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Why is productivity procyclical? The answer to this question sheds light on the relative merits of
different models of business cycles. The literature suggests three main explanations. First, measured
fluctuations in productivity might reflect exogenous changes in production technology. Second,
productivity (appropriately measured) may be procyclical because of increasing returns to scale: in this
case the economy endogenously becomes more efficient by moving to higher levels of activity. Third, if
inputs are systematically mismeasured, measured productivity may be procyclical even if true
productivity does not change. The gap between actual and measured productivity most likely comes from
cyclical errors in measuring inputs: unobserved changes in capital utilization or in the intensity of work
effort.

This paper represents an effort to evaluate the merits of these three competing hypotheses. Of course
they are not mutually exclusive, but from the standpoint of business-cycle theory it is important to know
how much of the variation in productivity is due to each of the three sources we mention. Researchers
have long been interested in distinguishing between the first, "supply-side," explanation for cyclical
productivity and the other two "demand-side" hypotheses (e.g. Hall [1988], Evans [1992]). But it is
equally interesting to distinguish between increasing returns and cyclical utilization, since these
hypotheses have radically different implications for modeling business cycles.! For example, recent
papers that incorporate substantial increasing returns and large price-cost markups show that these
features introduce a menagerie of possibilities, including multiple equilibria in which sunspots or
monetary non-neutralities drive business cycles.? Variable-utilization models have no such implications.
But for increasing-returns models to generate sunspot equilibria, the degree of returns to scale must be
large.3 One objective of this paper is to obtain an accurate estimate of the degree of returns to scale in
order to judge the plausibility of these new business-cycle models.

This paper presents a new method for detecting changes in the utilization of capital and labor that are
not directly observed, in a framework that nests increasing returns and technology shocks as alternative
possibilities. Its central insight is that firms may extract unmeasured services from their own capital

stocks or from workers with whom they have a long-term relationship, but that in order to produce greater



output, they need more materials input. Materials use is a convenient indicator of cyclical factor
utilization because its input does not have an extra effort or intensity dimension.4

By this logic, changes in the input of materials relative to measured capital and labor are an index of
unmeasured capital and labor input, so we can estimate the degree to which the procyclicality of
productivity is driven by variable utilization. Using this proxy to control for cyclical utilization also
allows us to estimate the degree of returns to scale accurately. A major criticism of previous estimates of
returns to scale (e.g. Hall [1990}]) is that such estimates are biased upward by unobserved factor
utilization. Finally, once we account for changes in productivity coming from increasing returns and
variable utilization, the residual should represent true changes in production technology. We can
investigate the properties of this technology series along dimensions especially relevant for evaluating
real-business-cycle models: the variance of technology shocks, and their covariance with output changes.

If cyclical productivity is largely due to unobserved utilization of capital and labor, then one would
expect materials input to be more procyclical than measured inputs of the other two factors. This is
clearly the case in postwar U. S. manufacturing. Figure I shows annual growth rates of output, materials,
and a measure of combined capital and labor input (the growth rates of capital and labor weighted by the
relative shares of each input) for aggregate U. S. manufacturing from 1949 to 1985.5 Clearly materials
input is much better synchronized with output than are measured capital and labor inputs. (Ignoring
capital and simply studying the pattern of output, materials, and labor input also gives similar
conclusions: materials input tracks output much more closely than does labor input.) So the first look at
the evidence is consistent with the cyclical utilization hypothesis.

Exploiting the basic insight of the paper, the initial results suggest that cyclical factor utilization is
very important for explaining procyclical productivity. Controlling for cyclical utilization, however, there
is no evidence of increasing returns to scale in production — indeed, the estimates indicate that returns to
scale are strongly diminishing. The implied technology series has a somewhat lower variance and a
substantially smaller correlation with output than the standard Solow residual.

I next consider a variety of modifications to the model and a number of sources of error that might be

responsible for these conclusions. First I allow for substitution between materials and capital and labor in



the production of output, and for the possibility that energy input is not separable from capital input.
Neither modification makes a significant difference to the results. Then I discuss whether the results
might be driven by cyclical errors in measuring the relative price of materials. Again I argue that this is
unlikely to be a significant source of error.

The last modification is to allow for non-homotheticity of the production function. The initial setup
assumes that the production function is homogeneous of some degree y, which is then the degree of
returns to scale. However, it is possible that returns to scale are concentrated in the production of value
added from capital and labor input. In that case, materials input may grow faster than capital and labor
input due to a feature of the production technology, not because of variable factor utilization. I
investigate two methods that may allow us to disentangle non-homotheticity from variable utilization,
although both are likely to be biased towards finding increasing returns to scale. With this modification, I
find that overall returns to scale are about constant, not diminishing as the earlier results suggested.
Consequently, variable factor utilization, although it is significant, seems less important than the first set
of results suggest. Nevertheless, even the final results suggest that a one percent change in the capital
stock or labor hours leads, on average, to a 0.17 percent change in capital and labor utilization. The
estimated properties of technology change are unaffected by considering this modified production
function.

The results are still a marked contrast to much of the recent conventional wisdom on the degree of
returns to scale and markups. I find that returns to scale are about constant, far from the large increasing
returns found in earlier empirical work and used to calibrate recent business-cycle models. Constant
returns to scale imply that markups of price over marginal cost must also be small: otherwise we would
see large pure profits, which we do not observe. Thus, neither increasing returns nor imperfect
competition appears to be a major source of procyclical productivity. Instead, cyclical productivity
appears to be driven by a combination of variable factor utilization and technology shocks.

The paper is organized in seven sections. Section I presents the method used to measure variable
utilization, under the assumption that the production function is homothetic. Section II discusses the data

and Section III presents results. Section IV modifies the method of the previous analysis to make it robust



to a frequently-cited type of non-separability in the gross-output production function. Section V
investigates whether the results are being driven by measurement error in prices. Section VI modifies the

method of Section I to allow for non-homotheticity. Section VII concludes.

I. METHOD

I start from a production function for gross output, which includes intermediate goods as one of the
factors of production:
ey Yi:F(ZiKi’CiLi’Mi’E)-

Here Y is gross output (not value added). K and L are primary inputs of capital and labor, while M is the
quantity of materials input. Z and C are the levels of capital and labor utilization, which are chosen by the
firm but unobserved by the econometrician. T is an index of technology. I assume initially that the
production function is homogeneous of degree y (and hence homothetic) in capital, labor, and intermediate
goods. F is not constrained to have constant returns to scale, so yis a free parameter. 1 omit time
subscripts for clarity; i indexes productive units.

Hall [1990] shows how one can use first-order conditions from cost-minimization to write the total
differential of (1) as the “cost-based Solow residual.” Replacing the infinitesimal differentials in Hall's
derivation with finite differences, and using lower-case letters to represent logs, we find:

Ay, = y[of (Ak; + Az, + 0t} (AL + Ac) + (1 - of — ) Am, |+ A,
=yAx, + Ay, + At

(2)

where Ax; = [ai"Aki +alAl+(1-af —af)Ami], Ay, = [afAzi +a{Aci], and aand o are the shares of

labor and capital in total costs (not revenue). Ax is a cost-weighted sum of the growth rates of the

observed inputs. Au is a cost-weighted sum of the growth rates of unobserved capital and labor
utilization. If there are constant returns to scale and perfect competition — so that the cost shares are also
revenue shares and y = 1 — then (2) is just the defining equation for the Solow residual. Note, however,

that unless Au is identically zero the Solow residual measures both changes in utilization and changes in



technology. This is a problematic issue for the large literature on real business cycles, which takes the
Solow residual as a measure of technological change alone (e.g. Plosser [1989]).

