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ABSTRACT

Option pricing formulas obtained from continuous-time no-arbitrage arguments such as

the Black-Scholes formula generally do not depend on the drift tenn of the underlying asset's

diffusion equation. However, the drift is essential for properly implementing such formulas

empirically, since the numerical values of the parameters that do appear in the option pricing

formula can depend intimately on the drift. In particular, if the underlying asset's returns are

predictable, this will influence the theoretical value and the empirical estimate of the diffusion

coefficient a. We develop an adjustment to the Black-Scholes formula that accounts for

predictability and show that this adjustment can be important even for small levels of

predictability, especially for longer-maturity options. We propose a class of continuous-time

linear diffusion processes for asset prices that can capture a wider variety of predictability, and

provide several numerical examples that illustrate theirimpoitance for pricing options and other

derivative assets.
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1 Introduction
There is now a substantial body of evidence in the recent empirical literature which shows

that financial asset returns are predictable to some degree.' Despite the current lack of

consensus as to the sources of such predictability—some attributeit to time-varying expected

returns, perhaps due to changes in business conditions, while others arguethat predictability

is a symptom of inefficient markets or irrational investors—there seems to be a growing

consensus that predictability is a genuine feature of many financial asset returns.

In this paper, we investigate the impact of asset return predictability on the prices of an

asset's options. A comparison between the polar cases of perfect predictability [certainty

and perfect unpredictability [the random walk) suggests that predictability must have an

effect on option prices, although what that effect might be is far from obvious.

However, in the continuous-time no-arbitrage pricing framework of Black and Scholes

(1973) and Merton (1973), and in the martingale pricing approach of Cox and Ross (1976)

and Harrison and Kreps (1979), option pricing formulas are shown to be functionally in-

dependent of the drift of the price process. Since the drift is usually where predictability

manifests itself—it is, after all, the conditional expectation of [instantaneous] returns—this

seems to imply that predictability is irrelevant for option prices.2

The source of this apparent paradox lies in our attempt to link the properties of finite

holding-period returns, e.g., predictability, to the properties of infinitesimal returns, e.g., the

instantaneous volatility which determines option prices, without properly fixing the appro-

priate quantities. In particular, while it is true that changes in predictability arising from

the drift cannot affect option prices under the Black-Scholes assumption that the volatility

a of instantaneous returns is fixed, fixing a implies that the unconditional variance of finite

1See, for example, Bessembinder and Chan (1992), Bek.ert and Hodrick (1992), Campbell and Hamac
(1992), Chan (1992), Breen, Glosten, and Jagannathan (1989), Chen (1991), Chen, Roll and Ross (1986),
Chopra, I.akonhok, and Ritter (1992), DeBondt and Thaler (1985), Engle, Lilien, and Bobbins (1997),
Fama and ñench (1988a, 1988b, 1990), Ferson (1989, 1990), Ferson, Foerster, and Keim (1993), Ferson
and Harvey (1991a. 1991b), Ferson, Kandel, and Stambaugh (1987), Gibbons and Ferson (1985), Haney
(1989b), Jegadeesh (1990), Keim and Stambaugh (1986), Lehmann (1990), Lo and MacKinlay (1988, 1990,
1992), and Poterba and Summers (1988).

2Predictability can also manifest itself in the diffusion coefficient, in the form of stochastic volatility with
dynamics that depend on predetermined economic factors. However, since predictability is more commonly
modeled as part of the conditional mean, we shall focus primarily on the drift.
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holding-period returns will change as predictability changes. But since the unconditional

variance of returns is usually fixed for any given set of data—for example, the annual stan-

dard deviation of the return on the market is typically assumed to be 20 percent—fixing a

and varying predictability can yield counterfactual implications for the data.3

The resolution of this apparent paradox lies in the observation that if we fix the un-

conditional variance of the "true" [finite holding-period] asset return process, i.e., the data,

then as more predictability is introduced via the drift, the population value of the diffusion

coefficient must change so as to keep the unconditional variance constant. Therefore, al-

though the option pricing fonnula is unaffected by changes in predictability, option prices

do change. In this respect, ignoring predictability in the drift is tantamount to a committing

a specification error that can lead to incorrect prices just as any other specification error can

[see Merton (1976b), for example).

But why should theunconditional variance be fixed? One answer is provided by the fact

that the marginal distribution of asset returns is a more fundamental or primitive object than

the joint distribution of asset returns and other economic variables. Therefore, a logical

sequence of investigation is to first match the marginal distribution of returns, and then

focus on the implications for the joint and conditional distributions. This is the approach

typically taken in studies of the predictability of asset returns: when regressors are added

to or subtracted from a forecasting equation, the conditional moments of returns change—

affecting the joint distribution of returns and predictors—but the unconditional moments of

the marginal distribution of returns, e.g., mean, variance, skewness, kurtosis, etc., remain
the same as long as the data is fixed.4

Of course, when choosing among several competing specifications of the data, we hope

to select the specification that matches most closely all of its properties, i.e., its finite-

31n tact, we argue more generally below that elf of the unconditional moments or the marginal distribution
of returns are uthcedl, in the sense that empirical estimates ofvalues are readily obtained from the data,
hence any economic or statistical model of predictability must be calibrated to these values to be or empirical
relevance. But there is a compelling reason for focusing first on the unconditional variance of returns:
any sensible comparative static analysis of predictability must keep fixed the unconditional variance of the
variable to be predicted, since this is the benchmark against whith the predictive power or a forecast is to
be measured.

4This is also the approach taken in the growing "calibration" literature begun by Mehra and Prescott
(1985). More recent examples include Abel (1992), Cecchetti et al. (1991), Heaton and LUCaS (1992a,b),
Kandel and Stambaugh (1988, 1990), and Weil (1989).
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dimensional distributions.5 But since our most basic understanding of and intuition for

the data comes from its marginal distribution, at the very least we shall require that any

plausible specification must match the marginal distribution's unconditional moments.° This

is tantamount to fixing the mean, variance, skewness, etc. at the "true" values.

Alternatively, from a purely empirical standpoint, the unconditional sample moments of

the data are fixed at a given point in time since we have only one historical realization of

each asset return series. The specification search that we undertake can almost always be

viewed as an attempt to fit a statistical model to these fixed sample moments.

By fixing the unconditional moments of the data, we show that changes in predictability

generally affect the population value of the diffusion coefficient, and this in turn will affect

option prices. However, the particular effect on option prices will depend critically on the

particular form of predictability inhere$ in the drift. For example, if the drift depends only

on exogenous time-varying economic factors, then an increase in predictability unambigu-

ously decreases option values. But if the drift also depends upon lagged prices, then an

increase in predictability can either increase or decrease option values, depending on the

particular specification of the drift.

We derive explicit pricing formulas for options on assets with predictable returns, and

show that even small amounts of predictability can have a large impact on option prices,

especially for longer-maturity options. For example, under the standard Black-Scholes as-

sumption of a geometric random walk for stock prices, the price of a one-year at-the-money

call option on a $40 stock with a daily return volatility of 2% per day is $6.908. How-

ever, under a trending Ornstein-Uhlenbeck price process—which implies serially-correlated

returns—we show that a daily first-order autocorrelation coefficient of —.20 and a daily

return-volatility of 2% per day would yield an arbitrage-free option price of 57.660, an in-

crease of about 11% [see Section 3.3 and Table la]. Of course, the particular adjustment to

option prices is wholly determined by the specification of the drift, and we propose several

5Although the finite-dimensional distributions do not completely determine a continuous-time stochastic
proc, for our purpose they shall suffice. More rigorously, the concepts of separability and measurability
must be introduced to complete the definition of continuous-time processes—see, for example, Doob (1953,
Chapter 11.2).

6For convenience, we shall refer to the unconditional moments of the marginal distribution of returns
as simply the "unconditional moments". These moments are not to be confused with unconditional "co-
moments" which are moments of the joint distribution of returns, not of the marginals.
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specifications that can account for a broad variety of predictability in asset returns, and

illustrate the importance of these adjustments with several numerical examples.

In Section 2 we provide a brief review of the Black-Scholes option pricing model to clarify

the role of the drift, and to emphasize the distinction between the data-generating process

[DCP] and the "risk-neutralized" process for the underlying asset's price. The implications

of this distinction for option prices are developed in Section 3, where we present an adjust.

ment for the Black-Scholes volatility parameter a that accounts for the most parsimonious

form of predictability: autocorrelation in asset returns. To account for more general forms

of predictability, we propose two classes of linear diffusion processes in Sections 4 and 5,

the bivariate and inultivariate trending Ornstein-TJhlenbeck processes, respectively. In Sec-

tion 6 we show how the parameters of these predictable alternatives can be estimated with

discretely-sampled data by recasting than in state-space form and using the Kalman filter to

obtain the likelihood function. We consider several extensions and qualifications in Section

7, and conclude in Section 8.

2 Option Prices and the Drift

Much of the success and growth of the market for options and other derivative assets may

be linked to the pricing and hedging techniques pioneered by Black and Scholes (1973) and

Merton (1973). The fundamental insight of the Black-Scholes and Merton approach is the

dynamic investment strategy in the underlying asset and riskiess bonds that replicates the

option's payoff exactly. In particular, if the underlying asset's price process PCi) satisfies the

following stochastic differential equation:

dP(t) = o(.)P(t)di + aP(t)dW (2.1)

dlogP(i) dp(i) = u(.)dt + odW (2.2)

and trading is frictionless and continuous, then the no-arbitrage conditionyields the following
restriction on the call option price C:

12202C OC t%aF + rP.p + = rC (2.3)
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where r is the instantaneous risk-free rate of return.' Given the two boundary conditions

for the call option, C(P(T),T) = Max[P(T)—K, 0] and C(O,t) = 0, there exists a unique

solution to the partial differential equation (2.3), the celebrated Black-Scholes formula:

C(P(t),t;K,T,r,u) = P(t)'I(d1) — J((Tt)q(2) (2.4)

where:

d — log(P(t)/K) + ft+ o'2)(T — t)=
a'./T—t (2.5)

d — log(P(t)/K) + (r — c2)(T — t)
2 =

a./T—t (2.6)

and t(-) is the standard normal cdf. Although it is well-known that the Black-Scholes formula

does not depend on the drift a, it is rarely emphasized that a(.) need not be a constant,

as in the case of geometric Brownian motion, but may be an arbitrary function of P and

other economic variables.8 This remarkable fact implies that the Black-Scholes formula is

applicable to a wide variety of price processes, processes that exhibit complex patterns of

predictability and dependence on other observed and unobserved economic factors [see, for

example, the processes described in Sections 4 and 5 below].

The second and more modern approach to pricing options is to construct an equivalent

martingale measure, which is always possible if prices are set so that arbitrage opportunities

do not exist. Under the equivalent martingale measure all asset prices must follow mar-

tingales, thus the price of an option is simply the conditional expectation of its payoff at

maturity.
More specifically, the martingale pricing method explicitly exploits the fact that the

pricing equation is independent of the drift. Since the drift a(-) of P(t) does not enter into

the pricing equation (2.3), for purposes of pricing options it may be set to any arbitrary

'That C is a function only of? and t, twice-differentiable in P, and once-differentiable in I are properties
that can be derived from the replicating strategy, and need not be assumed a priori. See Merton (1973) for
further details.

