NBER WORKING PAPER SERIES

COMOVEMENT IN CITIES

John Shea

Working Paper 5304

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
October 1995

Forthcoming, Carnegie-Rochester Conference Series on Public Policy, volume 44, Spring 1996.
This paper is a revised version of a paper presented at the Carnegie-Rochester Conference on
Public Policy in April 1995 in Rochester, NY. The author thanks Bill Miracky for providing
data, and Allan Meltzer, Valeric Ramey, and other conference participants for helpful
suggestions. All errors are mine. Research support from the National Science Foundation is
acknowledged. This paper is part of NBER’s research program in Monetary Economics. Any
opinions expressed are those of the author and not those of the National Bureau of Economic
Research.

© 1995 by John Shea. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given
to the source.



NBER Working Paper 5304
October 1995

COMOVEMENT IN CITIES

ABSTRACT

Recent research has shown that industries that locate together in space also move together
over the business cycle, and that this correspondence between spatial and temporal comovement
is important to aggregate volatility. This paper asks whether this correspondence is due to local
common shocks or to local spillovers. I examine interindustry comovements within seven large
US cities, and find strong evidence for local spillovers. I estimate that local spillovers explain
roughly one-third of manufacturing employment volatility at the city level. Local spillovers do

not appear to result from transport costs and locally traded goods.

John Shea

Department of Economics
University of Wisconsin
1180 Observatory Drive
Madison, WI 53706

and NBER



INTRODUCTION

An important fact about business cycles in the postwar US is that
different industries exhibit positive short-run comovement. For
instance, over the period 1978-1987, the average pairwise correlation of
annual employment growth among the twenty SIC two-digit manufacturing
industries is 0.542; for the 125 roughly three-digit manufacturing
industries listed in the appendix, the average pairwise correlation is
0.382. Similar evidence is presented in Long and Plosser (1987),
Murphy, Shleifer and Vishny (1989), and Cooper and Haltiwanger (1990).

Interindustry comovement is an interesting fact in and of itself;
however, it is also crucial to aggregate volatility. For instance, let
y denote the growth rate of aggregate manufacturing employment. We can
approximate y as a weighted average of employment growth in M
disaggregated manufacturing sectors, as follows:

M

y, = iElsHAREi Yigo (1)

where SHAREi is 1industry i’s long-run average share of total
manufacturing employment. Let SHARE denote a 1-by-M vector of long-run
industry employment shares, and let v denote the M-by-M

variance-covariance matrix of industry-level employment. Then from (1),

the variance of aggregate manufacturing employment is approximately
SHARE * ¥ * SHARE', (2)

which in turn can be decomposed into a "diagonals" term due to the
diagonal elements of ¥, and a "comovement" term due to the off-diagonal
elements of V. For the US over the period 1978-1987, the actual
standard deviation of annual aggregate manufacturing employment growth

is 4.08 percent. For 20 two-digit manufacturing industries, the



standard deviation implied by equation (2) is 4.27 percent when ¥ is set
equal to the observed interindustry variance-covariance matrix over the
sample period. When only the diagonal elements of ¥ are considered, the
standard deviation implied by (2) is 1.51 percent; when only the
off-diagonals are included, the standard deviation is 3.99 percent. At
the two-digit level, comovement thus accounts for 87.5 percent of the
variance of aggregate manufacturing employment growth. For the 125
three-digit industries listed in the appendix, the standard deviation
implied by (2) is 4.16 percent using observed ¥, 0.86 percent using the
diagonals of ¥, and 4.07 percent using the off-diagonals of ¥; at the
three-digit level, comovement thus accounts for 95.8 percent of
aggregate volatility. This evidence suggests that understanding the
causes of cyclical comovement 1is in some sense tantamount to
understanding the causes of aggregate volatility itself.

Some comovement presumably results from the direct effects of
aggregate shocks, such as o0il prices and monetary policy, that affect
many industries simultaneously. However, comovement may also result
from interindustry linkages or complementarities that propagate shocks
from one sector to another; plausible sources of complementarity that
have been proposed in the literature include factor demand linkages
(Long and Plosser (1983)), aggregate demand linkages (Startz (1989)),
thick market externalities (Diamond (1982)) and external economies of
scale (Baxter and King (1991)). Of course, complementarities and
aggregate shocks can work together; for instance, money may directly
affect only the auto industry, but shocks to autos may be transmitted to
steel through input-output linkages or some other complementarity.

In parallel work (Shea (1995)), I examine the role of

complementarities in generating short-run comovement among three-digit



manufacturing industries at the national level in the postwar US. Among
other things, I find evidence of a 1link between the interindustry
patterns of spatial location and temporal comovement: industries that
locate in the same cities tend to comove over the business cycle at the
national level. This link is economically as well as statistically
significant. For instance, I estimate that the component of short-run
comovement associated with spatial clustering is responsible for between
15 and 36 percent of aggregate employment volatility in manufacturing,
depending on how I treat aggregate shocks in the estimation; moreover,
this spatial factor is more important to both comovement and aggregate
volatility than input-output linkages.

To see the 1link between spatial clustering and short-run
comovement, consider the following empirical example. Let CORREMPik
denote the temporal correlation of employment growth between industries
i and k. Let CORRCITik denote the spatial correlation between

industries i and k, defined as follows:

M
jEISHAREjiSHAREjk
CORRCIT = (3)
ik M M ’
[ T (SHAREZ )1/%( T (sHAREZ, )11/?
S

where SHAREji is the long-run average share of city j in industry
i’s employment, and M is the number of cities used to measure CORRCIT.
CORRCIT measures the extent to which two industries concentrate their
employment in the same cities; the numerator is the dot product of the
industries’ vectors of employment shares by city, while the denominator
normalizes by each industry’'s spatial concentration.

I measure CORREMP using annual national-level data over the period

1978-1987 for the 125 three-digit manufacturing industries listed in the



appendix; the resulting 125-by-125 correlation matrix has 7750 upper
diagonal elements. I measure CORRCIT using data from the Census
Bureau’ s annual publication County Business Patterns for the 100 largest
US metropolitan areas as of 1970, where the SHARE terms are computed
averaging employment over the period 1977-1987; the data are described
more fully below. An OLS regression of CORREMP on a constant and
CORRCIT yields the following results:

CORREMPik = 0.182 + 0.400 CORRCITik + €, (4)
(0.008) (0.014)

where OLS standard errors are in parentheses.1 Equation (4)
suggests that temporal comovement and spatial clustering are positively
related; the coefficient on CORRCIT is positive and highly significant.
Furthermore, the R-squared in equation (4) is 0.09, suggesting that
spatial correlation can explain an economically important amount of
variation in the degree of short-run temporal comovement across pairs of
national industries. Of course, part of this relationship may be due to
input-output linkages, which may cause linked industries both to comove
over the <cycle and to locate in the same cities to minimize
transportation costs; however, in Shea (1995) 1 show that spatial
clustering and temporal comovement are closely 1linked even after
controlling for input-output linkages.

The goal of this paper is to explore why industries that locate in
the same cities tend to comove over the business cycle. As I discuss
further below, there are three generic reasons why spatial and temporal
comovement might be linked. First, there might be city-specific shocks,
such as weather or local tax policies, that are important sources of
short-run volatility. Under local common shocks, industries clustered

together in space will tend to comove through time at the national level



by virtue of experiencing a similar mix of local shocks. Second, there
might be symmetric local activity spillovers, in which increases in
overall city activity raise optimal output for each city-industry.
Under symmetric local spillovers, shocks to industry i will propagate
via local activity to other industries located in the same cities as i,
so that again industries clustered together in space will comove over
time at the national level. Third, there might be asymmetric local
spillovers, in which optimal activity of industry i in city j depends on
a weighted average of local activity in other sectors, with the degree
of synergy varying across industry pairs. Under asymmetric local
spillovers, industry pairs with strong links will comove over time at
the national level, and will also optimally cluster in the same cities
to take maximum advantage of their synergy.

As the above discussion suggests, distinguishing the three generic
stories using national data alone is likely to be difficult, since the
stories have broadly similar implications for industry comovement at the
national level. Fortunately, it turns out that the three stories have
sharply different implications for the pattern of industry comovement
within cities. Local common shocks do not imply any relationship a
priori between the pattern of comovement within a particular city and
the pattern of industry location in that or other cities. Symmetric
local spillovers imply that the pattern of comovement within a
particular city should depend on the vector of steady-state industry
activity shares within that city, but not on the pattern of industry
location in other cities. Finally, asymmetric local spillovers imply
that the pattern of comovement within a particular city should resemble
the pattern of industry location in other citles. Thus, one can

distinguish between the three generic stories using data on fluctuations



at the city-industry level.

My empirical work examines employment fluctuations over the period
1978-1987 for 387 disaggregated manufacturing city-industries, taken
from seven large US metropolitan areas. Following Shea (1995}, I assume
that comovement within a city depends on the covariance matrix of
underlying city-industry shocks and on a propagation matrix that governs
how shocks are transmitted across local sectors. These two matrices in
turn depend on observable measures of potential interindustry
complementarity, such as measures of input-output linkages or spatial
correlation, and on parameters governing the strength of different
linkage mechanisms. By putting sufficient restrictions on the
covariance matrix of shocks, I can estimate the complementarity
parameters using maximum likelihood, and assess whether particular
linkages enter significantly and with the right sign. I can also assess
the economic importance of complementarities by computing their
contribution to the variance of city-level employment.

