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1 Introduction

This paper analyzes the role of variable capital utilization rates in propagating shocks over
the business cycle. To this end we formulate and estimate an equilibrium business cycle
model in which cyclical capital utilization rates are viewed as a form of factor hoarding.!
We find that variable capital utilization rates substantially magnify and propagate the
impact of shocks to agents’ environments. The strength of these propagation effects is
evident in the dynamic response functions of various economy wide aggregates to shocks
in agents’ .env'u'onments, in the statistics that we construct to summarize the strength of
the propagation mechanisms in the model and in the volatility of exogenous technology
shocks needed to explain the observed variability in aggregate U.S. output. Other au-
thors have argued that standard Real Business Cycle (RBC) models fail to account for
certain features of the data because they do not embody quantitatively important prop-
agation mechanisms. These features include (i) the observed positive serial correlation
in the growth rate of output (Cogley and Nason 1993), (ii) the shape of the spectrum
of the growth rate of real output (King and Watson 1993, Watson 1993] and (iii) the
correlation between the forecastable component of real output and various other economic
aggregates (Rotemberg and Woodford 1994). Allowing for variable capital utilization rates
substantially improves the ability of the model to account for these features of the data.

It is well known that standard Real Business Cycle models do no embody quantita-
tively important propagation mechanisma.? As a result, these models must rely on highly
variable, exogenous, aggregate technology shocks to account for the observed fluctuations
in aggregate economic activity. The primary evidence for these types of shocks consists
of interpreting movements in the Solow residual as reflecting stochastic movements in the
aggregate production technology. But, by now, there is abundant evidence casting doubt
on this interpretation. In addition to reviewing this evidence, Cochrane (1994) discusses
the difficulty in finding quantitatively large sources of aggregate shocks - monetary or real

1Other authors who have recently studied the role of different types of factor hoarding in business cycle
fuctuations include Basu {1993), Bils and Cho (1993), Burnside, Eichenbaum snd Rebelo {1993}, Cooley,
Hansen and Prescott {1993), Finn {1991), Gordon {1990), Greenwood, Hercowits and Huffman (1988),
Greenwood, Hercowits and Krussel (1992), Kydland and Prescott {1988), Rotemberg and Summers {1990),
aud Sbordone {1993). : ) :

3Gee for example Christiano {1988), Cogley and Nason {1993), King and Rebelo (1993a), King and
Watson {1993), Watson (1993) and Rotemberg and Woodford {1854).




- to the postwar U.S. economy. This serves as our motivation for understanding how the
shocks that do occur are magnified and propagated over time. In this paper we pursue one
obvious source of propagation - variable capital utilization (as well as labor hoarding) -
and investigates its quantitative importance in an otherwise standard Real Business Cycle
model.

To model variable capital utilization, we assume that the aggregate technology for
producing goods depends on effective capital services and effective hours of work. The
latter ié defined as labor effort times total hours of work. The former is defined as the
capital utilization rate times the stock of capital. The rate at which capital depreciates
is assumed to be a function of the capital utilization rate.® In equilibrium, firms will, on
average, choose to ‘hoard’ capital, i.e. they will set capital utilization rates to less than
capacity. Because of this they can immediately increase the effective stock of capital in
response to shocks that raise the marginal product of capital. In the standard model,
firms would have to wait a$ least one period to raise the stock of capital. To the extent
that capital takes time to build, they would have to wait even longer.

We face two key difficulties in empirically implementing our model. The first difficulty
is that labor effort is not directly observable and existing measures of capacity utiliza-
tion are sector specific and subject to substantial measurement error (see Shapiro 1989).
However we can exploit the restrictions of our model to measure these variables as func-
tions of other observable variables and certain estimable parameters of the model. The
resulting measure of capacity utilization tracks the analog time~ series published by the
Federal Reserve (which covers only the manufacturing sector over the period we study)
quite closely. The second difficulty is that, according to our model, technology shocks
cannot be measured by the Solow residual. But given our measures of labor effort and
capital utilization rates we can purge the Solow residual of the measurement error induced
by factor hoarding. The flip side of this calculation is that we can assess the contribution
of variable capital utilization rates to the volatility of total factor productivity.

Our main quantitative findings can be summarized as follows. First, capital utilization
rates are very volatile relative to the stock of physical capital. Specifically, we estimate

3This is consistent with the assumptions made in Greenwood, Hercowita and Huffman (1988}, Greenwood,
Hercowits and Kruseel (1992) and Finn (1991), among others, See Bils and Cho (1993} or Cooley, Hansen
and Prescott (1993} for alternative models in which average capital utilization rates are less than one.




that the standard deviation of the growth rate of effective capital services is roughly
4.5 times higher than the standard deviation of the growth rate of the stock of physical
capital. Concentrating on cyclical movements in the stock of capital gives a misleading
picture of cyclical movements in effective capital services. Second, we find that allowing
for variable capital utilization rates and labor hoarding leads to a roughly 80% reduction
in the estimated variance of the innovation to technology shocks. Most of this reduction
is attributable to cyclical movements in the capital utilization rate.

Third, we find that variable capital utilization rates substantially magnify and prop-
agate the impact of shocks to agents’ environments. The magnification and propagation
effects induced by factor hoarding are sufficiently large that the model does as well as
standard RBC models in accounting for the volatility of output. This is true despite the
fact that the estimated volatility of technology shocks is much smaller in our model than
in the atandard RBC model. What distinguishes the models is not whether but Aow they
account for the volatility of output. Virtually all of the output movements in standard
RBC models reflect the direct impact of technology shocks on the aggregate production
technology. With variable capital utilization rates, only about half of the variance of
output is due to the direct impact of technology shocks.