Hall [1990] interprets the coefficient of a regression of Ay on Ax as an estimate of the degree of
returns to scale.® Hall estimates the regression by instrumental variables, where the instruments are
chosen to be uncorrelated with At. However, the resulting estimate of ¥ is not a consistent measure of
returns to scale unless Au is identically zero or is uncorrelated with the instruments. Neither condition is
plausible. Much anecdotal evidence, plus work on shifts by Shapiro [1994], indicates that true inputs of
capital and labor are much more cyclical than the observed changes in the capital stock and labor hours.
And Hall's aggregate-demand instruments are likely to be uncorrelated with At, but not with Au; plausible
models of variable utilization predict that increases in demand will typically increase factor utilization.”
Thus, estimates of returns to scale, ¥, from an equation like (2) are likely to be biased upward.

The intuition behind this paper is that the available data on materials input make it possible to test for
the existence of cyclical utilization of capital and labor and to measure their extent. In the process, we
can also obtain a consistent estimate of returns to scale. The idea is a simple one: workers putting in
longer hours and more effort, or machines being worked extra shifts, need more materials in order to
create more output. Materials use is a convenient indicator of cyclical factor utilization because its input
does not have an extra effort or time dimension. An hour worked may represent very different amounts of
labor input and a machine may be operated at different intensities, but a nail, a sheet of steel, or a piece of
lumber always makes the same contribution to output: no amount of coaxing can make one nut fit on two
bolts.

In order to derive the relationship between the true (unmeasured) inputs of capital and labor and the
measured input of materials, I put some additional structure on the production function. I assume that
gross output is produced using a combination of value added and materials, where value added is
produced by capital and labor:

3 Y, = TiG(V(Z,.Ki, C.L), H(Mi)).
Since F was assumed to be homothetic we can, without loss of generality, assume that V and H have

constant returns to scale. Log-linearizing (3) and using the first-order condition for cost-minimization, we



find that the growth rate of value-added equals the growth rate of materials, plus a substitution term that
depends on the growth rate of the relative price of value added to materials and on the elasticity of
substitution between the two inputs, G:
4 Av; = Am, - o(Ap; - Ap").
Apl‘.’ and Ap:" are the changes in the prices of value added and materials.8 & >0 is the (local) elasticity of
substitution between value-added and materials, and is a potentially important parameter. Two reference
values for G are the plausible Leontief case where materials are used in strict proportion to value added
(0 =0), and the Cobb-Douglas case with unit elasticity of substitution (¢ = 1).

We can, in turn, express the Divisia index of value added, Av, in terms of changes in observed

capital and labor input and changes in unobserved utilization:

k(A + Az) + o (AL + Acy)

5 Av,
©) Vi af +a)
which implies
(6) af(Ak; + Az) +aj(AL + Ac) = (af +af)Am, — o(a} + o] )(Ap! — AP]).
Substituting equation (6) into equation (2) gives
%) Ay, =y am, - o(al + ) ap; - Apl")|+ A,

Note that we have eliminated both the observed and unobserved inputs of capital and labor: Au does
not appear in (7). In the absence of variable capital and labor utilization, estimates of (2) and (7) should
yield the same estimate of y. If, however, there is variable utilization, then the estimate of returns to scale
from (7) should be significantly smaller than that from (2), which is biased upward by changes in
unmeasured capital and labor inputs, Au.

The test is easiest to perform in the Leontief case: if 6 = 0 the growth of gross output is just
proportional to the growth of materials input, with the constant of proportionality given by the degree of
returns to scale. However, equation (7) shows that if the production function allows materials to be
substituted for value added, we must also include changes in the relative price of value added to materials.

In principle these prices are observed, and can be included in an estimate of (7).9



Suppose, however, that we do not wish simply to test the hypothesis that there is cyclical factor
usage, but also to measure its extent. It is intuitively plausible that the average extent of variable
utilization can be inferred by comparing the sizes of the estimated y's from equations (2) and (7). This is
essentially correct. The estimate of ¥ from (2) divided by the estimated y from (7) gives a consistent
estimate of (one plus) the elasticity of utilization with respect to share-weighted changes in inputs. Thus,
this measure gives the average growth in unobserved inputs of capital and labor as a function of the
growth in rotal input use.

However, since we hypothesize that the cyclical variation in utilization is confined to capital and
labor, we would prefer to express the change in utilization as a function only of the change in capital and
labor input. So my simple parameterization of cyclical factor utilization (essentially cyclical utilization
qua measurement error) is that the change in utilization of capital and labor is proportional to the growth
rate of the observed input:

Az = yAk and Ac = yAl,
where x > 0.10>11 Under this relationship between true and observed inputs, we can show that the
probability limit of y from estimating (2) (denoted ¥°) exceeds the true y even when the endogeneity of
inputs in response to technology shocks (the "transmission problem") is solved by instrumenting:

a“(l +(1+ 0 ~a”))
(@ +(1+ p)(1- oz“))2 '

®) plim(y*)=7y|1+x

oV = ok + ol is the share of value added in total cost and is taken to be a constant. Intuitively, equation
(8) shows that the extent of the bias depends on the average degree to which the true input of value added
exceeds the measured input, ¥, and the use of value added in production, &¥. If % = 0 or if ¥ = 0, then
there is no bias. As argued above, we obtain a consistent estimate of the true y by estimating equation (7),
and of course the estimate of equation (2) provides the baseline value for the biased y. Inserting the
estimates of 'y from (2) and (7) into (8) allows us to infer the average degree of cyclical utilization, as
measured by x.

Finally, the residuals from equation (7) should give us a series of true technology shocks, purged of

the effects of imperfect competition, increasing returns, and variable utilization. It will be interesting to



compare the properties of this series to those of the standard Solow residual, especially along two
dimensions that are critical for assessing real-business-cycle models. The first is the variance of the
innovations to technology. Standard real-business-cycle models typically require that this variance be
quite large. The second statistic is the correlation between technology shocks and output. Real-business-

cycle models typically predict that this correlation is large as well.

II. DATA

I use unpublished data on industry-level inputs and outputs provided by Dale Jorgenson. The data
consist of a panel of U. S. manufacturing industries, at approximately the 2-digit S.I1.C. level, for the years
1953-1984.12  In the following paragraphs I highlight a few key features of the data. For a complete
description, see Jorgenson, Gollop and Fraumeni [1987].

