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Exchange rates of currencies in the Exchange Rate Mechanism of the EMS are

characterized by long periods of stability interrupted by periods of extreme volatility. The

periods of volatility appear at times of realignments of the central parities and at times when the

exchange rate is within the ERM bands. We begin by considering a procedure for finding

outliers based on measuring distance as a quadratic form. The evidence suggests that the

exchange rates of the EMS can be desci-ibed by a mixture of two distributions. We therefore

model the exchange rate as switching between two distributions--one that holds in stable times

and the other that holds in volatile times. In particular, we use Hamilton's Markov-switching

model. In addition, we extend Hamilton's model by allowing the probability of switching from

one state to another to depend on the position of the exchange rate within its EMS band. This

model has the interesting implication that near the edge of the band, large movements--either

realignments or large jumps to the center of the band--are more likely if the move to the edge

of the band has been precipitous.

Charles Engel Craig S. Hakkio
Department of Economics Research Division
University of Washington FederaiReserve Bank of Kansas City
Seattle, WA 98195 925 Grand Avenue
and NBER Kansas City. MO 64198



Exchange rates of currencies in the Exchange Rate Mechanism (ERM)

of the European Monetary System (EMS) are characterized by long periods

of stability interrupted by periods of extreme volatility. The periods of

volatility appear at times of realignments of the central parities ir the ERM,

and at times when the exchange rates are within the ERM bands. In this

paper, we argue that EMS exchange rates, like many exchange rates, are

not normally distributed. lit addition, the distribution of EMS exchange

rates is quite different from that of more freely floating rates. We model

the exchange rate as switching between two distributions—one that holds

in stable times and the other that holds in volatile times.

We begin with a preliminary examination of the data, comparing the

behavior of weekly changes in the French franc/DM and Italian lira/DM ex-

change rates to the behavior of the doilar/DM and the Japanese yen/DM ex-

change rates. We show that the exchange rates under the EMS and floating

systems behave considerably differently. In addition, we show that a single

normal distribution does not adequately describe EMS exchange rates.

More specifically, the first section considers a procedure for determining

outliers. "Outliers" is the term used by statisticians to describe observations

that do not conform to the pattern suggested by the majority of observations.

In this paper, we will say that outliers come from the volatile period. The

procedure is based on measuring distance as a quadratic form, as in the

recent work of Hadi (1992, 1993). EMS exchange rates have more outliers

than floating exchange rates, but EMS outliers are less volatile than floating

rate outliers. This evidence suggests that the exchange rates of the EMS can

be described by a mixture of two distributions. Furthermore, EMS outliers

tend to cluster together.
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The outliers are not merely realignment dates. Sometimes there are large

week-to-week changes of exchange rates within the ERM bands. This is not

surprising for the lira, which had very wide bands during much of the time

it was participating in the ERM, but it is also true, to some extent, for

the franc. Conversely, sometimes when a realignment of the central parity

occurred, the new bands overlapped with the olds bands, so that a jump in

the exchange rate was not necessary.

We proceed from these observations to estimate a stochastic process for

EMS exchange rate changes assuming that exchange rates are distributed

as a mixture of two normal distributions. Furthermore, the preliminary ex-

amination of the data showed that there is some persistence in the "state"

of the exchange rate. While realizations from the volatile distribution are

infrequent, they are more likely to occur if the exchange rate was in the

volatile state in the previous period than if it was not. Consequently, we

let the probability that the exchange rate is drawn from the "volatile" or

"stable" distribution in any period depend on which distribution the ex-

change rate was drawn from in the previous period. So, Hamilton's (1989)

Markov-switching model is applied to the EMS exchange rates.

We then extend the Hamilton model by allowing the probability of

switching from one state to another to depend on the position of the ex-

change rate within its EMS band (as opposed to Hamilton's assumption of

constant switching probabilities). We find that the probability of staying in

the volatile regime is higher when the exchange rate is near the top of its

'Subsequent to our first two revisions of this paper, we received Mundaca (1994), which
fits a version of the Hamilton model estimated for several Scandinavian currencies that
forces regime breaks at times of realignments. It assumes constant switching probabilities
between states.
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band. This reflects the fact that around times of realignments (which have

always been upward realignments for these exchange rates) the exchange

rates are volatile. But, interestingly, we also find that the probability of

staying in the stable regime is also higher when the exchange rate is near

the top of its band—assuming the exchange rate was already in the quiet

regime. This finding can be given the following interpretation. It is not

accurate to model the exchange rate as being more likely to have a large

jump—either because of realignment or a large intervention that pushes the

exchange rate toward the center of the band—when the exchange rate ap-

proaches the edge of the band. It matters how the exchange rate approached

the boundaries of the target zone. II it moved there gradually, then large

change changes in the exchange rate are unlikely, If it moved there pre-

cipitously, then further volatility is likely. The fact that the probability of

a realignment depends on the regime rather than. depending on predictive

variables in a linear way could explain the general lack of success of previous

model of realignments. (See Svensson (1992) and Rose and Svensson(1993).