Fourth, we find that our model is able to account for various features of postwar
U.S. business cycles that standard RBC modecl: —aitnot account for. Cogley and Nason
(1993) highlight the weak propagation mechanisms in standard RBC models by focusing
on the autocorrelation function of the growth rate of output. They show that, to a first
approximation, output movements in the model reflect only exogenous technology shocks.
So when these shocks are modeled as a random walk, output is very close to being a
random walk. This implication is counterfactual: unlike the Solow residual, U.S. output
growth is positively serially correlated. With variable capital utilization rates, the model
can simultaneously account for the univariate time series properties of the growth rate of
output and the Solow residual.

A closely related observation is that standard RBC models do not reproduce the basic
shape of the spectrum of post war U.S. output growth {see King and Watson 1993, Watson
1993). According to the standard RBC model, the spectral shape of output growth is the
same as the spectral shape of the growth rate of technology shocks. So when the latter are

modeled as white noise, the implied spectrum of output growth does not have a peak at




business cycle frequencies. But with variable utilization rates, the spectrum of the growth
rate of output has a significant peak at business cycle frequencies even when the growth
rate of technology shocks is white noise.

Rotemberg and Woodford (1994) have highlighted the weak propagation mechanisms
in standard RBC models by focusing on the correlation between expected output growth
{at various horizons) with objects like the growth rates of output and average productivity,
and the logarithms of hours worked and the ratio of consumption to output. One way
in which they motivate the importance of these correlations is by connecting the cyclical
component of output growth, as defined by Beveridge and Nelson {1981), to its forecastable
component. Using the same multivariate time series specification for output, we investigate
the performance of our model on the dimensions of the data stressed by Rotemberg and
Woodford (1994). Generally speaking, we find that our model does a substantially better
job of accounting for these statistics than the standard RBC model. The improvement is
particularly marked with respect to the dynamic correlations of the expected growth rate
of output (at various horizons) with the current growth rate of output, the expected growth
rate of hours worked and the growth rate of average productivity. Even so the model is
unable to fully account for the expected growth rate of output or hours worked. This
highlights the importance of finding additional sources of shocka to agents’ environments
and propagation mechanisms for those shocks.

The remainder of this paper is organized as follows. Section 2 displays our model.
Section 3 discusses our econometric methodology. Our empiricél results are reported in

Section 4. Concluding remarks are contained in Section 5.

2 The Model

In this section we present a variant of Hansen’s (1985) indivisible labor model, modified
to incorporate factor hoarding in the form of variable capital utilization rates and varying
labor effort. The model economy is populated by a large number of infinitely lived indi-
viduals. To go to work an individual must incur a fixed cost of ¢ hours. Once at work,
an individual stays for a fixed shift length of f hours. The time t instantaneous utility of
such a person is given by

In{C,) + 0In(T — ¢ - WyJ) (@)




Here T denotes the individual’s time endowment, C; denotes time ¢ privately purchased
consumption, # > 0, and Wg denotes the time ¢ level of effort. According to (1} labor
suppliers care about effective hours of work. The time ¢ instantaneous utility of a person
who does not go to work is given by In{C;} + ¢ In(T}.

Time ¢ output, Y, is produced via the Cobb-Douglas production function

Y, = (KnUt)l—G[NJWlxlla (2}

where 0 < a < 1, K; denotes the beginning of time ¢ capital stock, U; represents the
capital utilization rate, N; denotes the number of individuals at work during time ¢, and
X: represents the time t level of technology. According to (2) what matters for output
is the total amount of effective capital, K,U;, and total effective hours of work, N, fW,,
used in production. As in Greenwood, Hercowitz and Huffman (1988}, Finn (1991) and
Greenwood, Hercowitz and Krussel (1962), we suppose that using capital more intensively
increases the rate at which capital depreciates. Specifically, we assume that the time ¢

depreciation rate of capital, &, is given by
& = §U¢ (3)
where 0 < § < 1 and ¢ > 1. The stock of capital evolves according to
K =(1-6)K+ I (4)

where I, denotes time ¢ gross investment. Under our assumptions, firms will not, in general,
find it optimal to fully utilize the stock of capital, preferring to ‘hoard’ some capital so
that they can use it more intensively when the returns to doing so are unusually large.

We assume that the level of technology, X\, evolves according to

X = Xi—1exp{y + w) (5)

where v, is a serially uncorrelated process with mean O and standard deviation o,. The

aggregate resource constraint is given by
Ci+L+G <Y (6)

where G; denotes the time ¢ level of government consumption. We assume that G; evolves

according to
G = X:y.‘ (7)
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Here g; is the stationary component of government consumption. We assume that g, =
In(g;) evolves according to

S=u+p-1t & (8)
where u is a scalar, |} < 1 and ¢, is a serially uncorrelated process with mean 0 and

standard deviation o,.
In the presence of complete markets, it is straightforward to show that the competitive

equilibrium of this economy correaponds to the solution of the following social planning

problem:
Maximize
=]
EoY_ 8'(In{Ci) + 0N In(T — ¢ — Wi f) + 6(1 — Ny) In(T)] (9)
=0
subject to (2), (3) and (5) - (8) by choice of contingency plans for {C;, Ky41, Ni, Us, W, ¢
t >0}t

To allow for a simple form of labor hoarding, we proceed as in Burnside, Eichenbaum,
and Rebelo (1993} and assume that N, must be chosen before X, and g are seen. Let 11,
denote the information set that includes the lagged values of all time ¢ variables in the
model. Let {3} consist of the union of N; and (X,,g). We assume that N, is chosen on the
basis of f2; while {C,, K;;,,U;,W,} is chosen on the basis of f}{. This formulation of the
problem incorporates the idea that firms must make employment decisions conditional on
their views about the future state of demand and technology, and firms cannot adjust the
number of employees instantly in response to the shocks a.ﬂ'ecl:ing' their environment. Once
employment decisions are made, firms adjust to observed shocks along other dimensions.
In Burnside, Eichenbaum and Rebelo (1993), the only way this adjustment can occur is
via variations in the labor effort that workers are asked to supply.® In this model, firms
can also vary capital’s effort, i.e. the utilization rate of capital.

