ingersoll-Ross (1985a, 1985b). The functional forms of the
transitional densities corresponding to specifications essentially different from these two
are not known explicitly (Wong (1964) summarizes the only specifications where they are:
linear y and quadratic 62).

Our estimation approach relies on the equivalence between (1,62) and densities in
the other direction: from the densities back to (i,62). To price derivatives, the drift and
diffusion of the short term interest rate process need to be estimated. But they are not
observed, nor can they be estimated directly. However the densities of the process can be
straightforwardly estimated from data on the short term rate. Therefore instead of
specifying parametrically both the drift and diffusion functions and then accepting whatever
marginal and transitional densities are implied by these choices --as the various parametric

specifications do-- we start with nonparametric estimates of the densities. Then we



reconstruct the drift and diffusion of the continuous-time process by matching these

densities, which we can in turn use for derivative pricing.

Our construction of the pair (l1,02) that will match the densities is the following.
Assume that the spot interest rate process {r‘ t2 0} follows (1.1) under assumptions Al-
A2 in Appendix 1. These assumptions guarantee the existence and uniqueness of a strong
stationary solution to (1.1), on D=(0,e0) since nominal interest rates are positive2. In
particular they rule out the possibility that starting from any interest rate level in (0,o0) the
barriers r = 0 and T = o could be attained in finite expected time. The drift (-,8) depends
on an unknown parameter vector 8 while the diffusion o7 (") is an unknown function. The
available data consist of realizations of the process sampled at equally spaced discrete dates
0,1,...,n. The continuous record of observations between each sampling date is
unobservable. The asymptotic properties of the estimators as n—eo are derived for an
expanding sampling period, i.e., the interest rate is observed over a longer period of time,
not by sampling more frequently. The sampling interval is fixed at A=1. Let t(.) be the
marginal density of the spot rate, and p(A,rH A lr‘) the transition density function between

two successive observations.

Consider the Kolmogorov forward equation (e.g., Karlin and Taylor (1981), page
219):
1 o
(H(THA,B) p(A’rHA I, ))+ Py

2 art2+A

ap(A’rHA Irt) — a
oA  or,,

2.1) (0°(r.a) P(Asr, o I1,))

In order to construct an estimator of 62 from the densities of the process, we use (2.1) to
characterize the diffusion function. Note that by stationarity

J‘: p(A,1,,4 I1,) T(r,) dr, = (., ,) has a partial derivative with respect to time equal to
zero. Multiply therefore the forward equation (2.1) by the marginal density n:(r() and
integrate through the equation with respect to the conditioning variable r, to obtain the

ordinary differential equation:

2

2.2) %(oz(r)n(r)) - 2%(u(r,9)n(r))

2 The Vasicek model has the undesirable feature of being distributed on (-o0,+20) as opposed to (0,c0).



where r=ri,a. This equation must be satisfied at any point r in (0,e0), and at the true

parameter value 0. Integrating (2.2) twice with the boundary condition 7t(0)=0 now yields:

23) 6(r)=— [ n(u6)n(u) du
n(r)”

This equation shows that once the drift parameter vector 0 has been identified, the
diffusion function can be identified from the marginal distribution 7t(.). The identification
of © will be based on the transitional distribution. An identifying restriction on the drift is
the linear mean-reverting specification u(r,,8)=p(a—r,), 6=(a,p)’. Heuristically, the
interest rate is elastically attracted to its equilibrium value o at a speed Bdt. This is
consistent with the parametrization of the drift consistently used in most spot rate models in
the literature and will make comparisons with these models possible. The first step consists

in deriving:
(24) E[r,,I5]=0+e™(r -a)

To see why this must hold, let 9(r,t) be the solution of the backward Kolmogorov
equation 90(r,t)/dt = Ad(r,t) with initial condition ¥(r,0) =r, where A is the backward
Kolmogorov operator: A®(r,t) = u(r,8) 39(r,t)/dr +(1/2)c’(r) 3*9(r,t)/ar*. Under
assumptions A1-A2, this partial differential equation has the unique solution
B(r,t) = E[rl lr, = r] by Dynkin's formula (e.g., Karlin and Taylor (1981) page 310).
Now it is easy to verify directly that the function {(r,t) = o +e™™(r — a) also satisfies the

equation with the same initial equation. Thus { =1. Evaluating the equality at t=A gives
(2.4).

This procedure can be extended to cover the case of nonlinear restrictions on the
drift . In that case the only part of the identification and estimation procedure that has to be
modified is (2.4): see Appendix 2. The drift parameters, once identified, can be plugged
into (2.3), which remains valid for a generic drift function. We now use (2.4) to identify
the parameter vector 8. Ordinary least squares (OLS) clearly identifies the parameters y and
8 in E[r,,, — 1, I, ]="+8r,, and therefore indirectly o and B. A discussion of efficiency is
provided in the next section. Finally the diffusion function can be completely identified
from the joint and marginal density functions p(.,.l.) and 7(.) through (2.3)-(2.4). The
drift is identified from the conditional mean and given the drift the marginal density yields

the diffusion function:



THEOREM 1: Under Assumptions Al-A2, the diffusion function of the
underlying spot interest rate process can be identified from its joint and marginal

densities by (2.3), where the unknown parameter vector 0 is identified by (2.4).
2.2 Diffusion for Large and Small Values of the Spot Rate

The behavior for r — +e of the diffusion function given by Theorem 1 is not
immediate since the numerator and the denominator of the ratio (2.3) tend both to zero. The

resulting effect can nevertheless be characterized by L'Hopital's Rule as:
2.5 *(1)=,. 2Bm(r)/|n" ()]

where ¢(r) =, ... ¢(r) means lim,_,,_ ¢(r)/@(r)=1 and =) is the first derivative of x.

The asymptotic trend of the diffusion function is determined by the speed of
decrease of the marginal density 7(-) to zero: the faster the density goes to zero, the smaller
the corresponding diffusion function. Suppose that today's spot rate is high, say 20%. The
stationary data on the distribution of the process essentially say that it is very unlikely for
the spot rate to be so high. Consider now the spot rate level tomorrow. The increment
between today and tomorrow is given by (1.1). If a large level is reached today (r=20%),
the mean-reverting drift term will be substantially negative (B>0) and drive the process
back toward lower levels (say =9%), which goes in the right direction. If however
0(20%) happens to be very large then for given realizations of the Brownian increment the
stochastic term might compensate the deterministic mean-reverting drift with substantial
probability. This would generate a high level of the spot rate which would be incompatible

with 1t(.) very close to zero above 20%.

The link between density and shape of the diffusion function can be made evident
by applying successively (2.5) to the parametric family of densities which exhibit an
increasingly rapid rate of decrease to zero (v>1 and @ >0):

(2.6a) n(r)=E ' e " generates 6°(r) = .. (2B/®)r (the CIR case)
(2.6b) n(r)=E " e generates 0%(r) =, ... (B/®) (the Gaussian case)
(2.6¢) n(r)=Er' e generates 6(r) =, ... (2B/3w)(1/r) (faster decay).

The behavior near zero of the diffusion function is also given by L'Hopital's Rule
as  o’(r)z,_, 2BOL1t(r)/|1t(”(r)|. So for all densities (2.6) we have:
o’(r)=,_, 2Bor/(v—1). Take densities polynomial in zero (n(r) =, Er'™"', v > 1).

=r-0*

This encompasses most potential densities since T must be zero at zero and smooth. The



result is then that every density polynomial in zero will yield a diffusion function with the
same linear curvature near zero as the square-root process. Thus the CIR parametrization
must be a reasonable approximation for small levels of the spot rate. Because the pricing
equation for interest rate derivative securities has a strong local character, these securities

would tend to be priced correctly by the CIR model when interest rates are low.

3. Nonparametric Estimation of the Diffusion

We propose to replace 0 and m(.) in (2.3) by consistent estimators to obtain an
estimate of 0'2(.). Starting with m(.), we use the interest rate data {ri, i= 1,...,n} to form

the smooth density estimator ft(r) = (l/nhn)zin:] K((r-r,)/h,), based on a kerne! function

K(.) and bandwidth h, (see e.g., Silverman (1986) for an introduction to kernel density
estimation and Scott (1992) for more details). Regularity conditions on the time-series
dependence in the data (Assumption A3), the kernel (Assumption A4) and bandwidth
(Assumption A5) are given in Appendix 1. The smooth estimator 7(.) can be used in the
denominator of (2.3) as well as inside the integral, or only in the denominator with the
density inside the integral replaced by an empirical density. The two resulting estimators of
the diffusion function share the same asymptotic properties.