Output is measured as gross output, and inputs are separated into capital, labor, energy, and
materials. In creating a series for labor input, Jorgenson, Gollop and Fraumeni [1987] assume that wages
are proportional to marginal products. This allows them, in essence, to calculate quality-adjusted labor
input by weighting the hours worked by different types of workers (distinguished by various demographic
and occupational characteristics) by their relative wage rates.!3 Hence, labor input can increase either
because the number of hours worked increases, or because the "quality” of those hours increases. This
quality-adjustment also implicitly adjusts the wage series for the labor force composition effect stressed
by Solon, Barsky and Parker [1994]. Similarly, Jorgenson, Gollop and Fraumeni [1987] adjust inputs of
capital and intermediate goods for changes in quality.!4

The Jorgenson data report the quantity of materials purchased per year, not actual materials usage.
Since, as Ramey [1989] documents, materials and work-in-process inventories are procyclical,
substituting materials purchases for usage can bias downward the y estimated from equation (7). Thus 1
have modified the Jorgenson data by adjusting the materials data for changes in inventories.!3

To estimate required payments to capital, I follow Hall and Jorgenson [1967], Hall [1990], and

Caballero and Lyons [1992], and compute a series for the user cost of capital, r. The required payment



for any type of capital is then rPg K, where PkK is the current-dollar value of the stock of this type of
capital. Basu and Fernald [1994b] describe the procedure for constructing the rate of return. Given
required payments to capital, calculating the cost shares is straightforward.

The price series for composite capital and labor input is constructed as a Divisia index from the
underlying quality-adjusted wage series and the series on required payments to capital, where the weights
are the cost shares of capital and labor in value added. The aggregate materials price is similarly
constructed from the underlying energy and non-energy materials price series.

Since input use is likely to be correlated with technology shocks, I seek demand-side instruments for
input use. To solve the "transmission problem" of endogeneity between productivity shocks and input
growth, I use the instruments advocated by Ramey [1989] and Hall [1988], as modified by Caballero and
Lyons [1992]: the growth rate of the price of oil deflated by the price of manufacturing durables; the
growth rate of the price of oil deflated by the price of manufacturing nondurables; the growth rate of real
government defence spending; and the political party of the President.

The change in the price of oil is a valid instrument only if technological progress is Hicks-neutral.
However, Jorgenson, Gollop and Fraumeni [1987] present evidence that technological progress is energy-
biased, making the oil price instrument the most dubious of the three. Unfortunately, it also has the most
explanatory power. Thus, I typically assume that the change to a different energy intensity following an
oil price shock requires more than one year to effect, which makes the current oil price change a valid
instrument. However, I report the main results, in Tables I-1IT using both current and lagged oil price

changes, and the results barely change depending on which instrument set is used.!6

III. RESULTS.

First I estimate equation (2) as it stands, using the measured values of all three inputs.!” I use SUR
to estimate the equations for all the industries together, imposing the constraint that the degree of returns
to scale, v, is equal across industries. The resulting estimates of returns to scale are shown in Table 1.

The estimates are 1.09-1.10, depending on the choice of instrument sets, and indicating statistically



significant evidence of increasing returns. The estimate is also quite large economically, though much
smaller than those reported by Hall {1990]. Basu and Fernald [1994a] show that Hall's use of value-added
rather than gross-output data creates a specification error that biases upward his estimates of v.!8

Next I perform the simplest test of the cyclical utilization hypothesis. This corresponds to the case
of a homogeneous production function with Leontief technology in the production of gross output, so that
output growth is just proportional to materials growth. The results are reported in the first column of
Table II. Here the results are very different. The estimate of y ranges from 0.79 to 0.84, depending on the
instrument set used. Clearly these are significantly different, both statistically and economically, from the
estimates in Table I. We can decisively reject the null hypothesis that true capital and labor inputs are
accurately measured by changes in the capital stock and labor hours. The calculated values of x, reported
in the lines below each set of estimates, show that the true growth of capital and labor input is, on
average, about 70 percent greater than the measured growth.

Does allowing for the possibility that materials can be substituted for value added change the
conclusion that the unobserved inputs of labor and capital are very large? To see how the estimate of
changes when we allow for the possibility that firms substitute towards using more materials in a boom, I
now allow for substitution between materials and value added.

Since the effect of allowing for substitution between materials and value added depends on the size
of ¢, the major question of course is the right ¢ to assume. Rotemberg and Woodford [1992, Appendix]
use a version of equation (4) to estimate the elasticity of substitution. They find ¢ =0.7. Bruno [1984]
surveys a number of papers and reports a consensus range for ¢ of 0.3-0.4.19 Clearly, cyclical changes in
the relative price of materials can overturn the initial findings only if ¢ is relatively large. Therefore,
since the bias from an overestimate works against the results of the paper, I use 0.7 as the baseline value
of ©.

I estimate (7) for two non-zero values of 6: ¢ = 0.7, and the Cobb-Douglas case with unit elasticity
of substitution, ¢ = 1. I use the average share of value added over the sample period, and the observed

change in the ratio of the cost of value added to the price of materials.
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The estimates for the non-zero values of ¢ are in the second and third columns of Table II. There is
almost no change in the estimated y's when we allow for substitution: the estimates range from 0.83 to
0.86, depending on the instrument set and the value of ¢. Based on these estimates, the true growth of
variable capital and labor inputs is between 68 percent and 55 percent greater than the measured growth
of these inputs. For plausible parameter values, the results are barely sensitive to variations in the
parameters governing substitution between value added and materials. Even when we allow for the
possibility that materials can be substituted for value added, we find that there is a considerable degree of
cyclical factor utilization.

As noted in Section I, the residuals from equation (7) should be interpreted as true technology
shocks. Table III compares the statistical properties of these technology shocks to those of the standard
Solow residual. For the purposes of computing the technology series, I have allowed the degree of returns
to scale to differ by sector. The results are for the Leontief case — ¢ = 0 — and use only the second
instrument set (current oil price change; current and lagged values of the other instruments). The first
column of Table III gives the average variance of the usual Solow residual for the 21 sectors: 0.00067.
The average variance of the residuals from (7) is 0.00060. Thus, the variance of technology shocks falls
by about 10 percent once we control for cyclical utilization. The next three columns report correlations
between each of these two measures of technology change and three concepts of output growth: the
growth of own-industry output, the growth of aggregate manufacturing gross output, and the growth of
manufacturing value added. The correlation with own-output growth falls from 0.44 to 0.34 once we
control for cyclical utilization. The average correlations with the two measures of aggregate output
change also fall, though not by as large a percentage. Thus we see that the utilization-adjusted technology
series is rather less friendly to the assumptions and conclusions of real-business-cycle models than the
standard Solow residual.

However, Table III illustrates an interesting fact. All of the correlations with output growth reported
there, including the correlations of the standard Solow residual, are much smaller than the figures that are
familiar from aggregate data. For example, Burnside, Eichenbaum and Rebelo [1995] report that the

correlation between the aggregate Solow residual and aggregate output growth is 0.80. Thus, it appears



that productivity is more procyclical at higher levels of aggregation. Basu and Fernald [1994b] show that
much of this effect comes from a composition bias: sectors with higher levels of productivity or larger
returns to scale account for a larger fraction of output in booms. (Durable-goods industries, which have
high productivity and highly procyclical output, are one example.) Thus, once we allow for heterogeneity
between sectors (and firms), we see that the explanation of procyclical productivity depends not only on

changes within each sector but also on changes in the share of each sector in the aggregate.
IV. PROBLEMS WITH A VALUE-ADDED PRODUCTION FUNCTION

Much of the empirical literature estimating production functions from gross-output data tests and
rejects the conditions needed for the existence of a value-added function: see, e.g. Jorgenson, Gollop and
Fraumeni [1987]. Of course, once one admits that this estimation is based upon data that contain
systematic cyclical errors, it is difficult to know how one should interpret the rejection of the necessary
separability conditions. The separability restriction is typically rejected because energy use, which is one
component of overall materials consumption, is generally found to be a complement with respect to
capital, but a substitute for labor. However, taking the nonseparability of energy into account, it is
reasonable to assume that non-energy inputs can be separated from inputs of all the other factors: capital,
labor, and energy. While cheap oil may lead to production using more machines and fewer workers, and
expensive energy lead firms to economize on machines and use more labor, in either case one needs a
certain amount of intermediate input to create output. Under this new assumption, we can write (3) as:
(3) Y, =T,G(V(ZK,;,C.L,E),H(N,)).
where E is the input of energy and N is all non-energy materials input. In this case V no longer has an
interpretation as value added, but the essential idea of exploiting the relationship between V and H

remains unchanged. Following a sequence of steps exactly analogous to those detailed in Section I, we

can show that this new formulation leads to a slightly different estimating equation:

%0 Ay, = y[Ani —o(o] +af +af fAp) - Ap} )] +At,.