Variations in capital utilization involve trade-offs between the effects on output and the

effects on the depreciation rate of capital. We can examine these trade-offs by considering

*In {9) we have exploited the fact that, since agents criterion functions are separable across consumption
and leisure, the planner will squate the consumption of employed and unemployed individuals. In addition,
we bave normalised the number of agents in the economy to one.

Note that work effort, W,, and shift length, f, appear symmetrically in production and preferences. As
a result, the properties of some aspects of the model are unchanged if the interpretations of these variables
are reversed. For example, output’s univariate dynamics are identical. However, as noted in BER (1993)
Teversing the interpretation implies that all movements in labor input are observable, which has different
implications for the joint behavior of output and average productivity.
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the planner's Euler equation for Uj:
Yo -
(1 - o) = UK, (10)

According to (10) the optimal plan for U; sets the marginal product of an increase in the
utilization rate equal to the marginal change in depreciation of the capital stock. Other
things equal, factors that increase the marginal product of capital utilization, such as X,
and/or N, lead to an increase in the rate of capital utilization. {See section 4 for a more
detailed discussion}.

A number of related models are of interest. First, when the rate of capital utilization
cannot be varied, the model reduces to that of Burnside, Eichenbaum and Rebelo {1993).
For convenience we refer to this as the labor hoarding model. Second, if in addition, N; and
W, are chosen after X; and g; are seen, then the model is observationally equivalent to the
standard RBC indivisible labor model, modified to incorporate government consumption
into the analysis, that is analyzed in Christiano and Eichenbaum {1992). For convenience
we refer to this as the benchmark model.

In general it is not possible to solve any of these models analytically. Here we use
King, Plosser and Rebelo’s (1988) log linear solution procedure to obtain an approximate
solution to the planning problem. According to our model, K¢,/ X}, i/ Xy, Cif X3, ges Ny,
W, and U, all converge in non-stochastic steady state. It is possible to write the planning
problem entirely in terms of these variables. Let ki = In{Kii/X3), v = In{Y;/X,),
¢ = In(C/ X)), we = In(W,), ny = In{N,), and u, = In(L}y). Our {approximate) decision
rules express {ki4y, €ty Wi, s, e} 88 linear functions of {k, ne, v, gt}. We refer the
reader to Burnside {1993) for details.

3 Econometric Method

In this section we discuss our methodology for estimating and evaluating the empirical
performance of the factor hoarding model.
3.1 Measuring Capital, Depreciation, Capital Utilization and Labor Effort

We face several problems in implementing our model. First, we do not have data on labor

effort. In addition, existing measures of capital utilization are sector specific and subject



to substantial measurement error (see Shapiro 1989). Second, our model implies that
technology shocks cannot be measured by the Solow residual. The conventional method of
calculating the Solow residual (at least in the RBC literature) begins from the assumption

that output is produced via the Cobb-Douglas production function:
Y, = S K\~ H; (11)

where H, denotes total time ¢ hours worked. Given a consistent estimate of a, the log of

Solow residual can be computed using the relationship
In(5) = In(¥}) — (1 - a) In(X;) — aln(H,) (12}
But, abstracting from measurement error in capital, our model implies that
In(5;) = aln{X,) + In(Fe) (13)
where the time t factor hoarding component F; is given by
In{F) = (1 - a) ln(Ty) + aIn{W,) (14)

Consequently shocks which cause capital utilization or labor effort to vary over time drive
a wedge between actual technology shocks and the Solow residual.®

Third, we cannot measure capital using the official government data on the stock of
capital. This is because, according to our model, the depreciation rate on capital varies as
a function of the capital utilization rate. The official government data assumesa (roughly
speaking) a straight-line rate of depreciation over fixed service lives of different types of
capital. 7

Qur strategy for dealing with these problems is as follows. To identify capital utilization
we exploit functional form assumptions on the aggregate production technology and the
assumption of perfect competition to derive a.time series for U, that is a function of

observable variables and a subset of the model's parameters. Given this time series,

®Allowing for measurement error in the capital stock induced by time varying capital utilisation rates
(see below), the Solow residual is givea by In(S;) = aln(X;) + In(Ft) + (1 - a)[ln(X,) - In( K;)] where K,
is the true capital stock and K, is the official veries.

"The official data do imply a time-varying depreciation series. However this is an artifact of small changes
in the distribution of the stock of capital acroas different types of capital. For details, see the Burean of
Economic Analysis (1993).




we exploit the equilibrium relationship between effort, capital utilization and the Solow
residual to measure effort and the actual shocks to technology.

Consider first the problem of measuring capital utilization. The planner's first order
condition for U; equates the marginal product of an increase in capital utilization with
the resulting increase in depreciation of the capital stock. Given our functional form
assumptions, this condition can be expressed as:

U, = [Q&%{K] v (15)

Relation {15) allows us to deduce a time series for Uy given a time series on (Y:/K.) and
values for a, ¢ and §.2
To identify effort, W,, we exploit the fact that the linearized equilibrium law of motion

for W; can be expressed as
In{W,) = m + m, In(K,) + maln(H,) + 713 In(Ge) + ¢ In{X) (16)

where H; equals total hours worked, N;f. The scalars #; are functions of the model's

underlying structural parameters. The production function implies that
ln(x‘] = ﬂ-l[ln(x) - (1 - ﬂ) ln(Kg] - (1 - ﬂ) ln(U‘) - ﬂln(Hg) - ﬂln(W‘)] (17)

Given the time series on Uy implied by (15), relations (16) and (17) can be solved to obtain
a time series on W, and X, as functions of the observable variables {Y;, K,, H,, G;} and
the model’s structural parameters.

To obtain a measure of the stock of capital we proceed as follows. The Euler equation
for utilization, (10), can be solved for depreciation, as

=(1—a]~1_’_¢_

o (18)

&

Given data on Y;, a vector of parameters and an initial value for K,, we can calculate
&, using (18).° Then, using data on investment, I), {4) can be used to calculate K.
This leads to a recursive procedure for determining the capital stock corresponding to any

vector of parameters.