5Tbis w first observed by Merton (1973), and is also explicitly acknowledged by Jagannathan (1984)
and Grundy (1991), but is far too often overlooked in textbook derivations of the Black-Stholes formula, Of
course, a(.) must still satisfy some regularity conditions to ensure the existence of a solution to the stochastic
differential equation (2.1).
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function without loss of generality (subject to some regularity conditions). In particular,

under the equivalent martingale measure in which all asset prices follow martingales, the

option's price is simply the present discounted value of its expected payoff at maturity,

where the expectation is computed with respect to the risk-neutralized process P'(t):

dP(t) = rP(t)dt + cF(t)dW (2.7)

dlogP(i) dyt(t) =
(r

— -) dt + SW . (2.8)

Although the risk-neutralized process is not empirically observable, it is nevertheless an

extremely convenient specification for evaluating the price of an option on the stock with a

DGP given by P(t).

The two approaches to pricing dericStive assets show that as long as the diffusion coeffi-

cient for the log-price process is a fixed constant a, then the Black-Scholes formula yields the

correct option price regardless of the specification and arguments of the drift. More gener-
ally, it may be shown that for any derivative asset which can be priced purely by arbitrage,

and where the underlying asset's log-price dynamics is described by an Ito diffusion with

constant diffusion coefficient, the derivative pricing formula is functionally independent of

the drift, and is determined purely by the diffusion coefficient and the contractspecifications
of the derivative asset.

But the fact that the drift plays no role in determining a derivative's pricing formula
belies its importance in the formula's implementation. Because the risk-neutral distribution
and the true distribution of the DGP are linked, predictability can and generally does have

an influence on the pricing of derivative assets, despite the fact that only the parameters of
the risk-neutral distribution appear in derivative pricing formulas. As we show in the next
sections, when we change the tnie distribution of the DGP,e.g., change predictability, the
risk-neutral distribution also changes, and these changes will generally affect the prices of
the corresponding derivative assets.
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3 Predictability and the Black-Scholes Formula

Although the same symbol a is used in both the risk-neutralized process P and the DOP

P, both the theoretical value and the empirical estimate of a are determined solely by the

DGP, not by the risk-neutralized process, and both will be affected by the functional form of

the drift. Predictability in the drift can be safely ignored when deriving the option pricing

formula, but we shall argue below that it must be addressed explicitly for any given DEW.

In Section 3.1, we consider the most parsimonious form of predictability—autocorrelated

asset returns—and show how it affects a directly in the specific case of a trending Ornstein-

Uhlenbeck process for log-prices. We also provide a simple adjustment to the Black-Scholes

formula that can account for it. More general and empirically plausible log-price processes,

with considerably more flexible forms of predictability, are presented in Sections 4 and 5.

3.1 The ¶frending 0-U Process

In distinguishing between the risk-neutral and true distributions of an option's underlying as-

set return process, Grundy (1991, p. 1049) observes that the Black-Scholes formula still holds

for an Ornstein-Uhlenbeck log-price process, arid we shall begin with a slight generalization

of his example to illustrate the link between predictability and option prices. Specifically,

let the log-price process p(t) satisfy the following stochastic differential equation:

dp(t) = (—7(PW_-PO+P)dt + adW (3.1)

where i�0 , p(O)=p,, , 2€ [0,oo)

Unlike the geometric Brownian motion of the original 1973 derivation of the option pricing

model by Black and Scholes, which implies that log-prices follow an arithmetic random walk

with independently and identically distributed Gaussian increments, this log-price process is

the sum of a zero-mean stationary autoregressive Gaussian process—an Ornstein-Uhlenbeck

process—and a deterministic linear trend, so we call this the "trending 0-U" process. Re-

writing (3.1) as:

d(p(t) —t) = — i(p(i) — + adW (3.2)
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shows that when p(t) deviates from its trend pi, it is pulled back at a rate proportional

to its deviation where y is the "speed of adjustment".' For notational convenience, we

shall work with the detrended log-price process q(t) for the remainder of this paper where

q(t) p(i) — pL From (3.2), we have:

dq(t) = —7q(t)dt + adW (3.3)

and q(O) = qo = pa.

To develop further intuition for the properties of (3.3), consider its explicit solution:

q(i) = e"q0 + J e''dW(s) (34)

from which we can obtain the unconfltional moments and co-moments of continuously-

compounded r-period returns r(t) p(t) —p(t—r) = pr + q(t)—q(t—r):'°

E[r(i)] = pr (3.5)

Var(r(t)] = ! — � 0 (3.6)

Cov[r(ti),r,(t2)I = — e_1(*5_hi_T) — , t1 + r (3.7)

Corr[r,(t),r,(t + r)) p,.(l) = — [i — e'] . (3.8)

Since (3.1) is a Gaussian process, the moments (3.5) — (3.7) completely characterize the
finite-dimensional distributions of r,(t).

'Note that 7> 0 ensures the stationarity of pQ).
10Since we have conditioned on q(0) = qo in defining the detrended log-price process, we must be more

precise about what we mean by an "unconditional" moment. If q, is assumed to be stochastic and drawn
from its stationary distribution, then an unconditional moment of a function of q() may be defined as the
expectation of the corresponding conditional moment [conditional upon qo], where the expectation is taken
with respect to the stationary distribution of qo. Alternatively, if qQ) is stationary, as it is in (3.3), the
unconditional moment may be defined as the limit of the corresponding conditional moment as f increases
without bound. We shall adopt this definition of an unconditional moment throughout the remainder of the
paper. In deriving the unconditional moments of r-period returns, we have assumed that y > 0. In the
special case that y = 0, the momenta can be obtained by simply taking the limit t —.0 in (3.5)— (3.8).
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Unlike the arithmetic Brownian motion or random walk which is nonstationary and often

said to be "difference-stationary" or a "stochastic trend", the trending 0-U process is said

to be "trend-stationary" since its deviations from trend follow a stationary process. An

implication of trend-stationarity is that the unconditional variance of r-period returns has a

finite limit as r increases without bound—in this case —in contrast to the case of a random

walk in which the unconditional variance increases linearly with r. This difference between

the trending 0-U process and the random walk also exists for the conditional variance of

returns. In fact, for the trending 0-U process we have

Var[r(t)Ip(i)J = — [i — e_2T] , y > 0 (3S)

which does not equal c2i-. The conditional variance of r-period returns also has a finite limit

(when 'y > 0) as r —.

While trend-stationary processes are often simpler to estimate, they have been criticized

as unrealistic models of financial asset prices since they do not accord well with the common

intuition that longer-horizon asset returns exhibit more risk, or that price forecasts exhibit

more uncertainty as the forecast horizon grows. However, if the source of such intuition

is empirical observation, it may well be consistent with trend-stationarity since it is now

well known that for any finite set of data, trend-stationarity and difference-stationarity are

virtually indistinguishable [see, for example, Campbell and Perron (1991) and the many other

"unit root" papers cited in their references]. Nevertheless, in Section 5 we shall provide a

generalization of the trending 0-U process that contains stochastic trends, in which case the

variance of returns will increase with the holding period r.

Note that the first-order autocorrelation (3.8) of the trending 0-U increments is always

less than or equal to zero, bounded below by -4,and approaches — as r increases without

bound. These shall prove to be serious restrictions for many empirical applications, and will

motivate the alternative processes introduced in Sections 4 and 5, which have considerably

more flexible autocorrelation functions. However, as an illustration of the impact of serial

correlation on option prices the trending 0-U process is ideal.

"Observe that the conditional variance (3.9) ii conditioned on only the current price pQ). Of course,
more general conditioning information can be used, with potentially different implications. We discuss this
further in Section 4.2.
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3.2 Relating Unconditional Moments to Parameters

Despite the differences between the trending 0-U process and an arithmetic Brownian mo-

tion, Grundy (1991) points out that both data-generating processes yield the same risk-

neutralized price process (2.7), hence the Black-Scholes formula still applies to options on

stocks with log-price dynamics given by (3.1). This may seem paradoxical, especially since

the Black-Scholes formula is independent of the parameter 7 which determines the degree of

autocorrelation in returns. After all, autocorrelation is a simple form of predictability, and

we have argued in the introduction that predictability should have some impact on option

prices.

The paradox is readily resolved by observing that the two data-generatingprocesses (2.2)
and (3.1) must fit the same price data—they are, after all, two competing specifications of

a single price process, the "true" 0GP'Therefore, iii the presence of autoèorrelation, (3,1),

the numerical value for the Black-Scholes input a will be different than in the case of no

autocorrelation, (2.2).

To be concrete, denote by F,., s2(r4, and p7(l) the unconditional mean, variance, and

first-order autocorrelation of r,.(i), respectively, which may be defined without reference to

any particular data-generating process.12 Moreover, the numerical values of these quantities

may also be fixed without reference to any particular data-generating process. All competing

specifications for the true data-generating process must match these moments at the very
least to be plausible descriptions of that data [of course, the best specification is one that
matches all the moments, in which case the true data-generating process will have been

discovered]. For the arithmetic Brownian motion, this implies that the parameters (Ã, c2)

must satisfy the following relations:

F,. = n- (3.10)

32(r,.) = (3.11)

= 0 - (3i2)
1201 course, it must be assumed that the moments exist. However, even if they do not, a similar but moreInvolved argument may be based on location, scale, and association parameters.
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From (3.11), we obtain the well-known result that the Black-Scholes input a2 may be esti-

mated by the sample variance of continuously-compounded returns r. However, in the case

of the trending 0-U process, the parameters (p, y, a2) must satisfy:

=
(3.13)

s2(r) = ?
[1— e"] , r � 0 (3.14)

p(l) = - [i -&j. (3.15)

Observe that these relations must hold for the theoretical or population values of the pa-

ranieters if the trending 0-U process is to be a plausible description of the DGP. Moreover,

while (3.13) —(3.15) involve population values of the parameters, they also have implications

for estimation. In particular, under the trending 0-U specification, the sample variance of

continuously-compounded returns is clearly not an appropriate estimator for a2.

Holding the unconditional variance of returns fixed, the particular value of a2 now de-

pends on y. Solving (3.14) and (3.15) for and a2 yields:

7 = —
!log(1 + 2p(1)) (3.16)

a2 = 32(r)7 (i — = s2(r) . (i — . (3.17)

which shows the dependence of o'2 on 7 explicitly.

In the second equation of (3.17), a2 has been re-expressed as the product of two terms:

the first is the standard Black-Scholes input under the assumption that arithmetic Brownian

motion is the data-generating process, and the second term js an adjustment factor required

by the trending 0-U specification. Since this adjustment factor is an increasing function of ,

as returns become more highly (negatively) autocorrelated, options on the stock will become

more valuable ceteris paribus. Specifically, substituting (3.16) into (3.17) and simplifying
yields a2 as an explicit function of p,(l):

2 — s2(r) log(1+2p,(l)) 0 3 18a —
'I' 2'

11



where the restriction that pt(l) (—,OI is equivalnt to the restriction that -y � 0.