To estimate 8 consistently, one can simply use OLS in (2.4). The efficiency of the
estimator of 6 will not matter for 62(.), because © will converge at speed root-n while 7(.)
in the denominator will force the convergence of G7(.) to be slower. To obtain nevertheless
a better drift estimator than OLS, useful later when pricing derivatives, consider the

following procedure. We form the first step OLS estimator of 8=(a.,3)’ by a one-to-one
transformation from the OLS estimates of (Y,8): & =-v/8 and B=-Ln(l1+3)/A. The

OLS estimator of 0 can now be plugged along with the kernel estimator 7t(.) into (2.3) to

form a nonparametric estimator of ¢°(.).

Then this diffusion estimator can be used to correct for heteroskedasticity in the
residuals from the regression (2.4). We construct the weighting matrix for the second step
feasible generalized least squares (FGLS) estimation of (y,8) and thus (o). Note that no
serial correlation adjustment is needed in (2.4). Any diffusion process is a Markov process
so in particular E[rwA Ir(,r[_A] = E[rM Ir(]. The residuals €, =1,,, —('y+(1 +8)r[) from
the regression E[r(+A -, Ir(]='y+5r( are therefore conditionally uncorrelated, that is:
E[(»:(+ A& T, T A] = 0. If the interest rate data were independent and identically distributed,
this procedure would achieve the semiparametric efficiency bound of Chamberlain (1987)

(see also Robinson (1987) for a two-stage setup). To our knowledge, there exists no



known efficiency bound for dependent data. The following result details the asymptotic

properties of the diffusion estimator:
THEOREM 2: Under assumptions Al1-A5:

(i) The estimator &°() is pointwise consistent and asymptotically normal:

h'’?n'? {6‘2(r) - O'Z(r)} —25 N(0,V,:(r)), with asymptotic variance:

(3.1) V.. (r)= {I:K(u)zdu} o*(r)/=(r).

(ii) The asymptotic variance V. :(r) can be consistently estimated by:

(3.2) V.(r) ={ j:K(u)zdu} &4 ()7 (r).

(iii) At different points r and r' in (0,00), 6°(r) and &°(r') are asymptotically

independent.

The intuition behind the result is the following. There are three elements plugged-
into the right hand side of (2.3): 6, &(.) inside the integral and #(.) in the denominator.
The first two are responsible for root-n terms, while the third generates a term converging
at the slower speed root-bandwidth times root-n. The fast terms can be considered as fixed
when computing the asymptotic distribution. Only the slowest term will matter. Part (iii) of
the theorem is typical of pointwise kernel estimators (see Robinson (1983)) and is useful to
know for inference purposes. The consistent estimator of the pointwise asymptotic
variance makes it possible to construct pointwise confidence intervals, or later obtain
estimates of the variance of derivative security prices. Global confidence intervals for 62(.)
are derived and used for specification testing in a related paper (Ait-Sahalia (1994)).

4. Pricing Interest-Rate-Derivative Securities

4.1 Nonparametric Plug-In

Given the underlying spot interest rate process {r, /t2 0} described by a stochastic
differential equation of the type (1.1), standard arbitrage arguments (as for example in
Vasicek (1977), Section 3) determine the price U(r,t) of any interest-rate-derivative
security with time-to-maturity t and maturity date T when r is the spot interest rate . Let A(r)
be the risk premium factor or market price of interest rate risk --which must be the same for

all securities-- c(r,t) the cash flow rate paid by the security per unit of time and g(r) the
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payoff of the derivative security at maturity. U(r,t) satisfies the following partial

differential equation:
(4.1) LU(r,t)=—c(r,t)
where L is the parabolic differential operator:

(4.2) LU=-9U/ot+{c?(r)/2}(a*U/ar?) +{u(r,8) - A(r)o(r)}(dU/or) - r U.

This is a Cauchy problem with initial condition U(r,0)=g(r). The continuous
payment rate c(.,.), the payoff g(.) at maturity as well boundary condition(s) depend on the
particular security considered. Assumptions A6-A8 in Appendix 3 impose regularity
conditions. Consider first a discount bond with face value equal to $100 and maturing at
date T. Let U(r,t)=B(r,t,T) be its price at date (T-t) when the spot interest rate is r. This

case corresponds to:

(4.3) c(r,t)=0 (zero-coupon), g(r) =100 for all r>0 (initial condition), lim _,_U(r,t)=0
for all t>0 (boundary condition).

Consider next a call option3 on a discount bond. The call option expires at date T,
has an exercise (or strike) price X, and the underlying discount bond matures at date S
where T<S. Let U(r,t)=C(r,t,T;s,X) be the call price at time-to-maturity t when the spot

interest rate is r. Then:

(4.4) c(r,t)=0 , g(r)=max (0, B(r,S-T,S) - X) for all >0, lim_ _,_U(r,t)=0 for all

t=0.

Other examples can be treated similarly. A coupon bond would be identical to (4.3),
except that c is then the coupon rate received at t. An interest rate swap of r against an
exogenous rate r' can be viewed as a contract paying at rate c=r-r'. A cap (resp. floor) is a
loan at variable rate that is guaranteed to be less (resp. more) than some level 1 (resp. r); it
can be seen as a derivative with c=min(r,T) (resp. c=max(r, r)). In all these cases g is the
constant face value of the contract. A yield curve call option struck at X has c¢=0 and
g(r)=max(0,Y(n T+n r)-X) where Y(n T+n r) is the yield-to-maturity at date T of a n-year
bond. A binary yield option has c=0 and g(r)=1(Y(n T+n r)2X). A power-p yield option

3 It is never optimal to exercise early an American call because the underlying bond pays no coupon, so
American and European calls on discount bonds have the same value.
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has c¢=0 and g(r)=Y(n,T+n r)P. A yield curve slope call option has c¢=0 and
g(r)=max(0,(Y(n T+n r)-Y(m T+m r))/(n-m)-X), for some n>m.

When o(r)=0 and A(r,t)=A are constant, (4.1)-(4.3) and (4.1)-(4.4) have
known solutions (Vasicek (1977) and Jamshidian (1989) respectively). When o(r) =o'’
and A(r,t)=Ar"?/c, (4.1)-(4.3) and (4.1)-(4.4) also have known solutions (Cox-
Ingersoll-Ross (1985b)). As was discussed earlier, these closed-form solutions all assume
a particular parametrization of the diffusion term of the underlying spot interest rate. Since
the assumptions are different, the pricing formulas differ. Hull and White (1990) compared
them for a set of arbitrary values of the parameters (not estimated from actual data and time-
dependent) and found that the formulas can differ by as much as 15% (see their Table 1).

We estimate derivative prices by solving the pricing partial differential equation with
the drift parameters replaced by the estimates & and [3 and the unknown function ¢?(.) by
its nonparametric estimator 6°(.) described in Section 3. We specify that the market price
of interest rate risk is constant* and estimate it by minimizing the squared deviations
between a given yield curve and that implied by the model. The only justification for the
assumptions leading to A(r,t)=A,,s or A(r,t)=Aqer''>/0 in the Vasicek and CIR
models respectively is that they yield explicit solutions given their respective choices of

drift and diffusion. Here any other function for the market price of risk could be used.
4.2 The Asymptotic Distribution of Nonparametric Prices

We show next that derivative prices U still converge at the usual parametric speed
root-n. This holds even though the 62 function is estimated non-parametrically and
converges slower than root-n (see Theorem 2). The intuition for the result is as follows.
Consider the ordinary differential equation: dU(r)/dr = ¢*(r) U(r) with initial condition

U(0)=Uy. Its solution is simply: U(r)=U, exp r0’2(x dx|. Suppose now that the
0 0

coefficient function o2(.) of the differential equation were unknown and estimated

nonparametrically by 6°() at rate n'’h!/?. Estimate the solution U(.) by
U(r) =1, exp(jor 6’2(x)dx). Now the integral Ior 6%(x)dx will converge at rate n'’?, and

so will the estimator fJ(r) A similar example would have the derivative price U depend

4 Learning more about the specification of the market price of risk would require data on cross-sections of
derivatives. The market price of risk could potentially be estimated nonparametrically as well by fitting
exactly a price curve, along the lines of the "arbitrage-free" literature on interest rate derivatives.



12

upon a nonparametric estimate of the cumulative distribution function (converging at rate
1/2

) as opposed to the density (converging at rate n'/*h}'?).