The rest of this paper proceeds as follows. The next section
presents a simple model of an economy composed of many industries
located in many cities. I use this model to illustrate the implications
of local common shocks, symmetric local spillovers, and asymmetric local
spillovers for the pattern of interindustry comovement, both at the
national level and within cities. The third section describes the data
and presents empirical estimates of a baseline model nesting the
implications of local common shocks and local spillovers. I find that
both symmetric and asymmetric local spillovers exist, and that local
spillovers account on average for roughly one-third of a sample city’s
manufacturing employment volatility. The fourth section asks whether

local spillovers are a consequence of limited intercity tradeability of



certain goods due to high transport costs, using data from the 1977
Census of Transportation to measure the tradeability of different goods.
I find that transport costs do not appear to be responsible for local
spillovers. The fifth section concludes.

This paper contributes to a growing literature using data at the
local level to examine questions of broad macroeconomic interest. Rauch
(1993) and Ciccone and Hall (1993) use local wage and income data to
test for agglomeration economies in production. Head, Ries and Swenson
(1994) test for agglomeration economies by examining the location
choices of Japanese companies investing in the US. Glaeser et al
(1992), Miracky (1992) and Henderson (1994) use city-industry data to
examine the importance of local spillovers to long-run growth. Topel
(1986), Blanchard and Katz (1992) and Lettau (1994) examine the
short-run adjustment of local labor markets to shocks. My work differs
from most of this previous literature in that I focus on the causes of
short-run comovement and volatlity, rather than on the existence of
agglomeration economies, defined here as economies of scale resulting
from industry localization. I examine the magnitude and direction of
short-run links among local industries, but for the most part I do not
attempt to address whether interindustry linkages are due to economies

of scale or to demand linkages.

The issues addressed in this paper are important to macroeconomists
for two reasons. First, as indicated above, the component of short-run
comovement associated with interindustry spatial clustering appears to
be important to aggregate employment volatility at the national level.
Understanding why industries that cluster together in space also comove
over time would thus further our understanding of aggregate business

cycles. Second, short-run fluctuations at the city level are themselves



an interesting topic for macroeconomics. The existence of 1local
spillovers makes it more likely that particular cities or regions will
experience large idiosyncratic booms and busts unrelated to the pattern

of activity at the national level.
A SIMPLE MODEL OF LOCAL FLUCTUATIONS

This section presents a model in which a large number of goods are
produced in a large number of spatially distinct locations. I use the
model to 1illustrate the implications for comovement of local common
shocks, symmetric local spillovers, and asymmetric local spillovers. I
show that all three stories can generate a relationship between spatial
clustering and temporal comovement at the national level. However,
these stories have different implications for the pattern of
interindustry comovement in cities, implying that one can distinguish

among them by examining fluctations at the local level.
The Model

There is a representative consumer whose utility is linear in the

consumption of N final goods and in hours worked:
N
U = % C, - L (5)

Each final good, in turn, can be produced in M spatially distinct
cities. Assume that each city produces differentiated varieties of each

good, which are imperfect substitutes in utility. Thus,

log(Q ) (6)

Civ = ijt’

it

T~

j=1

where Q denotes production of good i in city j at time t.

ijt

Assume that each city-industry’s output depends on labor and on a



technology shift variable Ai.

5t taken as exogenous by all agents:

= *
Qijt Aijt Lijt' (7)

It is easy to show that the competitive equilibrium of this economy
satisfies Lijt =1 for all (i,j,t); thus, (7) simplifies to

Qijt = Aijt' (8)

The implications of the model for comovement will thus depend

entirely on the specification of the technology shift parameter A.
Case One: Local Common Shocks

In this case, technology is specified as follows:

= * »*
Aijt exp(ujt) exp(vit) exP(wij) (9)
Technology depends on three mean-zero random components: ujt'
which varies over cities and time and but not industries; v which

it’

varies across industries and time but not cities; and wij' which varies
across cities and industries but not time. One can think of v as an
industry-specific technology shock, u as a city-specific technology
shock, and w as a Ricardian parameter reflecting long-run locational
attributes that give certain cities a comparative advantage in hosting
particular industries.

Let Qit denote industry i's output at the national level at time t,
defined as the sum of Qijt over the M cities. Then a log-linear

approximation yields

¢ Constant + vip *

R

SHARE .. u

. 5%t (10)

log(Qit)

nM~Mx

J

where SI'{Al"{IEIj.l is city j's steady-state share of industry 1i’s



national output, which in turn satisfies
M
SHAREji = exp(wij) / zglexp(wiz), (11)
so that the distribution of industry i’'s activity across cities in
steady-state depends only on the comparative advantage parameters w.
Equation (10) implies that the pattern of interindustry comovement
at the national level depends on the steady-state distribution of
industries in space. For instance, suppose the v’'s are uncorrelated

across industries and the u’s are uncorrelated across cities with unit

variance. Then for any pair of national industries i and k, we have

X

= *
Cov(qit ) ¥ (SHAREji SHAREj ), (12)

j=1 s

Ayt

which increases as the spatial correlation between i and k rises.
In this model, industries that locate in the same cities tend to comove
over time at the national level because they experience a similar mix of
local common shocks. Notice that there are no interindustry synergies
in this model; industries that locate together do so only because their
comparative advantage profiles across cities are similar.

Notice, too, that 1in this model location affects short-run
comovement only at the national level. From (8) and (9), output in

city-industry ij satisfies

qijt = lOg(Qijt) = Constant + ujt Vi (13)

so that short-run comovement between city-industries ij and kj
depends only on the covariances of the underlying cyclical shocks: for
instance, if the v’s are uncorrelated across industries, the covariance
between any pair of local industries will be a constant, equal to the

variance of u. Under local common shocks, then, there is no reason a
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priori to expect the pattern of comovement within a particular city to
be positively related to the steady-state pattern of industry location
in that or in other cities. Indeed, if there is any prior presumption,
it is in the opposite direction: the labor market pooling hypothesis,
discussed by Marshall (1949) and Krugman (1991), suggests that
industries with negatively correlated cyclical shocks should optimally
cluster in the same cities, to provide stable local labor demand and
hence to reduce wage premia required to compensate workers for

unemployment risk.2
Case Two: Symmetric Local Activity Spillovers

In this case, technology is specified as follows:

- B
= exp(w.1 ) * exp(vit) * (th) , (14)

Mgt j

where again w is a comparative advantage parameter, v 1is an

industry technology shock, B is restricted to lie in [0,1), and

th = Qijt (15)

LN e I

i=1
is overall output in city j at time t. According to (14), an
increase in overall city activity symmetrically increases optimal

activity in each city-industry. Assuming that agents take A as given, a

log-linear approximation to the competitive equilibrium yields

N
q. . % Constant + v, + u Y SIZE . v ., (16)
ijt it k=1 kj "kt
where u equals (B/1-8) and SIZEkj equals industry k's steady-state
share of «city Jj's total output. From (16), fluctuations in

city-industry ij depend on 1i's technology shock and on a weighted

average of technology shocks in all other industries. The weights are

11



proportional to city-industry size; shocks to city-industry kj have a
larger impact on city-industry ij the more important is industry k to
city j's overall activity. Intuitively, shocks to big city-industries
have a large impact on local activity, and thus are more likely to be
transmitted to other local industries than  shocks to small
city-industries. One can show in turn that

N

)/ E explu, ), (17)

SIZE . = exp(w
k] z=1

kj

so that, as in Case One, the steady-state distribution of industry
activity across cities depends only on comparative advantage.

Aggregating to the national industry level, one can show that

N
qi = Constant + v,lt + u ¥ CI'I’Y.lk vkt’ (18)
k=1
where
M
= »
CITY.lk JElSHAREJ..1 SIZEkj’ (19)

and where SHAREJi is city j's steady-state share of industry i’s
national output, which as before satisfies (11). According to (18),
fluctuations in national industry i depend on technology shocks to all
industries. The effect of a shock to industry k on industry i |is

proportional to CITYi which equals the average over M cities of k’s

K’
steady-state share of local activity, weighted by each «city’'s
steady-state share of i’'s activity. CI'I’Y.lk thus measures the extent to
which industry i 1is concentrated in cities where industry k is
important. If CI'I’Y.lk is large, then shocks to k have a large impact on
those cities where i is located, and thus propagate to i via the local

activity spillover.

As with local common shocks, symmetric local activity spillovers

12



imply that the pattern of interindustry comovement at the national level

depends on the pattern of industry location. Comovement between
industries i and k increases with CITYik’ which increases both in k's
size and in the degree to which i and k cluster spatially. However,

under symmetric spillovers, spatial clustering has no effect on
comovement in cities. From (16), comovement within a particular city
depends on the vector of steady-state industry activity shares for that

city, but not on the industry location pattern in other cities.