More generally, suppose that returns of one holding period i-1 are used to obtain the

unconditional variance 82(r,.,), and returns of another holding period 2 are used to obtain

the first-order autocorrelation coefficient p(1). Since the data-generating process is defined

in continuous time, this poses no problems for deriving the restrictions on the parameters

(p,7,c2), and manipulating those restrictions yields the following version of (3.18):

— s2(r,.) - Iog + 2p,,(1))
p319—

2 [1+2p,.,(1)]'i/hi_l
= s2(r) à(r1,r3,p(1)) (3.20)

— ri log(l+2p,,(1)) 21A(r1, 12, ti_Al)) = —•
[1 + 2p,2(l))flI" — pTA1 — 3-

Without loss of generality and as a convenient normalization, let r1= 1 and 2 = r so that

the first-order autocorrelation coefficient p,(I) is defined over the holding period r, which in

turn is measured in units of the holding period used to measure the unconditional variance

of returns s2(ri), thus:

2 — s2(r1) log(1 + 2p,(l))
'l' f...J 01 '322c —

([l+2pt(1)]1/—1)
' '' ' 2'

This expression provides a simple adjustment for the BlackScholes input a2 using the un-

conditional variance 32(r1) of returns sampled at unit intervals, and the first-order autocor-

relation p,.(l) of returns sampled at r-intervals.

Returning to the simpler relation (3.18) between a2 and the first-order autocorrelation

coefficient, and holding fixed the unconditional variance of returns s2(r4, observe that the

value of a2 increases without bound as the absolute value of the autocorrelation increases
from 0 to This implies that a specification error in the dynamics of p(t) can have dramatic

consequences for pricing options. We shall quantify the magnitudes of such consequences in

"We focus on the absolute value of the autocorrelation to avoid contusion in making comparisons between
results for negatively autocorrelater] and positively autocorrelated asset returns. For example, whereas in
this case an increase in the absolute value of autocorrelation increases the option's value, in Section 4.2 we
provide an example of a positively autocorrelated asset return process for which an increase in autocorrelation
decreases the option's value. These two cases are indeed polar opposites, and for important reasons. But
without focusing on the absolute value of the autocorrelation, they seem to be in agreement: in both cases
the option price is an decreasing function of the algebraic value of the autocorrelation.

12



Sections 3.3 and 4.2 below.

3.3 Implications for Option Prices

Expression (3.18) provides the necessary input to the Black-Scholes formula for pricing op-

tions on an asset with the trending 0-U dynamics. In particular, if the unconditional variance

of daily returns is 32(ri), and if the first-order autocorrelation of r-period returns is p,(l),

then the price of a call option is given by:

C(P(t),t; ,K, T, r,a) = P(i)1'(di) — Ke_r(Tt4l(d2) (3.23)

where:

d = log(PQ)/J() + (r + ai(T — t)
3 241— affi

log(P(i)/K) + (r — — t)
(3.25)

2/ I 1' n
2 — a iogii-tp7 '1' ' o 326a — r ([1 + 2p7(1)]VT —1)

, Pr / C'
which is simply the Black-Scholes formula with an adjusted volatility input)4 In particular,

the adjustment factor multiplying 32(ri)/r in (3.26) is easily tabulated [see Table 3 and

the discussion in Section 7.2], hence in practice it is a simple matter to adjust the Black-

Scholes formula for negative autocorrelation of the form (3.15): multiply the usual variance

estimator 32(ri)/r by the appropriate factor from Table 3 and use this as a2 in the Black-

Scholes formula.

Note that for all values of pt(l) in (—1/2,0], the factor multiplying s2(ri)/r in (3.26)

is greater than or equal to one, and increasing in the absolute value of the first.order auto-

correlation coefficient. This implies that option values under the trending 0-U specification

are always greater than or equal to options under the standard Black-Scholes specification,

and that option values are an increasing function of the absolute value of the first-order

autocorrelation coefficient. These are purely features of the trending 0-U process and do

"Since :'(ri) is the unconditional variance of daily returns, observe that a2 is also measured in days, as
is the time-to-maturity T—l and the interest rate r.
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not generalize to other specifications of the drift, as we shall see below.

To gauge the empirical relevance of this adjustment for autocorrelation, Tables la—c re-

port a comparison of Black-Scholes prices under arithmetic Brownian motion and tinder the

trending Ornstein Uhlenbeck process for various holding periods, strike prices, and auto-

correlations for a hypothetical $40 stock. Table la reports option prices for values of daily

autocorrelations from —5% to —45%, and Tables lb and ic report prices for weekly and

monthly autocorrelations of the same numerical values. For all three tables, the uncondi-

tional standard deviation of daily returns is held fixed at 2% per day. The Black-Scholes

price is calculated according to (2.4), setting a equal to the unconditional standard devi-

ation. The trending 0-U prices are calculated by solving (3.14) and (3.15) for a given r

and the return autocorrelations p(1) of —0.05, —0.10, —0.20, —0.30, —0.40, and —0.45, and

using these values of a in the Black-Scholes formula (2.4). In Table Ia, r = 1; in Tables lb

and ic, r = 7 and 364/12, respectively.

The first panel of Table la shows that even extreme autocorrelation in daily returns does

not affect short-maturity in-the-money call options prices very much. For example, a daily

autocorrelation of —45% has no impact on the $30 7-day call; the price under the trending

0-U process is identical to the standard Black-Scholes price of $l0.028. But even for such a

short maturity, differences become more pronounced as the strike price increases; the at-the-

money call is worth $O.863 in the absence of autocorrelation, but increases to $l.368 with

an autocorrelation of —45%.

However, as the time to maturity increases, the remaining panels of Table la show that

the impact of autocorrelation also increases. With a —10% daily autocorrelation, an at-

the.money 1-year call is $7.234, and rises to $10.343 with a daily autocorrelation of —45%,

compared to the standard Black-Scholes price of $6.908. This pattern is not surprising, given

the autocorrelation (3.15) of the trending 0-U process, which declines with the length of the

holding period so that longer-horizon returns are more highly negatively autocorrelated and,

therefore, depart more severely from the standard Black-Scholes paradigm than shorter-

horizon returns.

More formally, since the Blacic-Scholes formula applies to both arithmetic Brownian mo-

tion and the trending 0-U process, the impact of a specification error in the drift can be

related to the sensitivity of the Black-Scholes formula to changes in volatility a. This sen-
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sitivity is measured by the derivative of the call price with respect to a, and is often called

the option's "vega":

= P(i)./T — vI"(di) (3.27)

where d1 is defined in (2.5). From (3.27), we see that for shorter-maturity options, changesin
a have very little impact on the call price, but longer-maturity options will be more sensitive.

This is also apparent in the patterns of Tables lb and ic, which are similar to those in

Table la but much less striking since the same numerical values of pr(l) are now assumed

to hold for weekly and monthly returns, respectively. As Table 1 shows, the impact of a

—45% autocorrelation in monthly returns is considerably less than the same autocorrelation

in daily returns.

In contrast to Table la where an at-the-money i-year call increases from $6.908 to 810.343

as the autocorrelation decreases from 0 to —45%, in Table lc the same option increases from

$&908 to only $7.018. We shall see in Table 3 of Section 7.2 that this is a symptom of all

diffusion processes, since the increments of any diffusion process becomes less autocorrelated

as the differencing interval declines. In particular, Table 3 will show that the impact of a

—45% autocorrelation in monthly returns is considerably less than the same autocorrelation

in daily returns. Indeed, from (3.15), a —45% autocorrelation in monthly returns implies

an autocorrelation of —0.97% in daily returns. Therefore, the importance of autocorrela-

tion for option prices hinges critically on the degree of autocorrelation for a given return

horizon r and, of course, on the data-generating process which determines how rapidly this

autocorrejation decays with r. For this reason, in the next section we introduce several new

stochastic processes that are capable of matching more complex patterns of autocorrelation

and predictability than the trending 0-U process.

4 The Bivariate Trending 0-U Process

An obvious deficiency of the trending Ornstein-Tihlenbeck process as a general model of asset

prices is the fact that its returns are negatively autocorrelated at all lags, which is inconsistent

with the empirical autocorrelations of many traded assets. For example, Lo and MacKinlay
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(1988, 1990) show that equity portfolios tend to be positively autocorrelated at shorter

horizons, while Fama and French (1988) and Poterba and Summers (1988) find negative

autocorrelation at longer horizons. Moreover, since the trending 0-U's drift depends only

on q(t), it leaves no role for other economic variables to play in determining the predictability

of asset returns.

To address these shortcomings, we propose the "bivariate trending 0-U" process in the

following sections. Although it is a special case of a bivariate linear diffusion process, and

is therefore extremely tractable, it exhibits a surprisingly wide variety of autocorrelation

patterns [see, for example, Figure 11. Moreover, as its name suggests, the bivariate trending

0-U process allows the log-price process to depend upon a second process, which may be

interpreted as a time-varying expected return factor that may or may not be observable.

4.1 Properties and Unconditional Moments

Let the detrended log-price process q(i) p(l) — p1 satisfy the following pair of stochastic

differential equations:

dq(t) = — (7q(i)—Ax(t))di + cdlV, (4.1)

dX(t) = —5X(t)dt + c,dW (4.2)

where 7�O, q(O)—qo, X(o)=Xø, LE[O,oo).

W, and W are two standard Wiener processes such that dWqdWx = ,cdt, and X(t) is

another stochastic process which may or may not be observable. For reasons that will

become apparent below, we shall call this system the "bivariate trending 0-U" process.

The bivariate system (4.1) — (4.2) contains several interesting spetial cases. For example,

when A = 0 it reduces to the univariate trending 0-U process of Section 3.1, in which asset

returns are always negatively autocorrelated. When y = 0, the drift of the detrended log-

price process is AX(t), which is stochastic and mean-reverting to its unconditional mean of

zero. In the more general case when 'y 0, the detrended log-price process may be rewritten

16



as:

dq(t) = —y (c(t) — x(t)) cit + adW, (4.3)

which shows that q(i) is mean-reverting to a stochastic mean with "speed of adjust-

ment" y.

Since (4.1) —(4.2) isa system of linear stochastic differential equations, (q, X) is Gaussian

given its initial value (qo,Xo) at t = 0, and has the following explicit solution:

q(i) = e'q0 +
—:?g [e—e] xo +

j e'odW,(s) + ..2_ j [e_5(ts)_e_TOM] od1'V(s) (4.4)

X(i) = eX0 + JtedW(s) (4.5)

where i > 0 and go = po. Conditional upon {qo,Xo}, q(t) and X(t) are jointly normally
distributed)5

From (4.4) — (43) we can readily derive the properties of the asset return series that

(q, X) generates. To do this, observe that when y > 0 and £ > 0, both g(t) and X(t) are
stationary and their first two unconditional moments are:

E[q(i)] = E[X(t)J = 0

2 2 2C C ICCUr
Var[q(t)] = + 26(+5) +

Var[X(t)] =

Cov[q(i),X(i)] = _ (war +

The unconditional moments of continuously-compounded r-period returns then follow from

"Even if {qo,X0} ste stochastic, as long as they are drawn from their stationary joint distribution,
{ç(Ø XQ)} is still jointly nonnally distributed.
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(4.4) — (4.5):'

= pr (4.6)

Var[r(t)] = 2Var[q(t))
[
(1—Cr) — (4.7)

Cov(r,(i + r),r(i)1 = _Var(q(O1[ Iqx [(1_e)2 — (1_e_)2] +

(1 __1t)2] (4.8)

1 — (1—r"12 + e1s2 [i—C—' — (1_e_)2]
(4i'( ) — —

2 [(i—c-") — /391(e' —

where fJqt Cov[q(i), X(1)]/Var[q(l) and p,(l) is the first-order autocorrelation function of

r-period returns.