Note, however, that Chen and Giovannini (1993) find some ilmited success

explaining realignments using the distance of the exchange rate from the

center of the band and the length of time since the previous realignment.)

There is a connection between our approach and the literature that in-

vestigates the frequent occurrence of outliers in exchange rate changes in

floating exchange rate regimes. See, for example, Baillie and Bollerslev

(1989), Boothe and Glassman (1987), Diebold (1988), Koedijk, Schafgans,

and de Vries (1990), and Koedijk, Stork, and de Vries (1992). As in that

literature, we emphasize the non-normality of the exchange rate. However,

we concentrate on the peculiar features of the exchange rates in the ERM,
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a_s OppOSNI to tlIC' aiOrrIIIeflti(ilI('(i St11411P5 which focus oil floating exchange

rates.

it might seem natural to ino(lel the exchange rate in the EMS as a mixed

diffusion-jump process. Akgiray and Booth (1988) and Tucker and Bond

(1988) model floating exchange rates in this manner, and Ball and Roma

(1993) apply the diffusion-jump model to EMS exchange rates. However, an

aspect of the exchange rates in the EMS, alluded to above, is that volatility

tends to cluster. That is, it is not true that EMS exchange rates can be

described as having periods of stability broken by jumps caused by realign-

ments. instead, there seem to be periods of volatility around the time of

realignments, and occasionally at other times. Furthermore, these periods

of volatility often last for more than 1 week at a time. Thus, it seemsnatural

to describe the exchange rate as being drawn from two regimes—a stable

regime and a volatile regime—with some persistence in the regimes. So,

the likelihood of a volatile period is increased if the current state is volatile.

Indeed, effectively we reject a discrete time version of the jump-diffusion

model because we find statistically significant evidence of persistence in the

states.

One possible way to model clustering of volatility is with GARCH, as in

Baillie and Bollerslev (1989). In the EMS, however, the clusters of volatility

appear abruptly, as if there were a sudden switch in regimes. So, it is

more natural to segment the time series into periods of small and large

changes in exchange rates. It is possible that ARCH could provide additional

explanatory power within the context of a regime-switching model (that is,

regime-switching and ARCH are not mutually exclusive). Hamilton and

Susmel (1992) develop such a model, which they label SWARCH, but we do
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not pursue that here.

Section I investigates the data using quadratic distance measures. Sec-

tion 11 introduces the Hamilton Markov-switching model and provides esti-

mates of the stochastic process for EMS exchange rates. Section III extends

the Hamilton model by allowing time-varying transition probabilities. The

methods of sections I—Ill provide algorithms for choosing periods of highly

volatile exchange rates. We compare the estimated periods of volatility from

each of the three methods in section IV. In section V, we discuss why the

statistical distribution of exchange rates matters for international portfolio

selection.

I A DISTANCE APPROACH FOR IDENTIFY-

ING OUTLIERS

In this section we use a statistical procedure to determine which observations

are outliers. We also compare the behavior of EMS aad non-EMS exchange

rates. Let e denote the percent change in the exchange rate, measured as

100 * [ln(Et) — ln(Et_i)]. In this paper, we focus on two EMS exchange

rates—the franc/DM and the lira/DM—and two floating exchange rates—

the dollar/DM and the yen/DM. We use weekly data: noon buying rates,

from New York City, on Tuesday (Wednesday if Tuesday is unavailable).

The sample period is March 20, 1979 to September 8, 1992 (for the lira) and

to October 23, 1993 (for the franc, dollar, and yen). The first observation

was chosen since the EMS was formed on March 13, 1979. September 8, 1992

was the last observation for the lira since Italy withdrew from the ERM on

September 17, 1992.
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The approach for identifying outliers was developed by Hadi (1992,

1993). Those observations which come from the tails of the empirical dis-

tribution of c are said to be outliers, while those observations that come

from the center are said to caine from the stable period. We will say that

observations from the stable period come from F(e). The basic idea of Bath

is simple: all observations that are "close" together belong to F(e), and all

other observations are outliers. "Close" is defined by measuring distance as

a quadratic form, which should be distributed x2

1.1 The Rule for Classifying Observations

How would someone find an outlier if they knew there was only one outlier?