®1n our empirical analysis we only need to ideatify In{U;) up to a constant, As a result, we do zot identify
the parameter §.
*We discuss the choice of initial value for K, below,
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3.2 Estimation and Diagnoatic Procedures

In order to estimate and diagnose the performance of our model we use a variant of the
Generalized Method of Moments (GMM) procedure discussed in Christiano and Eichen-
baum (1992). The basic idea underlying the procedure is as follows. The GMM criterion
is set up so that the estimated model exactly matches the sample analog of certain un-
conditional moments of the data generating process. The model is then used to calculate
various other second moments of the data. These other second moments can also be es-
timated in ways that do not involve the model, In population, the two sets of estimates
ought to be the same. To test such hypotheses we use a simple Wald statistic discussed
in Christiano and Eichenbaum (1992).

For the most part we report the results of testing only one moment restriction at a time
in this paper. Qur decision to do this reflects our view of the small sample properties of
GMM based Wald test statistics. Using a version of the factor hoarding model as the data
generating process Burnside and Eichenbaum (1994) show that asymptotic distribution
theory typically provides a reasonable description of the small sample distribution of the
Wald statistic when we look at individual moment restrictions. However (i) the small
sample size of the Wald statistic increases rapidly as a function of the number of moments
being tested, i.e. using asymptotic distribution theory, one rejects the mode! far more
often than is warranted in small samples, (ii) even when testing a moderate number of
moments, the small sample size is dramatically larger than the asymptotic size of the
test,’® and (iii) the fundamental source of the problem has to do with the difficulty in
estimating the optimal weighting matrix used in GMM based inference procedures,

We did not estimate the parameters T, B, f and ¢. Instead we fixed T at 1369 hours
Per quarter, § was set at 1.03!/ and f was chosen so that the nonstochastic steady
state value of effort equals one. We experimented with various values of ¢ and found that
our results were insensitive to choices between 20 and 120. The results reported here
correspond to a value of ¢ equal to 60.

Let ¥, denote the vector of remaining model structural parameters. As it turns out,
we do not separately identify § and ¢. However, we can identify § = §U*, where U is the
nonstochastic steady state value of U;. Furthermore, as detailed in the Appendix, when

) ¥ example, joint tests of Efteen moment restrictions that ought to have asymplotic size of 5%, typically
have amall sample (100 observations) sises exceeding 30%.
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the first-order conditions of the planner’s problem are evaluated in nonstochastic steady
atate, they lead to the parametric restriction

_ ﬁ"expl('r) -1

¢ 5

+ 1. (19)

Therefore, we do not estimate ¢ as a free parameter, and instead include & in our spec-
ification of ¥,.!' In addition, we found that the variable g; = In{G;) — In(X;) exhibited
a time trend in our sample. Consequently we allowed g; to depend on a constant, a time
trend as well as one lag of itself. The parameters g; and g; denote the constant and the
coefficient on time in this specification. With these modifications the 10 x 1 vector of

structural parameters ¥, is given by,

¥, = {ﬂ,s,a,'f, Un.g/yaﬂo:ﬂ'nﬂaa«} (20)

In the Appendix we formally describe the unconditional moment restrictions used to
define our GMM estimator for ¥,. Since our estimator is exactly identified, it has a very
simple interpretation. Roughly speaking, the estimators of # and & are chosen so that
the model reproduces the sample average of per capita hours worked while satisfying, on
average, the Euler equation for capital.

The log of our point estimate of § corresponds to the log of the camy.le average of the
depreciation rate implied by the official data on capital and investment, =1+ (I, -
Kee1)/K.. This corresponds to the assumption that, while the official measure of the
capital stock, K,, does not match the actual capital stock on a quarter to quarter to basis,
the Bureau of Economic Analysis does measure the average rate of depreciation correctly.
Specifically, we assume that the population mean of & is the same as the population mean
of 6. Absent such an assumption the official and actual capital stock data would diverge
over time.!?

Our point estimate of the log of g/y corresponds to the sample average of In(G,) —In{Y}).
Our point estimate of o, equals the sample variance of the time series on In{X;) — In{X,_,).

The parameters gg, g; and p were estimated by regressing g, on a constant, ¢t and g;—,.

11The fact that we do not identify § and U separately presents no dificulties in solving the model, as our
log-linear approximation to the fimt-order necessary conditions depends only on § and 4.

13 A4 it turns out our results are insemsitive to how capital is measured. Treating the official series a2 a
measure of the true capital stock leads to qualitatively and quantitatively similar results. Different methods
for choosing Ky also lead to eimilar results,
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Finally, o, was estimated by the sample standard deviation of the residuals from that
regression.

Finally, we need to specify a value of K, in order to implement our strategy for obtain-
ing a time series on the stock of capital. One choice would be K, = K 1. However, there
i3 no a priory reason for this choice. We choose K| so that the resulting capital series,
K., and the official capital stock series, K;, imply the same average output-capital ratio.
Since our model implies that deviations between K; and K, are transitory, this moment
restriction ought to hold in population. An advantage of imposing this choice in sample
is that it results in an estimate of « that is very similar to that used in the literature,

To diagnose the empirical performance of our model we must estimate various moments
of the data in waya that do not involve the model. Let W; denote a vector of population
moments to be estimated. These include objects like the relative standard deviations and
dynamic correlations between different variables. In the Appendix we formally describe the
unconditional moment restrictions underlying our estimator of ¥; as well as our procedure
for testing hypotheses,

One problem with specifying the elements of ¥; is that variables like C, ¥;, K, Gi,
and APL; exhibit a marked trend. For the objects in ¥; to be meaningful, they must
refer to the moments of stationary time series. Depending on the context, we work with
the stationary inducing transformation of the data discussed in Hodrick and Prescott
(1980} and Prescott {1986} or with growth rates of different vﬁ_ariables.“‘ Therefore the
moments in W3 pertain to Hodrick and Prescott {HP) filtered or first differenced time
series.! To assess the robustness of resulta obtained with HP filtered data we redid all of
our calculations working with growth rates of the data. These are reported in an appendix
to this paper that is available upon request. As it turns out, the choice of whether to work
with growth rates or HP filtered data has little impact on our qualitative results.