As in the case of the univariate trending 0-U process, the bivariate process is trend-

stationary, the variance of its increments approaches a finite limit of 2Var[q(i)J and the

first-order autocorrelation p,(l) of r-period returns approaches — as r increases without

bound. Both of these restrictions are relaxed in the multivariate version of Section 5.

To see that the bivariate trending 0-U process can capture more complex patterns of

autocorrelation than its univariate counterpart, consider the behavior of its frst-order auto-

correlation function as a function of the holding period r for the special case where =y. As

r increases without bound, p,(1) approaches — as it must for the continuously-compounded

r-period return of any stationary process. As r decreases to 0, p,(1) also approaches zero

as it must for any diffusion process, since diffusions have locally independent increments by

construction. For small i-, we have:

(4.10)

which can be either positive or negative, depending on whether fl,2 is greater than or less

than j. Therefore, when $, > —h, the bivariate trending 0-U process will display an

= Oorb = 0, the unconditional moments of q(t) and X(l) may not exist. However the unconditional
moments of returns are alwayi well-defined, and may be obtained by taking the appropriate limits in the
following results.
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autocorrelation pattern that matches the empirical findings of both Lo arid MacKinlay (1988)

and Fama and French (1988) simultaneously: positive autocorrelation for short horizons, and

negative autocorrelation for long horizons. Some other examples of first-order autocorrelation

functions of the bivariate trending 0-U process are given in Figure 1.

A closely-related quantity that may help to develop further intuition for the bivariate

trending 0-U process is the general autocorrelation function p(Fc), defined as the correlation

between two r-period continuously-compounded returns that are (k—l)r periods apart, i.e.,

(k — Cov(r(t+kr), r(t)JPr ) =
Var[r(t)]

Observe that the first-order autocorrelation function pr(l), defined in (3.8), is indeed a special

case of this more general definition. In the case of the bivariate trending 0-U process, the

autocorrelation function is given by:

p(k) = e_(k_Ihtp7(t) — — 0(r) (4.11)

where

0(r) fiqr(1e')2
2 [(1_nt) — èjfl9(n _ct)]

4.2 Predictability vs. Autocorrelation

We have argued in Section 3 that the numerical value of the Black-Scholes input a depends on

our assumption about the data generating process when we have discretely-sampled data. In

the particular case of the univariate trending 0-U process of Section 3.1, the numerical value

of a increases with the absolute value of the return autocorrelation, given a fixed numerical

value for the unconditional variance of returns. However, in the case of the bivariatetrending
0-U process, there is no longer such a simple relation between autocorrelation and a.

For example, consider the special case of the bivariate trending 0-U process in which
= 0, hence .\X(t) is the drift of the detrended log-price process, and the system reduces
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to:

dq(t) = AX(fldt + adWq (4.12)

dX(t) = —SX(t)dt + agdl'V . (4.13)

For simplicity, also let IC = 0 so that d1V, and dW are statistically independent. In this spe-

cial case, asset returns are positively autocorrelated at all leads and lags. We may calculate

the unconditional variance and autocorrelation of returns by taking the limit of i — 0 in

(4.7) and (4.9). Then, for any holding period r we have:

s2(r) =
[f...... (i —

_.&r) ] (4.14)

a. (i —
1

p,(l) , where ? 2
Zr [1_(1_r')I 1 + (f)

e2

Observe that 0 < a � 1, and that is an increasing function of A.. Since p,(1) is an

increasing function of a, it is also an increasing function of A. By increasing A while holding

fixed the unconditional variance of returns, we can see the effects of increasing autocorrelation

on the Black-Scholes input a. Re-arranging (4.14) yields:

= __________________ s2(r7)
(4.15)

1__.(1__e_6t)

which shows that an increase in the return autocorrelation (through an increase in A) is

accompanied by a decrease in a and a corresponding decrease in the Black-Scholes call option

price.'7 Increasing return autocorrelation in this case has precisely the opposite effect on

option prices than in the case of the univariate trending 0-U process, in which an increase in

the absolute value of the return autocorrelation [recall that in this case, the autocorrelation

is always nonpositive] increases the numerical value of a, increasing option prices.

While increasing autocorrelation can either increase or decrease option prices, depending

on the particular specification of the drift, the special case (4.12) — (4.13) does illustrate a

tTlt is easy to show that the expression (1—e)/ [1 — (1— e_6t)1 decreases as increases. It then

follows that increasing A wilt increase its value since will increase.
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general relation between option prices and predictdbility. To see this, we must first define

predictability explicitly. Perhaps the most common definition is the 112 coefficient, or the
fraction of the unconditional variance of the dependent variable that is "explained" by the

conditional mean or predictor. Higher R2s are generally taken to mean more predictability,

and this interpretation is appropriate in our context with three additional restrictions:

(Al) The unconditional variance of returns r(t) is fixed.

(A2) The drift is not a function of the log-price process p(i).

(A3) dWq is statistically independent of dW.

The first restriction has already been discussed above—the very nature of prediction takes

as given the object to be predicted, and meaningful comparisons of alternate prediction

equations cannot be made lithe "target" is allowed to change in any way. In particular, if the

unconditional variance of r(i) is not fixed, a reduction in the prediction error variance need

not imply better predictability because it may be accompanied by a more-than.proportionate

reduction in the unconditional 'variance to be predicted.

Restrictions (A2) and (A3) eliminate feedback relations between the conditional mean and

the prediction error or residual, so that the discrete-time representation of the continuous-

Lime system is a genuine prediction equation, i.e., the conditional expectation of the residual,

conditioned on the drift, is zero.

Under these restrictions, it may be shown that an increase in predictability—as measured

by 1?2—always decreases u and therefore decreases option prices.18 The intuition for this

relation is clear: holding fixed the unconditional variance of returns, an increase in the

variability of the conditional mean must imply a decrease in the variability of the residual.

More formally, the unconditional variance of returns may always be written as the following

sum:

Vax[r(i)] =
var[ E(r(i)Iflj ] -- E[ Var[r(t)Iflt]

}
(4.16)

'81t is important to note that, here and throughout this paper, we consider changes in predictability
or R2 only through changes in the specification or functional form of the drift. Another way to change
predictability, which we do not consider, is to change the information set under a given specification of the
continuous-time process.
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where fl1 is the conditioning information set. Holding the left-hand side of (4.16) fixed, an

increase in the first term of the right-hand side, i.e., an increase in predictability, must be

accompanied by an equal decrease in the second term of the right-hand side. Furthermore,

under restrictions (Al) — (A3), the variability of the residual can be shown to be mono-

tonically related to the continuous-time parameter a, hence increasing predictability implies

decreasing option prices.

In particular, under the bivariate trending 0-U process, increasing A has the effect of

increasing the variability of the conditional mean. Holding the unconditional variance of

the returns .s2(r,.) fixed, an increase in A will therefore increase the predictability of returns,

implying that the value of a2 must decrease since conditions (Al) — (A3) are satisfied by

(4.12) — (4.13).19 As A increases without bound so that progressively more variation in returns

is attributable to the time-varying drift,, returns become progressively more predictable, a

approaches 0, and the option's value approaches its lower bound of e_T_t)Max LP(T) —

K, 01.20 Only if predictability is defined in this narrow sense, and only under conditions

(Al) — (A3), is there an unambiguous relation between predictability and option prices.

Under more general conditions, however, a simple relation between predictability and

option prices is not available, and the very notion of predictability need not be well-defined.

For example, condition (A2) is violated by the univariate trending 0-U process of Section 3.1,

and in that case, while increasing predictability does decrease the variance of the prediction

error of r,(t), it also increases a.

t9Another way to see this is to consider the special case where the conditioning information set at is the
whole sample path ofX(.) from to t+r, i.e., flg = i � s 1+r}. In this case,

var[E[rto)Ine]I = ()2 e - (1- e)] , E[Var[rt(t)IQJ] = cr.

Thus, the residual variance is simply cjr. Increasing A increases the predictability in returns and decreases
a2 holding Var[r,.Q)1 fixed. We thank the referee for suggesting this special case.

"Note that this particular limit is economically unrealizable because even though the stock price is still
stochastic when a vanishes (due to the drift), it is once-differentiable and therefore admits arbitrage (see
Harrison, Pitbladdo, and Schaefer (1984)1.
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4.3 A Numerical Example

To illustrate the importance of predictability in determining the Black-Scholes input a, we

use historical daily returns on the CRSP value-weighted market index from 1962 to 1990 to

calibrate the bivariate trending 0-U process and evaluate a explicitly. Since all second-order

moments of continuously-compounded returns depend on the six underlying parameters of

the bivariate process, , 5, A, a, a1, and sc, we may choose any six moments and solve for the

six underlying parameters. Moreover, if 0, we can set A = without loss of generality,

which reduces the total number of free parameters to five. To further simplify the calibration

exercise, we set c = 0. Thus, we require only four second-order moments to determine y, 8,

a and a1,.

For the four second-order moments, we use the sample variance of the returns Var[r(t)),

the first order autocorrelation coefficieiit p(1) and two higher-order autocorrelation coeffi-

cients. If the bivariate trending 0-U process is the true DGP and we possessed the actual

population values of the moments, then of course choice of which two higher-order autocor-

relation coefficients to fit is arbitrary, since they will arrive at the same parameter values.

However, since we are using actual data to perform the calibration, and are not estimating

the parameters of the system, some care is required in selecting the moments to match.

In particular, since the autocorrelation function of the bivariate trending 0-U process can

change sign only once [from positive to negative], we must choose our moments to be consis-

tent with this restriction. With this in mind, we select the following four moments for our

caiibration:

s(r) 0.0085

pt(l) 0.1838
(417)

pr(S) 0.0323

pr(25) 0.0092

where p(k) denotes the k-th order autocorrelation of r-period returns. Calibrating the
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parameters to these moments yield the following values:21

7 = 0.3748

& = 0.0106
(4.18)= 0.0128

a- = 0.0074

Observe that the value of the Black-Scholes input a under the bivariate trending 0-U spec-

ification, 0.0074, is approximately 13% smaller than the standard deviation of continuously-

compounded returns 0.0085, which is the value of a under an arithmetic Brownian motion

specification.
The theoretical call option prices for a hypothetical $40 stock in Table 2 show that such

a difference can have potentially large çffects, particularly for longer-maturity options just

as in Tables la—c. However, in this case the naive Black-Scholes prices are over-estimates of

the correct call price, since the a that accounts for predictability is lower than the a obtained

under an iid assumption.

5 The Multivariate Trending 0-U Process

Despite the flexibility of the bivariate trending 0-U process, as a model of asset prices it has

at least three unattractive features that are both related to the behavior of its increments as

the differencing interval increases without bound: the variance of its increments approaches a

finite limit, its first-order autocorrelation function approaches a limit of —}, and can change

sign only once. Moreover, the bivariate process does not allow for additional economic or

"state" variables that might affect the drift.