First, for each observations form two groups: one group is the single obser-

vation and the other group is all other observations. Then, calculate the

distance from the single observation to the center of all other observations.

The center is calculated as the mean (or median); distance is measured rel-

ative to the dispersion of the data (the variance). The single outlier is then

that observation for which the distance is maximized.

A similar approach could be used to find multiple outliers. Suppose we

knew there were exactly two outliers. Consider all pairs of observations,

and let the remaining T-2 observations come from F(e). Then, calculate the

distance between each pair of observations and the center of F(e). The pair

of outliers is then that pair for which the distance is maximized. As long

as the number of outliers is known in advance, the procedure for finding

outliers is straightforward, but time-consuming.

However, if the number of outliers is unknown, the problem is more dif-

ficult. One must determine how many outliers exist and which observations
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are outliers. The discussion of the solution presented here is intuitive; see

Hadi (1992, 1993) for a more detailed discussion.

The procedure to find outliers is iterative.

1. Begin with a two element set, denoted 12(e), that is most likely to not

contain any outliers. ("F" is used as a reminder of "F," and 2 as a

reminder that it is a two element set.)

2. Increase the size of F3(e) to about half the observations. In this step,

let r denote the number of observations in the set. Rank the observa-

tions by the distance between the observation and the center of Ffr),

relative to a measure of dispersion. Continue until F7(e) has half the

observations.

3. For this step, let r again denote the number of observations in Fr(e).

Rank the observations by the distance between the observation and

the center of F(c), and test whether observation r + 1 is an outlier.

Observation r+1 is then compared to a x11, statistic, because distance

is measured as a quadratic form of normals.

(a) if the distance is greater than set F(e) = F(e) and the

remaining observations are outliers. Stop.

(b) if the distance is less than increase the size of .1 to r + 1,

denoted (e). Repeat step 3.

(c) if F(e) contains all the observations, there are no outliers. Set

F(e) = all observations and there are no outliers. Stop.
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1.2 The Distribution of EMS Exchange Rates

Table 1 summarizes the exchange rate data according to the distance rule.

The table shows the number of observations and the standard deviation for

observations from the stable period and for the outliers. Two facts are clear.

First, EMS exchange rates have many more outliers than floating exchange

rates. Second, the standard deviation of EMS exchange rates is much less

than the standard deviation of floating exchange rates, for both the stable

period and the volatile period (outliers).

Figures 1 and 2 show when the outliers occur. The vertical lines rep-

resent realignments in the French Iranc/DM exchange rate and the Italian

lira/DM exchange rate. There were only two dollar/DM outliers (Septem-

ber 24, 1985 and September 15, 1985) and four yen/DM outliers (December

11, 1979, December 9, 1980, August 11, 1981, and September 15, 1992).

Two conclusions follow from the figures. First, not all outliers occur at

the time of a realignment. Second, some realignments do not correspond

with an outliers. That is, outliers are neither necessary nor sufficient for a

realignment.

We now turn to testing whether outliers and observations that belong to

F(e) cluster. We use a nonparatnetric runs test. Define an indicator variable

that equals 0 if e E F(e) and 1 if e is an outlier. The null hypothesis is that

the Os and is occur randomly over time. That is, outliers do not duster.

The results strongly suggest that the observations for the franc (p value is

0) do cluster, while the lira, dollar, and yen do not cluster (p value of 0.76,

0.93, and 0.73). So, floating rates do not exhibit clustering of outliers, while

the results are mixed for EMS exchange rates.
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To summarize, floating exchange rates, like the dollar/DM and yen/DM,

behave differently than EMS exchange rates. Outliers are more frequent in

the EMS, but they are also less volatile. EMS exchange rate changes seem to

fall into two distinct categories: very large changes and very small changes.

There are few realizations that fall in the middle ground. This contrasts with

floating rates, which exhibit a wide range of outcomes. We conclude that

the EMS exchange rates are drawn from a mixture of two distributions—one

which has a high variance and one with a low variance. Since there is some

evidence that volatile periods tend to cluster together, we are led to model

the EMS exchange rates with Hamilton's (1989) Markov switching model.

II THE SWITCHING MODEL

The previous section implies that the stochastic process for exchange rates in

the EMS can be based on a mixture of probability distributions. In addition,

since outliers tend to cluster, we estimate Markov-switching models for EMS

exchange rates, as opposed to diffusion-jump processes.