Case Three: Asymmetric Local Spillovers

In this case, technology is specified as follows:
N Bik
Aijt = exp(vit) * exp(wij) *1 (ijt) , (20)
k=1
where again v is an industry technology shock and w is a
comparative advantage parameter. According to (20), productivity in
city-industry 1ij depends on the output of other 1local industries,
indexed by k. The spillover parameters Bik are constant over time and
over cities, but vary among industry pairs; intuitively, some industry
pairs have stronger synergies than others. Let B denote the N-by-N
matrix of spillover parameters, let I denote an N-by-N identity matrix,
and assume that the matrix F = (I-B)-1 exists. Then the competitive
equilibrium of this economy satisfies
N

qijt = qij + kglFikvkt. (21)

where Fik is an element of the matrix F, and where qij is

city-industry ij’'s steady-state output, which in turn satisfies

F (22)

1

0
|
MMz

57 ik "kj’
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From (21), fluctuations in city-industry ij depend on technology
shocks in all industries. The effect of a shock to industry k on

city-industry ij depends on Fi which in turn depends on the strength

K’
of direct and indirect synergies linking the two industries. From (22),
meanwhile, steady-state activity in city-industry ij depends on the
comparative advantage parameters for all local industries, weighted by
the synergy parameters Fik' Notice that in this case, unlike the two
previous cases, comparative advantage alone does not determine the
steady-state pattern of industry location; holding comparative advantage
constant, industries with strong synergies will optimally cluster

together in space to take maximum advantage of local spillovers.

Aggregating to the national industry level, one can show that

F (23)

1

45y ~ Constant + . ikVkt

nMH~ =

This model implies that the pattern of short-run comovement among
national industries should resemble the interindustry pattern of
location. From (23), industries with strong synergies tend to comove
over the business cycle; from (22), industries with strong synergies
also tend to locate together. At the national 1level, then, the
implications of asymmetric local spillovers are similar to those of
local common shocks or symmetric local spillovers. However, asymmetric
spillovers have different implications for local comovement. From (21),
comovement in cities is driven by the same synergies that generate both
national comovement and spatial clustering. Therefore, the pattern of
comovement within a particular city should resemble the pattern of
clustering in other cities. Notice that, in contrast to the previous
two cases, the relationship between industry 1location and short-run

comovement in this case is not causal. Geographic clustering does not
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by itself affect the pattern of interindustry comovement locally or
nationally. Instead, the pattern of industry location reflects the
underlying pattern of interindustry synergies; and these synergies, in

turn, affect the pattern of interindustry comovement.

EMPIRICAL EVIDENCE

The next two sections examine the pattern of comovement among 387
disaggregated manufacturing city-industries, taken from seven large US
metropolitan areas. This section tests the implications of the three
generic models described above, and finds evidence for both symmetric
and asymmetric local spillovers. The next section then attempts to
learn more about the exact mechanism generating these local spillovers,
by examining the role of limited intercity tradeability of goods with

high transport costs.

The CBP Data

Distinguishing among the three models presented above requires data
on short-run fluctuations at the city-industry level. The only such
data for the US 1is the Census Bureau's annual publication County
Business Patterns (hereafter the CBP), which provides employment by
disaggregated industry for every state and county in the United States.
The CBP covers all sectors of the economy except for farms, railroads,
government, and government-run enterprises such as the postal service
and public utilities. The data used in this paper cover the period
1977-1987; after log first-differencing, I have 10 observations on
employment growth for each county-industry.

The main limitation of the CBP is that by federal law it cannot

publish information that would disclose the operations of an individual
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establishment. In practice, this means that the CBP cannot provide
exact employment figures for county-industries consisting of a small
number of establishments, or dominated by a single large employer. In
such cases, the CBP reports a range for county-industry employment (e.g.
0-19, 20-99, 100-249, and so on), along with the number of
establishments in each range.

While one can make plausible imputations for these nondisclosures,
I do not want to use imputed data to analyze short-run fluctuations.
My sample selection procedure is thus as follows. For a given city, I
begin with employment data for 125 disaggregated manufacturing
industries for every county belonging to the city’s consolidated
metropolitan statistical area (CMSA). The industries are primarily at
the SIC three-digit level, and are listed in the appendix. For each
city-industry, I create two time series: EMP1, which sums employment
over all counties that have exact figures available for each year in the
period 1977-1987: and EMP2, which sums over all counties, using imputed
values for nondisclosures where necessary. If the eleven-year average
of EMP1 is at least 50 percent of the eleven-year average of EMP2, then
I set employment growth for the city-industry equal to the growth rate
of EMP1, and include the city-industry in the sample; otherwise, 1
exclude the city-industry from the sample. Obviously, my procedure is
likely to select more industries from large cities than from small
cities, since small cities are more likely to experience nondisclosures.
I thus limit my search to the seven largest US metropolitan areas as of
1970: New York, Los Angeles, Chicago, Philadelphia, Detroit, San
Francisco and Boston.

Table 1 presents descriptive information for the sample. The

second and third columns report the number of sample industries for each
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city ("Sectors") and the fraction of each <city’s manufacturing
employment accounted for by the sample industries ("Coverage").5 Los
Angeles, for instance, has data available for 102 out of 125 possible
city-industries, covering 98.3 percent of city employment; the excellent
coverage is not surprising given that Los Angeles County is the largest
urban county in the US. Philadelphia, on the other hand, consists of
several smaller counties, and thus has data for only 30 industries,
covering 42.5 percent of city employment. In all, my sample includes
387 city-industries, listed in the appendix.

The remaining columns of Table 1 present evidence on the importance
of interindustry comovement for employment volatility at the city level.
The fourth column ("Average Corr") shows the average within-city
pairwise correlation among the sample industries. The average
correlation ranges from 0.079 for Philadelphia to 0.224 for New York.
The fifth column ("Actual") reports the standard deviation of annual
employment growth for the city-level aggregate defined by summing
employment over sample industries. The sixth column ("Implied") reports

the standard deviation for this aggregate implied by the approximation
SHARE * ¥ * SHARE’, (24)

where SHARE is a vector showing each city-industry’s long-run
average share of city employment within the sample, while ¥ 1is the
observed covariance matrix for city-industry employment growth.6 The
similarity between the fifth and sixth columns suggests that the
approximation (24) works well in my sample. Finally, the last column
shows the fraction of the implied variance of city-level employment due
to off-diagonal elements of V. Interindustry comovement accounts for
between 72 and 89 percent of aggregate employment volatility for each

city. Overall, Table 1 suggests that the sample cities display positive
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short-run interindustry comovement, and that this comovement is

important to city-level employment volatility.

Empirical Model

1 now present the empirical framework used in this paper. Suppose
for now that one has time-series data on employment growth for N
disaggregated industries in one city (say, Chicago); 1 generalize to

multiple cities below. I assume fluctuations in Chicago obey

Y = K ¥ G * a, + A * g, 0+ v, (25)

where Yy is an N-by-1 vector of Chicago’s employment growth rates
at time t; u is an N-by-1 vector of constants; a, is a P-by-1 vector of
observable macroeconomic shocks; G is an N-by-P vector governing the
response of city-industries to macroeconomic shocks; gy is an N-by-1
vector of unobservable mean-zero city-industry shocks, assumed mutually

uncorrelated and orthogonal to a with N-by-N diagonal covariance

t’
matrix Z; A is an N-by-N matrix governing how the & shocks are
propagated across local sectors; and Vi is an N-by-1 vector of
unobservable city-industry shocks, assumed orthogonal to a, and to €4y

with (possibly non-diagonal) covariance matrix Q. Equation (25) implies

that the covariance matrix for y, can be written as
vV = G*¢*G + A*XI*A + Q, (26)

where ¢ 1is the P-by-P covariance matrix of aggregate shocks.
Equation (26) decomposes interindustry comovement within Chicago into
three sources. First, comovement can result from observable aggregate
shocks, provided the matrices G and ¢ are nonzero. Second, comovement
can result from the propagation of idiosyncratic shocks across sectors,

provided the matrix A is nondiagonal. Finally, comovement can result

18



from nondiagonality of Q. In practice, including the matrix Q in (25)
allows me to incorporate potential determinants of local comovement that
would not fit easily into a framework in which comovement was driven
solely by observable aggregate shocks or propagation of unobservable
local shocks through the A matrix.

As in Shea (1995), I assume that a, consists of two elements: the
growth rate of the real Producer Price Index for fuels and power (OIL)
and the spread between the commercial paper and Treasury-Bill interest
rates (SPREAD), intended to proxy for monetary policy. Meanwhile, I
model both @ and A as functions of observable measures of potential
interindustry linkage. To distinguish among the three generic models
outlined above, I want to allow the pattern of comovement in Chicago to
depend potentially on local common shocks, on steady-state industry
activity shares in Chicago, and on the pattern of industry location in
other cities. I also want to control for other potential sources of
local comovement. In Shea (1995), I find that input-output linkages are
important to comovement at the national level; it seems reasonable to

assume that such linkages could affect comovement in cities as well. My

baseline specification for A and Q is thus as follows:

A = ID + B *COST + B, * DEM + B, * SIZE (27)

2

Q = B4 * CITY + a., * COMMON, (28)

CH

where ID is an N-by-N identity matrix; COST, DEM, SIZE, CITY and
COMMON are N-by-N matrices; and aCH and the B’s are scalar parameters.
Following Shea (1995), I set the diagonal elements of COST, DEM, SIZE,
CITY and COMMON equal to zero; this normalizes the own-effect of a
city-industry shock to one. The matrices COST, DEM and SIZE thus affect

only how shocks are propagated across sectors, while CITY and COMMON
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affect only the cross-industry covariances of the v shocks; the

variances of & shocks are determined by the matrix Z, which has elements

o, through ¢

1 N’
COST and DEM control for the effects of factor demand linkages on
local comovement. The [i,k] element of COST equals the total dollar

requirement of good k per dollar produced of good i, incorporating
direct and indirect input-output linkages, while the [i,k] element of
DEM equals the fraction of demand for good i ultimately embodied in
final purchases of good k. As shown in the simple input-output model of
Shea (1995), COST[i,k] measures the extent to which shocks propagate
from an upstream input supplier k to a downstream user i, while DEM[i, k]
measures the extent to which shocks propagate from downstream user k to
upstream supplier i: below, I sometimes refer to propagation from

suppliers to users as a "cost linkage", and propagation in the reverse
direction as a "demand 1linkage". COST and DEM are measured at the
national level using 1977 input-output data, as described in the
appendix; unfortunately, city-level input-output data do not exist in
the US.