In this section we present a rnultivariate extension of the bivariate trending 0-U process

that addresses all of these concerns. By allowing the drift to depend linearly on addi-

tional state variables, resulting in the "multivariate trending 0-U process", richer patterns

of autocorrelation can be captured without sacrificing tractability. If the state variables are

stationary, then log-prices are trend-stationary as in the bivariate case. If the state variables

are random walks, then log-prices will contain stochastic trends, in which case the variance of

21Note that the solution for y, 6 and a, is not unique, however, tbe solution for a is.
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its increments can increase without bound and the first-order autocorrelation can approach

0 as the differencing interval increases.

In a straightforward generalization of the bivariate case, we let the detrended log-price

process q(i) fluctuate around a stochastic mean, now governed by a multivariate linear

process. Specifically, let:

dq(t) = (—q(t) + AX(i)] dt + adWq (5.1)

dX(i) = — AX(i)dt + BXd\VX (5.2)

with q(O) = .io, X(O) = X0, i [O,cc)

where X(i) is an rn-dimensional random process, Wx(t) a k-dimensional standard Wiener

process, -y and a are scalar parameters. and A, A, B, are (1 xrn), (in x in), (in x k) matrix
parameters, respectively. Without loss of generality we assume that A is diagonal, i.e.,

A = diag{6j}. The linear system [ q(t) X(i) J defined by (5.1) — (5.2) has the following

explicit solution:

q(t) = eq0 + A(1—A)-1 Ht_e_hit} Xc + f' C t'1cdW5(s) —

A(yJ—A) j {e_lt _e_6(t_2)] BdW(s) (5.3)

X(i) = + 1 e_A(t_5)Bxd\Vx(s) (5.4)

where t is the (mxm) identity matrix.22 Since A is diagonal, =

Given (5.3) — (5.4), we can readily derive the unconditional moments of q(i) and X(t) (if

they exist), as well as those of returns over any finite holding period r.23

If the diagonal matrix A contains strictly positive diagonal entries &, then the log-

price process is trend-stationary as in the case of the bivariate trending 0-U process. The

unconditional moments of the detrended log-price process and returns follow analogously

"We have implicitly assumed that ö, i = in so that the inverse of 71— exists. If not, we
can derive the corresponding solution by taking the appropriate limit.

23As in the bivariate case, when A is not of full rank, i.e., when 6 = 0 (or some or when y = 0, the
unconditional moments of q(f) no longer exist. However, the unconditional moments of rrunls do exist and
they can be calculated by taking the appropriate limits; see the discussion in Section 5.
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from (5.3) — (5.4) and some of these are reported in the Appendix.

Alternatively, if a subset of the state variables follow random walks or is "difference-

stationary", then the log-price process will also be difference-stationary and the variance of

its increments will increase without bound as the differencing interval approaches infinity.

For example, consider the following triva.riate special case of (5.2). Let X(t) E [X(t) Z(t) ],
= diag(8,O), B = diag(c,a), and dW = dW, dW, ]'. In this case, X(t) follows

an 0-U process while Z(t) follows a random walk. Assume that 7 > 0. Without loss of

generality, we can let A = y]. Then the explicit solution for the detrended price process

q(i) is:

q(i) = a(t) + Z(t) (5.5)

4(i) = r0 + —1 (6—a_6—ii) x0 + s) —

L c'0'c,dW,(s) + 7 7 [ r'—e'0 ] cdW(s) (5.6)

X(t) = + J0 e''adW,(s) (5.7)

Z(t) = Z0 + jczdWz(s) (5.8)

Observe that q(t) can be decomposed into two components: a stationary component 4(t)

and a random walk component Z(t) where the stationary component 4(1) behaves like the

detrended log-price in the stationary bivariate 0-U case. However, in contrast to the trend-

stationary case, the existence of a random walk component in the detrended log-price implies

that the risk of holding the asset increases with the holding period.

Of course, when q(i) is non-stationary, the unconditional moments of q(i) are no longer

well-defined. However, the unconditional moments of the increments of q(t), which are sim-

ply the de-meaned continuously compounded returns, are well-defined and may be obtained

from the results for the stationary case by taking the limit that 6, —. 0.
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6 Maximum Likelihood Estimation

The fact that the univariate and the bivariate trending 0-Ti processes imply such different

relations between autocorrelation and option values illustrates the complexity and impor-

tance of correctly identifying the data-generating process before implementing an option

pricing formula. In the previous sections, we have shown that holding fixed the uncondi-

tional moments of the true data-generating process, a change in the specification of the drift

can change the population value of the Black-Scholes input a. As a result, a change in the

specification of the drift can also change the empirical estimate of a.

Perhaps the most direct approach to addressing these issues is to propose a reasonably

flexible specification of the drift that can capture a wide variety of autocorrelation patterns,

derive the exact discrete-time representation of the log-price process, estimate all the pa-

rameters of this discrete-time process simultaneously, and then solve for the parameters of

the continuous-time process—which includes a—as a function of the parameter estimates of

the discretely-sampled data. Since all three of our specifications for the drift are linear, their

discrete-time representations are readily available and are also linear processes, to which

maximum likelihood estimation may applied, as described in La (1986, 1988).

To this end, denote by 4 the sampling dates, where k = n, and let 4—4-i = rbe
a constant, hence ij, = kr.21 Let q q(i&) = p(ik) — ti4 and assume that q is observed. Of

course, in practice the trend rate p must be estimated, but as long as a consistent estimator

of p is available, replacing p with ft will have no effect upon the asymptotic. properties of

the parameter estimates.

6.1 The Univariate Tltnding 0-U Process

From the explicit solution (3.4) of the univariate trending 0-U process, it is easy to obtain

a recursive representation of q which shows that its deviations from trend follow an A1I(i):

= e'Tq_l + ek , a J e1(t_dV(s) . (6.1)
t—1

21This last assumption is made purely for notational convenience—irregularly-sampled data may be just
as easily accommodated but is notationally more cumbersome.
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For this simple process, the maximum likelihood estimator of the discrete-time parameters is

asymptotically equivalent to the ordinary least squares estimator applied to detrended prices.

The continuous-time parameters p, a, and i may then be obtained from the discrete-time

parameter estimates.

6.2 The Bivariate Trending 0-U Process

Let X X(4). Then from (U) and (42), we have:

= °qqk—1 + Xk_l + 6q,k (6.2)

= a2Xk_l + r4 (6.3)

where 0q nt, e e_St, (aaq), and
-

q,k x: e_1(tk_adW,(s) + -_-- i: [-(t) — e_1(ts)] adW(s)

ft. e_ö(tb_1)ordV4(s)

Observe that [ e,,* r,k J' is a bivariate normal vector that is temporally independently

and identically distributed, with mean 0 and covariance matrix S given in the Appendix.

Re-writing (6.2) — (6.3) in vector form yields:

(qk\ — (eq \(-I\÷Jc.k 64Xk) — k° e)Xkl) ¼k (.)

This is simply a bivariate AR(1) process, where the second component Xk may or may not

be observed. The parameters of this discrete-time process may be estimated by maximum

likelihood by casting (6.4) in state-space form and applying the Kalman filter [see, for exam-

ple, Harvey (j989a) or Liitkepohl (1991)]. There are seven parameters to be estimated: p,

0q a 4i, and the elements of the symmetric (2x2) matrix 5,.. From the definition of these

discrete-time parameters, we can uniquely determine the seven parameters of the underlying

continuous-time process, /1, 7,6, A, a, a,, and K Isee (A.5), (A.6), (A.7), and (A.8) in the

Appendixj, hence the principle of invariance yields maximum likelihood estimators for these
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as well.

6.3 The Multivariate Trending 0-U Process

The discrete-time representation of (5.1) — (5.2) is a straightforward generalization of the
bivariate case:

= °qqk—i + tX_1 + 6q,t. (6.5)

Xfr = AXXk_l + Cxk (6.6)

where q = q(ik), X(4) = Xk, 0q E er, A eT, 4I = A(7LmA)' (Axaq1), and

jfk e1(tk)cdW9(s) —
4—i

A(rI—)' J4 [eQ') —e] Bd'%V(s)4—i

jfk e04BxdWx(s)
1k—i

Observe that ek ( 6q.k ¼k ]' is an (rn+1)-dimensional normal random variable which is

temporally independently and identically distributed. In vector form, we have:

() = (: 2)(r) +ek. (6.7)

which is a VAR(1), and given observations {pk}, or {pk} and some components of {Xk}, we

can obtain maximum likelihood estimates of its parameters by applying the Kalman filter

to the state-space representation as before.25

In our trivariate example (5.5) of Section 5 which is difference-stationary, the discrete-

time representation of (5.5) — (5.8) is:

(qk—zk) = or(qk_1—zk_i) + Xk_l + 4k (6.8)

= aX4_1 + x,k (6.9)

"However, in the general multivariate case, identification is not guaranteed and is often difficult to verify.
See Lütkepohl (1991, Chapter 13.4.2) for further discussion.
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Zk = 4i + C,k (6.10)

where Zk Z(tk), and q.k, 6rk and 6z,k are lid Gaussian shocks derived from the stochastic

integrals in (5.6), (5.7), and (5.8). Since qk is non-stationary here, prices cannot be used

directly to estimate the parameters. Instead, de-meaned continuously compounded returns

may be used since they are stationary under this current specification. Define rj

X—X_1, and ek E [ 64,k 6z,k £a,k f. We then have:

(::) = (t' )(') + ( )e_( ?

which is simply a multivariate AR.MA(l,1) process. Once again, given observations {rk},

or {rk, Vk}, maximum likelihood estimation of the discrete-time parameters may he readily

performed as in the trend-stationary case via its state-space representation.

7 Extensions and Other Issues

There are sev&al other aspects of the impact of predictability on option prices that deserve

further discussion, such as extensions to option pricing models other than the Black.Scholes

model, implications of the distinction between discrete and continuous time, the relation

of our findings to those surrounding "estimation risk", and the interpretation of implied

volatilities in the presence of predictability. We shall consider each of these issues in turn in

the following sections.

7.1 Extensions to Other Option Pricing Models

Although we have confined our attention so far to the case where the diffusion coefficient

a is constant—the Black-Scholes case—predictability can affect other option and derivative

pricing formulas in a similar fashion. Since analytical pricing formulas for options and other

derivative assets are almost always obtained from no-arbitrage conditions, the drift plays no

role in determining the formula but plays a critical role in determining both the population

values and empirical estimates of the parameters that enter the formula as arguments. For

example, although the drift does not enter into Merton's (1976a) jump-diffusion option
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pricing formula, its specification will affect the values of a [the volatility of the diffusion

component], & (the volatility of the logarithm of the jump magnitude), k [the expectation of

the logarithm of the jump magnitude], and A [the mean rate of occurrence of the Poisson

jump). Since all of our drift specifications in Sections 3, 4, and 5 are linear, they may be

readily incorporated into more complex stochastic processes.