12
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Now the price index for V includes energy while the materials price index does not, and the cost share of
energy is added to the shares of capital and labor. The growth rate of materials is now defined over non-
energy materials only. But this equation is also easy to estimate, and the estimate of 7y has just the same
interpretation as before.
I present estimates of equation (7') in Table IV. The estimates of y from this specification are even
smaller than those in Table II, implying even higher estimates of unmeasured factor utilization. It is clear

that the results are not being driven by this type of non-separability.

V. ERRORS IN MEASURING PRICES

A. Substitution of Inputs

Errors in measuring input price changes lead to problems in assessing firms' desires to substitute
inputs. The presence of long-term labor contracts, either implicit or explicit, imply that the shadow wage
might well differ from the observed wage. In a boom, where workers work longer hours, we would
expect the shadow wage to exceed the observed wage. Also, in a boom the marginal cost of an
“efficiency unit" of labor might well be significantly higher than the average cost.2 Kydland and Prescott
[1988] and Solon, Barsky and Parker [1994] document the long-standing conjecture that the real wage is
more procyclical than it appears because the marginal worker hired in an upturn has lower human capital
than the average employed worker. (However, as noted above, the Jorgenson data controls for much of
this composition bias.) These considerations would argue that cyclical changes in Apl‘.’ should be greater
than measured. On the other hand, Carlton [1983, 1987] has argued that delivery lags and other
reductions of service in upturns greatly increase the effective price of manufactured intermediate goods.
These factors would argue that Ap:" should also be more procyclical than measured.

This issue is important, but equation (7) shows that it is not likely to change the results dramatically.
First of all, errors in measuring prices alone create a bias only to the extent that G is larger than zero. As
noted above, the consensus range for ¢ is 0.3-0.4, so it seems unlikely that reasonable errors in measuring

prices could overturn the results. For example, in order to reconcile the differences between the estimates
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of v from Tables I and II for 6 = 0.3, one would have to assume that the true relative price of value added
rises by 0.90 percent more than measured for each percent increase in materials use. Errors of this
magnitude are not credible; by comparison, Bils [1987] estimates that nominal wage costs increase by
only 0.21 percent for each one percent change in production-worker employment, and his estimates are an
upper bound for the reasons given in Trejo [1991].

Secondly, the bias works against the results of the paper only if the true price of value added is more
procyclical than the true price of materials. Surprisingly, I find that this is true for the observed prices in
the data set. Conventional wisdom holds that raw commodities prices are highly procyclical, while the
real wage, much the larger input to the price of value added, is acyclical or only mildly procyclical (e.g.
Murphy, Shleifer and Vishny [1989]). Both parts of this statement, however, need careful interpretation.
While it is true that commodities prices are volatile and procyclical, raw commodities are only a small
fraction of the total input of intermediate goods. Since "materials" are correctly classified by use and not
by type of good, an industry's materials input includes all of its purchases from other industries (and from
itself). For example, Boeing's purchase of a computer to fit into its newest jet is a purchase of an
intermediate good, although a computer is typically classified as a high-technology finished good.
Following the standards of national income accounting, the Jorgenson data set uses the input-output tables
for the U.S. to incorporate such purchases into the definition of materials, along with more conventional
materials inputs like raw commodities. Also, the labor cost data that are used for the estimation are
adjusted for the fact that labor quality is highly countercyclical, making the cost of an efficiency unit of
labor about twice as procyclical as the standard wage series, which is subject to composition bias. These
two considerations together lead to the finding that materials prices are countercyclical relative to capital
and labor costs.

As a shortcut for capturing these effects, I assume that the percent change in the true price of each
input is a multiple of the observed change:?!

AP.J‘=BIAP,] forj=v,m

where ™ and BV are parameters.



Substituting the hypothesized relationship between the true and observed prices into equation (7)
gives:
9) Ay, = yAm, - of* (o} + o} )Ap} + o™ + o} )Ap]" +At,.
Note that if BY = ™, changing [ is equivalent to changing the elasticity of substitution between materials
and value added. However, since we do not directly observe either & or B, it seems best to simply
estimate these unknown parameters (actually, the product of ¢ and the J's, since they cannot be identified
separately from (9)).

The results are in the first line of Table V. They confirm the hypothesis of unmeasured factor inputs
and Carlton's conjecture that the effective price of materials is procyclical: when we do not impose a
priori values of ¢ and [3, the regression chooses B™ to be large relative to BY, and hence the degree of
returns to scale to be smaller than even in the case when ¢ was constrained to be zero. As noted
previously, the interpretation of a large B™ is that the effective price of materials is more procyclical than
observed: that is to say, the effects suggested by Carlton are relatively more important. This is
reasonable, because the price of value added computed from the data already contains a correction for the
major bias identified in the literature, the cyclical change in the composition of the labor force. Thus, the
major omitted factor that the regression estimates is the change in the effective price of materials. So it
appears that the conventional wisdom may be right after all — the price of materials may be procyclical
relative to the price of capital and labor — but not for the reasons usually given. These results imply an
even greater degree of cyclical utilization than previously found, strengthening the findings of the paper.
The estimate of Y using materials and energy is 0.75. So allowing for substitution, the estimated degree of
variable factor utilization actually rises. The second line of Table V shows that the same is true when we
allow for the possibility that the value-added production function is not separable and include energy as

one of the inputs to the production of V.

B. Quantity Measurement Problems
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A further problem is that errors in measuring materials prices can also imply errors in measuring
their quantities, since the real quantities are not independently observed but rather derived from deflating
nominal quantities by measured prices.2?

At this point, we must distinguish between two price concepts. The first is the idea of opportunity
cost, which is the price on which firms base their decisions. The second is the transactions price — the
dollar price that firms pay for the intermediate goods they receive. The two need not be identical if the
opportunity cost has a non-pecuniary component. For example, if there are delivery lags then in upturns
the shadow value of an intermediate good can exceed its transactions price if a new good is not
immediately available at that price. Other changes that can affect the opportunity cost include reductions
in service or training. But these changes, although they can lead to problems in measuring opportunity
cost, do not constitute errors in measuring transactions prices. Thus, they do not lead to problems in
measuring real materials input.

