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1 Introduction

As with many information-technology industries, innovation was rampant in the mainframe
computer industry of the 1980s. Broadly speaking, there was a large decline in price per unit of
performance across a wide set of computer systems and components, and vendors developed
many new computing functions and capabilities. The market experienced remarkable growth,
turbulence, and advance associated with hardware architecture redesign, software development,
system customization, and learning. In particular, the diffusion and development of innovations
associated with "on-line transaction processing" extended the functions of existing large
computing facilities, enabling the development of many new goods and new services.

The open debate is about the rate and unevenness of computer users' benefits from these
innovations. This paper advances our understanding of this topic by measuring the economic
benefits that accrued to computer buyers from technological innovation in the commercial
mainframe computer industry in the 1980s. We model innovations as either a lower price and/or
an "extension" of existing capabilities into a new range. Our study estimates the buyer surplus
generated from these two types of technical innovation. This exercise follows in the spirit of
Trajtenberg [1989], who used a different econometric approach to measure buyer benefits from
technical change in CT scanners in the 1970s.

We develop and estimate a micro-econometric model of demand for product features
embodied in a computer system. This model is adapted from Rosen [1974], Bartik[1989], and
Epple [1989]. Its key feature is that buyers demand a system's processing speed, or memory, and
potentially other characteristics. The model highlights buyers' benefits from technical change when
innovation decreases the price of characteristics or increases the range of available characteristics.
This model's principal strength is that it measures the benefits from technical change in a standard
price-theoretic treatment, and suits our data on individual buyers, as described below. We can also
easily match the model to standard methods for constructing cost-of-living indexes for measuring
buyer benefits from technical change (e.g., Fisher and Griliches [1995]), which provides a simple
summary of welfare benefits to users.

We bring rich data to bear on the question of how much computer users benefitted from

technical change. We study 21,268 acquisitions of mainframe computers from 1985 to 1991, more



than half of all mainframe acquisitions in the U.S. This is as comprehensive a dataset as used in
any previous study of large computer buyer demand.! We observe characteristics of the
purchases being made and the characteristics of the firms making those purchases. Most
published work on the computing market only has data on the set of systems available for sale.
Our more detailed data allows us to directly measure the demand for product features at the level
of the individual user, construct user-level cost of living indexes, and add up across users to
estimate the totoal benefits received market-wide from technological change.

Our indexes and analysis suggests why some mainframe computer buyers benefit greatly
from innovation and why others do not. The most important factor is a buyer's elasticity of
demand for features of a product, broadly constru_ed. If a buyer's marginal utility in processing
speed, for example, does not diminish rapidly, then‘ declines in price per unit of speed will induce
large changes in behavior. Thus, we investigate heterogeneity in demand elasticities. Second is
whether buyers take advantage of newly created possibilities associated with increasing the range
of products available. For example, if a buyer has an elastic demand for more processor speed, a
price decline may induce a large increase in desired processor speed, potentially outside the range
of processor speed embodied in previously available products. This type of behavior highlights the
importance of technical change that extends product capabilities; indeed, it was very important to
Trajtenberg's population of CT-scanner buyers. Thus, we also ask: if lower prices induce many
buyers to buy more capacity, how many buyers benefitted from recent increases in the product
space?

Our main finding is that our utility-based cost-of-living index declines rapidly
(approximately 10-15 percent per year).? By any historical standard for innovation, this rate is
rarely, if ever, equalled. Second, and perhaps more interesting, our estimates contrast with the

rate of change in quality adjusted prices in mainframe computers (approximately 25-30 percent

1 Buyer-level data has recently become available. Other studies making use of data from Computer Intelligence
Corporations' surveys, which is the source of this paper’s data, include Bresnahan and Greenstein [1994], Bresnahan,
Greenstein, and Ito [1995], Brown and Greenstein [1995], and Ito [1995]. Brynolfsson and Hitt [1994], and Lichtenberg
[1994] use aggregate summaries of this data.

2 We find that weighting by historically later sets of buyers tends to lead to faster rates of decline in our utility-based
index, but not enough to alter our basic conclusion. We explain why in the text.
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per year), which also declines quite rapidly. The primary reason for these difference is that an
overwhelming majority of buyers have inelastic demand. The experience of the majority
outweighs the benefits received by a few (with elastic demand), who took advantage of lower
prices and extensions in the product space. Third, the distribution of buyer's preferences reveals
that most of them could not possibly have placed large value on extensions in the product space.
Large price declines induced increases in purchasing, to be sure. However, most buyers initially
bought a "small" mainframe system in the early 1980s and still bought a small system at the end of
the decade, even with rapidly declining mainframe prices and large extensions in computing
capacity.

These results raise several important issues. First, they imply that hedonic methods, such
as those used by the U.S. Government for computér price indexes (e.g., see Triplett [1989] for
review), may mislead one about the buyer's benefits associated with declines in quality-adjusted
prices. When demand is inelastic, as we estimate, then traditional methods may overestimate
buyer benefits. This is notable because it contrasts with Trajtenberg's study of CT scanners.
Second, our results lead us to speculate that we are observing a new era in mainframe technology.
While the rate of technological change has not slowed, we are finding that the few buyers who
take advantage of innovation to mainframes are not in the majority. Such an observation contrasts
with earlier eras (Greenstein, 1994).

The results in this paper are obtained using a particular functional form - one that allows
easy computation. We are aware that our precise estimates depend on that functional form.
However, experimentation with a wide variety of specifications for this model yielded slightly
different estimates, but not qualitatively different conclusions. We develop these experiments and
this analysis more fully in related work (see Brown [1994], and Brown and Greenstein [1995])
and only partly explore the issue here because it detracts from our main points. In this paper we
provide extensive description of our data set and a variety of estimates; these exercises provide
intuition for why our qualitative conclusions are not sensitive to our specification choice.

This paper adds to a growing literature on the benefits associated with innovation in



computing.’ Some research argues that many buyers did not benefit much either individually or
much in the aggregate,* or do not benefit without costly adjustments.® Other studies argue that
subsets of buyers may have benefitted much over the long run if buyer benefits are calculated with
an appropriate model over the right sample of users.® It is not unfair to say that, so far, the
empirical evidence about the ultimate economic benefits to buyers still points in many inconsistent
directions.

The next section will provide a historical perspective on technological change in
mainframe computers. Section 3 will describe the methodology we will follow to arrive at our
estimated price index. The fourth section will describe the dataset to be used for this analysis.
Our ability to employ our methodology is a result of the detailed dataset we have on the
characteristics and behavior of buyers in the mainframe computer market. This type of data has
not been analyzed for this purpose previously and allows us to move forward in new directions.
The fifth section describes the specific models that we look at and gives the main results of the
paper. We compute our utility-based cost-of-living index along with a traditional hedonic index
and point out the disparity between the two. In section 6 we give concluding remarks and

directions for later research. .

2 Mainframe Computers and Technical Change

We discuss below our understanding of what buyers do with their systems; this
understanding shapes our model of demand, our estimation strategy, and our measure of the
benefits from technical change. This discussion also focuses on the impact of technological
change in the mainframe computing market in the 1980s. This period witnessed a rapid decline in

prices, a dramatic extension of capabilities, and a notable change in the quality of alternatives to

3 For reviews of much of the research results for large systems see Flamm [1987], Dulberger {1989}, Gordon
[1989], Triplett [1989], Berndt and Griliches [1993], Griliches [1994], for example.

4 For variations on this theme, see Loveman (1994], Berndt and Morrison [1992], Bailey et al [1992], and Sichel and
Oliner [1994].

5 See Bresnahan and Greenstein [1994] or Bresnahan and Saloner [1994] for studies suggesting that the costs
of adjustment are highest to those who could potentially benefit the most from new technology.

6 See Brynolfsson and Hitt [1994], Bresnahan [1987], Hendel [1994], Brynolfsson [1993], Lichtenberg [1994],
Greenstein [1994].



mainframes.

Prices declined steadily and pervasively across all systems, as measured by prices per CPU
speed and memory capacity.” The maximum feasible system capacity, as measured by maximum
computing memory and CPU speeds, also expanded rapidly.® This permitted users to address
increasingly more complex problems involving more calculations and large data bases, and
regularly perform tasks that could not be previously accomplished, let alone attempted.” This
change had many antecedents in the previous two decades, so it should not have caught any
buyers by surprise. '’

Broadly speaking, by the 1980s users had come to expect change -- i.e., lower prices,
extensions of capabilities, or entirely new products -- and plan for it. In response, buyers modified
the memory and speed of their CPU, but kept othe‘r durable investments in software or
peripherals. Or, buyers enhanced particular software programs or peripheral components, but not
other parts of their systems. A regular pattern emerged in the mid 1960s and 1970s and continued
into the 1980s: peripheral and software upgrading induced bottlenecks in CPUs, which later
induced further CPU upgrading, which later induced further peripheral and software
enhancements, and so on. This pattern was well-known and widely studied."

An important point follows from this pattern: upgrading to larger CPU capacity became
associated with taking advantage of technical improvements in software and peripherals and so
on. Thus, for many buyers, demand for greater computing capacity proxies for the demand for

new peripherals and improvements in software, reflecting the demand for new goods and services.

7 See Dulberger [1989], Gordon [1990], Triplett [1989]. Similar estimates have been found for peripheral and
selective software programs. See Cole et al [1986]. Our results below show a decline of over 25% a year.

8 For example, our data in this paper shows an expansion in product space from a maximum of 20 MIPS to 110 MIPS
in under S years.

9 Probably the commercially most important developments were associated with "on-line-transaction-processing”
(OLTP) applications, i.e., applications that required multiple-users to simultaneously access and update large data-
bases. A wide series of innovations, dating to the late 1970s and early 1980s, to hardware architecture, operating system
design, networking technology, and application software enabled and improved OLTP applications (Freedman and
Cornford [1991]). Many large users, insurance and banking users, wholesalers, and many large data-base users
employed these developments in new inventory and reservation systems.

10 For examination of the diffusion of computing systems and some of its economic determinants during this
time period, see Greenstein [1993], [1994] or Bresnahan and Greenstein [1994].

11 For models of organization use and pricing of computer systems, see Inmon [1985] or Mendelson [1985].
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This is a useful interpretation since the demand for computing capacity is easily observable at a
user level, but the demand for new goods and services is not.

Several contrasting forces influenced the benefits buyers received from new computing
systems. First, because new goods and services resulted from the interaction of improvements in
peripheral components, software, and CPUs, the economic value created by the purchase of
computing capacity did not necessarily relate in any linear fashion to the decline in prices of
constant quality CPUs. It may be faster if declines in prices enabled a user to realize local
economies of scale in the distribution of computing services and employment of computing capital
investments.'> For example, in many on-line transaction processing applications buyers value a
larger computing capacity (embodied in CPU), because it allows more users, faster response times
with larger databases. Many researchers of centralized management of computing facilities (e.g.,
Inmon [1985] ) emphasize this notion.

In contrast, however, another line of research emphasizes that many buyers may not have
realize localized economies of scale in their large systems in this period (Friedman and Cornford
[1989]). These researchers of centralized management of computing facilities emphasize
increasing buyer dissatisfaction with translating enterprise needs into feasible technical solutions in
the 1980s. The complaints centered on problems inherent in centralized management (of
mainframes) rather than technology alone, and hence, no pure "technology fix" was possible. In
this view, the bottlenecks inherent in centralized management potentially choked off much
advance, particularly in the 1980s.