7.2 Discrete vs. Continuous Time

Clearly, the importance of the drift in implementing option pricing formulas comes from
the fact that the data are sampled at discrete time intervals, while the theoretical models

are formulated in continuous time. Now it is well known that the diffusion coefficient is a

"sample-path property", so that any single realization of a continuous sample path over a

finite interval is sufficient to reveal the.tnze value of a. However, continuous sample paths

are practically unrealizable, therefore we are always confronted with some sampling error

in our attempts to estimate a. Assuming for the moment that the diffusion coefficient a

is indeed constant, the sampling error of any estimator of a can be traced to two distinct

sources: misspecification of the drift, and the discreteness of the sampling interval.

Of course, these two sources of sampling error are closely related. For example, the

effects of misspecifying the drift diminishes as the sampling frequency increases, and in

the limit there is no sampling error in estimating a hence misspecification of the drift is

irrelevant. In particular, consider the relation between the continuous-time parameter a2

and the finite holding-period return variance s2(r) for the univailate trending 0-U case of

Section 3.1. For any fixed value of a2, (3.17) shows that as the return horizon r decreases

to 0 the ratio of a2 to s2(r4/r approaches 1, hence a2 may be recovered exactly in the

limit of continuous sampling. This is a general property of diffusions (2.2) with a constant

diffusion coefficient—the unconditional variance s2(r,.) approaches [dq(t)]2 = a2dt as the

holding period r approaches zero. Alternatively, a2di may be viewed as the conditional

variance of dq, conditional on the drift. But since all the infinitesimal variation in dq is

attributable to the diffusion term a2dW [recall that the drift is of order di and the diffusion

term is of order V21], the conditional and unconditional variance of the stochastic differential

In fact, even if the diffusion coefficient is •time-nrying, it may 8e estimated with arbitrary precision by
sampling more frequently within a fixed time span. See Huang and Lo (1994) for further details.
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dq are effectively the same [see Sims (1984) for further details).

This limiting result may lead some to advocate using the most finely-sampled data avail-

able to compute 32(r7)/r, so as to minimize the effects of the drift of the data-generating

process. Of course, whether or not the most finely-sampled data available is fine enough to

render s2(r)/r an adequate approximation to c2 is an empirical issue that depends criti-

cally on what the true data-generating process is, and on the types of market microstructure

effects that may come into play.

It is also conceivable that the sampling error in 8 induced by a misspecification of the drift

is not nearly so great as the sampling error induced by discrete sampling. While specifying

a "better" drift may yield a closer approximation to the continuous-time process, it may not

improve the performance of b for a given set of discretely-sampled data.

The potential importance of both soirces of sampling error are, of course, empirical issues

that must be resolved on an individual basis with a particular application and dataset at

hand. For example, consider the univariate trending 0-U process of Section 3.1, and recall

from (3.19) — (3.21) that (1, r, p(1)) provides a convenient measure of the impact of serial

correlation on the Black-Scholes input a2 as a function of the first-order autocorrela.tion

coefficient p(l) for r-period returns.

For example, let s2(ri) be defined for daily returns, and suppose that the first-order

autocorrelation of daily returns is —30%. Table 3 shows that A(1, 1, —0.30) = 1.527, hence

the value of s2(ri) must be idcreased by 52.7% to yield the correct value for the Black-

Scholes input a'2. If, however, a —30% first-order autocorrelation is observed for 5-day

returns, this should yield a smaller autocorrelation for daily returns (recall that in the limit,

the autocorrelation vanishes], which is confirmed by Table 3's entry of 1.094 for (1, 5, —.30),

i.e., o is only 9.4% larger than s2(ri) in this case. Even in the extreme case of a —45%

autocorrelation, if this autocorrelation is for 25-day returns, is only 4.7% larger than

c2(ri), whereas the same autocorrelation for daily returns implies that a2 is 156% larger

than o'2(ri). Contrary to conventional wisdom, the autocorrelation coefficient is not unitless,

and has an important time element to it.

A second method of gauging the relative importance of a misspecification of the drift in

the sampling error of & in the case of the univariate trending 0-U process is to perform a

simple Monte Carlo simulation experiment. For a given sample size, say 250 observations,
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consider simulating a sample path of daily returns under the univariate trending 0-U speci-

fication, estimating a with and without an adjustment for the drift, and repeating this 5,000

times to obtain the finite-sample distribution of the two estimators.

Table 4 reports the outcome of such an experiment for sample sizes ranging from 250

to 1,250 daily observations [roughly one to five years of daily data], and for first-order

autocorrelations Pi ranging from —10 to —45%, and holding the daily unconditional variance

fixed at 2%. The first two columns report the parameter values of the simulation [note that

a changes with p1 since we have fixed the daily unconditional variance at 2%], and columns

3 and 4 report the percentage bias of the naive estimator i [which is simply the sample

standard deviation of daily returns] and the estimator & that adjusts for the mean-reverting

drift [based on (3.18)], where the expected value of each of the two estimators is computed

over the 5,000 replications of each simulation.

The first row of the first panel of Table 4 shows that a is considerably more biased than &:

—5.1% for a versus 0.5% for è. For more extreme values of P1, the biases of both estimators

worsen, but even in the worst case when pi is —45%, i is more biased than b: —37.3% versus

12.1%. The relative performance of 3 and & is similar for larger sample sizes.

Table 4 also reports the thebretical value of A, which relates a to s according to (3.19),

and its expectation over each of the 5,000 replications. For most sample sizes and values of

Pi, A and A are fairly close, which explains the superiority of & to i.

A somewhat more subtle issue surrounding the distinction between discrete and continu-

otis time is the fact that while we have used the Black-Scholes formula to gauge the effects of

asset return predictability on option prices, it may be argued that the Black-Scholes formula

holds only if continuous trading is possible and costless. Indeed, to implement the replicating

strategy literally requires observing the sample-path of prices continuously, which eliminates

the need for estimating a altogether. In this case, the relation between predictability and

option prices still exists but is irrelevant since the true a can always be recovered exactly.

However, the continuous-trading assumption underlying the pricing formulas does not

invalidate our main conclusion: whenever option pricing formulas are implemented with

discretely-sampled data, the drift matters.

Of course, ideally we should also incorporate the effect of discreteness into the pricing

formulas to provide a complete and empirically relevant theory of option pricing. One
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approach is to simply impose discrete trading, e.g., Black and Scholes (1972) and Boyle and

Emanuel (1980), and another approach is to take into account directly the economic causes

of discrete trading, such as transactions costs, in constructing replicating strategies, e.g.,

Leland (1985). These approaches will yield either approximate pricing formulas or bounds

for option prices, and in both cases, the results will certainly depend on the numerical value

of the diffusion coefficient a which in turn will depend on the specification of the drift, ceteth

pczribus. Therefore, despite the fact that in the continuous-time limit a becomes known, any

empirical implementation must incorporate the effects of predictability on option prices.

7.3 Estimation Risk

It is important to note that the effects of predictability on option prices is closely related

to, but not synonymous with the problem of "estimation risk' Isee, for example, Barry et

al. (1991)). As we have just discussed in Section 7.2, the fact that a2 must be estimated

from discretely-sampled data provides the primary motivation for our analysis. But the link

between a2 and asset return predictability exists even when a2 is known without error. Of

course, if a2 is known, then the degree of predictability in asset returns is irrelevant for

purposes of pricing options even if the link is present. However, when a2 is unknown, the

precise form of asset return predictability will affect both the estimate and the estimation

risk of a2.

7.4 Implied Volatilities

A consequence of the Black-Scholes model is that the parameter a may be recovered from

option prices directly by inverting (2.4). Therefore, why go through the trouble of relating

asset return predictability to a? The response to this simple but perplexing question is quite

straightforward.

The relevance of the implied volatility relies on the proper specification of the option

pricing formula. If prices were 'truly Black-Scholes prices, then implied volatilities would be

irrelevant since the Black-Scholes model requires that a is known. But if the market price is

not truly a Bla&-Scholes price, then an implied volatility obtained from the Black-Scholes

formula is difficult to interpret and use.

Alternatively, for the Bladc-Stholes formula to yield the correct prices, some investors
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must know the true value of a [or equivalently, must observe a continuous sample path of

the stock price over a finite time interval] and must be able to trade continuously. If these

conditions held, other investor could obtain the true value of a by simply inverting the

Black-Scholes formula. If, however, all investors do not know the true value of a but only

observe [and trade at] prices at discrete time intervals, then they will have to infer the value

of a from thedata instead of the Black-Scholes formula which no longer holds exactly. This

is the situation we consider here. In this case, the market prices of options do not provide

any information about the underlying stock price process other than what can be inferred

from the data, such as the true value of a.37 In other words, market option prices imply

the true value of a only if some investors actually know a. Market prices cannot reveal

something that nobody knows?

Even in the case where some investors may have better information about a, other

investors can rely completely on the implied volatility from market prices only if the prices

are informationally efficient [sea footnote 28]. If there is noise in market option prices due to

market imperfections, e.g., frictions, deviations from perfect competition, etc., less informed

investors will have to rely on their own information as well in making inferences about a,

such as discretely-sampled stock prices [see Grossman and Stiglitz (l980)}.

8 Conclusion
The fact that asset return predictability has nontrivial implications for option prices pro-

vides a link between two seemingly disparate strands of the asset pricing literature: linear

multi-factor models of time-varying expected asset returns, and arbitrage-based models of

"It should be emphasized that our analysis of the impact of predictability on option prices does not hinge
on the particular pricing model we use. In particular, we focus on the Black-Scholes formula solely because
of its simplicity. The fact that the Black-Scl,oles formula may not be correct in its exact form under the
maintained assumptions of our analysis—that only discretely-sampled data ii observed and investors may
not be able to trade continuously—affects only the numerical values of our examples, and not the substance
of our conclusions.

2501 course, one can construct situations where prices can reveal information that no single investor has
(see Grossman (1976)1, but this is achievable only in the extreme case where prices can efficiently aggregate
all the information in the market, i.e.. full informational efficiency. For both theoretical and practical reasons
this case is of little interest in modeling financial markets [see Grossman and Stiglitz (1980)].
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derivative asset prices?9 Heuristically, when predictability is well-defined, i.e., when the

asset return's conditional mean does not depend upon past prices or returns, and when the

conditional expectation of the prediction error is zero, then increases in predictability gen-

erally decrease option prices when the unconditional variance of asset returns is fixed. In

such cases, an increase in predictability is equivalent to a reduction in the asset's residual

uncertainty or prediction-error variance, and since option prices are monotonically increas-

ing in the volatility of this residual uncertainty in the Black-Scholes case where the diffusion

coefficient a is constant, option prices decline as predictability increases.

This has an interesting implication for the evolution of option premia through time: as

we are better able to model the time-varying expected return of an asset, option premia on

that asset should fall, ccterisparibus. Alternatively, the fact that option premia are positive

may imply an upper bound on the predictability of the underlying asset's returns, which may

partly address Roll's (1988) lament that the R2s in financial applications are disappointingly

low. We hope to explore these implications in future research.

For alternatives to the Black-Scholes case, such as those with stochastic volatility or

jump components, predictability also affects option prices nontrivially, but in considerably

more complex ways. To capture such effects, each of our drift specifications can be paired

with a particular specification for the diffusion coefficient. While closed-form adjustments

for predictability may not always exist in these more general cases, maximum likelihood

estimation is almost always feasible for our linear drift specifications.