However, it is of course correct that the observed price indices are not always accurate measures of
transactions prices. This can lead to problems in measuring intermediate input growth. But this critique
cuts both ways: since real output is also measured as nominal output deflated by a price index, there is a
corresponding bias which has the opposite effect. Suppose the true prices of materials and output are both
measured with error:

(10a) P

*

(10b) P,=e"P

»t e
The observed real quantities of materials and output are constructed by dividing nominal purchases by the
observed prices:

Po.Y:
(11a) M, =—mt

(11b) Y, =



Then the measured growth rate of materials usage differs from the actual usage by a factor An, and the
measured and actual growth rates of inputs differ by Av. For simplicity, assume that ¢ = 0, so the true
relation between output and materials usage is:

Ay, = yAm, +At.
Now suppose we regress observed output on observed materials, using a single instrument, h. The

probability limit of the estimated vy is given by:

(12) 5= [1 . cov(An,h)}_ cov(Av,h)

cov(Am,h) | cov(Am,h)

If An and Av were classical measurement errors they would be uncorrelated with the instrument, h. Thus
any bias must come from the cyclicality of measurement error. The usual story is that transactions prices
are more procyclical than posted prices, leading to a negative correlation between measurement error and
the cycle. A negative correlation between An and h would lead to a downward bias in ¥, and thus an
overestimate of the degree of utilization. But a negative correlation between Av and h would have the
opposite effect, so we cannot sign the bias. Suppose both measurement errors have the same correlation
with the instrument. This is reasonable, because in many cases the two are the same — much of

manufacturing gross output is also manufacturing materials input. Then the bias is

cov(An,h)
cov(Am,h)’

(13) r-r=(r-1)
Since the bias is proportional to (y-1), the estimate is unbiased under the null hypothesis of constant
returns to scale, even if measurement error is correlated with the cycle.

However, even if we take some value of y greater than 1 as our null, the best evidence indicates that
the bias is ambiguous and is likely to be small. Stigler and Kindahl [1970] undertook the most thorough
study extant of the relationship between transactions and posted prices. They examined a large number of
transactions prices for intermediate goods over the period 1957-1966 and compared their results to the
corresponding BLS price indices.

Perhaps surprisingly, Stigler and Kindahl [1970, Table 6-8] found that measurement error in prices is

small at business-cycle frequencies. At a monthly frequency, the correlation of the growth rate of their
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comprehensive price index with that of the corresponding BLS index is only 0.38. But at a quarterly
frequency it rises to 0.58, and semiannually it is 0.73. Presumably the correlation is even higher at an
annual frequency.

Interestingly, Stigler and Kindahl [1970, Table 6-8] also found that the correlation of Av with the
cycle has opposite signs in recessions and expansions. In recessions Av is positive (an average monthly
growth rate of 0.076), which is what one would expect if transactions prices are more flexible than posted
prices. However, in expansions Av is negative, implying that posted prices actually rise more than
transactions prices (average monthly growth of -0.039). So the sign of the bias is not evident a priori,
especially if one recalls that recessions are much sharper than expansions and the number of months of
expansion outnumber the recession months by about 4:1 over the sample.

Thus, the available evidence indicates that while the shadow price of materials is significantly more
procyclical than the observed price, the transactions price is probably not much more procyclical than the
observed price. The first finding strengthens the result of the paper, while the second indicates that the
results are not driven by mismeasurement of real materials input.

Although a priori reasoning indicates that the net bias from mismeasurement of transactions prices is
likely to be small, it would be desirable to confirm this directly. One method is to repeat the test for
specific industries where BLS price indices are known to be good. Stigler and Kindahl [1970] mention
Textiles as one such industry. Somewhat to their surprise, they also found that the BLS indices were
good measures of transactions prices for steel and nonferrous metal products (semiannual correlations
between the growth rates of the Stigler-Kindahl and BLS price indices for these product groups are 0.932
and 0.924, respectively). In the two-digit data the last two industries both fall in the category of
Fabricated Metals. So we can see whether these two industries, which we know to have accurate price
indices, give substantially the same results as the one for pooled manufacturing industries.?

The results are reported in Table VI. The first column gives the estimate of y from equation (2), the
second the estimate from (7) for 6 = 0. The implied % is reported in the third column. Since the
estimation is done for each industry separately, the standard errors are quite large: for example, the point

estimate for y in Textiles is about 0.6, but the 95 percent confidence interval includes 0.93. But in both
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cases the difference between the two estimates has the right sign. And even though the absolute
difference between the two estimates of 'y for Textiles seems small, the implied % is quite large. (The
reason is that the Textile industry has a very high materials shares, about 0.7, so even a small difference in
the coefficients implies a large amount of cyclical utilization of capital and labor.) However, the
calculated y's are about half of what we found in Table II. So, despite the preceding arguments, one
might attribute some of the earlier results to cyclical errors in measuring prices. However, it is equally
possible that these two industries are not representative of manufacturing industries overall.

Finally, one might argue that there is a separate but related problem: we observe materials purchases
but not materials use. The two might differ when firms have the option of using some of their own capital
and labor to create intermediate inputs, purchasing them from outside only when the internal workers are
too busy.2* For example, a firm might ask its secretaries to do xeroxing in-house when there is not much
other work, but have them send it to a copy shop when other work presses. Formally, this type of
situation implies that the firm has the option of substituting between total capital and labor input and
purchased materials input. So even if the production function for final output is Leontief in primary
inputs and materials, the consolidated production function (including the inputs used to produce in-house
intermediate goods) might display considerable substitutability between total capital and labor and
purchased materials. However, since these are the data used for the estimates of G cited in Section III,

allowing for substitutability of materials to the extent discussed there should suffice to address this issue.

VI. INCREASING RETURNS IN THE VALUE-ADDED FUNCTION

So far, the analysis has proceeded under the assumptions laid out in Section I, notably that the gross-
output production function (F in equation (1)) is homothetic. (Actually, we assumed the stronger
condition that F is homogeneous.) Thus, we could assume that both the V and H functions in equation (3)
have constant returns; this was important later for measuring value added in (5). Suppose, however, that

homotheticity does not hold. Then the V and H functions will not generally have the same degree of
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returns to scale. In particular, if the returns to scale of V exceeds the returns to scale of H, the test
previously proposed will overestimate the degree of cyclical utilization.

I now outline a more general setup. Suppose that H is still homogeneous of degree one, but now let
V be homogeneous of degree p in K and L.2 G continues to be homogeneous of degree yin V and H;
note that G is thus not homothetic in K, L and M. Then the degree of returns to scale in the production of
gross output, denoted RTS, is given by
(14) RTS = y[p(a’+a")+(1—a’—a")]

Note that RTS > yif p > 1. If Au were identically zero, then equation (2) would estimate RTS. Even
with cyclical utilization, equation (7) continues to provide a consistent estimate of y. However, we can no
longer compare the two directly as we did before, since for p > 1 we now expect Y < RTS, even absent
cyclical utilization. Thus we see that comparing the estimates from (2) and (7) is really a test of the joint
hypothesis of homotheticity and no cyclical utilization. In the more general framework of this section,
showing that Y < RTS is no longer sufficient to prove that cyclical utilization is responsible for Hall's
finding of increasing returns.

Note, however, that this problem does not call into question all of the results obtained above.
Equation (7) is still true; it is only the interpretation of vy that is different. Thus, the error term in (7)
should still be interpreted as a true technology shock, and the properties of technology shocks that we
have discovered are still correct even in this more general setup.