13That the HP filter ia a stationary inducing transformation for difference atationary stochastic process
follows directly from results in King and Rebelo (1993b).

'*The data used.to estimate ¥, were not HP filtered or Girot differences. In all cases, the upconditional
moments used to estimate the models’ structural parameters pertain to ratios of variables like Y, /X, thal
are stationary stochastic processes according to our model
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3.3 Data

Private consumption, C, was measured as the sum of private sector expenditures on non-
durable goods plus services plus the imputed service flow from the stock of durable goods.
The first two measures were obtained from the Survey of Current Business. The third
measure was obtained from Brayton and Mauskopf (1985). Government consumption, G,
was measured by real government (federal, state and local) purchases of goods minus real
government investment. The government data was provided to us by John Musgrave at
the Bureau of Economic Analysis. The official capital stock, I.(., was measured as the sum
of consumer durables, producer structures and equipment, and government and private
residential capital plus government non-residential capital. Data on gross investment, I,
are the flow data that conceptually match the capital stock data. Gross output, Y, was
measured as (C, + G + I;) plus time ¢ inventory investment. Our basic measure of hours
worked is the quarterly time series constructed by Hansen (1984), which we refer to as
household hours. The data cover the period 1955:3-1984:1 and were converted to per
capita terms using an efficiency weighted measure of the population.!®* We use Prescott's
(1986) model of measurement error in hours worked. In particular we assume that the
log of measured hours worked differs from the log of actual hours worked by an ii.d.
random variable that has mean zero and standard deviation o;. To estimate o; we need
two measures of hours worked. The first is Hansen's measure of hours worked which is
based on the household survey conducted by the Bureau of the Census. The second is
the establishment survey conducted by the Bureau of Labor Statistics. The Appendix
provides details regarding the estimation procedure and how measurement error affects

the moment restrictions that define our estimator of ¥,.

4 Empirical Results

Columns 1 and 2 of Table 1 report parameter estimates for the benchmark and factor
hoarding models, respectively. A number of interesting results can be seen here, First,
except for o,, the standard deviation of the technology shock, the parameter estimates
for both models are very similar. This greatly facilitates comparisons across the models.

Note in particular that « is estimated to equal 0.642 and 0.655 in the factor hoarding and

1534 Christianc {1988, appendix) for further details.
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benchmark models, respectively. So the time series on the Solow residual that emerge from
the two models are very similar to those used in eiisting RBC analyses (see for example
Hansen (1935) and Prescott (1986)). Second, the estimated value of § (.0208) implies that
¢ is roughly equal to 1.54, so that the concavity restriction on the depreciation technology
is satisfied (¢ > 1). Third, the expected value of the rate of depreciation, &, is equal to
0208 {or an expected annual rate of depreciation of 8.6%). The implied two standard
deviation band for quarterly depreciation is (.0191, .0226),®

Figure 1 displays the time series on the capacity utilization rate implied by our model.”
We also display the Federal Reserve's measure of capacity utilization for the manufacturing
sector. There are at least two reasons why the time series might differ: (i) our measures
of output and capital cover a broader segment of the economy than the Fed's , and (ii)
the Fed’s measure is subject to substantial measurement error (see Shapiro (1989)). Still
it is comforting that the series track each other reasonably well.

Next, notice that, according‘ to our model, capital utilization is quite volatile. In
particular, our point estimates imply that the standard deviation of the growth rate of
the effective stock of capital (U, K;) equals 0.0068 whereas the standard deviation of the
growth rate of the stock of capital equals 0.0015. Focusing on the physical stock of capital
would give a very misleading picture of the volatility of effective capital input.

Finally, notice that incorporating factor hoarding into the analysis leads to a substan-
tially smaller estimate of the volatility of technology shocks. Relative to the benchmark
model, correcting for factor hoarding leads to a 58% reduction in the variance of the in-
novation to technology shocks. To assess how much of this decline is attributable to time
varying effort as opposed to variable capital utilization, we estimated the labor hoarding
version of the model in which U, is set equal to its non-stochastic steady state value.)®

Correcting for labor hoarding alone leads to a 21% reduction in the variance of the inno-

'“Recall that E{§) = SE{U!) = SE{expl$ In{T)]}. Assuming that the underlying disturbances to
the economy are normally distributed, In{l/;) is normally distributed with mean p, and variance o?. It
follows that E(5,) = § exp{pp.) exp(}4%02). Using the fact that, in our model, the log of the steady state
of a variable is equal to the expected value of the log of that variable, we obtain Fexp(du.) = SU* =
8. So E(&) = §exp(14%03). Solving the model we obtain o. = 0.027. The variance of 5, is given by
E(t?) = [B{8)] = 8|exp(24%67) - 5 exp($702)].

'"To produce this graph, we have chosen § = 0.0285,

‘*This model is closely related to the one analysed in BER (1993). One important difference is that,
bere, X, is assumed to be a difference stationary stochastic process. BER (1993) assume that X, is a trend
stationary process.
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vation to technology shocks.!® Evidently capital utilization plays a larger role than labor
hoarding in reducing the estimated volatility of technology shocks.