Finally, development in the market for minicomputers, workstations, and personal
computers influenced mainframe demand, and thus, the benefits from innovation to mainframes.
First, by the mid 1980s minicomputer vendors offered users viable growth paths for their systems
if the users' needs outgrew large superminis. Small users or divisions within large corporations
found them attractive as a means to avoid centralized mainframe management. Second, by the mid
to late 1980s, even smaller platforms, associated with personal computers and workstations,

offered a different type of decentralized platform for small computing jobs involving small

12 Localized economies could produce a "repackaging problem" in CPU product characteristics, i.e., a single
mainframe may not be equivalent to, but superior to, two mainframe computers embodying one-half the characteristics.
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partitionable data-bases, word-processing, and spreadsheets. Some buyers could (and many did)
break up their computing needs into smaller units, taking advantage of the advantages of smaller
platforms. *

How do the trends in the minicomputer, workstation, and microcomputer market influence
a study of mainframes? First, not many new buyers were drawn into the mainframe market in the
1980s. The majority were experienced buyers with their legacy systems. This stable set of
mainframe buyers was identified and surveyed each year, which provides us with very detailed
data on their behavior.'* Second, the purchase of the very smallest systems is outside the view
provided by the data used here. Hence, we need an measurement strategy that does not rely on
observing the choice of the "outside good." Third, until the very late 1980s it was not obvious
whether mainframe buyer behavior would change, ‘if at all. While earlier generations of buyers had
taken advantage of innovation, could the same be said of the late 1980s? It was no longer obvious
that this group of users was ready or willing to adopt new generations of higher capacity
machines pushing out the technical frontier.

In sum, technological change was more than a simple fall in the price level. The
willingness to take advantage of new capabilities became associated with a willingness to adopt
computing capacity of higher levels. The willingness to pay for new capacity, whether new
capacity was valued or not, determined the value to buyers from innovation in computing.

Measuring the extent of these benefits is ultimately an empirical issue.

3 Methodology
We employ an approach for measuring the value of innovation to buyers based on Rosen
[1974], which, to our knowledge, has never been adapted to estimating buyer benefits from

technical change. This methodology has the advantage that it measures the demand for speed and

13 If a buyer does not have a "repackaging” problem -- due to the absence of many investment in complementary
components, which is a big "if" -- declines in prices may simply induce purchases of cheaper computing power, but not
necessarily purchases of a bigger CPU in a mainframe. That is, the choice between a large or a small CPU then may
depend solely on the relative price/per characteristic for small and large systems, as each is introduced.

14 There was limited exit from the market by certain types of users. Scientific and engineering users had traditionally
been the first to take advantage of faster computing speeds and larger memories, but this was beginning to be less true
by the late 1980s. See Bresnahan and Greenstein [1994].



memory and other characteristics directly tied to the buyer's demand for computing capacity to
handle large data bases, greater functionality, more users, and better software. Moreover, this
econometric modzl is easily modified to formally suit simultaneous decline in price per
characteristic and expansion of product space, as we show below. Third, this method's
econometric strengths and weaknesses are well known, which was extremely helpful in

implementing the model."

Finally, it is well suited for measuring the effects of the distribution of
demand across the product space, which is an important issue in this market. We continue in the
next section to review Rosen [1974] and to discuss the issues surrounding his proposed
methodology.

Our study follows in the spirit of Trajtenbefrg [1990], who pioneered the estimation of
buyer benefits with his study of buyers of CT scanr;e:rs.'6 We chose not to initially follow the
procedure described by Trajtenberg, and instead extend an alternative based on Rosen. We will

explore Trajtenberg's approach in further work. !’

3.1 A Model of Buyer Benefits from Innovation

Rosen [1974] suggested a model and methodology for thinking about the demand and
supply in a differentiated product market. Rosen posits that a characteristic/price surface
represents a locus of equilibrium transactions between buyers and sellers. This surface represents
an upper envelope of buyers' bid functions and a lower envelope of sellers’ offer functions (see
Figure 3.1) . Transactions occur where these bid and offer curves are tangent. As a consequence,
the marginal price function represents the locus of intersections between buyers' marginal bid and

sellers' marginal offer curves (see Figure 3.2). Rosen suggested the following system of equations

15 For example, we were able to learn from the experiences of Rosen (1974), Brown & Rosen (1982), Diamond &
Smith (1985), Bartik (1987) and Epple (1987), and avoid some subtle econometric pitfalls.

16 Also see Bresnahan [1987], who used a model of the derived demand for computing in the banking sector
to measure the improvements to banking users from improvements in computing,

17 Trajtenberg faced the problem of upward sloping demand curves, which he had to solve with an ad-hoc solution
based on hedonic price functions. He argued that this came as a result of a correlation between unobserved quality
characteristics and price. It is now understood that in a logit setting, this problem has no solution without explicit
modeling of the random error (see Berry, Levinsohn & Pakes 1993), which may be cumbersome to apply. We anticipate
these problems, as well as other issues associated with specifying an appropriate "nesting” of preferences when the
choice set is large, as it is here. Hence, it is easier to begin with Rosen. Also see the discussion in Berndt (1991).
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described the market:

1]

p,(x) E'j(xl, ««.rx,Y) Demand 3.2)

[}

py(x) = G¥{xy, ..., x,,Y,) Supply. (3.3)

Here, p, represents the estimated marginal price for characteristic /, defined as the first derivative
of the price function at the observed levels of characteristics, and x, represents the observed levels
of characteristics (e.g., speed, memory, and other features of a computer system). Because of the
potential nonlinearity of the price surface, seen in Figure 3.1, buyers and suppliers simultaneously
choose both the levels of characteristics and the marginal prices for those characteristics (given by
the slope of the surface). This implies that the system given by (3.2) has 2» equations and 2n
endogenous variables (where n represents the number of characteristics). Y, and Y, represent
exogenous demand and supply shift variables. These are simply characteristics of corresponding
buyers and suppliers.

To fix ideas, we now describe this model more formally for the case where the buyer
purchases only one system and the price/quality surface is exogenous to the buyer, which is the
situation corresponding to our data. For simplicity, this model assumes that the demand function
is the same over time, but that the price/quality surface changes due to changes in supply
conditions. This demand assumption can be relaxed somewhat in practice, subject to practical
econometric constraints described below.

In any given year, this model is similar to a consumer's utility maximization problem. Here

we have a buyer solving the problem:

max wu(x, P) st P=H, (x) (34

where u represents the buyer's utility from purchasing characteristics x for price P, H, is the

hedonic price function at time ¢, x is a vector of product characteristics and P is the product price.



Up until some maximum, H is assumed to be twice continuously differentiable with dH/dx > 0. u
is chosen such that #, > 0, #_ <0 and u, < 0, when the buyer is at an interior solution. At a
"corner” solution, the buyer may be at either the minimum (i.e., near zero) or the maximum
characteristics available (i.e., which changes over time). Solving this problem yields a solution
(x2, P). For simplicity, we later assume that u is additively separable in characteristics, although
this can be relaxed.

This model is well suited to measuring buyer valuation from innovation because it gives
us the "hypothetical price change that would have resulted in the same welfare effect” as
innovation (Trajtenberg [1990], p 31). We then aggregate each buyer's benefits into a market
wide "cost-of-living" price index.'®* Let us summql_'ize the entire procedure. The hypothetical
price index is computed by taking the buyers in each year, ¢, and placing them into consecutive
earlier or later years, ¢ + 1,...,7, to determine the set of characteristics they would have purchased
had they actually faced a another year's set of choices, as represented by that year's price function,
which presumably differs from other years. The new set of characteristics is computed by finding
the point at which each buyer's demand curve intersects the marginal price functions for the other
year. We then compute the price that this new set of characteristics would have cost in year 7 + &,
a "counterfactual price." We then compute the price that this set of characteristics would have
cost in year £, a "constant-utility price." The ratio of these two prices, the constant-utility price
and the counter-factual price, is the index for this buyer's benefit from innovation. This is
depicted in Figure 3.3 for a single individual and a single computer characteristic.

More formally, for interior solutions, the first order condition for (3.4),

Vu(x,H,(x}) =0, 3.5

implies an optimal choice for x at time ¢, which we will call x. Given this, we define P? = H(x")

18 The estimation and construction of cost of living indexes in differentiated product markets has many antecedents. In
addition to Trajtenberg's application and discussion, see related analysis by Deiwart {1976}, Feenstra [1993], [1995],
Fisher and Shell [1972], and Fisher and Griliches [1995].
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and u® = u(x”, P?). In words, P.” is the observed price the buyer paid for the observed set of
characteristics at time #, and u’ is the level of utility the buyer achieved at time ¢. Using (3.5), but

substituting H,,,(x) for H(x), we obtain an optimal solution for x at time ¢ + k, which we call

£ 4. Wethendefine P, = H, (£+k) and d, = u(¥,,P,,) . P, isthe
counter-factual price the buyer would pay for the counter-factual set of characteristics when

A

facing the pricing surface at time 7+ k, and 4 is the level of utility the buyer would achieve at

time ¢ + k. Finally, we define P,",, as the P that satisfies u(x,,,P) = u® . P ,isthe

constant-utility price the buyer would pay to purchase the counter-factual set of characteristics
while remaining at the level of utility observed at time 7.
To compute an index for a single buyer, we need to know the level of characteristics that

would have been purchased had the buyer actually faced H,,, rather than H, as shown in Figure

A

3.3. Thisis givenby %, defined above. At time + k this bundle of characteristics will cost

A

B,,, and the buyer will achieve a level of u equal to ,,, . Next, we determine the

~

counterfactual price ¥, , would have cost the buyer had x,,, been purchased instead of x,’

in year ¢ holding the buyer on the same bid curve, u’. We need to find the price of X,,, onthe

bid curve of the observed year, u®."” This is P,",, defined above and shown in Figure 3.3.%

19 The reason that we canhold X constant when moving from time ¢ + k back to time ¢ is a consequence

of the assumption that demand functions remains the same over time. We actually shift H,,, vertically until it is

A

tangent to u’. When we shift H,,, parallel, it will be tangent to u® at the same x that it was tangent to  1f ok

namely X .

11



The procedure easily generalizes to a buyer that hits a "corner." As a practical matter,
there are two potential corner solutions in our counter-factual levels of characteristics. We
illustrate both in Figure 3.4 for a backward index. First, a buyer may choose a counter-factual set
of characteristics which is larger than the largest system that was available at time t - k. In figure

3.4, this buyer begins at #° in time t and would prefer to purchase another large system, call it u',

~

xl, t-k

even at higher prices. However, is outside the range of available products. Had the

range of available products been larger, the buyer would have received benefits of uf, .,

When the buyer is constrained to purchase lower than optimal capacity, we give the buyer the

utility  u= associated with largest set of characteristics which was available at time 7- k. A

1,t~k °

similar analysis holds for the case of a buyer looking forward from time t to time ¢ + k. Second,
depending on the slope and location of the demand curve, it is possible that a buyer (looking
back) would no longer be in this market, but would instead be in a market for some smaller
computer, say a minicomputer. In this case, we compute the utility level which would leave the

buyer indifferent between being in the mainframe market and some outside good. This utility level

occurs where H,, and i are at zero characteristics, which we represent as  u+, ,_ , If overall

prices are always declining over time and demand curves are well-behaved, this second corner
does not generally arise in a forward index.