We should recognize, though, that there are economically relevant cases where the assumption of
homotheticity might not hold. Increasing returns to scale, if they exist, probably come from fixed costs in
production. Non-homotheticity, then, can be interpreted to mean that these fixed costs are proportionally
larger for capital and labor inputs, so that a higher fraction of the inputs to the production of value added
is consumed by "overhead" factors.?6

Is it reasonable to attribute all of the difference between the estimated RTS from (2) and the
estimated y from (7) to non-homotheticity? Probably not. Under the hypothesis of no cyclical utilization
we correctly estimate RTS = 1.09, and y = 0.84. To reconcile these two estimates for the average

observed average materials share of 0.55, we would need p = 1.62. If the increasing returns in V come
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from overhead inputs, we would need the ratio of overhead to total capital and labor to exceed 38 percent.
Suppose we think of nonproduction workers as a reasonable proxy for overhead workers, as Ramey
[1991] suggests. Ramey documents that the ratio of non-production workers to total employment has
never exceeded 30 percent, and suggests 20 percent as an average figure. So it seems unlikely that non-
homotheticity accounts for all of the difference between the two estimates. On the other hand, a
substantial fraction of the difference may be due to this source.

So we need a way to pin down the homogeneity of V relative to H. One way would be to proceed by
assuming that fixed costs are the source of non-homogeneity, and looking at detailed breakdowns of
worker occupations to distinguish between "overhead" and "variable" workers. Another way is to use the
idea that over the long run, all demand-induced input changes should be accommodated along the
extensive margin. A third way is to use proxies for the change in utilization. I use the second and third
methods.

Define Ax; = (ai" + af)_l[a,"Ak + afAl], so that Av, = p Ax;. Then, using our new assumption that V

is homogeneous of degree p in its inputs, we have the following cost-minimizing input demands:

(15a) Am,.=%Ay,.+0'(a,-"+a,.’)(Ap,-"—Ap,.'")—lyAt,..
ok
(15b) Ax,.v=lAyi—Aui—M(Ap:—Ap;")—lAz,..
pY p pY

Subtracting (15b) from (15a), the growth of materials input relative to capital and labor input is:

0+0(P-1)(0‘f+“f)(Ap?—Apm)_p—‘1At.

(16) (Am,.—Ax,.V)=’—’—_—1Ay,.+Au,.+
pY p pY

Equation (16) shows that there are three reasons why Am might exceed AxY when Ay is positive. First, Au

might also be positive, so that total inputs of capital and labor increase more than measured inputs.

Second, changes in relative prices might incline producers to use more materials. Third, V might be

homogeneous of degree more than one: p > 1. The analysis in Section I allowed for the first and second

reasons but not the third: note that equation (16) reduces to equation (4) if p = 1.



We can try and estimate p from the coefficient of Ay, (since we already have an estimate of y from
equation (7)), but we face the problem that the unobserved Au and Ay are sure to be positively correlated
with one another and with aggregate-demand instruments that are uncorrelated with At.

To alleviate this problem, we can try to use our intuition that utilization should not change
permanently in response to a permanent change in demand. In any reasonable (convex) model of variable
utilization, there must be increasing marginal costs of utilizing inputs more intensively, otherwise inputs
would always be utilized at zero or 100 percent.? With increasing marginal cost of utilization, firms will
not plan to accommodate long-run changes in output by changing utilization permanently, since in the
long run it is always cheaper to adjust by adding more capital and labor rather than by changing their
intensity of use.28 Thus, suppose that utilization is a function of changes in output and other variables:

Au; = c; + A(L)Ay; +¢,,
where & is a vector of variables other than output that change utilization. Since utilization does not
change permanently in response to a long-run change in y, A(1) = 0. Thus, the test is to regress the excess

growth of materials input on a distributed lag of output and on changes in relative prices. Summing up

the coefficients on the distributed lag of output will give us an estimate of ——. Since the estimates of
pY

equations (7) and (9) give us estimates of Y, we can back out the parameter of interest, p. Note that this
estimate of p will probably be too high, since the omitted variables & are likely to be positively correlated
with Ay. For example, in times of high output firms probably find it more difficult to find qualified
workers in external labor markets, making it more likely that employers will increase labor input by
increasing utilization. Thus, even if we use instruments that are uncorrelated with technology change, the
coefficient on Ay is likely to be biased upward. However, this bias favors Hall’s hypothesis of large
increasing returns and works against the basic method of the paper.

But this test is not quite dispositive as it stands. Suppose that there are increasing returns to V alone.
Then it is true that if each firm were operating at a permanently larger scale, the ratio of materials to value
added should also change permanently. However, if the estimation is done with industry data, we might
fail to detect this outcome. Suppose the following story describes industry evolution. Initially, there is a

permanent demand shock. Because V is homogeneous of degree more than 1, materials input grows
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faster than capital and labor input. But then, as the industry makes supernormal profits, new firms enter.
Ultimately, the industry returns to long-run equilibrium with a larger number of firms but the same
amount of output per firm. Clearly, the ratio of materials to value added retumns to its long-run value,
which might be interpreted as evidence that the short-run excess growth of materials is driven by cyclical
utilization. To avoid this problem in the exercise proposed above, I examine all of the variables on a per-
establishment basis. With this transformation of the data, we can estimate the extent to which the average
per-establishment ratio of materials to capital and labor is affected by changes in the quantity of output
per establishment.

Thus I estimate equations of the form:

an (Am, - Ax?) = 8(L)AY, + B, (Ap} - Ap" )+ By (ef + o] )(Ap! - Ap[") + v,
where y is the log of output per establishment. The regression also includes industry-specific constants
and time trends, a post-1973 dummy, and a trend interacted with the post-1973 dummy. These are meant
to control for secular changes in productivity that might change the ratio of materials to the other inputs,
especially labor. The estimate of 8(1) from (17) allows us to calculate p, given our previous estimates for
v; I use the current value and three lags of change in output per establishment.29

The results are in Table VII. The initial growth in output leads to a large increase in materials input
relative to capital and labor inputs. However, the coefficient on the first lag of output is significantly
negative, suggesting that a sizable fraction of the initial change in the materials-value-added ratio is
driven by cyclical utilization. The sum of the lag coefficients is slightly negative, but not enough to erase
a significant fraction of the change in the first period. Thus we see that a change in output per
establishment does indeed cause a permanent change in the usage of materials relative to other inputs,
which is consistent with the hypothesis that there are larger returns to scale in the production of value
added. Since we can reject the hypothesis that 8(1) = O, we can use the estimate of 8(1) and our Table 11
estimate of y of 0.84 to calculate p, the degree of returns to scale of V. The implied p is 1.38. Inserting
this value into equation (14) and letting a* + ' = 0.45, we find that RTS = 0.99.

As a check on this result, we can try other proxies for Au. Abbott, Griliches and Hausman [1988]

suggest that the number of hours per worked by an average worker is a good index of work effort. Basu
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and Kimball [1994] confirm this intuition in a dynamic, optimizing model of variable factor utilization.
Furthermore, they find that if changes in capital utilization take the form of adding additional shifts, and
the major cost of capital utilization is a shift premium paid to workers on late shifts, then the hours per
worker variable proxies for both capital and labor utilization. Thus, I replace Au in (16) with Ah, where h
is (the log of) hours per worker. The estimating equation is:

(18) (A, - Ax?) = 85, +dh, + B, (Ap) - ApT") + Byt + ) Ap} - Ap") + ..