The partial differential equation (4.1) satisfied by derivative prices is obviously
substantially more complex than the simple ordinary differential equation above. However
it shares the two main insights of that example. First, the solution is also characterized as
an integral over the coefficient functions. Second, the coefficient functions are similarly
estimated at rate n'/*h!’? (the diffusion function 62) or faster (n'’? for all the parameters
o, B and A). Given this intuition, the first step of the proof is to obtain a representation of
derivative prices as an integral over the diffusion estimator. We consider the fundamental
solution I'(r,t;x) of (4.1). This is the solution for x fixed in (0,e°) of the Cauchy problem
LT(r,t;x) =0 with initial condition I'(r,0;x) =§,,(r) (a mass point at x). The following
lemma will provide the integral characterization needed to obtain the asymptotic distribution

of the derivative prices:

LEMMA 1:  Under assumptions A6-AS8, there exists a unique solution on
(0,00)x(0,T] to the pricing partial differential equation, and it has the form:

(4.5) U(r,t)= j r,0; x g(x)dx+jj r(r,t; x)c(x,7)dxdr.

The fundamental solution I'(r,t;x) is twice-differentiable in r and x, once in t, and is a

twice-differentiable function of 62(x). It does not depend on o(r).

The dependence of the fundamental solution I'(r,t;x) on 02(x) is detailed in the
proof of Lemma 1. As a result U(r,t) will depend on 62 only through integrals of functions
of 62(x)dx, which converge at rate n'/*. Therefore the speed of convergence of the
derivative prices will not be slowed down by the use of a nonparametric estimator of 2.
The benefits from using a nonparametric estimator of 62 can be substantial in terms of
avoiding misspecification of the derivative prices. This gain in robustness is achieved at no

cost in terms of convergence speed for the prices:

THEOREM 3: Under assumptions A1-A9 the nonparametric price of a

derivative security satisfies:

5 For example, the transition density of the process over finite intervals of length A, p(A, Fap | rl), is the

fundamental solution I corresponding to the backward Kolmogorov operator —dU/dt + AU (i.e., the same
as L in (4.2) but with A=0). If 1 and ¢ were parametrized in (1.1) then the parameters could be estimated by
maximum-likelihood: solve numerically for I this partial differential equation to obtain the transition
density of the model. By the Markov property, this gives the likelihood function.
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(4.6) n’”{f](r,t)—U(r,t)} —4 N(0,V(r,1))

with asymptotic variance V(r,t)= VAR(u(,_,)(x,)) +2 2:=ICOV(u(,.,)(x,), u(,v,)(x,,rk )),

where X, =(r,.1,,) and U, is a cadlag function®.

To implement Theorem 3 in practice one needs the addition of a consistent estimator
of the asymptotic variance V(r,t). Since the expression for u,, ,, is complicated and V(r,t)
depends upon the entire serial correlation structure of the interest rate data, the bootstrap
technique can be used in practice. The validity of the bootstrap estimator of V(r,t) in this
context is proved in Ait-Sahalia (1992). The estimator consists in two simple steps’:

(1) Redraw from the original spot interest rate data. The resampling procedure
redraws from blocks of contiguous observations to preserve the serial correlation existing
in the original data, an idea introduced by Kiinsch (1989) and Liu and Singh (1992).

(2) Next estimate the drift and diffusion function associated with this new dataset as
in Section 3 and then estimate the market price of risk and compute the resulting bond
prices U"(r,t). The bootstrap estimator V(r,t) of V(r,t) is the sample variance of the

difference of bond prices U’ (r,t) — U(r,t).

Finally, instead of solving (4.1), derivative prices could have been computed by
Monte-Carlo simulations of the sample paths of the risk-neutral process
dr, = {u(rt,e) - A(x, )O'(r[)} dt + o(r,)dW,. The sample paths, all starting at r at date T-t and

finishing at date T, would be simulated with the risk-neutral drift and diffusion replaced by
their estimates. Rewriting (4.5) as the Feynman-Kac conditional expectation under the risk-

I, = r].

The price U(r,t) can then be estimated by averaging the argument of the conditional

neutral dynamics gives the prices:

T

4.7 U(r,t)= E[g(rT)exp{—jTT_trudu} + J.T_texp{—j:_‘ rudu}c(rt,t)dt

expectation over the simulated sample paths.

6 Cadlag = Right-continuous-left-limit.

7 In terms of computer programming, the computation of the bootstrap standard errors requires only the
addition of a loop for the resampling scheme.
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5. Discount Bond and Bond Option Pricing
5.1 The Data

The spot rate used is the seven-day Eurodollar deposit rate, bid-ask midpoint, from
Bank of America. The data are daily from June 1, 1973 to February 25, 1995. Interest
rates paid on other short-term financial assets such as commercial paper or T-Bills typically
move closely with the Eurodollar rate. A time-series plot of the data is provided in Figure
1. Choosing a seven-day rate --such as the seven-day Eurodollar-- as the underlying factor
for pricing derivatives is a necessary compromise between: (i) literally taking an
"instantaneous” rate and (ii) avoiding some of the spurious microstructure effects
associated with overnight rates. For example, the second Wednesday settlement effect in
the Federal Funds market creates a spike in the raw Federal Funds data that would have to

be smoothed.

The rates quoted are originally bond-equivalent yields. They were transformed to

continuously-compounded yield-to-maturity, deriving the current price B of the instrument
from rgy = ((100 — B)/B)(365/(T — t)) and then computing the continuously compounded

yield-to-maturity from B =100 exp(—rypy (T —t)). Monday is taken as the first day after
Friday. Whereas weekend effects have been documented extensively for stock prices, there
does not seem to be a conclusive weekend effect in money market instruments. Descriptive
statistics are provided in Table 2. Since the autocorrelations of the interest rate levels decay
slowly, Table 2 also reports the results of an augmented Dickey-Fuller nonstationarity test.
The nonstationarity hypothesis is rejected at the 90% level. The test is known to have low

power, so even a slight ejection means that stationarity of the series is likely.

Four other daily interest rate series have also been used to check the robustness of
the results. First the overnight Federal Funds rate (source: Telerate). Second the one-month
London Eurodollar deposit rate (average LIBOR bid-ask, source: Bank of America and
Reuters). Third the one and three-month continuously-compounded bond-equivalent yields
on Treasury bills (source: Bank of America). In general, the coefficient B of mean-
reversion is lower when estimated on a longer-maturity proxy for the spot rate (e.g.,
estimated on three-month T-Bills vs. seven-day Eurodollar vs. Federal Funds). Also,
longer maturity proxies are less volatile. Overall, all five series produce qualitatively similar

shapes for o2.
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5.2 Nonparametric Diffusion Estimation
5.2.1 Drift Estimation

The first step consists in estimating the drift coefficients o and by OLS. Drift
estimates are reported in Table 3 for daily sampling of the annualized spot rate. These
estimates will be used to construct the nonparametric diffusion estimator. Given the
diffusion estimator, the second-step semiparametric FGLS estimates of the drift are

computed. For both stages of drift estimates, the speed of mean reversion f is slow.

For comparison purposes, generalized method of moments (GMM) estimates of the
Vasicek and CIR models are in Table 3. The GMM estimates of o, [ and o2 for the
Vasicek and CIR models are obtained from the following four moment conditions (A=1
day):

(5.1) f (9) = [€t+A sl 1 Erip = E[Efm Irt] ’ (£%+A _E[€t2+A Irt]t)rt]

where €, =(r,,, —1,)—E[(r,, —1,)I5,] with E[r,,, -1 I5]=(1 —e™)(a—1,) for both
models. The exact conditional variance of interest rate changes over time intervals of length

Ais given by E[e],, I5]= V[, Ir]:

s Vasicek : E[.ef+ A Ir(] = (0-2 /2[3)(1 __e—zm)
(5.2) CIR : E[~‘$t2+A | r(] = (O‘Z/B)(e—m _ e-2BA)r[ +(62/2B)(1 e B )20(.

These moments correspond to transitions of length A and are not subject to
discretization bias. Since these GMM systems are overidentified, we weighted the criterion
optimally (see Hansen (1982)). Because of overidentification, the first two moments do not
reduce to OLS in Table 3.

5.2.2 Marginal Density Estimation

The nonparametric kernel estimator of the density is reported in Figure 2. The
kernel and optimal bandwidth are described in Appendix 1. Figure 2 also reports the
Gaussian and Gamma densities corresponding to the Vasicek and CIR processes (using the
respective GMM estimates of their parameters). Noticeable features of the nonparametric
density estimator include its fat tail (most high observations were recorded in the two years
after the 1979 inflexion of the monetary policy). This feature is less accentuated when the
subperiod 1908-82 is not included in the sample. Whether this subperiod should ultimately
be included in the sample depends upon one's view regarding the likelihood that high
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interest rates occur again in the future. Under stationarity of the spot rate process, this
subperiod provides valuable information on what can potentially happen to the spot rate.
Alternatively, a model allowing for multiple interest rate regimes might be considered

appropriate.