The counterfactual price is a function of two factors. The first important factor is a buyer's
elasticity of demand. If a buyer's marginal utility in system capacity diminishes rapidly, then
declines in price per unit of capacity will not induce large changes in expenditure. Second is
whether buyers are constrained by the available product space. That is, if a buyer has an elastic

demand for more capacity, a price decline may induce a large increase in desired capacity,

20 Unfortunately, the bid curve u® is unobserved. All we know is the observed price P?. However, the demand curve
(3.5) is actually an estimate of the slope of the marginal bid curve, u*”. Therefore, we integrate the demand function
between x and P,’,,. If we then add P to this amount, this gives us the price we are looking for —P,’,,.

12



potentially outside the range of available products. If the buyer is constrained by limits in the
available product space, this too will influence the counterfactual price and the associated benefits
from innovation.

Formally, to compute a price index for innovation, we set the base year for our index to

the year the buyer is observed. If ¢ is the year we observe the buyer, indexed by i, then

Pi'tok N ﬁitok (3 5)
It Pi‘uk

where f represents the observation year and 7 + k some later year, and I, represents the price index
for year £. We compute this index for each buyer, i, observed in year ¢. A similar computation
holds for t - k, as shown below.

The final step is to aggregate these individual indexes into a single index. For a forward
index we create a weighted average of these individual indexes, using either P or P,",, as the

weights. Thus, we compute both

. -
T PO Pit«k - Piuk
17 it Po

1 - = 0“”‘ , and (3.6A)
p

iv it

1- Leek (3.6B)
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]
Yy

i

= ifeek (3.6C)

1™ ft+k

which we call the "forward index."?' These choices of weights allow the index to account for the
distribution of buyers across the product space. Notice that the second one also represents a ratio
of surplus to expenditure. It turns out that with our data, the difference between using P, and
P/, as weights is minimal. We compute an index of this type for each year 7 from ¢ = 1 through ¢
= T -1 with year T as 100 in each index. Doing this allows us to examine how the index changes
as the distribution of buyers changes.? -

In an analogous fashion, we can measure the benefits received from buyers in year ¢ when

given the alternative choice set at time 7 - k. P is still defined as the observed price for the

observed set of characteristics, and £, , is still defined as the counter-factual price for the

k

counter-factual set of characteristics.  p.’*  will now be defined as the price that solves

u(x?, P) = i , or the price that the buyer would pay to purchase the observed set of

characteristics while remaining on the counter-factual bid curve. The index for an individual

buyer, using P? as the weight, is computed as

2 For a similar derivation see Fisher and Griliches [1995].

22 Note that in computing this index we have compared utility levels at the counterfactual level of characteristics.
Since our bid curve is concave, if we compared utility levels at the observed level of characteristics we might be
confronted with an undefined counterfactual price. We avoid this problem by restricting our attention to the
counterfactual level of characteristics. Trajtenberg [1990] also faced this problem in his formulation and chose not to
define an index for this case as a result.
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We will call the index computed in this fashion the "reverse index." Again, this index is a ratio of
surplus to expenditure.

The forward and reverse indexes are similar to welfare computations and price index
computations common to economics. The index for the individual buyer answers the question:
How much money would one have to give a buyer in 1985 to make him indifferent between the
system he has in 1985 and the optimal system he could buy in some later year? This is similar to
an equivalent variation computation. The weighted market index uses the expenditures by buyers
in some base year, say 1985, and then uses later year expenditures to determine the price change.
This is similar in computation to a Laspeyres price index since we are using previous year
quantities as our base. By a similar argument, the reverse index is analogous to a compensating
variation computation and a Paasche price index. We do not expect the forward and backward
indexes to differ much, either moving forward from time t to time t + k or backward from time t +

k to time t, unless the distribution of buyers changes radically between the two time periods. #

3.2 Estimating Demand
Following the suggestions of Brown and Rosen [1982] and Diamond and Smith [1985] we

make these initial assumptions: First, we assume that each buyer chooses only one system. This is

23 We compare the different properties of our forward and backward indexes in Brown and Greenstein [1995].
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not implausible for the mainframe market. Most "sites,"” which we define below, make only one
acquisition in a year, if any.?* Second, we assume the demand parameters are the same for all
buyers and do not change over time. Each buyer's demand is differentiated only by a set of buyer
characteristics used to describe the heterogeneity among buyers. While it is possible to relax this
somewhat in the context of our experiment, such a relaxation unnecessarily complicates the
econometrics and the reporting of results and adds little to our main point, as we explain below.
Third, we assume that supply is exogenous to buyers and that demand can be estimated without
estimating supply. This implies buyers take the hedonic price function as exogenous and simply
locate themselves on it. We discuss tradeoffs associated these assumptions below after discussing
estimation issues. i

We begin by estimating a hedonic price function for each year which is exogenous to each

buyer. These functions may take a general form

AP 1 Xpyyr v o e r Xt €,)=0 £=1,T (3.8)

where x,, represents the j* computer characteristic of product k available in year t and g is some

functions which may change over time. e represents the error term. We estimate (3.8)

separately for each year ?

The next step is to differentiate (3.8) with respect to each of the x/'s to obtain n marginal
price functions for each year. Each of these functions is a function of the n» computer
characteristics. Denote these functions by mp,,, for buyer i, characteristic j and time t. With these

mp,, functions we compute estimated marginal prices for the characteristics by evaluating the mp,,

at the observed levels of characteristics to obtain mp, Je - This yields n vectors of estimated

24 A number of different issues arise when buyers purchase multiple systems within an observable time period. For
different treatments, see Hendel [1994] or Ito [1995]. Hendel estimates the determinants of the acquisition and holding
of multiple micro-computers from multiple vendors and applies the estimates to measuring buyer benefits from
innovation. Ito estimates a dynamic model of mainframe investment and mainframe stock growth in order to determine
the relative importance of sunk costs.

25 As stated earlier, g is usually taken to be logarithmic. However, we will not attempt to use this form in the
computation of our utility index because of the computational difficulties that will arise in attempting to solve a system of
nonlinear equations.
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marginal prices for each year. We combine these vectors to obtain a marginal price vector for
each characteristic.

The next step is to estimate demand, which may take a general form of

mjblj = £(xy;, ...,xni,B‘,vi), . (3.9)

where v, is an error term. Because in general the x; in (3.9) are correlated with v,, we must
provide instrumental variables for the estimation of (3.9) (Epple [1987], Bartik [1987]). Plausible
instruments, as described by Bartik [1987], should be correlated with the choice of computer
characteristics but uncorrelated with unobserved tastes. B represents buyer characteristics and
describes the heterogeneity among buyers. While the model determines the shape of each
individual demand curve, the B of (3.9) will shift the demand curves.

At this point a number of identification issues arise. Recall that in the first step we
estimated (3.8) separately for each year . Brown and Rosen [1982] pointed out that if (3.8) were
estimated as a pooled regression with all years included, estimation of (3.9) may not yield any new
information since it is a function of the same n characteristics. For example, if (3.8) were
quadratic and (3.9) linear, then the marginal price functions, mp,, would be linear functions of the
x,. Thus, since (3.9) is also linear and a function of the same #» characteristics, there would be
nothing to estimate. The coefficients in (3.9) could be determined directly from the coefficients in
(3.8). Brown and Rosen suggested that one way around this without imposing any functional
form restrictions would be to estimate (3.8) separately for each market (here distinguished by
time). This would result in a different marginal price function for each year and, assuming the
demand function was constant over time, a meaningful estimate in (3.9). Of course there needs to
be a significant difference between the estimates in (3.8) for this to hold true. This suggestion
was reiterated by Diamond and Smith [1985] and employed by Bartik [1987].

Now the trade-offs inherent in our assumptions should be apparent. To identify demand
parameters we assume throughout that demand functions remain constant over time. This is less

disturbing an assumption than it might first appear to be. First, relaxing this assumption
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unnecessarily complicates the econometrics and reporting extra resuits does not add anything
germane to our analysis.?® Second, the mid to late 80s is a mature stage of the mainframe
computer industry. It is not difficult to argue that buyers know how important computing speed is
relative to memory, and the relative valuation of the two in use does not vary during the period.
We would be more uncomfortable with this assumption if the time period stretched for much
longer than seven years or was during a period of turbulent change and growth in the industry,
such as the late 1960s.

Another assumption concerns estimating supply. We will assume supply is exogenous to
buyers. Diamond and Smith [1985] argue that either side of the market can be estimated without
regard to the other side. Diamond and Smith argued that this was reasonable since the source of
simultaneity in this model does not arise, for example, between a buyer and a computer system.
Instead, movements by buyers are to new systems rather than along the offer curve of the same
system.”” However, this is an industry dominated by large firms, and it is possible that they
influence the shape and location of the price surface. This would then imply that changes we see
in a computed index are not necessarily attributable to technological change but instead to a
combination of technological change and changing firm market power. Since our goal is to
measure the benefits that accrue to buyers from facing different choice sets, this potential
confusion should have little affect on our results. Just to be sure, we compute separate results for
IBM and non-IBM buyers. We would be disturbed if the two indexes were markedly different. If

we later incorporate supplier behavior, as we hope to do later, we will consider alternatives.

4 Data

This study's data is at the buyer level and describes the acquisitions as well as information

about the buyers making the acquisitions.”® Previous work had data on the available systems,

26 As explained above, to identify the model the number of consecutive years with the same demand function must
exceed the number of dimensions of the product space. For example, with a single characteristic, we could estimate
models formed by assuming that two consecutive years had the same demand function. With three charactenistics, as in
our largest model, we need four consecutive years. While we could certainly do this, reporting all these results requires
many tables and adds little additional insight.

27 This follows from the typical assumption that each supplier produces only one product and each buyer purchases
only one. We assume that there exists an offer curve for each system rather than each supplier.
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their characteristics and their prices. Because of the differences in the data, we are able to address
the question of the amount of technological change taking place in a different manner.

The data to be used for this analysis is a subset of the Computer Installation Data File kept
by the Computer Intelligence Corporation (CIC). All information on the file is collected directly
from the users through mail surveys and telephone follow-ups and it is updated on a continuous
basis. CIC prepared a database containing their complete records for every site in the United
States with a medium to large general purpose computer system for every year from 1984 to
1991. This time period was selected because CIC could guarantee the data's historical accuracy
and completeness. Each Computer Installation Data File record contains both site data and
system data.” B

This particular subset of CICs data files is extraordinarily rich in detail. CIC provides data
on over 44,000 medium to large systems in 1984 and over 58,000 by 1991. Each year provides
data on over 14,000 sites that use a medium to large computer system. Each of those 14,000
records includes the name and address of the private company (and parent) at which the system is
located, as well as broad information about the company, such as the (four digit) SIC associated
with the site, the number of employees and the amount of revenue.*

Since our interest here is the effect of new technology on price index computation, we
look only at the acquisitions of new computer systems. This is similar to the previous research
where researchers typically use the set of systems available for sale to perform their analysis. The
acquisitions data set was generated from the site data, which included a variable for each system

indicating whether it was a new acquisition or not.*’ In order to perform our analysis we require

28 The buyers are private firms, educational institutions and government organizations.

29 Site data refers to those data elements concerning the company at which a computer system is located. "System” is
used as a collective term rather than meaning a computer system itself. System data includes data on the mainframe,
software and peripheral equipment at the computer installation.

30 Other information includes the system name and model, the amount of memory, the amount of peripheral
equipment used, the primary language used, the likely market value of the system, the method by which the system was
acquired and at what level such acquisition decisions are made. The file also provides information about the total MIPS
and DASD, as well as the number of programmers at the site. Unfortunately, some of the variables are not reported for
the entire time period, making it a difficult task to use these fields.