The results are in Table VIII. One of the estimates is rather puzzling: the coefficient on Ah is highly
significant but negative. Theory predicts that hours per worker should covary positively with utilization,
and Au enters (16) with a positive sign. However, the main coefficient of interest is 8. We find é = 0.36,
which is extremely close to the sum of the estimated lag coefficients in (17): 0.34. The implied p for

8 =0.361is 1.43, and the implied RTS is 1.01.

Thus, using two different methods to control for variable utilization, we find that returns to scale, as
conventionally defined, are almost exactly constant. This result is a sensible one, because it does not
counterfactually imply large pure profits. There is a useful relationship between returns to scale, the
markup ratio, L, and the profit rate, x:

P _ P AC 1

= — = RTS.
MC ACMC 1-r

J7)

Since the average markup cannot be smaller than 1, diminishing returns to scale on the order of .84
would imply a pure profit rate of at least 16 percent (of gross output). There is no evidence of such large
profit rates: the rental cost of capital series implies that the average profit rate in U. S. manufacturing is
less than four percent, even without allowing for a return on intangible capital assets. Thus, finding that
RTS =1 implies a consistent picture of technology and market structure: constant returns in production,
small pure profit rates, and hence small markups of price over marginal cost.

Finding p equal to about 1.4 is also broadly consistent with other evidence. If all the increasing
returns in V come from overhead inputs (fixed costs, not diminishing marginal cost), then the implied

ratio of overhead to total inputs is 0.28. This is not far from Ramey's [1991] suggested figure of 0.20.



Ramey considered only overhead labor; it is reasonable that total overhead inputs, including capital,
might be a larger fraction of overall inputs.

If all of the increasing returns in V (and thus in the production of gross output as well) come from
overhead capital and labor, then we can say something about the slope of the marginal cost curve as well.
In this case, V and H are still homogeneous of degree one in the variable factors of production. But since
we estimate Y < 1, production is homogeneous of degree less than one in the variable factors: i.e., there is
increasing marginal cost. The fact that we find overall constant returns to scale means that the fixed costs
and increasing marginal cost just offset one another. In terms of the standard U-shaped cost curve, firms
produce at the minimum points of their average cost curves, the point of (locally) constant returns to
scale. The implied slope of the marginal cost curve is 1/y, which equals 1.19 for a y of 0.84. Thus, we
conclude that marginal costs rise about 0.2 percent for each one percent increase in output.

Shea [1993] also concludes that the output elasticity of marginal cost is about 1.2, based on
completely different evidence: the response of price to exogenous demand shocks. This figure is also
quite consistent with the findings of Burnside, Eichenbaum and Rebelo [1995], who build on the approach

of this paper.

VII. CONCLUSION

What should we conclude about the procyclicality of productivity? If one accepts the results of the
paper, then it appears that all of the procyclicality of productivity in response to demand shocks stems
from cyclical utilization, since the final estimate of returns to scale controlling for cyclical utilization is
almost exactly 1.30 Changes in utilization are quite large: comparing the initial Table I estimate of 1.09
to a true returns to scale of 1 implies that utilization increases 0.17 percent for each percent increase in
measured capital and labor. But even with this degree of variable utilization, we find that technology
shocks are a significant source of variations in productivity. However, controlling for cyclical utilization
reduces the variance of technology shocks by 10 percent and their correlation with output by more than 20

percent.
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This last result is not favorable for the standard real-business-cycle model. That model anyway
predicts that the correlation of output growth with technology change should be larger than the observed
correlation of output growth with the Solow residual. If the true correlation of output and technology
change is even smaller, the model is that much further from fitting the facts.30

The results also point up the lack of evidence for the kind of returns to scale estimates that would be
necessary to validate sunspot-driven models of business cycles based on large increasing returns. Unless
these models can be based on much smaller returns to scale, they seem to be theoretical curiosa rather
than serious candidates for explaining business cycles.3! In any event, these models rely crucially on the
assumption that increasing returns come from diminishing marginal costs. If increasing returns instead
come from overhead inputs, which seems more likely, then these models are incorrect in using returns-to-
scale estimates to calibrate the slope of the marginal cost curve.

One of the implications of the results is that marginal costs rise quite quickly with output: the
elasticity is 1.2. This finding predicts that firms should have strong motives to smooth production by
using inventories. The early inventory literature failed to find evidence of production-smoothing, but
more recent work by Fair [1989] and Krane and Braun [1991] finds production-smoothing using data on
physical quantities.

This paper, therefore, sheds some light on the propagation mechanisms of business cycles. It shows
that variable utilization is a plausible propagation mechanism, while imperfect competition, increasing
returns to scale, and flat marginal costs are not. But what are the impulses driving business cycles? The
results do not support the current generation of sunspot-driven models. Technology shocks seem an
unlikely candidate: we found that allowing for cyclical utilization reduces the importance of technology
shocks (Basu and Kimball [1994] present more evidence to this effect), and Basu and Fernald [1994b]
show that much of what we measure as procyclical technology is in fact an artifact of composition bias.
Thus, while the propagation mechanisms of business-cycle models are coming into focus, their ultimate

cause remains a mystery.
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1. Recent papers in this literature include Abbott, Griliches and Hausman [1988], Aizcorbe [1992],
Basu and Kimball [1994], Bils and Cho [1994], Burnside and Eichenbaum [1994], Burnside, Eichenbaum
and Rebelo [1995], Gordon [1990], Hall [1990], Sbordone [1993}, and Shapiro [1993].

2. Farmer and Guo [1994] and Beaudry and Devereux [1994].

3. See Schmitt-Gréhé [1994], who compares a number of such models in a common framework.

4. A similar idea is behind the use of electricity consumption data as a proxy for capital utilization by
Jorgenson and Griliches [1967]. My procedure also allows me to investigate cyclical fluctuations in labor
utilization.

5. All the series have had means removed.

6. Hall uses real value added as his measure of output, and thus uses only primary inputs of capital and
labor. Basu and Fernald [1994a] show that using value added creates additional biases in estimating Y.
Also, Hall estimates the reciprocal of y by regressing Ax on Ay; see Bartelsman [1993] for a criticism of
this procedure.

7. See Burnside and Eichenbaum [1994] and Basu and Kimball [1994].

8. Hall [1991] also takes time differences in first-order conditions for factor demands, though he
focuses on labor demand as a function of output rather than value-added use as a function of materials
demand.

9. There are a number of reasons why the true costs of inputs may differ from their observed costs. 1
discuss some of them and their consequences in Section V.

10.  This parameterization is unlikely to be literally true, since the relationship between changes in input
quantity and utilization is generally state-dependent. It is, however, a convenient way of presenting the
results.

11.  Whether the mismeasurement parameter is the same for both inputs depends on the degree of
complementarity between capital and labor in production. If the utilization of the two factors can vary
independently, the y estimated from the data will be a weighted average of the parameters for capital and

labor, where the weights are the cost shares of each input.
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12.  The only major difference between the industry groupings in the Jorgenson data and the standard 2-
digit S.I.C. classification is that Motor Vehicles (S.I.C. 371) are separated from other transportation
equipment (S.I.C. 372-79). (This is the standard practice of the BLS, though not of the BEA.) Thus,
there are 21 manufacturing industries in the panel rather than the usual 20.