4.1 Some Simple Diagnostics

Before discussing the quantitative role of variable capital utilization in propagating shocks,
we briefly assess the performance of the benchmark and factor hoarding models in terms
of their ability to account for some of the standard statistics emphasized in the RBC lit-
erature. Columns 1 and 2 of Table 2 present the implications of the two models for the
volatility of consumption, investment and hours worked relative to output and the volatil-
ity of hours worked relative to average productivity {o./o,, 0:/0,, oa/o, and orfo,y}.2°
Column 3 reports non-model based estimates of these moments. Numbers in parentheses
are the standard errors of the corresponding point estimates. Numbers in brackets are the
probability values of the W statistics discussed in the Appendix for testing whether the
mode| and data population moment are the same. Notice that both models do very well
on these dimensions of the data. In no case can we reject the individual hypotheses that
were investigated (at even the 15% significance level).

Next we consider the models’ implications for the dynamic correlations between hours
worked and average productivity as well as the dynamic correlations between average
productivity and output. These are summarized in Figures 2 and 3, respectively. Columns
1 and 2 of these figures pertain to the benchmark and factor hoarding models. The
dotted lines in row 1 correspond to non-model based estimates of p(APLy, Hiyi) : ¢ =
{-4,3,...,0,...,3,4} and p(APL,Yy;) : ¢ = {—4,3,...,0,...,3,4} while the solid lines
denote the values of those moments implied by the models. The solid lines in row 2 graph
the difference between model and non-model based estimates while the dotted lines denote
a two standard deviation band for this difference.

From Figure 2 we see that the factor hoarding model does quite well at accounting
for the individual dynamic correlations between average productivity, hours worked and
output. Let pP (APLy, H(,;) and gP(APLy, Y4} denote the difference between model and
non model values of p(APL, H;:) and p(APLy,Yesi), i = {—4,-3,...,0,...,+3,4}. Ac-
cording to Figure 2, we cannot reject the individual hypotheses that pZ(APL,, Hyi) =0

19Qur point estimate of o, in the labor hoarding model equals 0.012 with a standard error of 0.0007.
20These refer to moments of the HP Gltered data.
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for {r = -2,-2,1,...,4}. Comparing the relative performance of the benchmark and
factor hoarding models, we see that the latter seems more consistent with the asymmet-
ric lead lag reIa.tionship between average productivity and hours worked, although these
differences are not particularly marked once sampling uncertainty is taken into account.

Turning to Figure 3 we see that the models also do quite well at accounting for the
dynamic correlations between average productivity and output. In the case of the factor
hoarding model, we cannot reject the hypothesis that p?(APL, Y.;) for {i = -2, —1,..., 4}.
For the benchmark model we cannot reject the hypothesis that pP (APL,Y:y) for {i =
~1,...,4}.

4.2 Propagation of Shocks

We now consider the implications of factor hoarding for the propagation of shocks to
agents’ environments and the volatility of output. Rows 1, 2 and 3 of Table 3 report a
variety of statistics pertaining to the volatility of output. Column 1 reports the value
of o, implied by the different models. Column 2 reports our estimate of o, in the data.
Numbers in parentheses denote standard errors. Column 3 reports the W statistic for
testing the hypothesis that the model value of gy equals the data population value of o,.
The number in brackets equals the probability value of the corresponding W statistic.

Table 3 reveals that it is very difficult to distinguish between the models on the basis of
their ability to account for the volatility of output. Specifically, we cannot reject, at even
the 25% significance level, the null hypotheses that the values of o, for the benchmark
and factor hoarding models both equal the data population value of ¢,. There is some
marginal evidence against this hypothesis for the labor hoarding model (it can be rejected
at the 10% but not at the 5% significance level). But, all in all, the three models do quite
well at accounting for the volatility of aggregate output.?!

What distinguishes among the models is how they account for the volatility of output.
The estimated volatility of technology shocks ia very different in the three models. But

all of them can account for the volatility of output.’?? Since the estimated volatility of

31 This evidence is robust to wsing the first-difference filter to render output stationary. In this case,
the p-valaes are 0.08 for the benchmark model, 0.42 for the labor hoarding model and 0.4 for the factor
boarding model.

" Recall that the estimated law of motion for g is very similar in the different models, so that this cannot
account for large differences among them,
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technology shocks is smallest in the factor hoarding model, factor hoarding must somehow
act to magnify and propagate those shocks.

Before analyzing how factor hoarding does this, we first quantify the relative strength
of the internal propagation mechanisms in the different models. One simple way to do this
is to compare the variability of output when the propagation mechanisms in the models
are and are not operative. According to the factor hoarding model, hours worked, effort,
capital utilization and K,;/X|_, are stationary stochastic processes. Consequently the log

level of output can be represented as
In{Y;} = In(X) + » (21)

where y; represents the time ¢ stationary deviation of the log of output away from its trend
path. We can think of y; as corresponding to the part of output variation that is explained
by the model’s internal mechanisms for propagating shocks, as distinct from the variation
that is due directly to (exogenous) movements in X.

Suppose that we shut down these propagation mechanisms. In particular, suppose that
hours worked, effort and capital utilization equal their constant non-stochastic steady state
values and that K, varies in direction proportion to X;_,, with K; = kexp{(X,_,). Here
k denotes the nonstochastic steady state value of K,/X,_ ;. Then output, Y;’, evolves
according to

In{Y;") = In{Xe) + v : (22)

where v denotes the non-stochastic steady state value of y,.

One measure of propagation is the standard deviation of In(Y}) relative to the standard
deviation of In{(Y;"). Since the latter equals the standard deviation of In{X;), we denote
this ratio by o,/c,. This statistic can be calculated for all three models by applying a
stationary-inducing filter to both In(Y:) and In{X).?® Columns 4 and 5 of Table 3 report
0. and o, /o,, respectively, using the HP filter.