SIZE allows the pattern of local comovement to depend on symmetric
local activity spillovers. The [i,k] element of SIZE equals industry
k’s long-run average employment in Chicago, divided by long-run average
manufacturing employment in Chicago.7 Following the discussion above,
symmetric local activity spillovers imply that 63 should be positive;
shocks to large Chicago-industries should have stronger effects on
Chicago’'s overall activity, and thus stronger effects on other local
sectors, than shocks to small Chicago-industries.

CITY allows the pattern of local comovement to depend on asymmetric

local spillovers. The [i,k] element of CITY is equal to
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M
JE:lSHAREji * SHAREjk, (29)

where M is the number of cities over which CITY is measured, and
SHAREji is city j's long-run average share of industry i’s national
employment. CITY measures the degree to which industries locate
together in space. Following the discussion above, asymmetric local
spillovers imply that 34 should be positive; industries that cluster
spatially presumably have strong synergies, and these strong synergies
should in turn cause local comovement. I measure CITY using data for
the largest 100 US cities as of 1970. To make my test of asymmetric
spillovers as clean as possible, I exclude the seven sample cities when
computing SHARE and CITY; thus, [ test whether comovement in the sample
cities depends on the pattern of industry location in other cities.

Finally, COMMON is a matrix of ones. I include COMMON to allow for
local common shocks. My specification follows Case One of the model
outlined in the previous section; recall that 1if industry-specific
shocks are jointly orthogonal, and the local shock affects all sectors
equally, then the covariance between industries i and k implied by
equation (13) is simply a constant, equal to the variance of the local
shock. Thus, if local common shocks are important to comovement in
Chicago, we would expect to find %y significantly positive.
Admittedly, this method of incorporating local shocks is crude; it would
be preferable to control for local shocks directly using city-specific
time-series data on weather conditions, 1local taxes, and other
observable local factors. Unfortunately, I did not have such data at my
disposal for this project.

I estimate my model using a two-step procedure. [ first estimate p

and the matrix G by regressing employment growth on a constant, OIL and
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SPREAD industry-by-industry; these regressions fit best when I lag OIL
and SPREAD one year. These estimates are consistent wunder the

is orthogonal to ¢ I then use the residuals from

assumption that a .

t
these regressions, which I denote ;t' to estimate the B, a and o
parameters using maximum likelihood. Assuming that € is normal, the log

likelihood for T observations on Chicago’s N industries is

T

-(T * N)/2 - (1/2) * log|¥| - (1/2) T (y," ¥ 1y
t=1

yt), (30)

where ¥ = A * £ * A’ + Q is the interindustry covariance matrix for
y implied by (25).

To this point, I have discussed estimation using data for only one
city. I now discuss the case of multiple cities. One possible approach
would be to specify a model such as (25) for the vector of all

industries from all cities, so that Yi would have length
J
P = ¥ N, (31)

where J is the number of cities in the sample and Nj is the number
of industries available for city j. I do not pursue this approach for
two reasons. First, to implement this approach properly I would need to
model the comovements of industries across cities as well as within
cities; in other words, I would need to allow the matrices A and Q to be
non-block diagonal. The pattern of comovement among cities is a worthy
topic for future research, but it is beyond the scope of this paper.
Second, at a more practical level, this approach would require inverting
a P-by-P matrix at least twice during each iteration of the maximum
likelihood algorithm, which for large P would entail considerable

computation time.

Therefore, I assume instead that fluctuations within each city can
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be described by equations (25) and (27)-(28), where for city j the

vector Yy has dimension N The log likelihood for each city’s ;t

3
residuals is given by (30); the tailoring of COST, DEM, SIZE and CITY to
each city is described in the appendix. 1 assume that the parameters Bl
through B4 are identical across cities, while the local common shock
variance o« and the elements of £ can vary from city to city. Since 1
have 387 city-industries, I must estimate 398 parameters: the 387
elements of Z, the seven local shock variances «, and the
complementarity parameters Bl through 84. I estimate these parameters
by maximizing the sum of the city-level log likelihoods, as detailed in

the appendix; since the ¢ and « parameters can be interpreted as

variances, I restrict their estimates to be positive.

Parameter Estimates

Table 2 presents results from estimating the baseline
specification. Standard errors are in parentheses, and are estimated by
numerical computation of the Hessian matrix at the maximum likelihood
estimates. Estimates of X are available from the author.

Results are as follows. First, input-output demand and cost
linkages are both statistically significant to comovement in cities.
The coefficients on COST and DEM are smaller than those estimated in
Shea (1995) using national data, suggesting that input-output linkages
do not bind as strongly at the local level as at the national level.9
This is not surprising, given that goods presumably flow more easily
within countries than across countries. A shock to Detroit auto plants,
for instance, is likely to spill over to windshield manufacturers in
Ohio and Indiana, but is less likely to spill over to Canada; the link

between autos and windshields is thus likely to be stronger for the US
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as a whole than for Detroit.

Second, I find evidence for both symmetric and asymmetric local
spillovers. The coefficient on SIZE is positive and significant,
implying that shocks to large city-industries propagate more strongly to
other local sectors than shocks to small city-industries, consistent
with spillovers in the overall level of local activity. The coefficient
on CITY is also positive and significant, implying that the pattern of
comovement within sample cities resembles the pattern of spatial
clustering in nonsample cities, consistent with asymmetric spillovers
that give certain pairs of industries an incentive to move together in
both space and time.

Third, I find 1little evidence for local common shocks. The
estimated local shock variances are miniscule for four out of the seven
sample cities, and would have been negative had I not restricted them to
be positive. The local shock variances for Los Angeles, Detroit and

Boston are larger, but statistically insignificant.

Goodness of Fit

Tables 3 and 4 present evidence on the estimated model’s ability to
fit the volatility and comovement features of the data. In Table 3, the
third column ("Implied Volatility") shows the standard deviation of
city-level employment implied by the approximation in equation (24),
where the covariance matrix ¥ is set either to the observed covariance
matrix in the original data (in rows marked "Data"), or to the fitted
covariance matrix including the effects of aggregate shocks, calculated
by evaluating equation (26) at the empirical estimates (in rows marked
"Fitted"). The fourth and fifth columns report the mean and standard

deviation of the within-city pairwise correlations implied by either the
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observed or fitted ¥, while the last column reports the correlation
between the observed and fitted pairwise correlations. Table 4 is
similar to Table 3, except that rows marked "Data" now refer to the the
residuals from projecting the data on the aggregate shocks, while rows
marked "Fitted" now refer to the fitted model excluding the estimated
effects of aggregate shocks. In both tables, I report statistics for
each city, as well as the average of each statistic across cities.

The main result of Table 3 is that the fitted model including the
effects of aggregate shocks does a reasonably good job matching the
volatility and comovement features of the data. On average, the fitted
model implies an annual standard deviation of city employment growth of
5.03 percent, compared to 5.26 percent using the covariance matrix found
in the data. The model also explains cross-city differences in
employment volatility reasonably well, with San Francisco being a
notable exception. On average, the model predicts a mean pairwise
correlation within cities of 0.163, slightly higher than the true value
of 0.151. The predicted and observed pairwise correlations have a
correlation across pairs of city-industries of 0.602, suggesting that
the fitted model does a good Jjob explaining why some pairs of
city-industries comove more strongly than others.

Turning to Table 4, we find that removing aggregate shocks from
both the data and the fitted model noticeably reduces the goodness of
fit. On the positive side, the model still fits the volatility and mean
correlation features of the data reasonably well, although again the
model does a poor Jjob accounting for employment volatility in San
Francisco. On the negative side, the average correlation between the
pairwise correlations implied by the data and the model falls to 0.211,

so that removing aggregate shocks substantially reduces the model’s
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ability to explain why some pairs of city-industries comove more
strongly than others. Furthermore, the standard deviation across
city-industry pairs of the fitted pairwise correlations is now far below
the corresponding standard deviation in the data. The model without
aggregate shocks thus does a poor job explaining the magnitude of
variation in the degree of comovement found in the data.

Upon closer examination, one reason for this last failure is that
the model without aggregate shocks cannot explain the fact that some
city-industry pairs exhibit negative short-run comovement. Averaging
over the seven sample cities, 34 percent of within-city pairwise
correlations are negative in the raw data; this fraction rises to 39
percent for the residuals from projecting the data on aggregate shocks.
The fitted model including the effects of aggregate shocks generates
negative pairwise correlations 18 percent of the time; however, the
fitted model -excluding aggregate shocks generates no negative
correlations among city-industries, which follows directly from the fact
that all four B parameters have positive point estimates, while the
variance parameters o and £ are restricted to be positive. Future
research should attempt to identify reasons why industries might
interact negatively over the business cycle, and add variables measuring
the potential strength of such negative interaction to the empirical

specification used in this paper and in Shea (1995).