The density also exhibits a very fast decay to zero above 20%, due to the fact that in
the sample very few interest rate levels are recorded outside this range and that the extreme
observations are clustered next to the absolute smallest and largest ones (as opposed to
being slowly spread on both ends of the density support). Compared to the Vasicek and
CIR densities, the nonparametric density exhibits more variation and a combination of a
longer tail and a faster rate of decay for large values of the interest rate. These differences
will naturally be reflected in the diffusion function. A 99% pointwise confidence band for
the nonparametric density is plotted in Figure 3, using the classical asymptotic distribution
of the kernel density estimator. The large sample size makes it possible to estimate the

density very precisely.
5.2.3 Diffusion Estimation

Given the drift parameters and nonparametric density estimator already constructed,
the method of Section 3 yields the nonparametric estimator of the diffusion function,
reported in Figure 4. The first noteworthy aspect of the graph is that 62 is globally an
increasing function of the level of the interest rate between 0 and 14%. This gives credence
to the widely expected result that high interest rates should vary more than low interest
rates. Above 14% however, the diffusion function flattens and then decreases.

At high interest rates the drift in the process (2.1) pulls the process back toward the
level of 0=9%. The fact that the density translates into a diffusion function with this shape
depends upon the specific strength of the mean reversion effect in the drift. For example,
the specification of a stronger mean-reverting drift, such as any power of the current
specification, e.g., u(r,0) = o, + 0,1 + ¢,r* + 0, /r, would make the process "more able"
to pull back the spot rate toward 9% from a high level even in the presence of a larger
variance. A stronger drift (taking large negative values at high levels of r) would
compensate for that higher potential variation and tilt the transitional density toward the left
as does a medium-strength drift (e.g., linear) combined with a low diffusion. It is easy to
extend the discussion in Section 2.2 to see the balancing effects of a stronger (resp.
weaker) mean-reverting drift with a higher (resp. lower) diffusion.

At any rate, if a model insists on specifying a linear drift p(r,0)=p(r—o) as do

the Vasicek, CIR and most other models, then the diffusion function compatible with the
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data is given by Figure 4 and looks neither linear nor flat. A formal test of misspecification
of these parametrizations can be found in Ait-Sahalia (1994). A linear specification for the
diffusion (CIR) is a relatively good approximation only on O to 9%. This is not too
surprising since it was proved in Section 2.2 that any density polynomial in zero would
give rise to a diffusion function linear for small values of the interest rate. The
nonparametrically estimated 2 function increases faster than r for medium values of the
interest rate (9 to 14%), flattens (14 to 17%), then decreases (above 17%). The CIR

diffusion instead increases steadily as a linear function of r.

Figure 5 reports pointwise confidence intervals for the nonparametric diffusion
estimator. This asymptotic distribution given by Theorem 2 has the feature that the
diffusion function is estimated more precisely in highly populated interest rate regions.
Conversely, the confidence band tends to increase above 14% reflecting the relative
scarcity of the data. The estimates of 02 are stable across subperiods of the sample, with
the exception that subperiods which do not include the high interest rate years 1980-82
produce estimates of T with a truncated right tail, which in turn shift the graph of 62 to the

left, and have a lower overall level of volatility.
5.3 The Term Structure of Interest Rates

The market price of risk is estimated for each model by minimizing the sum of
squared deviations across maturities between a given target yield curve and the yields
produced by the respective model. To obtain a realistic target yield curve, we take the
average yield curve over the sample period obtained from the end-of-month Reuters data.
The yield curve for coupon bonds is transformed to a discount yield curve by using the
standard technique of fitting third-order polynomial splines. From now on we treat this

yield curve as fixed.

The target yield curve is plotted in Figure 6. Market price of risk estimates are in
Table 4. Table 5 details the bond prices computed under the CIR, Vasicek and
nonparametric models. Standard errors for the nonparametric prices, derived as indicated in
Section 4, are also reported. As a result of fitting a common yield curve the CIR and
Vasicek prices are generally within one standard deviation of the nonparametric prices. By
eliminating differences in the prices of the underlying bonds, differences in option prices
can be attributed to differences in the volatility of the underlying bonds, which is the

determining factor.
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5.4 Bond Option Pricing

Table 6 reports call option prices on a S-year discount bond and the nonparametric
prices standard errors. Option prices reflect mostly differences in the second moment of the
spot rate, where differences across models are more pronounced. By It6's Lemma, the
risk-neutral bond price follows dB/B = rdt+{0(r)(aB/ar)/B}dZ when the risk-neutral
spot rate has dynamics: dr = {p(r) - A(r)o(r)}dt + o(r)dZ. Figure 7 reports the volatilities
o(r)(9B/r)/B of a 5-year bond price as a function of the spot rate level r. How large the
bond volatility is under each model provides some intuition for the relative magnitude of

the three prices in Table 6.

When the spot rate is 2% we see that the bond price volatility from the Vasicek
model is larger than that from the CIR and nonparametric models, which are close to each
other. As a result, the Vasicek option prices are larger than the other two, and significantly
different from the nonparametric prices. Not surprisingly this effect is more visible for
deep-out-of-the-money options (the right column of Table 6), and shorter maturity options
(the upper rows in both parts of Table 6). Intuitively, the shorter the option the more its
price depends on the values of the parameters evaluated close to the current value of the
spot rate r;. Similarly when the short rate is 14%, the bond price volatility from the
nonparametric spot process is higher than CIR, which in turn is higher than Vasicek. The
ordering of the option prices is modified accordingly. Both the Vasicek and CIR prices

then fall outside one or more standard deviations of the nonparametric prices.

6. Conclusions

This paper has proposed a procedure to estimate stochastic models while preserving
their basic continuous-time structure. Properties of stochastic differential equations were
exploited to both identify and estimate the drift and diffusion function of the process of
interest. In particular, it was shown that the entire diffusion function can be estimated
nonparametrically once a parametrization of the drift is adopted. The density-matching
procedure starts from estimates of the densities of the process (which could as well be
parametric) and then recovers the drift and the diffusion functions that are consistent with
the density estimates. Asymptotic distributions are computed for the diffusion function of
the underlying asset process and for the prices of the derivative securities. Even though the
diffusion is estimated nonparametrically, and therefore converges slower than root-n, the

speed of convergence of the derivative prices is not penalized.
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The general density-matching approach could potentially be applied to a wide
variety of processes in economics and finance, when it is important to identify precisely the
instantaneous variance, using discrete data without discretizing the continuous-time
process. The pricing of interest-rate derivative securities was precisely such a problem,
since option prices depend on the particular shape of the diffusion function of the
underlying spot interest rate. With a linear mean-reverting drift, consistent with most of the
literature, the diffusion function was found to be increasing linearly, then exponentially,
before flattening and decreasing. This was shown to have implications for the pricing of
derivative securities. Other relevant applications can be considered in the future. The
method can easily be extended to cover multi-dimensional stochastic differential equations
and therefore multi-factor models of the term structure. Hedging strategies in the option
market can be assessed with the help of the nonparametric prices. A similar estimation
approach for the drift and diffusion could be implemented to estimate the process followed
by stock returns, or exchange rates to price foreign currency options, or identify the

consequences of target zone bands.

Graduate School of Business, University of Chicago, 1101 East 58th Street, Chicago,
IL 60637-1561, U.S.A., and National Bureau of Economic Research.
July 1992. Revised July 1995.
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APPENDIX

Appendix 1: Regularity Conditions for the Nonparametric
Estimation of the Diffusion

ASSUMPTION Al:

(1) The drift and diffusion functions have s=2 continuous derivatives on (0,co).

(i1) 62>0 on (0,).

(iii) The integral of m(v) E(I/O'Z(V,B)) exp{—J‘ve [2p.(u,9)/0‘2(u,9)]du}, the speed
measure, converges at both boundaries of (0,c0).

(iv) The integral of s(v)=exp {f [2 u(u,G)/cZ(u,G)]du}, the scale measure,

diverges at both boundaries of (0,c0).