11.1 The Rule for Classifying Observations

We assume there are two possible states of the world: the "stable" state

(s) and the "volatile" state (v). The stable state occurs most of the time,

while the volatile state occurs less frequently. We do not exogenously choose

which periods are stable and volatile. Instead, we assume that the exchange

rate is described by a mixture of normal distributions. The parameters of

the distribution are the mean and variance in the stable state, p anda, and

the mean and variance in the volatile state, p and o. In addition, there are
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parameters which determine the probability of the stable and volatile state

occurring. These parameters are all estimated to maximize the likelihood

function.

We could model the probability of each state occurring at any date as

being independent of the state the exchange rate was in during the previous

period. hi this case, there is a fixed probability it of state s occurring,

and a probability 1 — ir of state v occurring. This model is essentially the

discrete time analog of the mixed process estimated by Akgiray and Booth

(1988) and Tucker and Pond (1988). It implies that the probability that the

exchange rate is in the volatile state in period t is independent of whether

the exchange rate was in the stable or volatile state in period t-1. If this

were accurate, then the exchange rate changes would not exhibit volatility

clustering.

However, as discussed earlier, it appears that a volatile week is more

likely to occur if the previous week was also volatile, and a stable week is

more likely ii the previous week as stable. if this is tnie, Hamilton's (1989)

Markov-switching model would be appropriate. In this case, we let it3 be

the probability that a stable week is followed by a stable week, and it,, be

the probability that a volatile week is followed by a volatile week. We do not

impose the restriction that ir3 = 1 — ire, as would the independent switching

model. We will present tests of this restriction.

In the next section we estimate a time-varying transition probability

model. To nest the model of this section in the model of the next section,

it is convenient to parameterize the model slightly differently than does

Hamilton. We actually estimate the paraters 0, and Ox,, defined by
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The parameters of the model—p5, Mv, c,O, On—are estimated to max-

iinize the likelihood using the procedure described in Hamilton (1989) and

Engel and Hamilton (1990).

11.2 The Distribution of EMS Exchange Rates

Table 2 presents the parameter estimates. The first thing to note is that for

all currencies the variance of the exchange rate in the volatile state, o, is

much larger than the variance in the stable state, o. So, it is natural to

think of the two states as being high variance and low variance states.

The mean of the exchange rate in the volatile state (high-variance) is

positive and larger than the mean in the stable state (low variance). This

is because the mark tends to be revalued relative to the other currencies

during realignments.

The mean change in the nominal exchange rate is small but positive in

the stable state. This is because there is a slight tendency for currencies

to depreciate against the mark when the exchange rate remains within the

bands, but the average change is very small.

The probability of staying in the stable state in period t+1 if the ex-

change rate is in the stable state in period t, given by it,, is very high for

all currencies. This is because the periods of stability are relatively long-

lasting. In fact, the expected length of stay in state s is given by 1/(1 —
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hr thi' franc/ DM rate. 7r3 = 0.953, so the stable state lasts 21 iiionths.

We cannot say with certainty whether the exchange rate change on any

date was drawn from the volatile distribution or the stable distribtuion. We

can follow the practice, however, of classifying anobservatiDn as being drawn

from the volatile distribution if the Bayesian probability of it beingfrom that

distribution is greater than 0.50. Given the parameters of the distribution

(we treat the parameter estimates as being the true parameters in these

calculations), the "filter probability" that a given observations comes from

state s is the probability that the exchange rate at time I is from state

s, conditional on all observations in the sample up until time I. Using this

classification, all French franc/DM realignments occurred during the volatile

period; 2 Italian lira/DM realignments occurred during the stable period and

7 realignments occurred during the volatile period.

AS in previous sections, we test whether observations that come from the

volatile distribution (specifically, observations for which the filter probability

of coining from the volatile state is greater than 50 percent) tend to cluster.

Using the runs test, we conclude that observations from the volatile period

do tend to cluster.

For this model, we can test the hypothesis more specifically. The Markov

switching model is distinguished from the independent switching model be-

cause it does not impose the condition that 7r + 7r = 1. Using the equation

for ir, and ir3, this condition is equivalent to O + t, = 0. Using a likelihood

ratio test, we can reject this hypothesis with a p-value of 0.0 for the franc

and a p value of 0.028 for the lira. So, there is strong evidence against the

simple independent switching model.

In this section we have assumed that the probability of moving from
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one state to another is constant. That does not seem like an adequate de-

scription of the situation in the EMS, where often speculative attacks make

it seem much more likely than usual that an observation will be from the

volatile distribution this week if it is near the outer band. In the next

section, we move beyond the Hamilton model to allow the transition prob-

abilities to vary over time in a way that takes into account the likelihood of

a realignment.