Variance Decomposition

The estimates reported in Table 2 suggest that symmetric and
asymmetric spillovers are statistically significant sources of local
comovement. This does not necessarily mean, however, that local

spillovers are economically important. Table 5 addresses the economic
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importance of local spillovers by decomposing the fitted model's
implications for city-level employment volatility into components due to
aggregate shocks, local spillovers, and other factors.

The first row of Table 5 shows the fraction of the fitted model’s
implied city employment variance due to aggregate shocks. The numerator
of this fraction is calculated using the variance approximation in
equation (24), setting ¥ equal to é * & * é’, where é is the estimated
impact of aggregate shocks on city-industries and ; is the estimated
covariance matrix of aggregate shocks. The second row shows the
fraction of fitted variance due to shock variances alone; this is
computed using equation (24), setting ¥ equal to é. The third row shows
the fraction of volatility due to cost linkages; this is computed by

defining A as ID + Bl * COST, evaluating (24) setting ¥ equal to

COST

-~

;COST * é * ACOST” and subtracting portion of the resulting volatility
due to the shock variances. The remaining rows present the fraction of
volatility due to demand linkages, symmetric 1local spillovers,
asymmetric local spillovers, and interactions among COST, DEM and SIZE.
Variance decompositions are reported for each city; the final column
reports averages over the sample cities.

The results of Table 5 suggest that both aggregate shocks and local
spillovers are important sources of city-level employment volatility.
Aggregate shocks account for between 23 and 69 percent of local
employment volatility, with an average share of 42.8 percent. Local
spillovers explain 32.1 percent of city employment volatility on
average, with symmetric spillovers contributing somewhat more to
volatility than asymmetric spillovers. Input-output linkages have

barely any significance to local volatility. Local common shocks are

not important to local volatility on average, although they do appear to
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be somewhat important for Los Angeles and Boston.

I should point out that these variance decompositions may either
understate or overstate the role of aggregate shocks relative to local
spillovers in generating local volatility. On the one hand, there may
be important aggregate shocks other than oil prices and monetary policy;
omitting these shocks would tend to minimize the importance of aggregate
factors. On the other hand, recall that I estimate the impact of
aggregate shocks by regressing employment growth on a constant, oil
price growth, and monetary policy city-industry by city-industry; local
spillovers are assumed to affect only the residuals from these
regressions. This procedure 1is 1likely to overstate the role of
aggregate shocks, for two reasons. First, there are only ten
observations on employment growth for each city-industry; with so few
degrees of freedom, the projection of the data on the aggregate shocks
is likely to produce a high sample R-squared even for city-industries
that are unaffected by aggregate shocks in the population.

Second, my procedure assigns all comovement due to the matrix G to
common shocks, implicitly assuming that 1local spillovers and other
complementarities play no role in transmitting aggregate shocks across
local sectors. This assumption is unlikely to be true. For instance,
suppose monetary policy has a direct impact only on durable goods
industries. If there are symmetric local spillovers, then a monetary
shock that reduces activity in durable industries in a particular city
will also reduce activity in local nondurable industries. My
econometric procedure would assign the decline in both sectors to
aggregate shocks, thus failing to distinguish direct effects from
indirect effects resulting from local spillovers. In Shea (1995), 1

decompose the estimated impact of aggregate shocks into direct effects
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and indirect effects working through complementarities. While I do not
attempt such a decomposition here, [ would point out that in Shea
(1995), I find that less than 10 percent of the total impact of

aggregate shocks is due to direct effects.

TRANSPORT COSTS AND NONTRADED GOODS

The previous results suggest that symmetric and asymmetric local
activity spillovers are significant sources of 1local comovement and
volatility. But exactly what form do these local spillovers take? Why
exactly does the activity of one city-industry depend on the activity of
other local industries? In this section, I explore the possibility that
local spillovers are due to high transport costs that 1limit the
intercity tradeability of certain goods.

Transport costs and nontradeability cculd affect the pattern of
local comovement in two ways. First, input-output linkages are likely
to bind more strongly at the local level if the upstream input is
nontradeable. Consider, for instance, the link between the Chicago tire
industry and the Chicago automobile industry. If tires are easy to
transport across cities, then an adverse supply shock to the Chicago
tire industry need not have a large impact on the Chicago auto industry,
since Chicago autos can easily substitute into tires from other cities.
Similarly, an adverse demand shock to Chicago autos need not have a
large impact on Chicago tires, since Chicago tires can be sold to auto
manufacturers in other cities. On the other hand, if tires are costly
to transport, then Chicago autos will buy mostly local tires, while
Chicago tires will be sold mostly to local autos; thus, shocks to
Chicago tires will have a large effect on Chicago autos, and vice-versa.

Given the pattern of factor demand linkages measured at the national
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level, comovement between a pair of local industries should therefore
increase as the upstream input becomes less tradeable. Moreover,
tradeability should also affect industry location in the long run. As
tires become less tradeable, the auto and tire industries should locate
in the same cities in order to minimize transport costs. Controlling
for national input-output linkages, then, transport costs should cause
the pattern of comovement within a particular city to be related to the
pattern of industry clustering in other cities, since the latter
contains information about tradeability not included in the input-output
data. Transport costs and nontradeability thus can potentially explain
the evidence for asymmetric local spillovers reported above.

Second, nontraded consumer goods are likely to respond strongly to
the overall 1level of 1local tradeables activity in the presence of
aggregate demand spillovers. Suppose that the Detroit auto industry
experiences an increase in sales, increasing the take-home pay of its
workers. To the extent that autos are tradeable, so that the increase
in auto sales comes mostly from other cities, then the increase in local
income should exceed the increase in local car spending, and on net the
favorable shock to autos should increase Detroit’'s aggregate demand for
other consumer goods. For tradeable consumer goods, the impact of this
increase in aggregate demand will be dispersed over many cities; for
nontraded consumer goods, however, the shock will be concentrated
locally. Furthermore, shocks to the auto industry will have a larger
effect on Detroit’'s demand for nontraded consumer goods than shocks to
the clothing industry, since autos are more important to Detroit’'s
economy than clothing. Transport costs and nontradeability can thus
potentially explain the evidence for symmetric local activity spillovers

reported above. Notice, however, that if local activity spillovers
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take the form of aggregate external economies of scale (as in the model
presented above), rather than aggregate demand linkages, then there is
no obvious reason to expect a relationship between an industry’s
tradeability and its’ responsiveness to local activity.

To 1investigate the importance of transport costs and nontraded
goods for local comovement, [ use data from Table 3 of the 1977 Census
of Transportation’s Commodity Transportation Survey Summary, which
provides tons shipped broken down by length of shipment for
disaggregated manufacturing industries, This table groups industries
according to the Transportation Commodity Classification (TCC), rather
than the Standard Industrial Classification (SIC). Fortunately, the two
classifications are comparable for most of my sample industries; details
on the conversion from the TCC to the SIC are presented in the appendix.
I measure industry i’s nontradeability as LOCALi, equal to industry tons
shipped fewer than 100 miles divided by total industry tons shipped.10
LOCAL measures the fraction of an industry's demand that comes from
local sources; a high value of LOCAL suggests high transport costs and
low tradeability. The appendix 1lists LOCAL for all industries.
Industries for which local demand is paramount include newspapers (92.6
percent of demand generated locally) and concrete (89.7 percent);
industries for which local demand is unimportant include communication
equipment (17.4 percent) and measuring instruments (8.8 percent).

I allow transport costs to affect comovement in «cities by

respecifying my model of local fluctuations as follows:

* »
L + G a, + A et' vy (32)

Yt

A = 1D + Bl * COST + B, * DEM + 33 * SIZE (33)

2

+ BS * COSTLO + B, * DEMLO + B7 * SIZELO

6
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Q = B4 * CITY + « * COMMON (34)

+ BS * CITYLO + 39 * LOCAL

where COSTLO, DEMLO, SIZELO, CITYLO, and LOCAL are N-by-N matrices
with zero diagonals, and where all other matrices and vectors are the
same as in the baseline specification.

The specification (32)-(34) allows an industry’s tradeability to
affect its comovement with other local industries, both on its own and
in interaction with other sources of local comovement. COSTLO and DEMLO
allow for interaction between tradeability and input-output linkages.
The [i,k] element of COSTLO equals LOCALk * COST{i,kl, while the [i, k]l
element of DEMLO equals LOCALi * DEM[i,k]. Recall that COSTI[i,kl
measures how strongly shocks propagate from upstream supplier k to
downstream user i, while DEM[i,k] measures how strongly shocks propagate
from downstream user k to upstream supplier i. The specification of
COSTLO and DEMLO thus allows the strength of local input-output linkages
to depend on upstream input tradeability; the discussion above suggests
that BS and 36 are likely to be positive.