In Al(ii)-(iv), € is fixed in (0,e0) and its particular choice is irrelevant. Under A1
(i)-(ii) the stochastic differential equation (1.1) admits a unique strong solution. Note that
by the mean-value theorem A1(i) implies the local Lipschitz and growth conditions:

(LLG) For each compact subset of D=(0,%) of the form K =[I/R,R], R>0, there

exist constants C; and C, such that for all x and y in K:

{I u(x)=u(y) |+| o(x)-o(y)|<C [ x~y |
| 1(x) |+] o(x) | < C, {1+]x[}

Global Lipschitz and growth conditions are usually imposed on the drift and
diffusion functions8 to guarantee existence and uniqueness of a strong solution to the
stochastic differential equation (1.1). These global conditions fail to be satisfied for many
models of interest here. It is known that the local Lipschitz condition is sufficient for
pathwise uniqueness of the solution (Itd's Theorem, see e.g., Karatzas and Shreve (1991),

Theorem 5.2.5 page 287). Now A1(i)-(ii) guarantees the existence of a weak solution (see

8 Global means here that the same constants C, and C, must be valid on the entire domain D of the
diffusion. For a statement of It6's classical result with global conditions, see e.g., @ksendal [1992],
Theorem 5.5, or Karatzas and Shreve [1991], Theorem 5.2.5 page 287. Even the weaker Yamada-Watanabe
condition (see Karatzas and Shreve [1991], 5.2.13 page 291) fails to be satisfied for interesting economic
models. Both would imply existence and uniqueness of a strong solution to (1.1).
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e.g., Karatzas and Shreve (1991), Theorem 5.5.15 page 341), up possibly to an explosion
time. Then the existence of a weak solution combined with pathwise uniqueness imply
strong existence (a corollary to the Yamada and Watanabe Theorem, e.g., Karatzas and
Shreve (1991), Proposition 5.3.20 page 309-310). Therefore A1(i)-(ii) imply that (1.1)

admits a unique strong solution up possibly to an explosion time.

The role of Al(iii)-(iv) is to rule out explosions in finite expected time and
guarantee stationarity of the process. The solution is a Markov process with time-
homogenous transition densities (i.e., such that transition probability density p(s,y;t,x)
from x at time t to y at time s depends only on t-s, not on t and s separately). A1(iv) further
guarantees that starting from any point in the interior of the state space D=(0,e<), the

boundaries x =0 and X = +e cannot be attained in finite expected time. Indeed define the
— £ . . S .
scale measure S(g,€) E_[ s(v)dv. Zero cannot be attained in finite time by the spot rate if
€

S(€,€) =+ (see Karlin and Taylor (1981), Lemma 15.6.3 and Table 15.6.2).
Infinity cannot be attained in finite time if: limg,_ . S(€,R) = +oo.

llme—)O

An alternative condition can be formulated in terms of Lyapunov functions (see
Hasminskii (1980)): Assume that there exists a twice continuously differentiable
nonnegative function ¥ on D such that p(x,8) 99(x)/dx +(1/2)6?(x) 9*9(x)/9x* < -1 for
all x in D=(0,+o) outside a compact interval of the form C= [l/R,R], R>0. Also assume
that lim, _,
inequality: p(x,8) 99(x)/dx +(1/2)0?(x) 9°8(x)/9x* < cB(x) for some (in fact any)

constant ¢20. Under this weaker inequality, we can only be sure to obtain a Markov

¥(x)=lim__,_ 9(x)=eo. Since 920, this condition implies the weaker

x—ro0

solution with time-homogenous transition densities (Hasminskii (1980), Theorem II1.4.1
and Remark II.4.1). This is necessary but not sufficient for the process to be stationary:
for example a Brownian motion has time-homogenous transition densities (Gaussian) but
is obviously not a stationary process. For our estimation strategy to work, we need the
process solution to (1.1) to be stationary and therefore impose in Al(iii) the stronger
requirement that p(x,8) 39(x)/ox +(1/2)6”(x) 8*9(x)/9x* < —1 (use Theorem IIL.5.1 and
footnote 9 in Hasminskii (1980), or see directly that this condition implies the existence of
an integrable solution 7 to (2.2) for given drift and diffusion functions). It then follows
that the stationary marginal density 7 exists (and integrates to one by construction) and is

continuously differentiable on D up to order s>2.

ASSUMPTION A2: The stationary density 7t is strictly positive on (0,e0), and the

initial random variable ry is distributed as 7.
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A2 makes it possible to characterize the diffusion function by (2.3) and
subsequently construct the nonparametric estimator based on that expression. Under Al,
the candidate stationary distribution 1t(.) exists. Stationarity of the process follows from
initializing it with the stationary distribution itself. We now make assumptions required to
guarantee that the Central Limit Theorem to be used in the proofs of Theorems 2 and 3
holds.

ASSUMPTION A3: The observed data sequence {ri, i= 1,...,n} is a strictly
stationary B-mixing sequence satisfying: k®B, ————0 for some fixed § > 1.

A3 restricts the amount of dependence allowed in the sequence. Without this
assumption, the Central Limit Theorem can fail. As long as B, ——=——0, the sequence is

said to be absolutely regular. In order for the discretely observed process {ri, i> 1} to
satisfy A3, the stochastic process {rt, t 20} has to verify a stronger continuous-time

mixing condition (see Prakasa Rao (1987)). A condition on the drift and diffusion

sufficient to insure that the discrete observations will satisfy A3 is the following:

ASSUMPTION A3
lim o(r)n(r)=0 and lim ’G(r)/{Zu(r,B) - G(r)c(')(r)}l < oo,

Geometric ergodicity follows from A3'. Indeed under A3' Hansen and Scheinkman
(1995) prove that the integral operator T (such that the infinitesimal generator A is the
derivative of T) is a strong contraction. This can be used here. It follows from the strong
contraction property of T that there exists A, 0 <A < 1, such that for each measurable f and
g: I E[£(r,)g(r.. )] |S I || A*. Apply this to the indicator f =1, and g=1; to obtain the
mixing bounds for the discrete data: 20, <P, <&, Sy, /2<A/2 (where ., B, ¢ and y
are the various classical mixing coefficients). This is clearly a stronger mixing property of
the discrete data than what is strictly required by A3. Only A3 is necessary. The next

assumption is the standard regularity condition imposed on a kernel function:

ASSUMPTION A4:

(i) The kernel K(.) is an even function, continuously differentiable up to order r on
R with 2<r<s, belongs to L2(R) and JHN K(x)dx =1.

(ii) K(-) is of order r: Imxi K(x)dx=0 i=1,..,r—1, and:
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J.:x' K(x)dx #0, J:I x MK(x)ldx < o

Note that in order to use effectively a kernel of order r for bias reduction, the
density © must have at least that many derivatives. Hence the requirement in A1(i) that the
drift and diffusion functions have s=2 derivatives, and then the choice in AS of 2<r<s. If a
kernel of order r=2 is used, then only s=2 derivatives can be required in A1(i). More
generally, when s derivatives of T exist, the optimal rate of convergence of the diffusion
estimator is n*/®*) It is achieved by a kernel of order r=s (even) with bandwidth set to
h, = O(n"/ (25”)). The optimal rate of convergence for t and 62 can only be attained with a

non-vanishing bias term (meaning that the asymptotic distribution of Theorem 2 would not
be centered at 0). To avoid this undesirable feature, we require AS5(i)-(ii):

ASSUMPTION AS (Admissible Bandwidth Choices):
Asn— o, h, — 0 and:

(i) To estimate : n"?h®*"2 50, and n"?h!? - o.
(ii) To estimate 62: n"?h**"? 0, and n"’h?* — 0.
(iii) To estimate derivative prices U: n"’h’ — 0.

A5 gives the admissible range of bandwidth choices depending upon the object to
be estimated. The speed of decrease of the bandwidth h, to 0 as n becomes large is
restricted. Optimality within the respective admissible ranges is discussed later. In AS5(i) the
first condition insures that the bias in the normalized density estimator is asymptotically
negligible. The second condition insures that the variance of the estimator which is of order
n"'h]' goes to zero. In A5(ii) the first condition serves the same purpose. Given the first,
the second condition insures that the asymptotic distribution of the diffusion estimator is
indeed given by the linear term in its Taylor expansion (i.e., the remainder term in the
expansion is also asymptotically negligible). As a consequence of n" zhi — oo, it follows
that n"’h!?> — oo and therefore the variance of the estimator which is also of order n™'h"
goes to zero. In A5(iii), the condition makes the bias negligible and is sufficient to make

the remainder term in the Taylor expansion go to zero.

The empirical results for the density and diffusion estimators (Figure 2-3 and 4-5)
are obtained with a Gaussian kernel K(u) = exp(—u2/2) / ~2m of order r=2, so we only
need to assume the existence of s=2 derivatives of . The optimal bandwidth choice (in the
integrated mean squared error sense) within the range specified by either AS(i) or A5(ii)

requires getting as close as possible to n™**". Choosing the bandwidth at this order
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would produce a bias term which does not vanish asymptotically. We therefore set the
bandwidth as h_ =c _n™"**" =c_n™"* where c, = c/log(n) with the constant c chosen to
minimize the integrated mean square error of the diffusion estimator. The diffusion
estimator can be calculated explicitly. For the actual sample size n=5505, the bandwidth
was h, = 1.6033 10-2.