III A TIME-VARYING SWITCHING MODEL

The previous section assumed that the probability of switching from the

stable state to the volatile state (and the volatile state to the stable state)

is constant. In this section, we generalize this assumption: we let the prob-

ability of switching states depend on how far the exchange rate is from the

upper band. For example, suppose the exchange rate is in the volatile state

and very close to the upper band. The time-varying transition probability

model allows the probability of staying in the volatile state to be greater

in this case (than if the exchange rate were at the central parity). In other

words, if the exchange rate is likely to be more volatile when it is near the

upper band, then we want to allow the probability of being in the volatile

regime to be greater.

111.1 The Rule for Classifying Observations

Estimating a time-varying transition probability model is very similar to

estimating a constant transition probability model. In the previous section,

ir3 was constant; in this section, we let it, = w,(Zg_1) and ir = ir(zt_i).
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More specifically, let

= Prob[statet = stable state...j = stable, zt_i]

=
1 + éi+t_i

= Prob[statet = volatile state..i = volatile, zt_j]

=
1 + e°2+°—

Eight parameters are estimated:

Our estimation procedure extends the work of Hamilton (1989) to al-

low for these time-varying transition probabilities. Other recent studies

have examined time-varying transition probabilities in a Markov-switching

framework. Diebold, Lee, and Weinbach (1992), Filardo (1994), and Zhu

(1993) discuss some of the econometric issues in estimating these models.

111.2 The Distribution of EMS Exchange Rates

The results are presented in Table 3. zj is the percentage distance from the

upper band. More specifically, Zt = 100[ln(uppert) — ln(Ej)], where tipper

equals the upper band and E equals the actual exchange rate. As it turns

out, the estimates of p.,, Pu, a, cr are similar to those reported in Table 2

for the constant probability model.

We find 9 and e are both negative. It is easy to show that sign(Oir/Bzt_i) =

sign(01). This means that the probability of staying in state v, if we are

already in it, is greater the closer the exchange rate is to the top of the band

(Zt_i smaller). In other words, it is more likely that a volatile realization

will be followed by a volatile realization when the exchange rate is far from
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the central parity.

This result is somewhat similar to the result of Ball and Roma (1993).

In their jump-diffusion process, they find that the probability of a jump is

greater the farther the exchange rate is from the central parity. There are

two reasons why our result is different—one minor and one signficiant. The

minor reason is that we model the probability as depending on the distance

from the top of the band. We prefer that formulation because for the lira the

width of the band changed during our sample. Hence, as the band narrows,

being close to the top of the band corresponds to a smaller distance from

the center.

The more significant difference is that we are not modeling the uncon-

ditional probability of the volatile state as a function of the position in the

exchange rate band. Rather, in addition to depending on the location of the

exchange rate in the band, we model the probability of the volatile state as

being conditional on the current state—that is, our model is of the Markov-

switching rather than the indpendent-switching variety. We capture the idea

of volatility clustering with the Markov-switching model, because being in

the volatile state makes it more likely to remain in the volatile state. This

property is not in the independent switching model, or the jump-diffusion

model. So, our finding that O is negative does not mean simply that the

volatile state is more likely when the exchange rate is at the top of the band.

It means that it is more likely conditional on the exchange rate being in the

volatile state.

This distinction is important because we also find that O is negative.

That means that conditonal on being in the stable state, remaining in the

stable state is more likely when the exchange rate is near the top of the band.
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EMS exchange rates have experienced long spells near the top of the band, as

central banks fight off realignment. These spells are often broken eventually

by realignments, but sometimes the exchange rate drops back toward the

central parity. This result is not inconsistent with O being negative. We

can interpret the two findings simply as saying that a transition from the

stable state to the volatile state is more likely to occur when the exchange

rate is near the center of the band, but a volatile state is more likely to

follow a volatile state state near the top of the band.

We later discuss the restrictions placed on the model if the switching

probabilities are independent of the state but dependent on the position

within the band. One of the restrictions is that O = —O. This condition

relates to the discussion above. The independent switching model, and the

jump-diffusion model, insist that either the volatile or the stable state is

more likely irrespective of the state last period. So, the finding in that

model that the volatile state is more likely near the top of the band would

hold even if the state last period were stable. The fact that we find that

both O and O are negative is inconsistent with that conclusion. We later

reject that conclusion—that is, we reject the discrete time version of the

Ball and Roma model.