SIZELO, meanwhile, allows nontraded consumer goods industries to
respond strongly to local tradeables activity. The [i,k] element of
SIZELO equals FINAL.1 * LOCALi * (1 - LOCALk] * SIZE[i,k], where FINAL,1
is the fraction of industry i's output devoted to consumption; FINAL is
measured using 1977 national input-output data. If B7 is positive, this
specification implies that the strength of aggregate demand spillovers
from local industry k to local industry i increases with four factors:
(1) industry k’s size; (2) the extent to which k is tradeable, so that
an increase in k’'s sales on net raises local demand for other consumer
goods; (3) the extent to which i is a consumer good; and (4) the extent

to which i’s demand is generated locally.11
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Finally, the [i,k] element of LOCAL equals LOCALi * LOCALk, while
the [i,k] element of CITYLO equals LOCAL[i,k] * CITY[i,k]. LOCAL thus
allows tradeability to influence local comovement in a generic way,
without any interaction with other local linkages, while CITYLO allows
the impact of tradeability to depend on the extent to which i and k
cluster together 1in space. The discussion above did not suggest any
obvious reason to expect 38 or 39 to be positive; 1 include LOCAL and
CITYLO simply to capture any interactions between transport costs,
spatial clustering and local comovement that do not fit into either of
the two transport cost stories outlined above.

Table 6 presents results from estimating equations (32)-(34). If
transport costs and locally traded goods were responsible for local
spillovers, we would expect to find ©positive and significant
coefficients on COSTLO, DEMLO and SIZELO, as well as perhaps LOCAL and
CITYLO. We would also expect that controlling for transport costs and
tradeability would drive the coefficients on SIZE and CITY towards zero,
perhaps rendering them insignificant.

Viewed in the light of these criteria, the results in Table 6 are
disappointing. The coefficient on SIZELO is negative and significant,
implying that the level of local activity has stronger impacts on traded
than on nontraded local goods; this is the opposite of what one would
expect under local demand spillovers. Furthermore, the coefficients on
COSTLO and DEMLO are insignificant and of the wrong sign, suggesting
that nontraded inputs do not have especially strong links with local
downstream users. The coefficient on LOCAL is negative and significant,
while the coefficient on CITYLO is positive and significant, implying
that the relationship between clustering and comovement is stronger for

pairs of nontraded industries than for traded industries. While this
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last result is intriguing, it is also puzzling, since the transport cost
stories outlined above did not suggest any additional interactions
between spatial clustering, comovement and tradeability beyond those
captured by COSTLO, DEMLO and SIZELO. Including the nontradeability
variables does not eliminate the evidence for generic local spillovers
found in the baseline specification; while the coefficient on CITY is
closer to zero and less significant than in the baseline specification,
the coefficient on SIZE is larger and more significant. Furthermore,
variance decompositions similar to those reported in Table 5 (available
from the author) show that the nontradeability variables collectively
account for a negative share of local employment variance, suggesting
that transport costs act to reduce rather than increase local
volatility. All in all, local spillovers do not appear to arise because

of transport costs and nontraded goods.
CONCLUSION

This paper has examined the pattern of short-run comovement among
387 manufacturing industries located in seven large US cities. I have
found that both symmetric and asymmetric spillovers are significant
sources of local comovement, and that local spillovers are responsible
for roughly one-third of local manufacturing employment volatility. I
have attempted to put some structure on the elusive concept of "local
synergy" by investigating the role of transport costs and limited
intercity tradeability of certain goods in generating local comovement.
But this attempt has had little success; local spillovers apparently
take the form of some other, unidentified local synergy.

Future work should explore alternative explanations for the local

spillovers found in this paper. For instance, the findings of this
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paper might be due to the interindustry pattern of conglomeration. A
parent company with subsidiaries in several industries might prefer to
keep its operations geographically concentrated to save on
administrative costs. Moreover, establishments belonging to the same
parent company might comove more strongly than similar but
unconglomerated establishments, if there are company-specific shocks or
if establishment-level shocks propagate within companies due to
cash-flow constraints on investment. Thus, industries that are linked
by conglomeration might move together in both space and in time, even
after controlling for input-output 1linkages. Alternative explanations
such as these should be easy to incorporate into the empirical framework
used in this paper, provided the implied interindustry linkages can be

expressed as functions of observable variables.
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APPENDIX
Maximum Likelihood Estimation

Suppose first that we have data for Chicago only. The log likelihood

function for 10 observations on the vector ; is given by

10
log L = -(10 * 125)/2 - (10/2) * logl¥| - (1/2) § (7," ¥ '

v, ),
t=1 t

where ¥ = A * £ * A’ + Q. From Greene (1990, p. 517-18), one can
rewrite the log likelihood function as

log L = -(10 * 126)/2 - (10/2) * logl¥l =~ (10/2) * tr(¥ ls),

where tr denotes trace, and where

10 N
—-— E 3 7
S = (17100 T y, *y,
t=1
is the moment matrix of the data. From Greene (1990, p. 518), one
can show that
~ . -1 o B |
8(log L)/d¥ = B = -(10/2) (v - ¥ S v o]

Furthermore, one can show that in the baseline specification

ai/dB1 = C, = A*Z*COSI" + COST *zZ*A.

It thus follows that

d(log L)/dfi1 = tr(B * Ci);

in other words, the effect of ﬁl on the log likelihood is equal to

the effect of ﬁl on the [1,1] element of ¥ times the effect of the {1,11



element of ¥ on log(L), plus the effect of Bl on the [1,2] element of ¥
times the effect of the [1,2] element of ¥ on log(L), and so on. One can
similarly compute the gradient of 1log(L) with respect to any other
parameter premultiplying an element of the matrix A.

Next, for the variance matrix Z, one can show that

D. = A[.,i]l * A[.,i]",

6‘~P/d2ik i

where A[.,i] is the ith column of A. It follows that the gradient of
the log likelihood with respect to the element [i,i] of the diagonal

matrix £ is given by
8(log L}/dZ,. = tr(B * D!).
ii i

Finally, the gradient of the log likelihood with respect to 64 (or,
analagously, with respect to any parameter premultiplying a matrix of Q)

can easily be seen to equal
8(log L)/dB4 = tr(B * CITY').

Now suppose we have data for seven cities. I assume that the

parameters B are the same over all cities, while a and the elements of Z

are different across cities. The matrices COST, DEM and so on are
city-specific, as described below. I estimate these parameters by
maximizing
7
Vv = Y loglL,,
=Y

where log Lj is the log likelihood for city j, defined as above.

The gradient of V with respect to B1 is



6V/6[31 = 8(log Lj)/aﬁl,

"~

j=1

where the terms inside the summation are as above, with B and C1
varying across cities. A similar holds for the gradient of V with respect
to any of the B parameters. Since the «’s and the of ¥ vary across

cities, the gradient of V with respect to an a or an element of Z for a

given city j is exactly as before, without any need to sum over cities.
Data Matrices

I construct COST and DEM for each city using data from the 1977
detailed US input-output study. To begin with, I construct a 125-by-125
matrix COSTUS as follows. First, I construct a 157-by-157 matrix B, whose
[k,i] element equals the share of industry i’s cost directly attributable
to industry k. I construct B from raw input-output data using methods
described in Shea (1991 and 1993); in the terminology introduced in these
papers, Blk,i] is the Direct Cost Share of k in i. As in this previous
work, Blk,i] includes both i’s purchases of k as a material input and an
imputed service flow from i’s use of k as capital. The 157 industries
consist of the 125 manufacturing industries 1listed below plus 32
nonmanufacturing industries listed in the appendix to Shea (1995). Next,

I construct a 157-by-157 "total requirements” matrix TOTAL as follows:

TOTAL = ([I —B]'l)'.

where [ 1is a 157-by-157 identity matrix. I construct COSTUS by
taking the rows and columns of TOTAL corresponding to the 125 sample
manufacturing industries. For a particular city j, then, the matrix COST

equals the rows and columns of COSTUS corresponding to the industries for



which data is available for city j; for Los Angeles, for instance, COST is
a 102-by-102 matrix, while for Philadelphia COST is a 30-by-30 matrix.

Given COST for city j, I construct DEM for city j as follows:

N
DEM[i,k] = (COSTlk,i] * ak] / ¥ (COSTlz,il * az],
i=1

where N is the number of sample industries for city j, and where a,
is industry k's final demand in 1977, defined as the sum of direct
purchases from consumption, government, the 32 nonmanufacturing
industries, and any manufacturing industries not included in the sample
for city j due to data unavailability.

The matrix CITY for city j is constructed by forming the 125-by-125
matrix CITYUS following equation (29) in the text, and then taking the
rows and columns of CITYUS corresponding to the industries for which data

is available for city j.

The matrices SIZE, COSTLO, DEMLO, SIZELO, LOCAL, and CITYLO are

constructed as described in the text.

Converting from the TCC to the SIC

I estimate industry tradeability using data from Table 3 of the 1977
Census of Transportation Commodity Transportation Survey Summary, which
uses the Transport Commodity Classification (TCC) rather than the Standard
Industrial Classification (SIC). In converting from the TCC to the SIC, I
assume that data for a particular TCC industry applies to the

identically-numbered SIC industry, with the following exceptions:

TCC industries 2031 and 2036 (fish products) are assigned to SIC 209.



TCC industries 206 and 207 (sugar and confectionary products} are
assigned to SIC 206.

TCC industries 2091, 2092, 2093, 2094 and 2096 (oils and shortening)
are assigned to SIC 207.

TCC industry 24992 (skids, pallets and platforms) is assigned to SIC
244.