31 We actually checked two consecutive years of data. Many sites are surveyed on an annual basis, but often
in the middle of the year. Hence, any acquisitions late in the year are not yet recorded in the end-of-year sample
if the site has not recently been surveyed. This sampling frame unavoidably produced a smaller number of acquisition in
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data on the site from the previous year. Therefore, we removed all observations for which there
was no site information the previous year.

To complete the dataset we consulted CIC's Computer Systems Report Users Guide,
which contains information on all systems known to them. The Guide contains the system name
and a list of characteristics including MIPS, minimum memory, maximum memory, KVA
(kilovolt-amperes) ratings and others. We matched the system names with those in the Guide and
merged the characteristics with the list of acquisitions. Due to name discrepancies and the
inclusion of some non-mainframe acquisitions in the dataset, the size of the data was narrowed to
21,268 acquisitions at unique sites in unique years. This is the dataset used in the analysis. In the
remainder of this section we give definitions for the different variables used, as well as descriptive

statistics. More detailed descriptive statistics can be found in the Appendix of Brown [1994].

4.1 Price

The system price we use here is proved by CIC and is defined as the "estimated value of a
‘typical' configuration if purchased today." The drawback to this is that all acquisitions of the
same system will get the same price association with them regardless of the true configuration
which was purchased. "Typical" is defined by CIC as "an average size system with a normal
compliment of peripherals and terminals." This is the same type of price that previous work has
used. The computer characteristics to be described later are associated with systems in the same
manner, so that all systems of the same type have the same price and the same characteristics
during a given year. Fortunately, prices for the same system change over time, so there is
variation in both the cross section and time series. While this is not the most desirable setup, it is
consistent, and is virtually the same as what has been used in the hedonic literature.

We transformed the price data by adjusting for inflation using the Producer Price Index.
This was done so that we would be measuring technological change with inflation factored out.
Table 4.1 provides descriptive statistics for the transformed price data (measured in hundreds of
dollars).

the data set for 1991.
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4.2 Computer Characteristics

The mainframe characteristics we choose to use are minimum memory, maximum memory
and MIPS. Minimum and maximum memory are the minimum and maximum amounts of main
storage supported on the system. MIPS is a measure of the speed of the mainframe measured in
millions of instructions per second.

Main memory is valued for its storage use to allow for quicker access to software and
data. Its measurement in bytes is standard in the industry so that different systems' memory may
be compared in a straightforward manner. Most previous studies have often used both the
minimum and maximum memory. This was done either to account for the lack of information as
to which size of memory went with the recorded price, or to avoid the influence of different
pricing schemes for the low-end models when different prices are available for different memory
sizes (see Triplett [1989)] and Dulberger [1989]). For a description of the 'pricing schemes' see
Phister [1979]. We use both minimum and maximum memory because we do not possess a price
for different memory configurations for each system. Tables 4.2 and 4.3 give descriptive statistics
for minimum and maximum memory.

MIPS is the best measure of speed for our purposes, though considerable previous debate
influenced this choice. No less than five measures of speed, including addition time, multiplication
time, memory cycle time, MIPS and KOPS (thousands of instructions per second) have been
introduced as independent variables in the specification of the hedonic function. For definitions of
these measures and others see Triplett [1989]. The most recent studies prefer to use MIPS
because it combines the speeds of many instructions and weights each instruction by the relative
frequency of that instruction in the job. If the job is representative of the jobs which will be
performed by the system, then this weighted measure computes some sort of "expected" speed.
However, since typical jobs vary widely across processors, comparability across processors is
difficult (see Triplett). For this reason, Dulberger [1989] chose to exclude all data except IBM
and plug-compatible processors for which equivalent MIPS measures were available. Triplett's
reply to this choice is that "...a non-comparability that may be disastrous for machine selection
purposes may yet be acceptable for an economic measurement, in that the measurement error may

be randomly distributed around the true hedonic regression line"” (Triplett p.149). We choose to
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include all acquisitions, not discriminating on the basis of comparable MIPS. Later, for
comparison purposes, we will perform the same exercise using only IBM and PCM processors.
Table 4.4 provides descriptive statistics for MIPS.

Another variable we feel is important is reliability. Unfortunately, it is not clear how one
would go about measuring this. However, in this era, the technology is more mature than in
previous eras and reliability is probably not changing much over time or across systems. This
would not necessarily be the case if we were comparing 1970 systems with 1990 systems. We
would also like information on input/output capabilities, which is very important to mainframe
performance. Since this feature positively correlates with MIPS, we expect to attribute much of

its value to MIPS.»

4.3 Buyer Characteristics

The buyer characteristics are the variables which describe the heterogeneity among buyers.
We chose seven categories of variables which were either available, or could be generated, from
the CIC data. Each of the variables is lagged one period similar to the procedure followed in
Greenstein [1992] and Bresnahan and Greenstein [1994]. These variables include dummy
variables for various SIC groupings, a dummy variable for whether or not the site owned an IBM
system, the estimated purchase value of installed systems at the site, the MIPS rating of the
system at the site with the largest MIPS rating, the total MIPS for all installed systems at the site,
the total KV A rating for all installed systems at the site and the technical age of the youngest
system owned during the previous year. Tables 4.5 and 4.6-4.12 give definitions and descriptive

statistics for the buyer characteristics.

4.4 Instrumental Variables

Because in general the x's in the demand estimation are correlated with the error term in

32 Bemdt (1991) generally discusses the problem of omitted variabies in hedonic estimates. He points out
that if reliability is correlated with the producer, then a producer dummy variable might be appropriate. While
this may be true, there may be other unobservable characteristics which may be correlated with the producing
firm which are not valued by buyers, but which in fact would affect our index. For this reason we chose not to
include firm dummy variables. For a list of variables used in previous research see Triplett (1989).
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that equation (Bartik [1987], Epple [1987]), we need to estimate that equation by instrumental
variables. The instruments should be variables which affect the choice of characteristics but do
not affect unobserved tastes. The variables we use are time dummy variables, region dummy

variables, an SMSA dummy variable and characteristics of the closest systems in characteristics

space as measured by the Mahalanobis distance between systems. This distance is defined as

(x, = x) T2 (x, - x,)

where x, represents the characteristics of the system, x; represents the characteristics of all systems
except x, and Y represents the covariance matrix of the variables minimum memory, maximum
memory and MIPS.* Each of these variables affects the marginal prices paid for computer
characteristics. Assuming that tastes do not change over time or across regions and that tastes are
unaffected by whether or not the buyer resides in an SMSA| these variables are uncorrelated with
buyers' tastes, making them appropriate instruments. Definitions of these variables are given in

Table 4.13.

5 Results

In this section we will compute a variety of utility-based cost-of-living indexes on methods
we have proposed in the previous sections. Two main themes will emerge. First, it will be shown
that constant-quality price indexes overstate the true benefits buyers receive from improvements
in technology. This will be seen by the fact that our utility index, which assumes a declining
marginal utility for characteristics, has a lower growth rate than the hedonic index. Second, it will
be shown that this rate is mildly sensitive to the distribution of buyers across the product space.
However, even though the utility index is sensitive to this distribution, all estimates will yield a

similar conclusion - that most buyers do not value extensions in the product space.

33 The idea is that neighboring systems provide information about the shifts in costs of production without
correlating much with buyer demand. A related idea may be found in Berry [1993).
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5.1 One Characteristic Model

We begin by looking at a model with one characteristic. This is a variation of a model
used by Witte, Sumka and Erekson [1979] and analyzed by Epple [1987]). We choose this model
because of its ease of computation, because it establishes basic intuition for the multivariate case,
and it is much easier to explain.

We first estimate a hedonic surface for each year of the form
Pit = ﬂo« + ﬂlMIPSit + ﬂIM[PSnz + u, (51)

where P is the price of the system and MIPS represents the MIPS rating of the system.> Table
5.1 gives the estimation results and Figure 5.1 show the graphs of these hedonic surfaces. From
the figure we notice that the shapes of the surfaces are not constant over time. First notice that the
product space expands over time, as anticipated. Second, the 1986 surface crosses the 1985
surface. This implies a technological retrogression (in terms of price per performance) from 1985
to 1986 for part of the product space. This retrogression implies that an index may rise between
1985 and 1986 before beginning to decline through the end of the sample. Finally, our estimation
results show that all coefficients are significant except the intercept terms in 1986 and 1991 and
that the parameter estimates vary widely over time. This variation is important because it implies
that a flexible functional form is more appropriate than estimating a hedonic surface which only
allows the intercept to change, as has been done in the past.*

The next step is to differentiate (5.1) with respect to MIPS to obtain the marginal hedonic
surface. This is given by

mP e, = B1t + 2B, MIPS , (5.2)

34 We choose this functional form as opposed to the traditional log-log because it simplifies the computation

ofthe X +k 's. The next chapter will investigate the sensitivity of our index to this choice.

35 Berndt, Showalter and Woolridge (1990) examine the sensitivity of hedonic price indexes for computers to
the choice of functional form on the hedonic surface.
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We evaluate (5.2) at the observed levels of MIPS, to obtain a vector of estimated marginal prices

for MIPS for each year. We then pool these vectors of marginal prices together to get nip, ips

We then estimate demand by estimating

mp, ., = Oy + QGMIPS + BQ + 1, (5.3)

by two-stage least squares using the instrumental variables described in the previous section.*®
Here B, represents the matrix of buyer characteristics for buyer i. For the instrumental variable
“neighbors", we chose to include the nine closest systems in characteristics space as measured by
Mabhalanobis distance.’” The results of the estimation of (5.3) are given in Table 5.2.

Table 5.2 shows that the coefficient on MIPS is negative and significant implying
downward sloping demand. The results also show that none of the SIC group coefficients are
significantly different from zero using a 5% level of significance. However, it is also important to
test whether they are different from each other. Unfortunately, the coefficients are significantly
different from each other in only a few instances. All of the other buyer characteristics, except
Age of the Youngest System, are significant.

Based on the estimate of (5.3) along with the estimates of (5.1) we proceed to compute
the forward index for each year as described in the Methodology. The results of this computation
are given in Tables 5.3A and 5.3B.

Looking at the 1985 column (which is the index computed using the 1985 buyers) we see
that the index has an average annual growth rate (shown in the last row) which is slower than that

found in previous studies.>® However, we are looking at a different time period than other

36 This demand curve is derived from a bid curve of the form P, = Yy MIPS, + Yy ,MIPSZ where

Y, =%, +BQ and v, = a/2 .

1

37 We chose nine systems because all of their coefficients were significant in the first stage regression and this was the
most we could include due to computing constraints.

25



studies, so we will need to compare these results with a price index computed in the traditional
fashion. We will do this below. Second, we also see that as we move across the tables the growth
rates increase. This implies that our utility-based index computation is potentially sensitive to the
set of buyers we use as weights.

Finally, we note the rise in the index between 1985 and 1986 when using the 1985 buyers.
Recall that after examining Figure 5.1 we believed this might occur. The economic interpretation
of this is that the price per performance in 1985 was lower than that in 1986 for a portion of the
product space, and as a consequence buyers could achieve a higher utility level in 1985.

However, we do note that the surfaces cross at two levels of MIPS—approximately 0.8 and 16.5.
The 1985 surface lies above the 1986 surface between these two points. This implies that not all
buyers were better off in 1985 than 1986. The computed price indexes say that on average,
though, buyers were better off in 1985 than 1986.