As in previous sections, a date is classified as being in the volatile state

if the filter probability of the volatile state is greater than 0.50. Figures

1 and 2 show which observations come from the volatile distribution. MI

French franc/DM realignments occurred during the volatile period; 2 Italian

lira/DM realignments occurred during the stable period and 7 realignments

occurred during the volatile period.

As in previous sections, we test whether observations that come from
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the volatile distribution tend to cluster together. Using the runs test, we

conclude that observations from the volatile period do tend to cluster.

Our specific test for volatility clustering is testing the Markov-switching

model against the model in which the probability of the volatile (or stable)

state can depend on Zt_1, but does not depend on the state in the previous

period. This independent switching model imposes rs(zc_i) =

for all realizations of Zg...1. This condition is equivalent to O = —O and

= —O. We reject that restriction with a p-value of 0 for the franc. This

is not surprising since 9 and O are estimated to be of the same sign as

and 9. However, we cannot reject the hypothesis for the lira, the p-value is

0.13. The reason is that O and O are insignificant, so the test cannot reject

that 9 = —O and O =

rv HOW DO THE THREE RULES COMPARE?

We have presented three different rules for choosing which observations come

from the stable period and which observations come from the volatile period.

To simplify notation, we define two distributions: observations from the

stable period come from F(e), and outliers and observations from the volatile

period come from G(e). This section compares the results from the four

rules.

Figures 1 and 2 show the observations assigned to G(e) for a the distance

rule and the time-varying parameter model. While the rules do not always

pick the same observations to put into G(e), they do seem to pick out many

of the same observations.

Table 4 can be used to compare how the four rules assign franc/DM
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observations to F(e) and G(e). The table is actually 3 two-way tables. In

the table, "FTP" denotes the "fixed transition probability" switching model

and "TVTP" denotes the "time varying transition probability" switching

model. For example, the FTP/Distance subtable compares the FTP rule

with the Distance rule. It shows that the two rules assign observations to

F(e) and G(e) in a similar way. Of the 723 observations that belong to F(e)

based on the Distance ruie, 694 were put in the F(e) distribution and only

29 were put into the 13(e) distribution when using the FTP rule. Similarly,

of the 40 observations that belong to 13(e) based on the Distance rule, all 40

put in the G(e) distribution when using the FTP rule. The other subtables

are read in a similar way.

Since the table is several two-way tables, we can test whether the alloca-

tion of observations by the three rules are related. We can calculate Fisher's

exact test. The probability is 0 for each pair. Therefore, even though the

rules are different, they are basically picking the same outliers.

It would be possible to construct similar tables for the other exchange

rates. However, they look very similar to Table 4. In addition, Fischer's

exact test for association between the rules yields a probability of 0. As

with the franc, the rules are basically picking the same outliers.

V IMPLICATIONS OF TWO DISTRIBUTIONS

FOR EMS EXCHANGE RATES

As Boothe and Glassman (1987) point out, there are at least two reasons

to investigate the nature of the stochastic process underlying exchange rate

movements. First, the distribution of the exchange rate matters for statis-
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tical tests of open economy models. Second, theoretical models in interna-

tional finance often rely upon specific distributional assumptions. We take

up the second argument in this section. We contrast the optimal portfolio

choice of an investor when the exchange rate is normally distributed and

when it is drawn from a mixture of normal distributions. This section is

not a full-fledged study of intertemporal asset demand, as in the study of

Park, Ahn, and Fujihara (1993) for the jump-diffusion process. It is set in

a two-period framework, and is intended to illustratethe importance of the

distributional assumption for asset choice.

We look at the asset choice of an individual with a one-period horizon.

We assume that the investor has an exponential utility function. We choose

this function because it is well known that with this function, and with

returns distributed normally, the investor who maximizes expected utility

will choose a mean-variance efficient portfolio. We will contrast the optimal

portfolio choice for this investor when returns are normally distributed with

the optimal portfolio choice when returns are drawn from a mixture of nor-

mal distributions. In the this case, the optimal choice of the expected utility

maximizer cannot be characterized simply as the choice of a mean-variance

efficient portfolio.

The individual's utility function exhibits constant absolute risk aversion:

U(C) =

Suppose at time 0 the agent allocates wealth to maximize expected utility

at time 1. Because the agent consumes all wealth at time 1, expected utility

of consumption at time 1 simply equals expected utility of wealth. Let the
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asset choice be between a foreign and domestic security: 47o = b + 56.
The assets could be denominated in nominal terms—so utility depends

on nominal wealth, and S is the nominal exchange rate. In that case, b

is denominated in the home currency and b in the foreigu currency. Al-

ternatively, investors might only consume the home good. Then, wealth is

denominated in terms of that good. b* is in terms of the foreign good and

S is the price of the foreign good in terms of the domestic good Under this

interpretation, S is the real exchange rate.