TCC industries 2433 and 37911 (wood buildings and mobile homes) are
assigned to SIC 245.

TCC industry 251 {(wood and metal furniture) is assumed to apply to
both SIC 251 and SIC 252.

TCC industries 311 and 312 are assigned to SIC 311.

TCC industry 316 (luggage, handbags and personal goods) is assumed to
apply to both SIC 316 and SIC 317.

TCC industries 33911 and 33921 (metal forgings) are assigned SIC 346.

TCC industry 3491 (metal containers) is assigned to SIC 341.

TCC industries 348 and 349 (wire and miscellaneous metal products)
are assigned to SIC 349.

TCC industry 3611 (electric measuring instruments) is assigned to SIC
382.

There are no TCC industries comparable to SIC industries 275, 334,
347 or 348. Table 9 of the Commodity Transportation Survey Summary,
however, does include tons and ton-miles shipped for all three-digit SIC
industries, so that I can compute mean distance shipped (ton-miles divided
by tons) for any three-digit industry. 1 therefore set LOCAL for SIC 275
equal to LOCAL for SIC 274 divided by 1.28, which is the ratio of mean
distance shipped for SIC 275 to mean distance shipped for SIC 274 (I thus

assume that a high value of mean distance shipped corresponds to higher



tradeability and thus a lower value for LOCAL). Analagously, I set LOCAL
for SIC 334 equal to LOCAL for SIC 333 divided by 0.46; I set LOCAL for
SIC 347 equal to LOCAL for SIC 346 divided by 0.51, and LOCAL for SIC 348

equal to LOCAL for SIC 346 divided by 1.13.

Sample Manufacturing Industries

The table below 1lists the 125 potential sample manufacturing
industries for each city, and indicates (with an asterik) which industries
have data available for each city. Cities are abbreviated as follows:
New York is NY; Los Angeles is LA; Chicago is CH; Philadelphia is PH;
Detroit is DE; San Francisco is SF; and Boston is BN. The final column,
LOCAL, shows the share of each industry’'s total tons shipped that is
shipped less than 100 miles.

NY LA CH PH DE SF BN LOCAL
SIC 201: Meat Products * * * * * 0.331
SIC 202: Dairy Products * * * * 0.633
SIC 203: Canned Fruits & Vegetables * * * 0.220
SIC 204: Grain Mill Products * * * 0.468
SIC 205: Bakery Products * * * * * * * 0.520
SIC 206: Sugar & Confectionary * * 0.305
SIC 207: Fats and Oils * * 0.346
SIC 208: Beverages * * * 0.550
SIC 209: Miscellaneous Food * * * * 0.729
SIC 21: Tobacco Manufactures 0.248
SIC 221-3 & 226: Broadwoven Fabrics * * 0.321
SIC 224: Narrow Fabrics * 0. 407
SIC 225: Knitting Mills * * * * 0.430
SIC 227: Floor Covering Mills * * 0.282
SIC 228: Yarn and Thread Mills 0.347
SIC 229: Miscellaneous Textiles * * 0.263
SIC 23: Clothing * * * * * 0.339
SIC 241: Logging Camps & Contractors 0.705
SIC 242: Sawmills & Planing Mills 0.350
SIC 243: Millwork and Plywood * * * * * * * 0.345
SIC 244: Wood Containers * 0.510
SIC 245: Wood Buildings & Mobile Homes * 0.354
SIC 249: Miscellaneous Wood Products * * * * 0.294
SIC 251: Household Furniture * * * * * 0.146
SIC 252: Office Furniture * 0.146
SIC 253: Public Bullding Furniture * 0.172
SIC 254: Office Fixtures * * 0.293
SIC 259: Miscellaneous Furniture * 0.293
SIC 261: Pulp Mills 0.328
SIC 262: Paper Mills 0.157



SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
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SIC
SIC
SIC
SIC
SIC
SIC
SIC
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SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
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SIC
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SIC
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SIC

263:
264
265:
266:
271:
272:
273:
274:
275:
276:
277:
278:
279:
281 &
282:
283:
284 :
285
287:
289:
291:
295:
299
301:
302:
303:
304:
306:
307:
311:
313:
314:
315:
316:
317:
319:
321-3:
324:
325:
326:
327:
328:
329:
331:
332:
333:
334:
335:
336:
339:
341:

Paperboard Mills

Converted Paper Products

Paperboard Containers

Building Paper & Board

Newspapers

Periodicals

Books

Miscellaneous Publishing

Commercial Printing

Manifold Business Forms

Greeting Card Publishing

Blankbooks & Bookbinding

Printing Trade Services

286: Industrial Chemicals

Synthetic Materials

Drugs

Soaps & Toiletries

Paints

Agricultural Chemicals

Miscellaneous Chemicals

Petroleum Refining

Paving & Roofing Materials

Miscellaneous Petroleum

Tires & Inner Tubes

Rubber & Plastics Footwear

Reclaimed Rubber

Rubber & Plastic Hose

Miscellaneous Rubber

Miscellaneous Plastics

Leather Tanning & Finishing

Boot & Shoe Cut Stock

Footwear, Except Rubber

Leather Gloves & Mittens

Luggage

Personal Leather Goods

Miscellaneous Leather Goods
Glass Products

Cement, Hydraulic

Structural Clay Products

Pottery & Related Products

Concrete, Gypsum & Plaster

Cut Stone & Stone Products

Misc. Nonmetallic Minerals

Blast Furnaces & Steel Mills

Iron and Steel Foundries
Primary Nonferrous Metals
Secondary Nonferrous Metals
Nonferrous Metal Mills
Nonferrous Foundries

Misc. Primary Metal Products

Metal Cans & Containers

NY

LA

CH PH

DE

SF

BN

LOCAL
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*
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.210
.239
.612
. 113
. 926
.161
.343
.424
.331
.450
.591
.334
.529
.421
.182
.226
. 308
277
.471
.337
.511
. 849
.658
.117
.209
.196
.094
.323
.270
.317
.334
.302
.071
.237
. 327
.219
. 356
.598
.491
.172
.897
. 849
. 555
.450
.418
.305
.662
.204
.431
.650
.516
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SIC
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342:
343:
344
345:
346:
347:
348:
349:;
351:
352:
353:
354:
355:
356:
357:
358:
359:
361:
362:
363:
364:
365:
366:
367:
369:
371:

372

373:
374:
375:
379:
381:
382:
383:
384:
385:
386:
387:
391:
393:
394:
395:
396:
399:

Cutlery, Tools & Hardware
Plumbing & Heating Equipment
Fabricated Structural Metal
Screw Machine Products

Metal Forgings & Stampings
Coating & Engraving Services
Ordnance & Accessories

Misc. Fabricated Metal
Engines and Turbines

Farm & Garden Machinery
Construction Machinery
Metalworking Machinery
Special Industry Machinery
General Industrial Machinery
Office & Computing Machines
Service Industry Machinery
Misc. Nonelectric Machinery
Electric Distribution
Electric Industrial Apparatus
Household Appliances
Electric Lighting & Wiring
Radio & TV Equipment
Communication Equipment
Electronic Components

Misc. Electrical Machinery
Motor Vehicles

376: Aerospace Equipment
Ships and Boats

Railroad Equipment
Motorcycles, Bicycles & Parts
Misc. Transport Equipment
Scientific Instruments
Measuring Instruments
Optical Instruments

Medical Instruments
Opthalmic Goods
Photographic Equipment
Watches & Clocks

Jewelry & Silverware
Musical Instruments

Toys & Sporting Goods
Office Supplies

Clothing Accessories

Other Misc. Manufacturing

NY

I
>

CH PH

DE

SF

BN

LOCAL

L IR SR B

* * O W
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.223
. 151
. 364
.304
.296
.581
.262
.434
L2717
.270
. 183
.383
.176
.235
.198
. 176
.618
.142
.123
.315
.195
.105
.174
.289
.240
. 113
.187
. 316
.299
.097
.246
.128
.088
.049
. 107
.125
.246
.294
.244
.098
.203
.183
.231
.254
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FOOTNOTES

1Note that, because 1 have only ten years of data, the estimated
125-by-125 matrix CORREMP will not be of full rank. This implies that,
in the sample, the estimated elements of CORREMP will be correlated
among themselves, implying that OLS standard errors will not be correct
in equation (4); unfortunately, there is no obvious way of correcting
the standard errors in this case. The results in equation (4) thus
should not be taken too seriously; they are meant only to illustrate the
relationship between temporal and spatial correlation in a simple

fashion.

2Neumann and Topel (1991) find that <cities with a poorly
diversified industrial base do indeed have higher unemployment rates on

average than cities with a well-diversified industrial base.

3The data were provided to me by Bill Miracky, who in turn obtained

the data from the Center for Governmental Studies at Northern Illinois

University.

4The Miracky-Northern Illinois data impute nondisclosures using the
algorithm proposed by Gardocki and Baj (1985), who combine information
on the number of county-industry establishments in each size range with
state-level information on the average number of employees per
establishment for each range in each industry. I use this imputed data
to compute the series EMP2 described in the text, as well as the

measure CITCORR described in the introduction and the matrix CITYCOV



described later in the text.

SFor a given city, this fraction is defined as the eleven-year
average of EMP2 summed over industries included in the sample, divided
by the eleven-year average of EMP2 summed over all 125 manufacturing

industries.