One way to attempt to incorporate the changing sets of buyers into a single index would
be to "link" the adjacent indexes together. Assuming that we are better at predicting what a buyer
would purchase in the next period rather than two or more periods ahead, we can place the 1985
buyers into 1986, the 1986 buyers into 1987, etc., choose some year as our base and then link
these indexes together. We do this in Table 5.5 using both P* and P° as our weights. We see that
these indexes have growth rates lower than the traditional hedonic and still pick up the increase
from 1985 to 1986. These indexes decline more rapidly, though, than the utility indexes of Tables
5.3A and 5.3B using the 1985 buyers. This is because more weight is being given to buyers at
higher levels of MIPS who benefit more from improvements in technology than those at lower
levels.

At this juncture we are curious how the estimated rates of benefits to buyers compares
with the average price change across all systems. Such a comparison give us information about
the percentage of buyers who did (and did) not receive large benefits from increases in the
product space. To compare our utility-base indexes with changes in constant-quality prices, we

need to compare our index with a traditional hedonic index. For the sake of thoroughness, we

38 Brown (1994) shows that it makes little difference whether we use P or 7° as our weight.
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compute two traditional hedonic indexes, shown in Table 5.4. In the first column we compute the
index using a log-log functional form and in the second column we compute the index using a log-
linear functional form.

Both of these hedonic indexes have an average annual growth rate more than two times
higher than those shown in the 1985 columns of Tables 5.3A and 5.3B. Here we see that while
both the log-log and log-linear price indexes overstate the benefits to buyers resulting from the
shifts in the hedonic surface, the log-linear index does pick up the retrogression from 1985 to
1986.% Overall, the hedonic indexes decline at a faster rate than our cost of living indexes.

In order to get a better understanding of the comparison, we produced a boxplot showing
the distribution of buyers across MIPS over time. This is shown in Figure 5.2. The shaded
regions in the boxplot represent the interquartile range and the white line in the shaded region
represents the median. It is clear from the figure that the distribution of observed purchases is
changing over time. In fact, the maximum observed purchase in 1985 is nearly the median
purchase by 1991. If all buyers benefit by exactly the same amount from improvements in
technology, then this fact will not matter. However, Tables 5.3A and 5.3B show that buyers do

‘not benefit by the same amount, i.e., as shown by the changirrg*growth rates of the indexes over
time. Thus, the base of buyers is quite important for utility-based indexes and welfare inferences.
This observation is masked by the traditional hedonic index.

What is more important, Figure 5.2 reveals the intuition behind our estimates. Despite
extremely rapid declines in price per unit of computing capacity, the growth in the size of
acquisitions increases only slowly. Most buyers bought "small" systems and continue to do so in
later years, despite rapid decline in prices. As we explored extensively in Brown [1994], our
model of individual buyer behavior has to represent this slow aggregate movement as relatively
inelastic demand for most buyers. Hence, the utility-based index has to decline at a slower rate
than the quality adjust price index. The only open questions are issues of degree. While we have

placed a particular functional form on our estimates for ease of computation and exposition, with

39 The log-linear hedonic index rises between 1985 and 1986, whereas the log-log index does not. This is evidence
that the choice of functional form is important when computing these indexes. This is very interesting because almost all
previous studies have employed a log-log form and have rarely tested it against any other forms.
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behavior like this, the functional form is of secondary importance for determining the qualitative
results. Virtually any version of a Rosen model would give a big difference between the utility-
based index and a quality adjusted price index.

We next compute our "reverse" index. This is shown in Table 5.6. Again, we see rates of
growth lower than the traditional hedonic and we see changing rates of growth depending on the
set of buyers we use as weights. This index also rises between 1985 and 1986 except when we
weight by the 1986 buyers. This is because, on average, more 1986 buyers were better off in
1986 than 1985. This is the opposite of what happened when we computed the forward index
and weighted by 1985 buyers. This is further evidence that the distribution of buyers one uses as
weights is important. Table 5.7 shows the reverse linked index. The growth rate is lower than
the traditional hedonic yet faster than the reverse index using the 1991 buyers as weights.

As a final step with this one characteristic model, we recompute all of the indexes using
only the IBM and plug-compatible acquisitions as suggested by Dulberger (1989). She suggested
this because of the noncomparability of MIPS ratings between IBM and plug-compatible systems
with others. These indexes are given in Tables 5.8A-5.12.

All of the indexes are virtually identical in their counterparts using the entire data set. This
is not surprising since approximately 80% of the acquisitions over this time period are IBM or
IBM compatible. Figure 5.3 shows a boxplot of the distribution of MIPS using only the IBM and
plug-compatible data. Comparing this with Figure 5.2 we see that the distributions are also
almost identical. These results imply that at least for econometric purposes, the distinction
between these two sets of data may be unnecessary.

This section has focused on estimating our benefit index and comparing our utility index
with a traditional hedonic index using a single characteristic. In the next section we add more

computer characteristics to provide a more complete description of the product.
5.2 Three Characteristic Model

We now extend our description of a mainframe computer by adding minimum and

maximum memory as characteristics. We choose this description because it closely resembles the
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descriptions used in previous research.* While we are choosing this set of characteristics, we do
not believe that this is a complete description of a mainframe computer as stated by Dulberger
[1989]. Unfortunately, there are little, if any, other measured characteristics available to
researchers. Future work could look into a better characterization of the computer system.

As in the one characteristic case, we begin by estimating a hedonic surface for each year of

the form

P,= By, + BMINMEM + B MIPS + B MAX MEM
+ B MIN.MEM* + BMIPS* + BMAXMEM: + u,, (5.4)

We do not include interactions among the variables in the specification of (5.4) because it does
not largely alter one's conclusion. We consider this issue in Brown [1994]. The estimation results
are given in Table 5.13.

The results show that for the most part the coefficients are significant. In addition, all R?
values are above 0.92. Three coefficients, MAX.MEM in 1985, MIN.MEM in 1986 and
MAX MEM in 1990, are the wrong sign (MAX.MEM in 1990 is not significantly different from
zero). This is possibly due to a high correlation between MIN.MFM and MAX.MEM. This
correlation is 0.76. However, believing this to be a more correct set of characteristics than a
MIPS - MIN.MEM or MIPS - MAX MEM specification, we choose to maintain it.

We next compute the predicted marginal prices and estimate the following demand

equations:

MPuin,y = %o * O MIN.MEM + BQ, + 1, , (5.5A)
Inpmips.i = u20 + quMIPS + Bjnz + nzi > (S.SB)
mpmax,i = (X30 * (X31MAX.MEM + 5103 + 1'131 (SSC)

40 See Triplett (1989) for a list of studies and their choice of characteristics.
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We estimate each equation in (5.5) separately using two-stage least squares with the instruments
described in Section 4.4. We decided not to include all three characteristics on the right hand side
of each equation because the additively separable demand function does an adequate job.*! The
above specification produced reasonable results. Table 5.14 gives the correlation matrix of the
computer characteristics. Tables 5.15-5.17 give the demand estimation results.

Each of the demand equations is downward sloping. The SIC dummy variables are again
rarely significantly different from the excluded group or each other. The remaining buyer
characteristics, except Total KVA and the IBM dummy in minimum memory demand and Age
Young in maximum memory demand, are significant.

With these results, we proceeded to compute our forward index, shown in Tables 5.18A
and 5.18B. The traditional hedonic indexes are given in Table 5.19. The indexes closely resemble
those of the one characteristic model. The significant difference is that the three characteristic
index has a higher growth rate than the one characteristic index. This should be expected since
we are now allowing innovation to take place in different characteristic dimensions. Allowing this
innovation permits buyers to obtain benefits they could not obtain in the one characteristic case.

Finally, we again see that these indexes rise between 1985 and 1986 when we weight by
the 1985 buyers. However, it is not clear if this is due to technological retrogression in all
characteristic dimensions or some subset of the dimensions. The hedonic indexes shown in Table
5.19 also look similar to the hedonic indexes computed for the one characteristic case. Again, the
log-linear model is the only one to detect the retrogression from 1985 to 1986.%

As seen in the one characteristic case, the growth rates increase as we weight by later sets
of buyers. Figures 5.4 and 5.5 show boxplots for the distributions of minimum and maximum
memory. Again we see that the maximum purchase in 1985 is nearly the median purchase by
1991. The changes in these distributions along with the changes in the MIPS distribution
significantly affect the growth rates we see as we weight by later sets of buyers. This continues to

support the claim made in section 5.1 that most buyers bought "small" systems and continue to do

41 High correlation in the features of available systems results in a number of econometric difficulties which
unnecessarily complicate the estimation without contributing additional insight into the structure of demand.

42 This further supports the earlier claim that the choice of functional form for the hedonic surface is a key aspect in
computing a hedonic or utility index.
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so in later years. Again, since prices declined so rapidly over the period, our mode! of individual
buyers has to represent this behavior as relatively inelastic demand for most buyers. Hence, the
utility-based index has to decline at a slower rate than the quality adjust price index. Again, we are
firm in our conclusions that virtually any functional form of a Rosen model estimated on this data
would give a big difference between the utility-based index and a quality adjusted price index.

Tables 5.20-5.22 present the forward linked, reverse and reverse linked indexes. They
convey much of the same information provided by their one variable counterparts. The interesting
feature of these is the growth rates of the linked indexes. Each has a rate higher than the log-
linear hedonic rate, but lower than the log-log hedonic rate. While we have been arguing that the
utility index is superior to the hedonic index in me_gsuring the benefits of innovation to buyers, we
also realize that the results obtained from a utility index are sensitive to the set of buyers used as a
base. For example, the forward linked index using P* as the weight has a growth rate of -30.38%
from 1985-1991. If we exclude 1991, the growth rate is -16.38%. In order to try to overcome
this sensitivity, we have proposed that a linked index may be appropriate since the final index is
not dependent on a single set of buyers. In this three characteristic case, both our linked index
and the hedonic index perform about the same in the long run. However, there is considerable
variation in the short run.

The faster rate of decline in the linked index for the three characteristic case is a result of
the enormous rate of growth for the 1990 buyers facing the 1991 hedonic surface. For example,
the growth rate using P" as a weight is over 100 percent between 1990 and 1991 using the 1990
buyers. That growth rate is never more than 54 percent using the other sets of buyers. This
suggests that one might average the growth rates over all sets of buyers to get a linked index. We
compute this for the forward index using P as a weight. This yields the index given in Table
5.23. Notice that now the growth rate is 21.44%, which is well below the P* linked index growth
rate given in Table 5.20 and well below the growth rates of the hedonic indexes.

While the linked index computed previously was less dependent on the set of buyers than
the utility index using a single set of buyers, computing the index in this fashion (averaging the
growth rates over all sets of buyers) is even less dependent on the sets of buyers. While this is a

nice feature of this index, it also has drawbacks. The main drawback is that it gives weight to
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buyers who are being projected far into the future. The farther we project into the future, the
greater possibility of hitting a corner. Buyers who hit the corner do not receive as much benefit as
they would have had they purchased what was optimal. This implies that we should concentrate
on projecting only a short time into the future.

Tables 5.24A-5.29 recompute all of the indexes of the three characteristic model using
only the IBM and plug-compatible acquisitions. The utility and hedonic indexes change very little
from their counterparts using all of the acquisitions. The most notable feature is that they all have
higher growth rates than the “all data" indexes.* This implies that price per performance in IBM
systems fell faster over the time period than the overall rate. Since the distributions of
characteristics purchased do not seem to be drastic_:_ally different between IBM and the entire data
set, it must either be the case that IBM was lowering its prices at a faster rate than the overall
rate, or that there is some unmeasured characteristic which is causing IBM's price per
performance to fall relative to the other systems in the sample. This is interesting and needs to be

investigated further by attempting to expand the set of measured characteristics.