Despite the fact that the drift of a diffusion process plays virtually no role in deriving

theoretical pricing formulas for derivative assets, its importance cannot be overemphasized

in the implementation of those formulas. The practical value of arbitrage-based models of

derivative prices rests heavily on the existence of an empirically plausible and stable model

of the true data-generating process for the underlying asset's price. Although changing

specifications for the drift does not influence the derivative pricing formula, it does influence

both the theoretical value and empirical estimate of the parameter(s) on which the formula

depends.

Moreover, although our approach begins by first specifying the true distribution of the

"At least three other papers have hinted at such a link: Dybvig and Ingersoll (1982), Grundy (1991), and
Lo (1989).
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data-generating process Iwhich includes the modeling of predictability], and then deriving
its implications for the risk-neutral distribution, it is also possible to do the reverse. Taking

the properties of the risk-neutral distribution implicit in derivative asset prices as a starting

point, it is possible to infer the properties of the true data-generating process [see Grundy

(1991), for examplej. The fact that the risk-neural distribution and the true distribution

of the data-generating process are linked makes both directions of inference possible and

empirically relevant?0

30Which approach to take, ours or Grundy's, may depend on which market is considered more "efficient"
in conveying information: the market for an underlying asset, or the market for derivatives of that asset.
For example, some have argued that options markets are often more liquid and "informed than their
corresponding spot markets. In such cases, it may well be easier to use option prices to infer predictability
in the underlying asset's returns, rather than to study the asset's returns directly. ilowever, since the many
recent studies ofpredictability focus exclusively on the behavior of the underlying asset's DGP. we take the
true distribution of the flOP as our starting point.
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Appendix

A The Bivariate Trending 0-U Process

To derive (6.2) — (6.3), observe that from (4.1) — (4.2), we have:

A
q(%) = q(t&_1)C" + — t) X(tk) +

tJ
[ta [ —6(t, 1(4.)] c1diV(s) (A.1)I e''udWq(s) +

7 £ Jtk_.I

Pt.
X(tk) = C"X(tk_l) + j e6"'cdw,(s) . (A.2)

(Jr—I

Define o Cr, 0,. Ce', = -(o,.—a), and

= j e4—')adW,(s) + A

ta_I [e"k) — C1Uk')] 0'rd1t'r(s)

tsr

6z,k =

We then have:

= 0,Q,-.i + X_i + Eq,gt (A.3)

= o,.Xk.l + 6,, . (A.4)

Clearly, c,,j, and 6z,k are independently and identically distributed over time and jointly

normally distributed. Furthermore,

— a2e Var[eq.k) (1—a) + 2A,cc,.e [ 1—o,a,. —
1_a2

— 2 75 . 7+6 2y J

.A2o-3

[i—a3
1_a2 2(1oa) ]

(. 5)2 +
S

—

7+8 (A.5)— 2y 2

sL. Varfr.k] = fE(1_02) (A.6)26

Acr I l—a 1—a&, ] (Al)3qz,t CoV[fq,k, e,.,] = g(10q0z) +
[ 25

—

7+6 j
There is a one-to-one mapping between the parameters of the discretely-sampledsystem, o,
a,., , s,,,, LT 3qz,r, and the parameters of the underlying continuous-time process, y, 5,
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A, U, O, it. Specifically, normalize the time units so that r = 1 and observe that:

(loga,—Ioga)7=—logo9 , £=—logar , —
. (A.8)

09 0r

Substituting (A.8) into (A.5) — (A.7) then yields three equations which are linear in a2, a2

and icca3, hence the remaining three continuous-time parameters may he easily recovered

from these equations.

Since (pE, XE) follows a bivariate AR(1) process, a closed-form expression for the likeli-

hood function of Pk may be obtained which can be used in the maximum likelihood estimation

[see, for example, .Jazwinski (1970)).

B. The Multivariate Trending 0-U Process

The multivariate trending 0-U process (q(i), X'(i)) is defined by the following Ito integrals:

q(i) = &'q0 + A(-yI—A)' [e_t_e_t] x + 'd1419(s) —

A(yI—i)1j [e_hI(t)_e_(t)] Bd%V(s) (B.l)

X(t) = cXo + j'e_t_*)Bxd\Vx(s)
.

(8.2)

where I is the (mxm) identity matrix. When and the real parts of all of the eigenvalues

of t are strictly positive, (q(i), X'(i)) is stationary. The unconditional moments of q(i) and

X(t) may be readily obtained from (Wi) and (8.2).

Since W(t) is a k-dimensional standard Wiener process, E[dWdWj = Lit where I

is the identity matrix of order k? Let cdWqBxdWx = Kdt where K is a (k xl) vector.

For notational convenience, define E = {o} BXB'X, fI = {wjj(r)) where w(r)
cj [i — e—@44i)T] /(6 +S) and E = {Eij(r)} where &(r) E Cu [i _c_c-s)t} /(-y+ Si).
Then we have:

E[q(t)) = EIX(t)J = 0 (B.3)

Varq(t)] = F- + A(7I—i' — — ' + IL) (71—a)'A' +

"There is no loss of generality by assuming that WQ) has independent components since components
ofX(t) can have arbitrary covariance structure through B.
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Aey!—A)1 — K (8.4)

Var(X(t)] = fl (2.5)

Cov[q(t),X(i)1 = (E0—fl4(7I—A)1A' + (ii+A)1K (2.6)

Cov[q(i), q(t+r)J = C'Var(q(t)] +

A('yI—A)' (C—e) Cov(q(t),X(t)} (8.7)

From these expressions, the moments of r,,(t) follow directly:

E[r(t)J = pr (8.8)

Var[r,(i)J = 2Varfq(t)] [(1—c )—A(yI—aky (et_e_1t) b] (8.9)

Cov[r,(t+r),r(t)] = —Var[q(i)J{ (i—c")2 +

A(yI—i)' [ (i—c'j2 — (I_c_uIt)2] b }. (8.10)

where b Cov(qQ),X(i)1/Var(q(t)]. The return autocorrelation function may then be ob-

tained from these moments.

It is straightforward to derive the discrete-time representation of the system (q(i),X'(t)):

9k = 0,qki + GXk_i + q,k (8.11)

= AXXk..j + x,k (8.12)

where qj = q(tk), Xk = X(%), t s 4—4—i, a, s C",A c_AT,
and

J c"0'odWq(s) —A(-yI—A)' f (e1'k c 'I Bd1V(s)
'h—i ti—I

Cx,k J" c&(t8)BxdWx(s).
'h—I

It is easy to show that

VarfrJ = 1fl2 + A(7I—z1 (i_-a — — E + a7) (7I)'A' +

A(7I—ar' {2erI+Ir' [i_e"i — 1_ati}x
E Var[cx& = (1,,

Sfl,T 5 Cov[c,,, Cx.k] = (fl, —E,)(1I—A)A' + (7I+)_1 [i —e'] K.
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Similar to the bivariate case, the mapping between the parameters of the discrete-time

representation, a,, A, 4', sfl,,, and the parameters of the underlying continuous-

time process, y, A, A, a2, S and K is one-to-one. Let 7=1, we have

=—loga,, £j=—Ioga,, A=4'(AX—o,I)1(71—A). (B.13)

where a = {A}11 (Note that A is diagonal). From sh, we can solve for fly, S and :

— 3 — (6+53)w5(r) — ajj(l —ao1)
8X,r' —

1—a1a,
6' ( .14)

We can then solve for K given s,,,:

K = [1_e"]1 (yI+A) — (fl—E) (yI_A)_1At] . (B.15)

FEom the definition of s, we can further solve for a2.

"Note that B is simply the Chotesky decomposition ofS.
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Table la

Comparison of theoretical call option prica on a hypothetical $40 stock under an arithmetic Brownian
motion versus a trending Ornetein-Uhlenbeck procs for log-price, assuming a standard deviation of 2
percent for daily continuously-compounded returns, and a daily continuously-compounded riskfree rate of
log(1.05)/364.

Strike
Price

j
[Blaa-sciioles

Price

Tiending 0-U Price, with Daily p7(1) =

—.05 —Jo —.20 —.30 —.40

T — t 7 Days

30
35
40
45
50

10.028
5.036
0.863
0.011
0.000

10.028
5.037
0.885
0.013
0.000

10.028
5.038
0.910
0.016
0.000

10.028
5.042
0.973
0.024
0.000

10.028
5.051
1.062
DM41
0.000

10.028
5.074
1.216
0.082
0.001

10.028
5.108
1.368
0.131
0.005

Time-to-MaturityT-t91 Days

30
35
40
45
50

10.526
6.331
3.270
1.459
0.514

10.M7
6.387
3.350
1.532
0.623

10.572
6.451
3.439
1.615
0.680

10.640
6.614
3.661
1.822
0.829

10.754
6.855
3.978
2.124
1.058

10.989
7.289
4.526
2.657
1.491

11.262
7.735
5.068
3.195
1,954

Time-to-Maturity 7' — = 182 Days

30
35
40
45
50

11.285
7.558
4.740
2.810
1.592

11.336
7.646
4.851
2.922
1.687

11.394
7.746
4.976
3.048
1.797

11.548
7.998
5.286
3.361
2.073

11.786
8.365
5.728
3.812
2.482

12.238
9.014
6.491
4.595
3.214

12.725
9.668
7.244
5.375
3.963

7' — I = 273 Days

30
35
40
45
50

12.040
8.587
5.905
3.943
2.573

12.113
8.698
6.039
4.082
2.702

12.198
8.824
6.191
4.239
2.849

12.415
9.139
6.565
4.627
3.217

12.745
9.596
7.099
5.185
3.753

13.352
10.396
8.019
6.147
4.695

13.989
11.199
8.925
7.098
5.642

7' - = 364 Days

30
35
40
45
50

12.753
9.493
6.908
4.941
3.489

12.845
9.622
7.061
5.102
3.645

12.950
9.769
7.234
5.283
3.821

13.218
10.133
7.660
5.732
4.261

13.620
10.661
8.269
6.374
4.896

14.349
11.582
9.315
7.478
6.003

15.102
12.501
10.343
8.566
7.106

16.1.la 3.23.93



Table lb

Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic Brownian
motion versus a trending Ornstein-Uhlenbeck process for log-prices, assuming a standard deviation of 2
percent for daily continuously-compounded returns, and a daily continuously-compounded riskfree rate of
log(1.05)/364.