A number of interesting results emerge here. First, in the case of the benchmark
model, 0,/o; = 1.05, i.e. the propagation mechanisms embedded in that model generate
only a 5% increase in the volatility of output. In contrast, the propagation mechanisms

B1n principle one could either shut down the shocks to g or shut down the shocks to X, when performing
these calcalations. Since shocks to g contribute very little to the volatility of output, we allowed for both
shocks,

17




embedded in the factor hoarding model lead to a 47% increase in the volatility of output
(o,/02 =2 1.47). Second, o, /0, is actually lower in the labor hoarding model than in the
benchmark model (1.01 versus 1.05). This finding is consistent with the fact that, of the
three models, the value of o, is lowest in the labor hoarding model.?$

A different way to assess the importance of factor hoarding as a propagation mechanism
is to consider the dynamic response functions of different variables in the factor hoarding
and benchmark models to shocks in X; and ¢,. Rows 1 and 2 of Figure 4 report the
dynamic response of the log level of output to 1% shocks in X; and ¢;. Columns 1 and
2 pertain to the benchmark and factor hoarding models, respectively. The dotted lines
denote a two standard deviation band about the impulse response functions. 2*

Consider the effect of a 1% shock to X;. In the impact period, the response of output
is quite similar in the two models, with Y¥; rising by 1.043% in the benchmark model
and 1.078% in the factor hoarding model. Thereafter, the response path is different. In
the benchmark model, output smoothly declines to its new steady state growth path,
approaching it from above. In the factor hoarding model, the one period ahead effect is
larger than the impact effect {1.51% versus 1.078%). Thereafter output smoothly declines
to its new steady state growth path, approaching it from above. Notice that the rate of
convergence i3 reasonably slow with output up by more than 1.1% twenty four quarters
after the technology shock. Row 2 of Figure 4 reveals a similar if less dramatic pattern in
the case of a shock to ¢;. So, as with a shock to X;, factor hoarding serves, at least after
a one period delay, to magnify and propagate the effects of the shock to g,.

Figure 5 displays the dynamic response functions of the log of hours worked in the
benchmark and factor hoarding models to 1% shocks in X, and g,. In the impact period
of the shock to X;, hours worked rise by roughly 0.59% in the benchmark model and
then smoothly return to their (unaffected) non-stochastic steady state level. In the factor
hoarding model, hours worked do not, by construction, respond contemporanecusly to a
shock in X;. In the period after the shock they rise by 0.8% and then slowly converge to
their (unaffected) non-stochastic steady state level. Notice that, after the impact period of

the shock, the rise in hours worked in the factor hoarding model exceeds the corresponding

% These results are robust to the filter applied to In(Y;) and In(X;). Specifically, for the first-difference
Glter o, /0, is 1.05 for the benchmark model, 0.89 for the labor hoarding model and 1.19 for the factor
hoarding model. )

% These banda reflect sampling uncertainty in our estimates of the models’ structural parameters.

18




rise in the benchmark model along the entire adjustment path to non-stochastic steady
state. A similar pattern is observed in the response of the two models to a shock in g,.

The reason for the ‘hump-shaped’ rezponse of output to shocks in the factor hoarding
model can be understood by considering the dynamic response functions of the log of effort
and the log of capital utilization in that model. These are displayed in Figure 6.2¢

In the impact period of the shock to X;, effort rises by 0.29% and then immediately
reverts to ita non-stochastic steady state level. The absence of a persistent response in
effort reflects our assumption that it is costless to adjust hours worked in the period after
the shock. By contrast, capital utilization initially rises by 0.7% and then climbs by even
more {to 0.96%) in the next period. Thereafter capital utilization smoothly approaches
its (unaffected) steady state level from above. To understand the hump shaped response
of capital utilization, notice that impact period response of effort is small relative to the
second period response of hours worked.’” Therefore, the response of the log of effective
labor input, being the sum of the log of effort and the log of hours worked responses
displays a hump shape pattern. It is not surprising that utilization, being a complement
to labor input, displays a similar, hump-shaped response to shocks. Since variations in
effort, hours and utilization account for most of the transitory movement in output, the
level of output also displays a hump-shaped response. Similar patterns arise in response
to shocks to ¢;.

To gain further intuition for our results, it is useful to consider the dynamic response
functions of consumption and investment to 1% shocks in X; and g,. These are displayed
in Figures 7 and 8, respectively. We begin by discussing the case of a technology shock.
Equation (5) implies that a 1% technology shock leads to a permanent 1% increase in
the level of X;. Given the balanced growth nature of our model, this generates a 1%
upward shift in the steady state growth path of C}, K, I, G, and ¥;. To build up the
capital stock, investment must approach its new steady state growth path from above.?®
Other things equal, this suggests that consumption will approaches its new steady state

path from below. By increasing capital utilization and labor effort in the impact period

38Given our normalisations, the response function of capital utilisation is proportional to the response
function of depreciation, provided that we interprot the vertical axes as denoting the percent deviation of
depreciation from its non-stochastic steady state value. The factor of proportionality is equal to ¢.

#7This reflects the relative curvature of agents’ preferences over efort and employment,

#This corresponds to K, approaching its eteady state growth path from below.
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of the shock, the planner can generate a more than 1% output change in response to a
1% technology shock even though hours are fixed. Given the concavity of the planner’s
criterion function in C, /X, and the resulting desire of the planner to smooth consumption
relative to its new steady state growth path, the optimality of this type of response is not
surprising.

In the period after the shock, there is a large increase in hours worked and capital
utilization. This accounts for the large percentage increase in output that occurs in the
period after the shock. This extra output allows for a burst of investment while consump-
tion continues to climb upwards to its new steady state growth path. Thereafter, hours
worked, capital utilization and investment smoothly fall towards their steady state patlis
from above, while consumption continues to climb to its steady state path from below.