Assume that neither security pays interest and that their prices are fixed

at one in terms of their own currency (or good). Then wealth in period 1

given by:

MT1 = b+51b=W0+ob

so
b = S0b

The asset choice problem becomes one of choosing Li to maximize

Eo( _c""6)

Since r°-"O is constant, the problem reduces to maximizing

—

116 is distributed normally with mean t and variance c2, then using the

moment generating function for a normal distribution, we can write
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=

The first order condition is ti—baa2 = 0. If we define 1? = aW0 = the degree

of relative risk aversion, and A'' = b/W0 = the share of the portfolio held

in the risky foreign asset when returns are normal distributed, then

f"... P
RO

Now, consider the asset choice when S is distributed according to the

switching model. We assume that there are two possible states of the world.

Changes in the exchange rate are distributed normally conditional on the

state of the world. The stable state occurs most of the time. The exchange

rate has low variance in the stable state. The volatile state occurs less

frequently and is characterized by higher variance.

The parameters of the distribution are the mean and variance in the

stable state, p and a, and the mean and variance in the volatile state,

panda. In addition, there are parameters which determine the probability

of the stable and volatile state occurring. Let it be the fixed probability of

state s occurring and 1 — it be the probability of state v occurring.

With these definitions, we now have

= + (1 —

The first order condition can be written

o = — RA)eM8+(1U)2h12
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+(i — r,j(gu, — RAa)e_R0+(H2d712 (2)

This first order condition cannot be solved analytically for A except in

some special cases. Notice that the choice of A depends on all five of the

parameters of the distribution: p, ,u,_i,a, a, iv. In particular, A cannot be

expressed in terms of simply the mean and variance of 6. The mean of 6 is

given by

(3)

and the variance of 5 is given by

a2=varo(6)=7ra+(1_ir)cr+(1_1r)ir(ps_pv)2 (4)

We will consider a series of examples which illustrate how the portfolio

choice differs from the one chosen under the normal distribution, which does

depend only on the mean and variance.

V.1 Example 1

Suppose that the variance of the exchange rate in each state was zero, so

that c = 0 and cy = 0. Note that this does not mean that the exchange

rate is not risky. The exchange rate still has a positive variance because

it can jump between its value in the stable state, p, and its value in the

volatile state, Pv.

if p > 0 and p, > 0, then A = . Recall that the safe domestic asset

pays off zero with certainty. The foreign asset, in domestic currency terms,

would always have a higher payoff under this scenario, whether the state was
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normal or abnormal. investors would always be better off with the foreign

asset. The return on the foreign asset stochastically dominates the return on

the domestic asset. So, investors would want to take as large a long position

in the foreign asset as possible, and short the domestic asset.

However, if investors had simply applied mean-variance analysis to this

problem, following the portfolio choice dictated by equation 1, they would

have ended up choosing a much different portfolio. The optimal share of the

foreign asset in this case would be given by

A——
R[(l — —

This value of A is finite. Clearly the mean-variance solution is far from the

optimal choice.

V.2 Example 2

Now consider the special case in which ,i5 = 0 and a = 0. This would

correspond to the case in which the exchauge rate was absolutely fixed in

the stable state. From the first-order condition, equation 2, we can derive

in this case that

A

Given that p, = and a = j-k,a2 — (1-.ir)2P , we can write

R(a2 —

Therefore, A > =
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En this case, the investor's optimal choice of A is always greater than

A". So, there is a sense in which the variance overstates the volatility of

the exchange rate. The investor is always willing to hold more of the risky

asset than he would in a mean-variance efficient portfolio.

V.3 Example 3

Table 5 shows the optimal choice of A for a variety of parameters. In con-

structing the table, the parameters were chosen so that the unconditional

mean z = .10 and the unconditional variance a2 = .04. The risk aversion

parameter, R, was chosen to be 5. With these values, according to equation

(1), the mean variance optimal portfolio is always .50.

The parameters were chosen to approximate what we might see in the

EMS. The probability of the volatile state is low compared to the probability

of the stable state. But the mean change in the exchange rate is much larger

in the volatile state, and the variance is chosen to be ten or twenty times

larger in the volatile state state than in the stable state.

Examination of Table 5 shows that there is a wide range of values for

the optima] A. Often the optimal portfolio is very different from the mean-

variance optimal one (that is, A is very different from .50.)