The higher order kernel K(u)= (3/ x/ﬁ)(l—uz/B)exp(—tf/Z) (order r=4) with
optimal bandwidth h =c n"*?) =¢ n™  as well as exponential, sinusoidal, and
Epanechnikov kernels produce similar results. The results are qualitatively robust to the
choice of the kernel and small changes in the bandwidth parameter around the optimal
value. Selection of the bandwidth by other various forms of cross-validation also produces
similar estimates. The tail behavior of the kernel does not modify substantially the tail
behavior of the diffusion estimator in the interval considered (the large values of the spot
rate are clustered together in the sample so the tail behavior of the density is estimated fairly

accurately up to 22%).

The empirical results for the derivative prices (Tables 5-6 and Figure 7) are obtained
with the same Gaussian kernel, but the optimal bandwidth choice in the integrated mean

' where c is a scaling factor. The scaling factor is still

square error sense is now h, =cn”
set to minimize the integrated mean square error of the estimator. The precise choice of the
bandwidth in this case does not modify the rate of convergence n!’2 of derivative prices (it
only affects higher order term in the integrated mean squared error). Hence as long as
AS5(iii) is satisfied it is substantially less important to be close to the optimal bandwidth than
for pointwise estimation of 62. Finally note that the optimal bandwidth choice when
estimating 62 pointwise is larger (less smoothing) than is admissible when estimating
derivative prices. This is due to the respective sizes of the bias terms in the two cases. In
particular the estimate of derivative prices would be biased if they were computed from
plugging in the estimate of 62 computed at its pointwise bandwidth choice (A5'(i)). We

summarize the actual bandwidth choice in:

ASSUMPTION A5’ (Actual Bandwidth Choice):

(i) Toestimate tand 62 h, =c n"**V =¢ n~
1/3

> with ¢, = c/log(n).

(ii) To estimate derivative prices U: h, =cn”
(iii) In both cases, the scaling factor c is set to minimize the asymptotic integrated

mean squared error of the estimator.
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Monte-Carlo evidence shows that the asymptotic distribution given by Theorem 2 is
a good approximation for the actual distribution of the diffusion estimator given the same
sample size as the data set. The coverage probabilities are consistently above 0.85 when
simulating data with various specifications (CIR, various power functions for the
diffusion: ¢?(r)=r") and computing the diffusion estimator.

Appendix 2: Identification with a Generic Parametrization
of the Drift

Let p(r,0) be a parametrization of the drift. The identification restriction states that
there exists a unique parameter vector 0 such that the true drift is p(r,0). This Appendix

shows how to modify (2.4) when L is not necessarily linear. Let n(r) = joru(u,e)ﬂ:(u)du.

Then the equation d9(r,t)/dt = A®(r,t) with initial condition ¥(r,0) =r implies:

n(r)09/ot = pu(r,0)n(r) 39/9x + (1/2)c*(r)n(r) 3*8/or’
= {on/arHav/ar} +n(r){870/ar"}

Therefore © solves 7(r) d8/dt ={d/dr}[n(r) 98/dr]. By Dynkin's formula again
this partial differential equation has a unique solution given by 9(r,t)= E[rt lr, = r].
Solving this equation yields . Then 0 can be estimated consistently by nonlinear least

squares with this generalization of (2.4).

Appendix 3: Regularity Conditions for the Pricing Equation

The following assumptions are introduced to obtain nonparametric derivative prices
and their asymptotic distribution. They are not needed to estimate the diffusion function
itself.

ASSUMPTION A6. The drift, diffusion and density functions of the risk-neutral
spot rate process, dr, = {u(rt,e)—k(r( Jo(r,)}dt + o(r,)dW,, satisfy the conditions in Al-

A2
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ASSUMPTION A7: The derivative continuous payment rate ¢ and final payoff g
are right-continuous-left-limit functions and satisfy for (r,t) in (0,00)x(0,T]:
|e(r,t)] < Nexp(vr’)and |g(r)] < N exp(vr?) for some v,N>0.

ASSUMPTION A8: The derivative price U(r,t) satisfies the exponential

—kr?

boundedness condition: J:)T I: e U(r,t)l drdt <oo for some k>0.

The solution to (4.1) is only unique in the class of functions satisfying A8. The

bound is sharp as the solution fails to be unique in general if A8 is replaced by
J: j: e " U(r,t)|dr dt < oo for some >0 (see Friedman (1975)).

ASSUMPTION A9: The market price of interest rate risk depends on a parameter A
and is estimated by minimizing the sum of squared deviations between a fixed set of

derivative prices and the corresponding nonparametric prices.
Appendix 4: Solving the Pricing Partial Differential Equation

The partial differential equation (4.1) with (4.3) and then (4.4) will be solved
numerically using finite-differencing with a combination of an implicit scheme for the
advective term 0U/dr and the diffusion term 9*U/or?. Since the numerical solution is

guaranteed to converge only on a compact set, we make the change of variable
s=cr/ (1 +cr) where the constant c is large enough to over-represent interest rate levels

between O and 20%. This increases the accuracy of the numerical procedure. Let
V(s,t) = U(r,t), so we can replace in (4.1): dU/dt =(aV/adt), oU/dr=(dV/ds)(ds/dr)
and 9°U/or’ = (9*V/ asz)(ds/dr)2 +(9V/as)(d’s/dr?). The discretized counterpart to (4.1)

18:

v v . (v —2vp v )+ (v —2vi v
: 2(As)’

4 As 2As

+ qj((v;‘*'_VJ"!‘-I)“L(V?:']_V?-;!)} - f(Sj)__v?“LVJr'n_l + C(r(Sj),tm) =0
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where v;“ = V(sj ,t"‘), and t™ and s; are the discretized values of the time and spot interest
rate transformed variable, j=2,...,J-1 and m=1,...,M. r(sj) is the inverted change of

variable. The coefficients p and q can easily be obtained from (4.1) and the differentials
above. For j=1, corresponding to 0, the diffusion function is zero and thus the equation

m m__ .,m m-1 . m-]
becomes: v‘—v‘l + q,((v2 M )+(v2 M )]+ d(O,t"‘) = 0. For j=J, v] is

At 4 As
obtained explicitly from v}'™', vi"' and v}",

Obviously, the equation could be solved more easily with a fully explicit
representation. However, explicit finite-differencing of parabolic equations is known to
yield estimates that do not necessarily converge to the true solution of the equation (see
Ames (1977) for a von Neumann stability analysis). We have adopted the method
recommended by Ames (1977) consisting of an implicit discretization of the second order
partial derivative and an explicit discretization of the first order derivatives. This method is
known as the Crank-Nicolson scheme. Convergence to the solution as Ax—0 and At—0 is
guaranteed. For given {u;“ /j= 1,...,1}, (7.1) gives {u;“’l /j= 1,...,1} as the solution of an
easily solvable triangular system. The final set {u?" /j=1,...,] } is derived directly from the

final condition (4.3) for bond pricing, and later (4.4) for bond option pricing. Then the
equation is used recursively backwards to derive successively the sets { ul'/j=1,...,] } for

m=M-1, M-2, etc, up to m=1.

When actually pricing bonds and bond options under the CIR model and comparing
the numerical solutions to the closed-form formulas, this procedure was found to be very
accurate, and the approximation error to shrink as much as wanted when decreasing the

step sizes.
Appendix 5: Proofs

PROOF OF THEOREM 2:  The proof uses the functional delta results of Ait-
Sahalia (1992). The diffusion function (2.3) is viewed as a functional of the joint
cumulative distribution function F of observations sampled A=1 day apart, (ri,r4a)-
Compute a first-order expansion of the diffusion away from F. From (2.3):

o’[F+H|x)= ]uu6F+H] ) 7[F + H)(u) du

F+H]
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The drift parameters are estimated at the parametric speed, i.e., 6(.) is a regular
functional. That is, there exists a linear functional 6™(,)eC™ such that

o[F +H]=6[F]+ [ [ 6"(u,v)h(u,v)dudv +O([H],..,, ). C-! is the space of cadlag
functions. The norm L(e,1) is the sum of the supremum norms for H and its derivative h.

The fact that 0(.) is evaluated at the empirical distribution instead of a kernel plug-in does

not change the asymptotic distribution.

Let Jx) denote a Dirac mass centered at x. The expansion for the marginal density
is: m[F + H](x) = n[F)(x) + jom j;g(x)(u)h(u, v)dudv + O("H”i(m_.))- Collecting terms:

*[F + H](x) = 6*[F](x) J‘J‘{ 8y (u,v) + B[F](x ))} (u,v)dudv+0(||H||2L

B(F)(*) is a functional in C-! which does not influence the asymptotic distribution,
and therefore need not be identified. It follows that 6°[.J(x) is L(e,1)-differentiable with

respect to F. That is, there exists a distribution @(F)(.,.) such that the functional 62(.)
satisfies: ©*[F +H](x) = 6*[F)(x +j J ¢[F](u,v)h(u, v)dudv+O(||H||L( | ) The

n{F](x)

where C-2 is the space of Dirac delta functions. Its asymptotic distribution follows directly

derivative of the functional 62(.) is @[F](u,v)= {M}Sm(u,v)+ B(x) eC*\C"

from the functional delta method.