6 Summary and Closing Remarks

In this paper we have employed an extensive micro-dataset on the mainframe computer
market from 1984-1991. We describe an alternative procedure based on Rosen [1974], Bartik
[1987], Epple [1987] and Trajtenberg [1990]. Using this method we have computed indexes
which account for the benefits buyers receive from improvements in new technology.

We have computed a large number of indexes. There are three main points made by the
results. First, benefits received by buyers, as measured by a price equivalent utility index, must
account for declining marginal utility of characteristics. If so, the fall in the utility index is much
slower than the fall in the constant-quality price index. Second, the distribution of buyers across
the product space strongly influences the benefits from technical change. In this instance, buyers
are largely concentrated at the lower levels of the characteristics space. Hence, very few buyer

benefit from increases in the product space. Third, our utility index shows that, in mainframe

43 Note that these indexes are plagued by the 1991 problem described earlier. Removing 1991 results in a
significantly lower growth rate.
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computers, the constant-quality price index overstates buyer benefits by a significant margin. If
innovation must be measured in terms of its value to buyers, then based on the results presented
here, one must be skeptical of the inferences solely drawn from the traditional hedonic price index
regarding changes to economic welfare.

Our results also expand on Trajtenberg [1990], who described situations where hedonic
methods would fail to account for technological change. The first failure he described was
associated with the introduction of new systems which "filled-in" the product space.** By
construction, our utility based index does not account for this factor. On the one hand, this
should not worry us since this factor is less important in an industry where buyers may easily
customize their system and where the product is crowded, as in mainframes. On the other hand,
incompatibilities between platforms induce potentially unobserved "gaps" in the product space and
we have not accounted for this factor. Second, Trajtenberg argued that innovation which extends
the range of the product space also is not measured by a traditional hedonic. We agree that the
welfare benefits from technical change cannot be understood without examining extension of
product space. In contrast, however, we find that it is less important for mainframes in the 1980s
than it was for CT scanners in the 1970s.** The main reasons for these differences had to do with
the distribution of buyers and the distribution of elasticities of demand. In short, very few buyers
needed larger systems with the extra computing capacity.

We noted throughout the study that the results were obtained while maintaining a specific
functional form for the hedonic surfaces in the first step of the computation of our index. We
noted throughout the problems with using MIPS as a system characteristic and using acquisitions
from both IBM and non-IBM vendors. We compared results using both sets of data, and for the
most part there was little change in our qualitative results. In Brown [1994] we investigated the
robustness of our results to various alternative functional forms of our model. The conclusions
also do not substantially change. However, this still leaves open issues associated with the

robustness of our conclusions to different models of demand. Do the Rosen model or alternative

44 Because the new systems, by design, lie on the already existing hedonic surface, a hedonic index would not register
any innovation. For a more complete description of these two cases see Trajtenberg (1990).

45 See Greenstein [1994] for an argument that Trajtenberg's analysis more closely matches the market for computing
in the 1960s and 1970s.
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demand models of differentiated product markets -- for example, a multinomial logit model --
provide similar quantitivative and qualitative insights about demand elasticities, welfare benefits,
and so on? These issues will take substantial work, and we hope to address them in future
research.

Finally, we close with several observations about the implications of our study for
innovation in this industry more generally. Qur conclusions lend support to the view, often stated
but incompletely espoused in the trade-press, that the computer industry is passing into a new era.
We agree that the contrast with earlier eras is sharp. Rates of decline in price per unit of
computing could not be any faster today. Yet, similar innovation in the 1960s and 1970s induced
buyers to adopt and develop larger capacity mainframe systems, each generation enabling new
functionality. In our study of the 1980s, this adoption pattern is not as evident.

There are at least two related economic issues behind the adoption pattern in this data.
First, it is valuable to distinguish between "normal" data processing and "leading-edge" data
processing (The latter is often called "bleeding edge"), where we recognize that the former is
more typical than the latter. In our study, it is the leading-edge user who adopts larger systems,
taking advantages of changes in the product space. Most of these applications were novel and
large on-line transaction processing applications. Many of these received attention within the
contemporaneous trade-press. Although these activities were interesting as computer-engineering
feats, our data show that they were unrepresentative as economic events. Hence, we conjecture
that one key to understanding buyer benefits from innovation involves understanding why leading
edge data processors are willing to adopt systems on technical frontiers when others are not. Is
this due largely to differences in adoption costs or adoption benefits? Was the leading edge user
of the 1980s unusually slow in response to price change and new technological opportunities?
Was the normal data processing user unusually slow to follow the leading edge?

A related open issue concerns the relationship between our study's conclusion and the
widely-noted behavior that traditional mainframe buyers are investing less in mainframes and
investing more in smaller computing platforms. This second topic raises fundamental questions
about welfare from innovation when buyers incur large switching costs, when buyers spread their

capital purchases across a variety of computing platforms, and when technical change unevenly
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impacts different parts of a differentiated product market. We have made a step towards
understanding these problems, but these issues also require further analysis of, as well as extensive

use of, data on buyer computing choice among competing platforms.
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Table 4.1

Descriptive Statistics for Price

Year Minimum | Median Mean Maximum Std. Dev.
1985 0.00 390.70 1033.00 9200.00 1491.11
1986 0.00 656.30 1833.00 23910.00 2983.82
1987 0.00 608.80 1808.00 31740.00 3050.31
1988 0.00 734.90 2284.00 43990.00 3828.61
1989 0.00 707.10 2476.00 44790.00 4177.20
1990 0.00 821.80 3039.00 40680.00 5158.61
1991 0.00 777.40 2925.00 34740.00 5092.07
Total 0.00 638.70 2104.00 44790.00 ~3716.81
Table 4.2
Descriptive Statistics for Minimum Memory

Year Minimum | Median Mean Maximum Std. Dev.
1985 0.032 4.096 6.767 32.77 7.50
1986 0.032 4.096 14.320 65.54 19.92
1987 0.032 8.192 18.290 131.10 26.59
1988 0.060 16.380 29.890 131.10 3742
1989 0.008 16.380 37.880 165.50 4432
1990 0.032 24.580 46.710 262.10 47.07
1991 0.100 32.770 53.360 262.10 49.15

0.008 10.240 26.450 262.10 36.84

Total




Table 4.3

Descriptive Statistics for Maximum Memory

Year Minimum | Median Mean Maximum Std. Dev.
1985 0.256 24.58 33.50 262.10 31.22
1986 0.256 32.77 65.54 262.10 80.36
1987 0.256 32.77 75.97 524.30 110.03
1988 0.512 40.96 279.00 2097.00 559.75
1989 0.032 65.54 374.40 3146.00 686.35
1990 0.064 81.92 732.70 4194.00 1227.92
1991 0.512 262.10 1102.00 4719.00 1456.48
Total 0.032 32.77 277.10 4719.00 697.95
Table 4.4
Descriptive Statistics for MIPS

Year Minimum | Median Mean Maximum Std. Dev.
1985 0.10 2.70 5.21 28.00 6.39
1986 0.20 3.40 8.15 33.50 9.03
1987 0.10 4.20 9.31 49.00 11.21
1988 '0.20 6.50 15.55 75.00 19.05
1989 0.10 7.90 21.24 114.00 26.61
1990 0.20 14.00 29.56 114.40 33.64
1991 0.40 21.60 35.36 114.40 36.58
Total 0.10 5.70 15.28 114.40 22.35




Table 4.5
Definitions of the Buyer Characteristics

Variable

Definition

SIC

The standard industrial classification code of the site. These SICs
are grouped into 24 two-digit groups. They are: 1-18 (Natural
Resources; NATRES), 20-26 & 29 (Refining and other manufacturing;
REFMAN), 27 (print, publishing, etc; PUB), 28 (Chemicals; CHEM),
30-34 & 38 & 39 (Fabrication and misc. manufacturing; FABMAN),
35 (Computer manufacturing; COMP), 36 (Other electrical equipment;
ELEQUIP), 37 (Transportation equipment; TRANSP), 40-47 (Misc.
utilities; UTIL), 48 (Communication; COMM), 49 (Electricity;
ELECTRIC), 50 (Wholesale trade; WHOLE), 51-59 (Retail trade;
RETAIL), 62 & 64-69 (Misc. finance; FIN), 60 (Depository
institutions; DEPOSIT), 61 (Credit institutions; CREDIT), 63
(Insurance; INS), 70-79 (Misc. business services; BUSSERYV), 81 &
83-89 (Misc. social services; SOCSERV), 80 (Health services;
HEALTH), 82 (Education; EDU), 90 & 92-96 & 98 & 99 (Misc.
government; GOV), 91 (Administrative government; ADGOV), 97
(Defense; DEFENSE). These are dummy variables which take the
value 1 if the site is in the SIC grouping and 0 otherwise. The label
in ALL CAPS will be used to identify the SIC group from this point
forward.

IBM

A dummy variable which takes the value 1 if the site had any
IBM medium to large system and 0 otherwise.

Site Value

The estimated purchase value of the site in 1,000s of dollars. This
amount was turned into real dollars by adjusting for the Producer Price
Index.

Maximum MIPS

The number of MIPS on the system at the site with the largest
MIPS rating. ‘

Total MIPS

The sum total MIPS of all systems at the site.

Total KVA

The sum total of the KVA ratings of all systems at the site.

Age Young

The technical age (year of observation minus the vintage of the
system) of the youngest system at the site.




Table 4.6
Number of 1's for SIC Dummy Variables

Group 1985 1986 1987 1988 1989 1990 1991
REFMAN 154 165 255 162 177 122 25
PUB 60 77 99 65 76 70 7
CHEM 55 67 111 82 &4 62 16
FABMAN 184 189 234 160 178 96 25
COMP 112 150 151 137 157 115 24
ELEQUIP 137 134 171 176 116 81 17
TRANSP 90 96 99 105 104 63 18
UTIL 77 90 112 88 85 87 18
COMM 42 98 88 132 96 81 21
ELECTRIC 81 95 115 108 89 100 20
WHOLE 132 113 138 108 97 37 13
RETAIL 174 174 249 212 277 185 48
FIN 57 80 106 107 73 65 23
DEPOSIT 194 247 307 247 311 207 51
CREDIT 68 96 104 111 48 29 9
INS 192 210 287 255 237 202 65
BUSSERV 360 361 525 495 486 457 115
SOCSERV 60 61 70 64 84 75 35
HEALTH 141 108 177 157 174 146 35
EDU 170 162 225 174 173 173 39
GOV 130 165 230 191 237 - 139 50
ADGOV 140 132 153 153 156 115 19
DEFENSE 74 104 123 105 76 76 18




Table 4.7

Descriptive Statistics for Site Value

Year Minimum Median Mean Maximum Std. Dev.
1985 372.10 7442.00 14880.00 62140.00 15836.80
1986 364.60 7657.00 21900.00 68370.00 22590.74
1987 179.10 9311.00 19510.00 106500.00 23889.48
1988 175.00 10850.00 28540.00 140000.00 36429.42
1989 33.67 11200.00 28880.00 138900.00 37127.44
1990 65.09 10580.00 26810.00 113900.00 32140.17
1991 39.46 11050.00 21570.00 94710.00 26235.58
Total 33.67 9311.00 23450.00 140000.00 29611.84
Table 4.8
Descriptive Statistics for Maximum MIPS

Year Minimum | Median Mean Maximum Std. Dev.