6In terms of previous terminology, aggregate employment for a
particular city at time t is defined as the sum of EMP1 over all sample
industries for that city at time t. Meanwhile, the ith element of SHARE
for a particular city equals the eleven-year average of EMP2 for
industry i in that city, divided by the eleven-year average of EMP2
summed over all sample industries for that cities. For each city, the

elements of SHARE thus sum to one.

7In terms of previous terminology, SIZE[i,k] for Chicago is defined
as the eleven-year average of EMP2 for industry k in Chicago, divided by
the eleven-year average of EMP2 summed over all 125
potential sample manufacturing industries in Chicago. Notice that rows
of SIZE do not sum to one; they sum instead to the third column

("Coverage") in Table 1.

81n terms of previous terminology, SHAREji is defined as the
eleven-year average of EMPZ2 for industry i in city j, divided by the

eleven-year average of EMP2 for industry i summed over the 93 cities not

included in the sample.



9In Shea (1995), I estimate a model using national employment for
disaggregated manufacturing industries over the period 1958-1986,
controlling for the effects of oil prices and monetary peolicy as in this
paper. [ estimate a coefficient on COST of 0.325, and a coefficient on

DEM of 0.857; both estimates are statistically significant.

10Experiments defining LOCAL as the fraction of industry tons

shipped less than 200 miles yielded qualitatively similar results.

11Experiments defining SIZELO{i,k] excluding the terms FINALi

and/or (1 - LOCALk) yielded qualitatively similar results.



TABLE 1

Sample Composition

---Employment Volatility---

Average % Due To
City Sectors Coverage Corr Actual Implied Comovement
New York 50 0.717 0.224 3.32% 3.32% 86.6
Los Angeles 102 0.983 0.150 4,53% 4.66% 88.4
Chicago 79 0.901 0.107 4.30% 4.22% 88.3
Philadelphia 30 0.425 0.079 3.70% 3.81% 72.6
Detroit 39 0.463 0.168 7.86% 7.87% 80.8
San Francisco 45 0.752 0.155 6.94% 7.11% 74.9
Boston 42 0.716 0.172 5.57% 5.82% 75.1

NOTES: This table presents descriptive statistics for the sample. The
second column reports the number of sample industries for each city, while
the third column shows the fraction of city manufacturing employment
accounted for by the sample industries. The third column reports the
average within-city pairwise correlation among sample city-industries.
The fourth column shows the actual standard deviation of annual employment
growth for the city-level aggregate defined by summing employment over
sample industries, while the fifth column reports the standard deviation
implied by equation (24) in the text, using the observed covariance matrix
of city-industry employment growth. The final column shows the fraction
of the city-level variance implied by equation (24) that can be attributed
to comovement among city-industries. See the text for additional
information.



TABLE 2

Baseline Specification

Yy = B % G *a + A*e + v

t t t
A = ID + B1 * COST + BZ * DEM + B3 * SIZE
Var(vt) = Q = 64 * CITY + o *™ COMMON
Bi BZ B3 B4
0. 200 0.349 0.892 1.671

**(0.100) **(0.142) **(0.246) **(0.321)

“Ny *LA *cH *PH *DE *sp *BN

5.1e-8 0.032 1.3e-8 1.5e-9 0.027 1.6e-7 0.090
(5.5e-5) (0.039) (2.9e-5) (7.0e-6) (0.047) (1.6e-4) (0.074)

NOTES: this table presents maximum likelihood estimates of the 8 and «
parameters for the baseline specification. Estimates of Z are omitted
to save space. Standard errors are in parentheses and are estimated by
numerical computation of the Hessian matrix at the maximum likelihood
estimates. A (**) denotes significance at 5 percent. See text for
further details.



TABLE 3

Goodness of Fit: Including Effects of Aggregate Shocks

----Pairwise Correlations——---

Implied
City Case Volatility Mean Stan Dev  Corr w/Data
Average Over Data 5.26% 0.151 0.384 1
Sample Cities Fitted 5.03% 0.163  0.254 0.602
New York Data 3.32% 0.224 0.403 1
Fitted 3.20% 0.202 0.272 0.597
Los Angeles Data 4.66% 0.150 0.377 1
Fitted 4.53% 0.154 0.245 0.561
Chicago Data 4.21% 0.107 0.384 1
Fitted 4.36% 0.143 0.258 0.671
Philadelphia Data 3.81% 0.079 0.352 1
Fitted 4.19% 0.129 0.201 0.499
Detroit Data 7.86% 0.168 0.415 1
Fitted 7.46% 0.177 0.319 0.807
San Francisco Data 7.11% 0.155 0.369 1
Fitted 5.23% 0.134 0.212 0.546
Boston Data 5.82% 0.172 0.393 1
Fitted 6.27% 0.204 0.274 0.536

NOTES: This table presents evidence on the fit of the baseline model.
Rows marked "Data" use the covariance matrix of the raw data, while rows
marked "Fitted" use the covariance matrix of the fitted model, including
the effects of aggregate shocks. The second column reports the standard
deviation of city employment implied by equation (24) in the text. The
next two columns show the mean and standard deviation of within-city
pairwise correlations, while the final column reports the correlation
between the fitted and observed pairwise correlations. See the text for
additional information.



TABLE 4

Goodness of Fit: Excluding Aggregate Shocks

----Pairwise Correlations-—---

Implied
City Case Volatility Mean Stan Dev Corr w/Data
Average Over Data 4.05% 0.113 0.410 1
Sample Cities Fitted 3.74% 0.133  0.157 0.211
New York Data 2.61% 0.175 0.415 1
Fitted 2.45% 0.155 0.185 0.249
Los Angeles Data 3.84% 0.131 0.418 1
Fitted 3.67% 0.141 0.170 0.227
Chicago Data 2.67% 0.051 0.403 1
Fitted 2.89% 0.102 0.126 0.232
Philadelphia Data 2.81% 0.026 0.390 1
Fitted 2.99% 0.095 0.111 0.070
Detroit Data 4.89% 0.108 0. 406 1
Fitted 4.20% 0.114 0.137 0.277
San Francisco Data 6.56% 0.137 0. 401 1
Fitted 4,467 0.114 0.135 0.238
Boston Data 4.97% 0.162 0.435 1
Fitted 5.49% 0.209 0.238 0.184

NOTES: This table presents evidence on the fit of the baseline model.
Rows marked "Data" use the covariance matrix of the residuals from
regressing the data on aggregate shocks, while rows marked "Fitted" use
the covariance matrix of the fitted model, excluding the effects of
aggregate shocks. The second column reports the standard deviation of
city employment implied by equation (24) in the text. The next two
columns show the mean and standard deviation of within-city pairwise
correlations, while the final column reports the correlation between the
fitted and observed pairwise correlations. See the text for additional

information.



TABLE 5

Variance Decomposition, Baseline Specification

-% of Local Employment Volatility Due to Component--—

Component NY LA CH PH DE SF BN Avg
Macro Shocks 41.4 34.2 56.1 49.1 68.2 27.3 23.2 42.8
Diagonal Terms 10.0 8.9 6.2 16.0 9.1 21.8 16.2 12.6
Cost Links (COST) 1.6 2.4 2.1 2.1 0.9 1.7 1.6 1.8

Demand Links (DEM) 1.6 2.3 3.0 2.5 1.7 3.4 2.6 2.3

Symmetric Local 15.3 20.5 13.2 13.5 1.7 32.0 24.5 18.1
Spillovers (SIZE)

Asymmetric Local 28.2 13.3 15.9 15.1 6.9 10.7 7.6 14.0
Spillovers (CITY)

Local Common 0.0 14.8 0.0 0.0 4.5 0.0 21.8 5.9
Shocks (COMMON)

Interactions 1.9 3.6 3.3 1.7 1.0 3.1 2.5 2.4

NOTES: This table decomposes the city-level employment variance implied
by the fitted model into parts due to aggregate shocks, symmetric and
asymmetric local spillovers, and other elements. The second through
eighth columns present the decomposition for individual cities; the final
column averages over sample cities. See the text for further information.



TABLE 6

Transport Costs and Nontraded Goods

= »* *
Yy u + G a, + A €y + Vi
A = ID + Bl * COST + BZ * DEM + 83 * SIZE
+ Bs * COSTLO + 86 * DEMLO + 37 * SIZELO
Q = 84 * CITY + « * COMMON + 88 * CITYLO + 89 * LOCAL
Bl BZ 33 34
0.193 0.342 1.881 0.883

(0.205) (0.253) **(0.268) **(0.305)

Bs Be By Bg By

-0.323 -0.008 -5.599 5.017 -0.084
(0.054) (0.544) **(0.735) **(0.907) **(0.029)

“Ny “LA “ch “py “pE “sp %N

3.7e-8 0.009 1.4e-10 8.9%e-16 8.3e-10 0.013 0.048
(3.8e-5) (0.013) (1.60e-6) (3.60e-9) (4.90e-6) (0.019) (0.037)

NOTES: this table presents maximum likelihood estimates of the B8 and «
parameters for the specification allowing for nontradeability. Estimates
of ¥ are omitted to save space. Standard errors are in parentheses and
are estimated by numerical computation of the Hessian matrix at the
maximum likelihood estimates. A (**) denotes significance at 5 percent.
See text for further details.