PROOF OF LEMMA 1: Consider the compact set Kg=(g,1/¢) for a fixed £>0,
and fix x in K. Consider the equation L,I' =0, where L, U=LU+¢&(3°U/or’). It is
necessary to perturbate L slightly because ¢°(r)>0 for all r>0 but 62(0)=0 thus L is
parabolic on (0,00)x(0,T] instead of the entire domain (0,00)x(0,T]. Under A6, L; is
uniformly parabolic on K¢x(0,T] and its coefficient functions satisfy the hypotheses of
Friedman (1964), Section 1.4. We can therefore construct the fundamental solution T'¢
corresponding to the operator L¢ by using the parametrix method. Alternatively, I'e could

be obtained as the limit of the Green functions associated with L¢ on K¢x(0,T] as in
Friedman (1976), Lemma 15.1.1; see also Freidlin (1985).

Form the parametrix solution for any (r,t) in Kgx(0,T]:

[.(r,t;x)=2Z(r,t;x +JJ ®,(y,s;x)dyds where we have introduced

Z(r,t;x) (I/MG )exp{ /2t0' }and <I>e(y,s;x)52::l (LZ),(v.5:%).

)
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€

The differential operator (L,-) is defined recursively by: (L.Z), =L,Z and

(L.Z) , (y.8:x) = J':J':/S[Lez(y,s - T;Z)][(Lsz)p(z,T;X)]dzd'l:. By Theorem 1.8 in Friedman

p+l(

(1964) the infinite series in ®d, converges and the parametrix solution is well-defined.

Next it is clear that the parametrix expression is a fundamental solution of (4.1) on
Kex(0,T]. Write:

L I.(r,t;x) =L Z(r,t;x) + LE{J:J']/E Z(r,t— s;y)d)s(y,s;x)dyds}

=L Z(r,t;x)—®_(r,t;x) + l l/ELEZ r,t—s;y)®_(y,s;x)dyds
€ € oJde €

Thus for T'e to be a fundamental solution ®, must satisfy the Volterra integral equation:
I/e

@, (r,t;x) =L, Z(r,t;x) + J:J' L.Z(r,t - s;y)®,(y.s;x)dyds. By construction the Volterra

equation is satisfied by Z;] (LEZ)p(r,t;x).

Then as in Theorem 15.1.2 in Friedman (1976) we obtain that as € goes to zero
[e(r,t;x) converges to a limit I'(r,t;x), together with the first two r-derivatives, x-
derivatives and the first t-derivative uniformly for all r and x in (0,e0) and t in (0,T].
Furthermore the limit I'(r,t;x) satisfies (4.1) on (0,0)x(0,T] as in Corollary 15.1.3 in
Friedman (1976). The fundamental solution has the form I'(r,t;x) = y(r,t,x,cz(x),p.(x))
with v continuously differentiable in each of its arguments (see the parametrix form). The
only difference here with the results in Chapter 15 in Friedman (1976) is that the parabolic
operator L contains the term (-rU). The proof is otherwise identical. Finally the
fundamental solution is unique in the class of non-explosive solutions (assumption A8).
By Theorem 1.16 in Friedman (1964), for each €>0 I'¢ is unique on K¢x(0,T]. Any two

solutions on (0,0)x(0,T] would have to coincide on K¢x(0,T].

PROOF OF THEOREM 3:  We first consider the case where the market price of
risk is known, or without lack of generality A=0. Then the coefficients of the differential
operator L are functionals of the joint cdf F of the data (r;,ri,a) so the differential operator
is L[F]. Then consider the equations followed by the derivative prices associated to F and
F+H respectively: L[F] U[F](r,t) = —d(r,t) with initial condition U[F](r,0) = g[F](r), and
L[F + H] U[F + H](r,t) = —d(r, t) with initial condition: U[F + H|(r,0) = g[F + H|(r). The
final payoff g(.) depends on F because it could be the price of a derivative previously

computed: for example, the price of the underlying bond when valuing a bond option.
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Lemma 1 characterizes the fundamental solution I' in the form
I(r,t;x) = y(r,t,x,oz(x), u(x)) with 7y continuously differentiable in each of its arguments.
From this characterization, and the (linear in H) expansions of the drift and diffusion
functionals in Theorem 2, it follows that AU[F,H]=U[F +H]- U[F] admits the

expansion (L(=0,0) is the standard supremum norm for H):
AU[F,H)(r,t) = [ T[F+H](r,0;x)g[F + H](x) dx - [ TTFY(r,0:x)g[F)(x) dx
[ ' ) “{T[F +H] - T[F]}(r, 1;x)d(x,T)dxdT

= [ [ WP Lxy)h(ey)dxdy + O{JH? )

Suppose that for the derivative under consideration the final payoff g(.) is
independent of F (e.g., a bond for which g=1, or an interest rate option: g=max(0,r-k)).
Then the functional F— U[F](r,t) for fixed (r,t) in (0,00)x(0,T] is L(eo,1)-differentiable
with respect to F with a continuous functional derivative. Its functional derivative u(.) is
continuous as can be seen from collecting terms from the linearizations of p(.) and 62(.)
(which were computed in Theorem 2) and the partial derivatives of y(r,t,x,oz(x), u(x))
with respect to 62 and y. If now the derivative's payoff g depends on F, typically through
the previously computed price of a more primitive derivative, then the expansion of g(.)
also matters. An example of this situation is a bond call option where g(F) is the maximum
of zero and the price of the underlying bond (dependent on F) net of the strike price. By
what precedes, the bond price admits a first-order expansion in F with derivative in C-!
(since its payoff is independent of F). Under A7 the final payoff for the derivative also
satisfies this requirement. The functional derivative u(.) then has additional terms which

reflect this additional dependence on F.

We next show that the introduction of the market price of risk does not modify the
rate of convergence (only the asymptotic variance). This holds provided that A is estimated
at a speed? that is at least as fast as that of 62, in particular when the estimator of A
converges at speed root-n. This will hold as a further special case when the market price of

risk is estimated by matching the prices a cross-section of derivatives ({U;}, i=1,...,J).

A

Indeed under A9 set A =argmin rt -U. i by minimizing the squared
Ael i g q

9 If however A were estimated at a slower speed than that of 62 (e.g., its derivative were in C-7C2, the
space of first derivatives of Dirac masses) then U[.,.] would no longer converge at speed root-n.
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deviations between the derivative prices ({Uj}) and those predicted by the model (ﬁl(r,ti)
evaluated at A).

Note that under A9 we assume that we are matching a fixed set of derivative prices
and therefore do not have to account for the variability of prices being matched!?. Recall
that the solution Uy has u replaced by u-Ac. Furthermore the characterization of the
fundamental solution has I'(r,t;x) = y(r,t,x,02(x),u(x)) with y continuously differentiable
in each of its arguments. Therefore IAJl(r,ti) is continuously differentiable in A and A(.) is
L(eo,1)-differentiable as a functional of F with derivative in C-! by the implicit functional
theorem: view A as the implicit solution of the first order condition:
ZLI{8ﬁl(r,ti)/8k}{ﬁl(r,ti) — Ui} =0. As a consequence, this particular A converges at

speed root-n and U also converges at root-n. Collect all the linear terms in the first-order
expansion of U and let ug ) be the derivative (in C-! by what precedes) of U. A complete
expression for ug,) can be computed explicitly but is not needed since the asymptotic

variance of the prices will be obtained by the bootstrap.