1985 0.10 1.40 3.92 99.00 6.12

1986 - 0.10 2.70 6.07 80.00 8.15

1987 0.10 2.70 6.81 99.00 10.30

1988 0.10 5.00 11.80 99.00 15.51

1989 0.00 6.40 14.87 104.00 19.47

1990 0.10 9.50 2221 114.40 27.74

1991 0.10 13.00 29.35 114.40 35.52

Total 0.00 4.00 11.36 114.40 18.25




Table 4.9

Descriptive Statistics for Total MIPS

Year Minimum | Median Mean Maximum Std. Dev.
1985 0.10 2.20 747 181.00 14.95
1986 0.10 3.80 13.39 205.10 24.64
1987 0.10 3.80 14.08 325.00 27.38
1988 0.10 6.90 22.26 392.00 39.06
1989 0.00 8.00 28.00 482.50 48.83
1990 0.10 13.00 44.13 644.60 78.74
1991 0.10 16.00 61.77 953.60 114.11
Total 0.00 5.40 22.49 953.60 48.89
Table 4.10

Descriptive Statistics for Total KVA
Year Minimum | Median Mean Maximum Std. Dev.
1985 0.00 14.00 40.01 570.00 58.01
1986 0.00 21.20 52.77 476.40 71.88
1987 0.00 13.10 45.01 566.70 72.03
1988 0.00 23.30 50.68 632.00 72.19
1989 0.00 23.10 54.61 805.40 83.23 115.96
1990 0.00 29.60 71.23 905.70 128.98
1991 0.00 35.60 79.90 1063.00
Total 0.00 21.00 52.81 1063.00 82.65




Table 4.11

Descriptive Statistics for Age Young

Year Minimum | Median Mean Maximum Std. Dev.
1985 0.00 3.00 3.62 21.00 291
1986 0.00 3.00 3.79 21.00 3.04
1987 0.00 3.00 3.62 21.00 2.82
1988 0.00 3.00 3.35 23.00 272
1989 0.00 3.00 3.43 28.00 270
1990 0.00 3.00 3.59 26.00 2.57
1991 0.00 3.00 4.03 18.00 2.66
Total 0.00 3.00 3.58 28.00 2.80
Table 4.12
Number of 0's and 1's in IBM Dummy Variable

Year 0 1

1985 547 2392

1986 696 2538

1987 829 3380

1988 1254 2421

1989 1353 2296

1990 918 1923

1991 348 373




Table 4.13
Definitions of the Instrumental Variables

Variable Definition

Time A dummy variable for the time period of observation. The variable
takes a 1 if the observation falls in the year, O otherwise.

Region Dummy variables for the region of the country in which the site
resides. There are 9 regions: New England, Middle Atlantic, East
North Central, West North Central, South Atlantic, East South Central,
West South Central, Mountain and Pacific.

SMSA This is a dummy variable that takes the value 1 if the site resides
inside an SMSA and a 0 otherwise. This variable is provided by CIC.

Neighbors These are characteristics (minimum memory, maximum memory .
and MIPS) of the closest neighbors to the system in characteristics
space. The distance measure used is Mahalanobis distance defined as
(%,-2;) T Y7 (%, -x;)
where x, are the characteristics of the system, x; represents the
characteristics of all systems except x, and 2 represents the
covariance matrix of the variables minimum memory, maximum
memory and MIPS.




Table 5.1

One Characteristic Model
Hedonic Surface Estimates
Year CoefTicient Value Std. Error t value
By -265.53 69.42 -3.82
1985 B, 3503.73 20.59 170.19
Bz -45.87 0.83 -54.96
By 435 106.83 -0.04
1986 Bl 3163.35 28.15 112.37
B, -26.15 1.03 -25.44
[30 1373.90 155.29 8.85
1987 Bl 1809.72 24.67 73.36
B, 6.06 0.56 10.73
ﬂ) 673.00 194.72 3.46
1988 B, 1667.63 20.25 82.37
[32 3.21 0.30 10.61
ﬂ) -2440.01 176.70 -13.81
1989 B, 1651.60 13.33 123.88
[32 -3.24 0.14 22.46
ﬂ) -1597.96 200.87 -7.96
1990 B, 1008.34 12.42 81.20
B, -0.70 0.12 -6.08
By -775.02 463.96 -1.67
1991 B, 513.83 25.82 19.90
B, 1.61 0.23 7.06




Table 5.2

One Characteristic Model
MIPS Demand Estimate
Variable Value Std. Error t value
O 1971.65 60.89 32.38
oy -12.82 0.49 -26.28
REFMAN 290.22 67.17 0.43
PUB -27.61 77.34 -0.36
CHEM -73.95 78.44 -0.94
FABMAN 62.68 66.27 0.95
COMP 24.81 68.90 0.36
ELEQUIP 78.31 69.95 1.12
TRANSP 29.94 74.96 0.40
UTIL -43.34 75.06 -0.58
COMM 47.52 75.07 0.63
ELECTRIC -25.29 73.24 -0.35
WHOLE 103.37 72.14 1.43
RETAIL -26.30 65.40 -0.40
FIN 61.05 75.32 0.81
DEPOSIT 21.80 63.96 0.34
CREDIT 144.10 76.80 1.88
INS 57.23 64.40 0.89
BUSSERV -30.31 60.96 -0.50
SOCSERV 45.24 80.11 0.56
HEALTH -20.69 67.88 -0.30
EDU 4.27 66.79 0.06
GOV -30.55 67.07 -0.46
ADGOV 46.63 68.57 0.68
DEFENSE 7.84 75.74 0.10
Site Value 0.05 0.00 11.23
Max Mips -9.34 0.82 -11.37
Total Mips -2.69 0.47 -5.75
Total KVA 0.75 0.20 3.73
Age Young 3.27 3.07 1.06
IBM 200.26 18.12 11.05




Table 5.3A

One Characteristic Model Forward index
Utility-Based Price Index—F as Weight

1985 1986 1987 1988 1989 1990
1985 231.38
1986 267.69 | 234.22
1987 19632 | 19397 | 226.93
1988 190.36 | 18947 | 198.62 | 221.20
1989 182.88 | 18252 | 183.32 | 183.27 { 208.17
1990 13547 | 13536 | 13558 | 136.17 | 136.79 | 187.32
1991 100.00 | 100.00 { 100.00 | 100.00 | 100.00 | 100.00
AAGR | -1398 | -17.02 -2049 | -2646 | 7-36.66 | “-62.76

Table 5.3B
One Characteristic Model Forward index
Utility-Based Price Index—F° as Weight

1985 1986 1987 1988 1989 1990
1985 236.13
1986 259.12 | 241.54
1987 188.39 | 184.15 | 231.06
1988 186.53 | 18495 | 197.74 | 226.75
1989 18242 | 18227 | 182.61 179.70 | 201.04
1990 135.14 | 134.99 | 13523 | 13556 | 136.76 | 161.50
1991 100.00 | 100.00 | 100.00 { 100.00 | 100.00 | 100.00
AAGR | -14.32 -17.64 2094 | -27.29 3492 | 4793




Table 5.4
One Characteristic Model
Traditional Hedonic Indexes
Year Log-Log Log-Linear
1985 706.29 571.66
1986 666.91 651.22
1987 465.21 513.50
1988 383.74 455.22
1989 266.21 307.81
1990 179.84 195.30
1991 100.00 100.00
AAGR -32.58 -29.06
Table 5.5
One Characteristic Model
Forward Linked Indexes
Year P as Weight P as Weight
1985 410.29 418.40
1986 474 .68 459.14
1987 393.11 350.05
1988 344.07 299.57
1989 285.07 23741
1990 187.32 161.50
1991 100.00 100.00
AAGR -23.53 -23.85




Table 5.6
One Characteristic Model
Reverse Index

1986 1987 1988 1989 1990 1991
1985 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
1986 78.15 104.61 104.81 104.45 104.89 | 106.79
1987 64.30 68.75 75.02 76.83 73.75
1988 67.81 68.11 71.47 69.82
1989 59.78 5731 57.65
1990 45.33 38.00
1991 34.63
AAGR | -24.65 -22.08 -12.95 -12.86 -15.82 | "-17.67
Table 5.7
One Characteristic Model
Reverse Linked Index
Year P as Weight

1985 100.00

1986 78.15

1987 48.04

1988 4738

1989 41.59

1990 32.90

1991 29.98

AAGR -20.08




Table 5.8A

One Characteristic Forward Index
Utility-Based Index—F"—IBM Only
1985 1986 1987 1988 1989 1990

1985 233.29

1986 266.68 236.75

1987 195.09 192.37 227.82

1988 190.65 189.68 199.31 221.70

1989 183.58 183.49 184.08 183.72 207.76

1990 134.04 133.96 134.26 134.93 135.59 184.59

1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -14.12 -17.24 -20.59 -26.54 36.56 |° -61.30

Table 5.8B
One Characteristic Forward Index
Utility-Based Index——IBM Only
1985 1986 1987 1988 1989 1990

1985 238.26

1986 25991 243.86

1987 185.88 181.25 232.35

1988 187.35 185.23 198.15 227.27

1989 183.03 182.93 183.35 177.83 200.77

1990 133.84 133.77 134.11 134.60 135.78 158.70

1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -14.47 -17.83 -21.08 2737 -34.85 -46.19




Table 5.9
One Characteristic Model
Traditional Hedonic Indexes—IBM Only
Year Log-Log Log-Linear
1985 735.16 552.83
1986 682.01 664.28
1987 453.40 487.97
1988 389.19 44892
1989 270.50 308.01
1990 177.69 191.04
1991 100.00 100.00
AAGR -33.25 -28.50 |*
Table 5.10
One Characteristic Forward Index
Linked Indexes—IBM Only
Year F as Weight P as Weight
1985 420.01 433.73
1986 480.13 473.14
1987 390.13 351.66
1988 341.31 299.90
1989 282.84 234.66
1990 184.59 158.70
1991 100.00 100.00
AAGR -23.92 -24.45




Table 5.11

One Characteristic
Reverse Index—IBM Only
1986 1987 1988 1989 1990 1991
1985 100.00 100.00 100.00 100.00 100.00 100.00
1986 81.92 106.29 106.99 106.59 106.75 109.26
1987 65.18 69.84 75.93 78.05 74.86
1988 69.02 69.44 73.05 71.52
1989 60.90 58.97 60.02
1990 45.41 39.55
1991 3525
AAGR -19.94 -21.40 -12.36 -12.40 -15.79 -17.38
Table 5.12
One Characteristic Model
Reverse Linked Index—IBM Only
Year P as Weight
1985 100.00
1986 81.92
1987 50.24
1988 49.65
1989 43.54
1990 33.53
1991 29.88
AAGR -20.13




Table 5.13

Three Characteristic Model
Hedonic Surface Estimates
Year Coeflicient Value Std. Error t value
R, -354.39 91.53 -3.87
B, 378.22 4334 8.73
B, 3158.82 54.46 58.00
1985 B, -18.49 5.50 -3.36
By -6.68 1.46 -4.57
B, -35.89 2.38 -15.11
By -0.02 0.02 -0.98
ﬁ) -363.90 96.53 - -3.77
B, -23.91 26.47 -0.90
B, 3418.26 34.14 100.12
1986 B, 0.74 5.68 0.13
B4 3.91 0.35 11.11
[35 -49.46 0.99 -49.73
By -0.03 0.02 -1.58
ﬁ) -503.91 92.97 -5.42
B, 406.79 19.15 21.24
B 618.03 31.39 19.69
1987 Bj 116.94 5.00 23.29
B, -0.89 0.25 -3.63
B 6.00 0.82 7.36
B -0.13 0.01 -8.97
By -295.86 179.06 -1.65
B, 46620 | 19.51 23.89
B, 882.19 31.24 28.24
1988 B 235 1.13 2.08
B, -0.91 0.13 -7.26
R 4.54 0.40 11.25
By 0.00 0.00 -0.65