We conclude that the variance is not a sufficient statistic to summarize

the volatility of the exchange rate. An investor who based his decision on the

rule of minimizing the variance for a given mean would end up choosing a

very different portfolio from the individual who maximized expected utility

taking into account the fully parameterized distribution.
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VI CONCLUSION.

There are 6 conclusions that can be drawn from this paper:

1. The distribution of exchange rates is different in a system of floating

exchange rates and a system of tixed but adjustable rates.

2. EMS exchange rates can be described by a mixture of two distribu-

tions: one for the stable period and one for the volatile period.

3. Realignments generally come froni the volatile distribution. However,

not all volatile observations are realignments.

4. Observations from the volatile distribution cluster together.

5. The standard Hamilton switching model needs 6 parameters to de-

scribe the distribution of EMS exchange rates, while the tinie vary-

ing model needs parameters: But even

though it takes more than two parameters to describe the distribution

of EMS exchange rates, the added complexity is worth it because a

two parameter distribution is clearly inadequate.

6. There is evidence that the behavior of the exchange rate near the

edge of the EMS band depends on the nature of the behavior of the

exchange rate as it approaches the band. If the exchange rate rises

to the top of the baud in a gradual, stable manner, large changes in

the exchange rate are unlikely. However, if it jumps to the edge of the

band rapidly, further volatility is likely either through a realignment

or a large move back toward the center of the band.
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Figure 1: Franc/DM Exchange Rates from the Volatile Period

Notes: The vertical lines represent realignments.
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Figure 2: Lira/DM Exchange Rates from the Volatile Period

Notes: The vertical lines represent realignments.
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Table I: Summary Statistics Based on the Distance Rule

French franc Italian lira U.S dollar Japanese yen

F(e): the stable period

number of observations
standard deviation

723

0.20

681

0.29
761

1.54
759

1.32

Outliers

number of observations
standard deviation

40

1.85

23

1.36
2

9.13
4
0.58
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Table 2: Markov Switching Model

French

stable

franc

volatile

Italian

stable

lira

volatile

p 0.009

(0.007)

0.376

(0.133)

0.001

(0.010)

0.561

(0.120)

c2 0.030

(0.001)

1.610

(0.257)

0.062

(0.002)
0.851

(0.145)

9 3.010

(0.170)

0.709
(0.262)

2.400
(0.150)

-0.236

(0.257)

ir 0.953 0.670 0.917 0.441
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Table 3: Time Varying Transition Probability Model

French

normal

franc

volatile

Italian

normal

Era

volatile

Ii 0.009

(0.007)

0.353

(0.122)

0.001

(0.010)

0.563

(0.117)

2 0.029

(0.001)
1.508

(0.222)
0.063

(0.002)
0.840

(0.142)

90 3.193

(0.254)
0.588

(0.314)

2.592

(0.192)
0.050

(0.283)

91 -0.489

(0.218)
-1.107

(0.270)
-0.193

(0.097)
-0.143

(0.196)

0.961 0.643 0.930 0.512
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Table 4: Comparison of Rules for Classifying Franc/DM Outliers

Distance

F(e) G(e)

FTP

F(e) G(e)
FTP F(e)

(i(e)
694 0
29 40

TVTP F(e)
G(e)

683 0
40 40

681 2
13 67
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Tahle 5: Portfolio Share for Risky Asset Exchange Rate Follows a Switching
Process R = 5, p = c = 0.04

r p,1 Pg C cr A

0.646 -.010 0.30 0.004 0.04 0.819
0.821 0.057 0.30 0.012 0.12 0.660
0.970 0.073 1.0 0.012 0.12 1.211

0.893 0.077 0.30 0.012 0.24 0.521
0.974 0.076 1.0 0.012 0.24 1.210

0.911 0.080 0.30 0.02 0.20
0.980 0.082 1.0 0.02 0.20 0.821
0.953 0.090 0.30 0.02 0.40 0.441

0.983 0.085 1.0 0.02 0.40 0.795

0.959 0.092 0.30 0.028 0.28 0.497
0.989 0.089 1.0 0.028 0.28 0.638
0.979 0.096 0.30 0.028 0.56 0.414
0.991 0.092 1.0 O.028 0.56 0.621

•
0.989 0.098 0.30 0.036 0.36 0.487
0.997 0.097 1.0 0.036 0.36 0.538
0.995 0.099 0.30 0.036 0.72 0.429
0.997 0.098 1.0 0.036 0.72 0.529
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