13.  Note that the validity of this procedure is unaffected by markup pricing because markups affect the
level of wages, not relative wages.

14.  Quality-adjustment makes very little difference to the main results of the paper. Most of the
regressions in the paper use materials as the only quantity variable on the right hand side, and there has
been almost no change in materials "quality” (i.e. composition). The only noticeable effect is on the
conventional estimates of y (e.g. in Table I), which are about 5 percent larger with non-quality-adjusted
data.

15. Iam extremely grateful to John Fernald for providing me with the adjusted data.

16.  The other tables in the papers use only the current oil price change but current and lagged values of
the other instruments.

17. The Jorgenson data set separates intermediate inputs into energy and non-energy materials. Since
this distinction is often not germane for my purpose, I typically combine both types of inputs into a single
Divisia index.

18.  Also, the two concepts of returns to scale are not the same. Conceptually, Hall is estimating the
degree of increasing returns in the production of value added, which is larger than the degree of
increasing returns in the production of gross output. Given an average materials share of 0.6 over the
sample period, gross-output returns to scale of 1.10 translate to value-added returns to scale of 1.30 —
still far from the estimates of about 3 reported by Hall [1990].

19. Of course, the data these papers use for their estimation may be flawed because of cyclical
measurement error. The presence of cyclical utilization would tend to bias upward the estimate of the
elasticity of substitution, since in the data one sees output growth being accompanied by low capital and

labor growth but high materials growth, implying a high degree of substitution of materials for capital and



labor. As I have argued here, the better interpretation of that observation is that the increase in materials
growth is accompanied by unobserved increases in the growth of variable capital and labor inputs. So the
cited elasticities of substitution should be regarded as upper bounds.

20. Bils [1987] argues that the mandated 50 percent overtime premium implies that the marginal wage
increases much faster than the average wage. However, Trejo [1991] finds that much of these legally
mandated overtime payments are not allocative, since most of them are offset by compensating changes in
the base wage.

21. True, unobserved, quantities are indicated by *'s.

22. 1 thank an anonymous referee and John Fernald for independently pointing out this problem.

23. I have concentrated on the output price indices, since this was the focus of the Stigler-Kindahl
studies. But these two industries are likely to also have excellent input price indices. First, the largest
source of industry inputs is usually itself, so to that extent the input and output price deflators are
identical. Second, these two industries use large quantities of primary materials rather than processed
goods as intermediate inputs. Since the prices of these commodities (agricultural products and metals) are
largely set in auction markets, these too will probably be measured very accurately.

24. Iam indebted to an anonymous referee for pointing out this issue.

25.  Only the relative homogeneity of V to H matters, so the normalization of H is innocuous.

26. Of course, if production requires the same average ratio of overhead to total inputs for all factors —
including materials — then the production function is again homothetic and the method for detecting
variable utilization of capital and labor presented in Section I is exactly correct.

27. See Burnside and Eichenbaum [1994] and Basu and Kimball [1994].

28.  Some have argued that the recent upward trend in the workweek of capital is evidence against this
argument. Utilization may indeed have a trend, since technological progress may reduce the marginal
cost of utilization over time. My argument requires only that these technology changes be substantially

independent of changes in demand.
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29. We could in principle calculate p from the ratio of f1/B2, but the standard errors for the ’s are very
large since the variables they multiply are nearly collinear.

30. Note, however, the caveat about composition bias discussed at the end of Section III.

31. However, modeling variable utilization as a propagation mechanism for technology changes may
reverse this conclusion: see Burnside and Eichenbaum [1994].

32. Benhabib and Farmer [forthcoming] have made some progress on this issue by considering a multi-

sector model with small sector-specific externalities.
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TABLE I
ESTIMATE OF RETURNS TO SCALE FROM EQUATION (2)

(STANDARD ERRORS IN PARENTHESES)

Instrument Set Parameter Estimate
1 Y 1.100
(0.015)
2 Y 1.092
(0.015)
3 Y 1.092
(0.013)

Note: Instrument set 1 contains current oil price, defense spending, and political
dummy.

Instrument set 2 contains current oil price, and current and lagged defense
spending and political dummy.

Instrument set 3 contains current and lagged oil prices, defense spending, and

political dummy.
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TABLE Il

ESTIMATES OF RETURNS TO SCALE FROM EQUATION (7)

(STANDARD ERRORS IN PARENTHESES)

Instrument Set Parameter c=0 =07 c=1
Y 0.79 0.83 0.83
(0.029) (0.031) (0.027)
1
Implied % 0.80 0.68 0.68
Y 0.83 0.83 0.84
(0.017) (0.021) (0.022)
2
Implied % 0.68 0.68 0.63
Y 0.84 0.86 0.86
(0.011) (0.012) (0.012)
3
Implied % 0.63 0.55 0.55
Note: Instrument set 1 contains current oil price, defense spending, and political

dummy.

Instrument set 2 contains current oil price, and current and lagged defense
spending and political dummy.

Instrument set 3 contains current and lagged oil prices, defense spending, and
political dummy.



TABLE IIL
PROPERTIES OF SOLOW RESIDUALS AND TECHNOLOGY RESIDUALS

(AVERAGES FOR 21 INDUSTRIES)

Correlation with Correlation with
Variance x 103 Correlation with Manufacturing Manufacturing
Own Output Gross Output Value Added
Solow
Residual 0.67 044 021 0.26
Regression 0.66 0.34 0.17 0.22

Residual
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TABLE IV
ESTIMATES OF RETURNS TO SCALE FROM EQUATION (7'

(STANDARD ERRORS IN PARENTHESES)

c=0 c=0.7 c=1
Y 0.80 0.81 0.79
(0.017) (0.020) (0.019)

Implied 0.87 0.80 0.94



TABLE V

ESTIMATES OF RETURNS TO SCALE AND THE CYCLICALITY OF PRICES.

Materials and
Energy (Am)

Materials only
(An)

(STANDARD ERRORS IN PARENTHESES)

0.75
(0.015)

0.72
(0.015)

YopY

0.47
(0.064)

0.40
(0.071)

yopm Implied Implied
Bm/Bv x
0.80 1.70 2.31
(0.065)
0.97 2.42 2.75

(0.046)
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TABLE VI
ESTIMATES FOR INDUSTRIES WITH RELIABLE PRICE DEFLATORS

(STANDARD ERRORS IN PARENTHESES)

Estimated y from Estimated y from Implied ¥
Equation (2) Equation (7)
Textiles 0.61 0.54 0.36
(0.16) (0.13)
Fabricated Metals 1.06 0.90 0.35

(0.08) (0.09)
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TABLE VIIL.

ESTIMATES OF NON-HOMOTHETICITY IN PRODUCTION FROM EQUATION (17)

(STANDARD ERRORS IN PARENTHESES)

) & S 8(1 p-value
30 1 2 3 Bi B2 (1 o 310
0.38 -0.11 0.03 0.02 0.20 0.11 0.34 0.0

(0.032) (0.027) (0.026) (0.022) (0.074) (0.024)



TABLE VIIIL
ESTIMATES OF NON-HOMOTHETICITY IN PRODUCTION FROM EQUATION (18)

(STANDARD ERRORS IN PARENTHESES)

) p-value
e B1 B2 pvatue
0.36 -1.53 0.20 0.11 0.0

(0.043) (0.131) (0.074) (0.024)
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