Table 5.13 (Cont.)
Three Characteristic Model

Hedonic Surface Estimates
Year Coefficient Value Std. Error t value
By -2688.73 192.69 -13.95
B, 300.19 20.16 14.89
B, - 902.15 27.41 32.91
1989 B, 14.02 1.00 13.95
B, -0.82 0.10 -8.24
B 2.06 0.24 8.61
B -0.01 0.00 -14.67
By -2737.45 231.89 -11.80
B, 210.36 20.16 10.43
B, 768.65 28.03 27.42
1990 B, -0.29 0.51 -0.56
B, -0.93 0.10 -9.32
B 0.08 0.20 0.41
B 0.00 0.00 4.58
By -1204.85 509.82 -2.36
B, 60.22 38.54 1.56
B, 456.06 55.55 821
1991 B, 0.33 0.87 0.37
B, -0.33 0.17 -1.98
B3 1.25 0.37 3.39
B 0.00 0.00 2.50
Table 5.14
Correlation Matrix for
Computer Characteristics

Min Mips Max

Min 1.00 0.92 0.76

Mips 0.92 1.00 0.86

Max 0.76 0.86 1.00




Table 5.15

Three Characteristic Model
Minimum Memory Demand
Variable Value Std. Error t value
(o 78 346.25 13.54 25.58
Q4 -1.35 0.06 -21.64
REFMAN -34.95 14.66 -2.38
PUB -48.38 17.23 -2.81
CHEM -27.29 17.02 -1.60
FABMAN -32.43 14.88 -2.18
COMP -38.58 15.38 -2.51
ELEQUIP -28.82 15.16 -1.90
TRANSP -13.84 16.70 -0.83
UTIL -24.28 16.54 -1.47
COMM -16.20 16.73 -0.97
ELECTRIC -39.42 16.40 -2.40
WHOLE -34.21 16.18 -2.11
RETAIL -34.39 14.38 -2.39
FIN -28.12 16.42 -1.71
DEPOSIT -38.28 14.17 -2.70
CREDIT -22.55 17.32 -1.30
INS -22.50 14.21 -1.58
BUSSERV -21.07 13.44 -1.57
SOCSERV -48.66 17.20 -2.83
HEALTH -27.43 14.94 -1.84
EDU -37.30 14.55 -2.56
GOV -21.39 14.59 -1.47
ADGOV -34.09 15.07 -2.26
DEFENSE -31.56 16.34 -1.93
Site Value 0.00 0.00 3.96
Max MIPS -0.73 0.19 -3.86
Total MIPS -0.39 0.11 -3.55
Total KVA 0.04 0.04 1.01
Age Young -4.37 0.67 -6.48
IBM -3.24 3.94 -0.82




Table 5.16

Three Characteristic Model
MIPS Demand
Variable Value Std. Error t value
Olyg 1196.10 84.09 14.22
O -7.63 0.67 -11.38
REFMAN 187.77 91.11 2.06
PUB 120.53 107.11 1.13
CHEM 120.27 105.84 1.14
FABMAN 263.45 92.49 2.85
COMP 133.22 95.61 1.39
ELEQUIP 218.16 94.26 2.31
TRANSP 64.77 103.85 0.62
UTIL 38.17 102.79 0.37
COMM 168.00 103.99 1.62
ELECTRIC 114.44 101.95 1.12
WHOLE 307.18 100.57 3.05
RETAIL 108.04 89.40 1.21
FIN 147.70 102.06 1.45
DEPOSIT 157.17 88.07 1.78
CREDIT 163.37 107.66 1.52
INS 194.33 88.35 2.20
BUSSERV 96.90 83.58 1.16
SOCSERV 62.72 106.91 0.59
HEALTH 82.09 92.90 0.88
EDU 182.94 90.42 2.02
GOV 15.17 90.73 0.17
ADGOV 188.71 93.69 2.01
DEFENSE 139.46 - 101.55 1.37
Site Value 0.03 0.01 4.54
Max MIPS -7.79 1.20 -6.49
Total MIPS -1.76 0.69 -2.56
Total KVA 0.95 0.27 3.50
Age Young 13.34 4.20 3.18
IBM 188.26 24.49 7.69




Table 5.17

Three Characteristic Model
Maximum Memory Demand
Variable Value Std. Error t value
Oy 19.47 391 4.98
(o -0.01 0.00 -7.52
REFMAN 3.42 4.23 0.81
PUB 3.03 498 0.61
CHEM 5.69 4.92 1.16
FABMAN -0.07 4.30 -0.02
COMP -2.56 4.44 -0.58
ELEQUIP -2.88 438 -0.66
TRANSP -3.79 4.83 -0.79
UTIL 2.07 4.78 0.43
COMM -2.22 4.83 -0.46
ELECTRIC -2.23 4.74 -0.47
WHOLE -0.64 4.67 -0.14
RETAIL 0.91 4.16 0.22
FIN -0.12 475 -0.03
DEPOSIT -0.20 4.09 -0.05
CREDIT 4.14 5.00 0.83
INS 0.07 4.11 0.02
BUSSERV 0.78 3.88 0.20
SOCSERV -0.71 4.97 -0.14
HEALTH 0.88 432 0.20
EDU 1.36 4.20 0.32
GOV 3.17 4.22 0.75
ADGOV -3.72 4.35 -0.85
DEFENSE 1.66 4.72 0.35
Site Value 0.00 0.00 0.83
Max MIPS -0.24 0.05 4.38
Total MIPS 0.09 0.03 2.93
Total KVA -0.06 0.01 4.47
Age Young 0.00 0.20 0.01
IBM 4.55 1.14 4.00




Table 5.18A
Three Characteristic Model Forward Index
Utility-Based Price Index—F" as Weight

1985 1986 1987 1988 1989 1990

1985 326.20

1986 389.39 325.63

1987 326.22 325.50 321.46

1988 252.06 253.80 259.36 310.94

1989 228.80 228.35 239.50 247.74 297.24

1990 163.17 163.51 165.41 168.20 170.86 272.94

1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR -19.71 -23.61 -29.19 -37.81 -54.47 | -100.41

Table 5.18B
Three Characteristic Model Forward Index
Utility-Based Price Index—° as Weight
1985 1986 1987 1988 1989 1990

1985 329.80

1986 362.52 328.73

1987 318.82 318.47 323.84

1988 253.60 255.44 26821 306.48

1989 218.95 219.70 236.62 249.78 280.36

1990 164.87 165.30 169.71 170.74 177.73 237.34
1991 100.00 100.00 100.00 100.00 100.00 100.00

AAGR -19.89 -23.80 -29.38 -37.33 -51.55 -86.43




Table 5.19
Three Characteristic Model
Traditional Hedonic Indexes
Year Log-Log Log-Linear
1985 863.50 484.86
1986 790.98 513.64
1987 532.31 388.36
1988 416.19 343.03
1989 28422 225.12
1990 189.24 164.45
1991 100.00 100.00
AAGR -35.93 -26.31
Table 5.20
Three Characteristic Model
~ Forward Linked Index
Year P as Weight P’ as Weight
1985 619.03 520.86
1986 738.95 572.53
1987 738.65 554.66
1988 595.96 459.38
1989 474.83 374.39
1990 272.94 237.34
1991 100.00 100.00
AAGR -30.38 -27.51




Table 5.21

Three Characteristic Model
Reverse Index
1986 1987 1988 1989 1990 1991
1985 100.00 100.00 100.00 100.00 100.00 100.00
1986 59.35 82.53 86.52 88.70 90.02 90.53
1987 49.03 74.77 81.00 85.51 88.60
1988 53.14 53.68 59.30 62.65
1989 48.78 53.94 57.07
1990 38.88 30.68
1991 29.01
AAGR -52.18 -35.63 -21.07 -17.95 -18.90 -20.62
Table 5.22
Three Characteristic Model
Reverse Linked Index

Year P as Weight

1985 100.00

1986 59.35

1987 35.26

1988 25.06

1989 22.77

1990 16.41

1991 15.52

AAGR -31.05




Table 5.23

Three Characteristic Model

Linked Index—Average All Growth Rates

Year P as Weight
1985 362.06
1986 432.21
1987 395.52
1988 310.97
1989 273.77
1990 184.14
1991 100.00
AAGR 21.44

Table 5.24A

Three Characteristic Model Forward Index
Utility-Based Price Index— —IBM Only

1985 1986 1987 1988 1989 1990

1985 679.27

1986 721.05 674.56

1987 722.03 706.41 670.03

1988 647.19 | 63342 | 671.20 | 79241

1989 541.55 529.78 | 553.00 | 674.84 | 830.92

1990 30242 | 297.81 307.65 | 363.71 404.07 812.54

1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR | -31.93 -38.18 -47.55 -69.00 | -105.87 -209.50




Table 5.24B
Three Characteristic Model Forward Index
Utility-Based Price Index——IBM Only

1985 1986 1987 1988 1989 1990
1985 715.29
1986 707.64 | 704.08
1987 72745 | 707.00 | 702.53
1988 65246 | 634.63 | 68198 | 834.36
1989 547.65 | 53872 | 570.85 | 68723 | 900.56
1990 306.00 | 299.67 | 312.18 | 365.76 | 434.23 1082.36
1991 100.00 100.00 100.00 100.00 100.00 100.00
AAGR | -32.79 -39.03 -48.74 -70.72 | -109.89 |- -238.17
Table 5.25
Three Characteristic Model

Traditional Hedonic Indexes—IBM Only

Year Log-Log Log-Linear

1985 886.58 450.60

1986 802.46 497.35

1987 507.14 350.64

1988 409.48 319.71

1989 283.20 213.66

1990 185.19 156.10

1991 100.00 100.00

AAGR -36.37 -25.09




Table 5.26

Three Characteristic Model
Linked Index—IBM Only
Year P as Weight P as Weight
1985 1761.89 2826.07
1986 1870.26 2795.84
1987 1958.57 2807.43
1988 1961.99 2725.31
1989 1670.89 224473
1990 812.54 1082.36
1991 100.00 100.00
AAGR -47.82 -55.69
Table 5.27
Three Characteristic Model
Reverse Index—IBM Only
1986 1987 1988 1989 1990 1991
1985 100.00 100.00 100.00 100.00 100.00 100.00
1986 79.30 87.79 91.50 93.50 95.07 95.92
1987 62.29 97.23 98.95 100.71 102.49
1988 65.55 80.29 83.42 84.88
1989 58.08 62.79 64.17
1990 43.89 26.94
1991 33.35
AAGR | -23.20 -23.67 -14.08 -13.58 -16.47 -18.30




Table 5.28
Three Characteristic Model
Reverse Linked Index—IBM Only

Year P as Weight

1985 100.00

1986 79.30

1987 56.27

1988 37.94

1989 27.44

1990 19.18

1991 23.74

AAGR -23.97 |
Table 5.29
Three Characteristic Model
Linked Index—Average All Growth Rates—IBM Only
Year P as Weight
1985 844.93
1986 896.91
1987 918.51
1988 854.45
1989 715.27
1990 386.01
1991 100.00
AAGR -35.57
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Figure 4.1
One Variable Hedonic Surfaces
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Figure 4.2
Box-Plot of MIPS—AIl Data
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Figure 4.3
Box-Plot of MIPS—IBM Data
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Figure 4.4
Box-Plot of Minimum Memory—All Data
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Figure 4.5
Box-Plot of Maximum Memory—All Data
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