10 If we were matching a random set of derivative prices, such as the term structure on a particular day,
then derivatives prices would depend not only on F but also on G, the joint cdf of the prices being matched.
For example G would be the joint cdf of discount bond prices at the fixed maturities tj,...,ty. A formal

proof in that case goes beyond the scope of this paper.
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Table 1: Alternative Specifications of the Spot Interest Rate
Process

dr, = r,)dt + ofr,)dW,

Drift Diffusion Stationary Reference
Function Function
n(r) o(r)
B(o-r) o Yes Vasicek (1977)
B(o-r) crl”2 Yes Cox-Ingersoll-Ross (1985b)
Brown-Dybvig (1986)
Gibbons-Ramaswamy (1993)
B(o-r) or Yes Courtadon (1982)
B(o-r) ort Yes Chan et al. (1992)
B(o-r) NJO+Yr Yes Duffie-Kan (1993)
Br (0‘ —Ln(r )) or Yes Brennan-Schwartz (1979) [one-factor]
oar"P+fr| o2 Yes Marsh-Rosenfeld (1983)
o+Br+yr’ o+Yr Yes Constantinides (1992)
B o No Merton (1973)
0 or No Dothan (1978)
0 G r3/2 No Cox (1975)
Cox-Ingersoll-Ross (1980)
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Table 2: Descriptive Statistics

Source Bank of America 7-Day Eurodollar
(Deposit Rate Midpoint Bid-Ask)
Frequency Daily
Sample Period 06/01/1973-2/25/1995
Sample Size 5505 observations
Type Continuously-Compounded Yield-to-Maturity
(annualized rate)
Spot Interest Rate First Difference of
Spot Interest Rate
Mean 0.08362 -0.0000035
Standard Deviation 0.03591 0.004063
Monthly pi 0.9389 0.02136
P2 0.8785 -0.00689
P3 0.8300 -0.01658
P4 0.8014 0.00242
ps 0.7783 0.00858
P6 0.7715 0.01573
pP7 0.7361 0.00056
Augmented Daily -2.60
Dickey-Fuller
Hy: Reject at 90%
Nonstationary (critical value = -2.57)
Notes: (1) The augmented Dickey-Fuller test statistics is computed as

T, = &)/ase(&)) in the model: Ar, =pu+¢r,_, +Z:=|¢j Ar,_, +u,, with p=30 lags. See e.g.,

Harvey (1993), section 5.4.
(i1) The justification for using the Dickey-Fuller table when the residuals are

heteroscedastic and possibly serially dependent is provided by Said and Dickey (1984) and

Phillips (1987).
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Table 3: Parameter Estimates for the Spot Rate Process

annualized one-day rate, with time measured in years.

1st-step OLS 2nd.Step FGLS GMM
Nonparametric Nonparametric CIR Vasicek
o 8.3082 102 8.4387 102 9.0495 10-2 8.9102 102
(9.86) (10.08) (9.63) (8.56)
B 1.6088 10-0 9.7788 10-1 8.9218 10! 8.5837 10°!
(2.28) (3.03) (3.30) (3.27)
o2 Nonparametric Nonparametric 3.2742 102 2.1854 103
Diffusion Diffusion (19.94) (19.51)
Figure 4 Figure 4
Notes: (i) The estimates reported in the table are for daily sampling of the

(ii) Heteroskedasticity-robust t-statistics are in parentheses. The t-statistics

for OLS use the White's estimator of the asymptotic variance, since in the first step the

nature of the heteroskedasticity is unknown.
(iii) The 2-step FGLS estimates were described in Section 3. FGLS uses the

first-step nonparametric diffusion function to form the weights and compute the t-statistics.

Table 4: Market Price of Interest Rate Risk

deviations between the respective model's bond yields and those in Figure 6.

(ii) The bootstrap t-statistic of the estimate is in parentheses.

Nonparametric CIR Vasicek
A -2.4451 10°! -7.8905 10-2 -1.6988 10°!
(4.52) (3.94) (6.79)
Notes: (i) The market price of risk was estimated by minimizing the squared
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Table 5: Nonparametric Underlying Bond Prices

Annualized 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Spot Rate —
Maturity
(Years){

0.5 98.2408 97.4936 | 96.7065 | 95.9064 | 95.1389 | 94.3724 | 93.6150
(0.1078) (0.0940) | (0.0875) | (0.0709) | (0.0861) { (0.0893) { (0.0960)

98.3089 97.5054 | 96.7084 | 95.9179 | 95.1339 | 94.3563 | 93.5851

98.2859 97.4900 | 96.7005 | 959175 | 95.1408 | 94.3703 | 93.6061

1 95.5091 94.2250 | 929944 | 91.7708 | 90.5475 | 89.3639 | 88.2045
(0.1146) (0.0923) | (0.0839) | (0.0655) | (0.0740) | (0.0832) | (0.0992)

95.6082 94.3132 | 93.0357 | 91.7755 | 90.5323 | 89.3060 | 88.0964

95.5461 94.2721 93.0150 | 91.7747 { 90.5509 | 89.3435 | 88.1521

5 66.8409 65.4272 | 64.0544 | 62.7142 | 61.4002 | 60.1130 | 58.8665
(0.1125) | (0.1088) | (0.0984) | (0.0664) | (0.0753) | (0.0888) | (0.0991)

67.3719 65.7962 | 64.2574 | 62.7546 | 61.2869 | 59.8535 | 58.4537

67.2425 65.7148 | 64.2218 | 62.7627 ; 61.3368 | 59.9433 | 58.5814

10 41.3704 40.4903 | 39.5658 | 38.6818 | 37.8343 | 37.0836 | 36.3885
(0.0920) (0.0806) | (0.0724) | (0.0678) | (0.0622) { (0.0706) | (0.0945)

41.5477 40.5622 | 39.6000 | 38.6606 | 37.7436 | 36.8483 | 35.9742

41.4768 40.5218 | 39.5887 | 38.6771 37.7865 | 369164 | 36.0664

30 5.9825 5.8550 5.7211 5.5802 5.4617 5.3256 5.2232
(0.0873) | (0.0752) | (0.0738) | (0.0705) | (0.0814) | (0.0878) | (0.0800)

5.9788 5.8369 5.6985 5.5633 5.4313 5.3024 5.1766

5.9759 5.8383 | 5.7038 | 5.5724 | 5.4441 53187 | 5.1962

Notes: (i) All prices correspond to a face value of the bond equal to $100. The four
elements of each cell are from top to bottom: the nonparametric price, its bootstrap standard
error (in parentheses), the CIR price and the Vasicek price.

(i1) The nonparametric prices were computed using the 2-step FGLS
estimates of o and B (second column of Table 3), the nonparametric diffusion estimator
(Figure 4) and the market price of risk from Table 4. The CIR and Vasicek prices were
computed using the GMM estimates of o, B and 62 reported in Table 3 (third and fourth
column respectively), and the market prices of interest rate risk reported in Table 4.

(1i1) The bootstrap standard errors are produced by nb=100 replications with
blocks containing nk=200 consecutive spot observations.
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Table 6: Nonparametric Call Option Prices on a 5-Year Bond

Exercise Price — 0.96 0.98 1.00 1.02 1.04
Annualized Option

Spot Rate Expiration
®d (t: years)J«

0.02 0.25 3.1451 1.8624 0.7926 0.1696 0.0054

(0.0092) | (0.0097) | (0.0035) | (0.0030) | (0.0026)

3.1432 1.8422 0.7179 0.0966 0.0002

3.1513 1.9061 0.9049 0.3071 0.0694

0.02 0.5 3.8179 2.5660 1.4512 0.6141 0.1543

(0.0094) | (0.0110) | (0.0094) | (0.0089) | (0.0072)

3.8071 2.5379 1.3910 0.5231 0.0865

3.8196 2.5855 1.5232 0.7478 0.2950

0.02 1 5.5679 43117 3.1139 2.0454 1.1620

(0.0109) { (0.0134) | (0.0155) | (0.0128) | (0.0092)

5.5574 4.3061 3.1056 2.0077 1.0911

| 5.5718 43133 3.1159 2.0514 1.2014

0.14 0.25 4.2449 3.1665 2.1716 1.3281 0.6962

(0.0125) | (0.0156) | (0.0127) | (0.0148) | (0.0124)

4.2400 3.1636 2.1670 1.3163 0.6779

4.2211 3.0941 2.0059 1.0653 0.4243

0.14 0.5 5.9629 4.9094 3.8868 2.9515 2.0940

0.0175) | (0.0176) | (0.0152) | (0.0156) | (0.0139)

5.9595 4.8964 3.8679 2.9010 2.0322

5.9392 4.8437 3.7558 2.7009 1.7418

0.14 1 9.0293 8.0119 6.9534 5.9949 5.0125

(0.0194) | (0.0187) | (0.0176) | (0.0175) | (0.0163)

9.0241 8.0013 6.9857 5.9828 5.0019

9.0063 7.9735 6.9408 5.9089 4.8809

Notes: (i) All call option prices correspond to a face value of the discount bond

equal to $100. The exercise price is expressed as a proportion of the corresponding bond
price for each model.

(ii) The four elements of each cell are from top to bottom: the nonparametric
price, its bootstrap standard error in parentheses, the closed-form CIR price and the closed-
form Vasicek price. The standard errors of the nonparametric prices were computed under
the same conditions as Table 5.
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Nonparametric Kernet Density, CIR and Vasicek Densities
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