Strike
Price

Black-Scholes
I'rice

Trending 0-U Price, with Weekly p7(1) =

—.05 —.10 —.20 —.30 —.40 —.45

T -1=7 Days

30
35
40
45
50

10.028
5.036
0.863
0.011
01)00

10.028
5.036
0.866
0.011
01)00

10.028
5.037
0.870
0.011
0.000

101)28
5.037
0.878
0.012
0.000

10.028
5.037
0.891
0.013
0.000

10.028
5.038
0.912
0.016
0.000

10.028
5.040
0.933
0.019
0.000

7'-1=91 Days

30
35
40
45
50

10.526
6.331
3.270
1.459
0.574

10.529
6.338
3.281
1.470
0.581

10.532
6.3-47
3.294
1.481
0.588

10.540
6.369
3.325
1.510
0.608

10.552
6.400
3.369
1.550
0.635

10.573
6.455
3.444
1.620
0.683

10.596
6.510
3.520
1.690
0.733

Time-to-Maturity T — I = 182 Days

30
35
40
45
50

11.285
7558
4.740
2.810
1.592

11.292
7.570
4.756
2.826
1.605

11.300
7.584
4.774
2.844
1.620

11.320
7.619
4.817
2.887
1.658

11.348
7.668
4.878
2.949
1.711

11.398
7.752
4.983
3.055
1.803

11.449
7.838
5.089
3.162
1.897

Time-to-Maturity T— = 273 Days

30
35
40
45
50

12.040
8.587
5.905
3443
2.573

12.050
8.603
5.924
3.962
2.591

12.062
8.621
5.945
3.984
2.612

12.090
8.664
5.998
4.039
2.662

12.131
8.126
6.072
4.116
2.734

12.203
8.832
6.199
4.248
2.858

12.276
8.939
6.327
4.381
2.983

Time-to-Maturity T — I = 364 Days

30
35
40
45
50

12.753
9.493
6.908
4.941
3A89

12.766
9.512
6.930
4.964
3.511

12.781
9.532
6.954
4.989
3.536

12.816
9.582
7.014
5.052
3497

12.867
9.654
7.099
5.141
3.683

12.956
9.777
7.244
5.294
3.832

13.047
9.902
7.390
5.448
3.982

16.1db 3.23.93



Table ic

Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic Brownian
motion Venus a trending Ornstein-Ijhlenbeck process for log-prices, assuming a standard deviation of 2
percent for daily continuously-compounded returns, and a daily continuously-compounded riskfree rate of
Iog(1.05)/364.

Strike
Price

Black-Scholes
Price

'heading 0-U Price, with Monthly p(l) =

—.05 —• —. —.30 —.40 —.45

T - i =7 Days

30
35
40
45
50

10.028
5.036
0.863
0.011
0.000

10.028
5.036
0.864
0.011
o.oor

10.028
5.036
0.864
0.011
0.000

10.028
5.036
0.866
0.011
0.000

10.028
5.037
0.869
0.011
0.000

10.028
5.03?
0.874
0.012
0.000

10.028
5.037
0.879
0.012
0.000

Time-to-Maturity T — t = 91 Days

30
35
40
45
50

10.526
6.331
3.270
1.459
0.574

10.527
6.332
3.273
1.462
0.575

10.528
6.334
3.276
1.464
0.577

10.529
6,339
3.283
1.471
0.581

10.532
6.346
3.293
1.480
0.588

10.537
6.359
3.310
1.496
0.598

10.541
6.371
3.321
1.512
0.609

Time-to-Maturity T — = 182 Days

30
35
40
45
50

11.285
7.558
4.740
2.810
1.592

11.287
7.561
4.744
2.814
1.595

11.289
7.564
4.748
2.818
1.598

11.293
7.572
4.758
2.828
1.607

11.300
7.583
4.772
2.842
1.619

11.310
7.602
4.796
2.866
1.640

11.321
7.621
4.820
2.890
1.660

T — = 273 Days

30
35
40
45
50

12.040
8.587
5.905
3.943
2.573

12.042
8.591
5.909
3.947
2.577

12.045
8.595
5.914
3.952
2.582

12.051
8.605
5.926
3.965
2.594

12.061
8.619
5.943
3.982
2.610

12.076
8.643
5.972
4.012
2.638

12.092
8.667
6.002
4.043
2.666

1' — 1=364 Days

30
35
40
45
50

12.753
9.493
6.908
4.941
3.489

12.756
9.497
6.913
4.946
3.494

12.759
9.502
6.919
4.952
3.500

12.768
9.514
6.933
4.966
3.514

12.779
9.530
6.952
4.987
3.534

12.799
9.558
6.985
5.022
3.567

12.819
9.586
7.018
5.057
3.601

16.1.lc 3.23.93



Table 2

Comparison of theoretical call option prices on a hypothetical $40 stock under an arithmetic Brownian
motion versus a bivariate trending Ornstein-Uhlenbeck proce for log-prices, both calibrated to match the
daily CRSP value-weighted returns index from 1962 to 1990. The time-to-maturity is given by T — 1,
entries under the 'B-S' heading are call prices calculated under the Blaclc-Scholes assumption of arithmetic
Brownian motion (for which e = 0.0085], and entries under the '0-U' heading are call prices calculated
under the bivariate trending Ornstein-Uhlenbeck (for which tr =0.0074J. A daily continuously-compounded
risk-free rate of log(1.05)/ 364 is assumed.

T—t=7

n-s 10-u

T—t=91 T—t=182 T—t=273 T—t=364

B-so-tJ wsIou B-SO-u wsIo.u
10.028 10.028

5.033 5.031

0.378 0.331

0.000 0.000

0.000 DM00

10.363 10.3Q3

5.467 5.442

1.542 1.378

0.155 0.088

0.005 0.001

10.725 10.722

6.005 5.931

2.328 2.100

0.562 0.393

0.085 0.038

11.092 11.080

6.537 6.422

2.990 2.716

1.020 0.771

0.263 0.148

11.463 11.438

7.049 6.901

3.586 3.276

1.485 1.174

0.508 0.320

16.1.2 4.24S3



Table 3

Ratio of 2 to s2(ri) for various values of the first-order autocorrelation p(1) and holding
period r, where r is measured in units of the holding period used to construct 32(ri).

r Pr (1)

0.00 —0.05 —0.10 —0.20 —0.30 —0.40 —0.45

1

2
3
4
5

1.000
1.000
1.000
1.000
1.000

1.054
1.027
1.018
1.013
1.011

1.116
1.057
1.038
1.028
1.022

1.277
1.133
1.088
1.065
1.052

1.527
1.247
1.160
1.119
1.094

2.012
1.456
1.292
1.215
1.170

2.558
1.684
1.432
1.315
1.248

6
7
8
9

10

1.000
1.000.
1.000
1.000
1.000

1.009
1.008
1.007
1.006
1.005

1.019
1.016
1.014
1.012
1.011

1.043
1.037
1.032
1.029
1.026

1.078
1.067
1.058
1.052
1.047

1.140
1.119
1.104
1.092
1.083

1.204
1.173
1.151
1.133
1.120

11

12
13
14
15

1.000
1.000
1.000
1.000
1.000

1.005
1.004
1.004
1.004
1.004

1.010
i.e®
1.009
1.008
1.007

1.023
1.021
1.020
1.018
1.017

1.042
1.039
1.036
1.033
1.031

1.075
1.069
1.063
1.059
1.055

1.108
1.099
1.091
1.084
1.079

16
17
18
19
20

1.000
1.000
1.000
1.000
1.000

1.003
1.003
1.003
1.003
1.003

1.007
1.007
1.006
1.006
1.006

1.016
1.015
1.014
1.014
1.013

1.029
1.027
1.026
1.024
1.023

1.051
1.048
1.045
1.043
1.041

1.074
1.069
1.065
1.062
1.059

21
22
23
24
25

1.000
1.000
1.000
1.000
1.000

1.003
1.002
1.002
1.002
1.002

1.005
1.005
1.005
1.005
1.004

1.012
1.012
1.011
1.011
1.010

1.022
1.021
1.020
1.019
1.018

1.039
1.037
1.035
1.034
1.033

1.056
1.053
1.051
1.049
1.047

16.1.3 3.20.93



Table 4

Monte Carlo simulation of naive estimator i and autocorrelation-adjusted estimator & of
Black-Scholes volatility input a' for various sample sizes and first-order autocorrelation coef-
ficients p1. Each row corresponds to an independent simulation of 5,000 sample paths, where
each path is generated according to a univariate trending Ornstein-Uhlenbeck process cali-
brated to daily returns with a standard deviation of 2% per day. Note that a changes with Pi
because the unconditional standard deviation is fixed at 2% per day for all the simulations.

® %Bi..(i) %Blas(b) a, (SE) (SE) (SE)

Sample Size = 250

—0.10
.

—0.20

—0.30

—0.40

—0.15

2.1128

2.2601

2.4716

2.8368

3.1990
•

•

—5.1488
(0.0614)

—I1.4330
(0.0598)

—19.0601
(0.0560)

—29.4781
(0.0515)

—37.3341
(0.0496)

0.5043
(0.0852)

0.1501
(0.1000)

0.7178
(0.1263)

3.6719
(0.2851)

12.1053
(04813)

1.0503

1.1301

1.2358

1.4184

1.5996

1.0377
(0.0597)

1.13
(0.0496)

1.2458
(00528)

1.4378
(0.0908)

1.5053
(0.1279)

Sample Size = 500

—0.10

—0.20

—0.30

—0.40

—0.45

2.1126

2.2901

2.4716

2.8388

3.1990

—5.3581
(0.0436)

—11.3826
(0.0414)

—19.1136
(0.0395)

—29.5298
(0.0384)

—37.4316
(0.0333)

0.0825
(0.0810)

0.3296
(0.0679)

0.2136
(0.0844)

1.1622
(0.1465)

6-1146
(0.3412)

1.0563

1.1301

1.2358

1.4184

1.5995

1.0531
(0.0415)

1.1326
(0.0336)

1.2396
(0.0427)

1.4348
(O.0689)

1.5888
(0.1148)

16.1.4 2.24.94



Thble 4 (Continued)

'I ox 100 %Bia(i)
(SE)

%Ria4b)
(SE)

'a /jXj
(SE)

Sample Size 750

—0.10

—0.20

—0.30

—0.40

—0.4$

2.1126

2.2601

2.4716

2.8368

3.1990

—5.3334
(0.0354)

—11.4443
(0.0333)

—19.0865
(0.0336)

—29.4002
(0.0297)

—37.5008
(00373)

0.0766
(0.0492)

0.1975
(0.0568)

0.1785
(0.0685)

0.9319
(0.1083)

4.3151
(0.2665)

1.O5

1.1301

1.2358

1.4184

1.5995

1.0566
(0.03CC)

1.1317
(0.0301)

1.2385
(0.0368)

1.4308
(0.05)
1.6121

(0.1037)
. Sample Size = 1000

—0.10

—0.20

—0.30

—0.10

—0.45

2.1126

2.2601

2.4716

2.8368

3.1990

—5.3230
(0.0312)

—11.5035
(0.0290)

—19.0636
(0.0273)

—29.4668
(0.0258)

—37.4445
(0.0236)

0.0578
(0.0433)

01033
(0.0483)

0.1660
(0.0572)

0.5782
(0.0885)

3.0434
(0.211)

1.0563

1.1301

1.2358

1.4184

1.5996

1.0568
(0.0349)

1.1313
(0.0268)

1.2381
(0.0348)

1.4271
(0.0535)

1.6191
(00965)

Sample Size = 1,250
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—0.30

—0.30

—0.40
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2.1126

24601
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—5.3159
(0.0278)

—11.5268
(0.0267)

—19.0681
(0.0256)

—29.5308
(0.0229)

—37.4503
(0.0211)

0.0682
(0.0381)

0.0517
(0.0434)

0.0846
(0.0527)

0.3844
(0.07%)

2.1408
(0.1700)

1.0565

1.1301

1.2358

1.4184

1.5995
.

1.0568
(0.0236)

1.1310
(0.0264)

1.2368
(0.0331)

1.4254
(0.0506)

1.6206
(0.0854)

16.1.4 2.24.94