Consistent with this interpretation of factor hoarding, Figure 7 reveals that consump-
tion approaches its new steady state growth path more quickly in the factor hoarding
model than in the benchmark model. We can quantify the speed of adjustment by calcu-
lating how many periods it takes consumption to climb 75% of the way to its new steady
state growth path. In the factor hoarding model, this occurs within 4 periods, but in the
benchmark model this takes 15 periods. Notice that factor hoarding also serves to speed
the convergence of consumption to its steady state growth path after a shock to g. The
key difference is that the steady state growth paths of C}, K;, I, Y; and G, are unaffected
by a shock to ¢;. ‘

Figure 9 depicts the dynamic response of the Solow residual in the factor hoarding
model to 1% shocks in X; and g,. The key point here is that factor hoarding induces a
large persistent deviation between the actual technology shock and the measured Solow
residual. In the impact period of the shock both effort and capital utilization rise. Since
the Solow residual is calculated using measured hours worked and the stock of capital, it
Tises by more than implied by the shock to technology (1.07% versus 0.64%). In the periods
after the shock, effort reverts to ita steady state level but capital utilization continues to
be high relative.to its steady state level. Consequently the Solow residual continues to be
above its (new) steady state growth path of 0.64%. As capital utilization slowly declines
to its steady state level, the Solow residual approaches its steady state growth path from
above. Naive Solow residual accounting which attributes all of the movements in total
factor productivity to movements in X, clearly overstates the volatility of technology
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shocks. In contrast to the labor hoarding model considered in Burnside, Eichenbaum and
Rebelo (1993), the deviation between the Solow residual and the technology shock is highly
persistent, reflecting the persistent deviation of capital utilization froﬁ: its steady state
level. This is the basic reason that our model generates a much smaller estimate of the
volatility of technology shocks than do the labor hoarding and benchmark models.

Finally, note that in response to a 1% shock in g, the Solow residual initially rises (by
roughly .07%) and then slowly approaches its unchanged steady state value from above as
capital utilization reverts to its unchanged steady state value. Again, naive Solow residual
accounting overstates the volatility of technology shocks. Indeed here the analyst would
infer that a sequence of technology shocks has occurred even though there has only been
a one time shock to aggregate demand and no shock to technology whatsoever.

4.3 Persistence of Output Growth

Cogley and Nason (1993) discuss the propagation mechanisms in RBC models by focusing
on the autocorrelation function of output growth. They show that many RBC models
imply that the growth rate of output is close to being a white noise process. In contrast,
the actual growth rate of U.S. output displays positive persistence. Cogley and Nason
(1993) interpret this discrepancy as reflecting the weakness of the propagation mechanisms
embedded within standard RBC models. A simple way to see this is to recall that output

can be decomposed according to:
In(¥}) = In{X,) + y- (23)
Under our assumptions about X}, the growth rate of output is given by
Aln(Y}) =9+ v+ Ay. (24)

where v; is white noise. The absence of significant correlation in (model) output growth
reflects the fact that, in standard RBC models, v, is the dominant stochastic component of
Aln(Y;). The kéy question addressed in this subsection is whether the propagation mecha-
nisms in the factor hoarding model are sufficiently strong so as to allow it to quantitatively
account for the autocorrelation function of A In(Y}).

The first row of Figure 10 illustrates our unconstrained estimates of the autocorrela-

tion function of A In(¥;) as well as those implied by the benchmark and factor hoarding
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models. As noted above, the actual growth rate of U.S. output is positively autocorre-
lated: specifically the first two autocorrelation cﬁe[ﬁcients are positive and significant.
Though it is difficult to discern from Figure 10, the benchmark model implies that all
the autocorrelations are negative. In contrast, the factor hoarding model does very well
at accounting for the autocorrelation function of Aln(Y;). The joint hypothesis that the
first two autocorrelation coefficients implied by the factor hoarding model are the same as
those in the data cannot be rejected at conventional significance levels. This hypothesis
is strongly rejected for the case of the benchmark model.

The impulse response functions discussed in the previous gsection provide some intuition
for these results. In the benchmark model, Aln(Y;) is significantly affected only in the
impact period of a technology shock. It follows that since innovations to technology are a
white noise process, output growth closely resembles white noise. In the factor hoarding
model, a 1% shock to technology causes output to rise by 1.08% in the period of the
shock. In the second period after the shock output climbs by an additional 0.43%. So the
initial spurt in output growth is a signal of further growth in output. A similar pattern
is observed in response to shocks to g,. Not surprisingly, the growth rate of output is
predicted to display positive serial correlation.

Notice from the second row of Figure 11, that both models predict the correct pattern
of autocorrelation in the growth rate of the Solow residual.?® So the factor hoarding model
is able to generate positive serial correlation in output growth without generating counter-
factual predictions for the growth rate of the Solow residual. This is not the case for the
benchmark model. It must choose which of the two correlation structures to match. As
things stand, it matches the correlation structure of Aln(S,) but not Aln{Y,). We could
improve the model’s performance regarding A In(Y;) by assuming that A In(5,) is positively
serially correlated but this would simply substitute one counterfactual implication for
another.

We can obtain a slightly different perspective on the performance of the models by

examining their implications for the spectrum of output growth:

f(w) = Var[A In(¥3)) [l + ZE cos(jw)p,-] , (25)

) **The benchmark model predicts negative serial correlation because we allow for i.i.d. measurement error
w bours worked. The factor hoarding model makes the correlation slightly more negative.
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where p; is the jth autocorrelation of output growth. The spectrum implied by the
estimated benchmark and factor hoarding models, as well as an unconstrained estimate,
are presented in Figure 12. For the benchmark model the spectrum of A In(Y;) is almost
identical to the spectrum of A In{X,). The model adds almost no volatility over and above
the direct effect of the shocks, nor does the structure of the model significantly alter the
spectral shape of the technology shocks. In contrast, the factor hoarding model magnifies
the volatility of technology shocks in addition to significantly distorting their spectral
shape. Notice in particular that it induces a significant spectral peak in output growth at

business cycle frequencies from technology shocks which do not have a spectral peak.

4.4 Alternate Measures of Cyclical Behavior

In this subsection we assess the ability of the factor hoarding model to account for a subset
of the diagnostic statistics emphasized by Rotemberg and Woodford (1994). These pertain
to the time series properties of the forecastable component of the growth in economic
aggregates like real output. To motivate these diagnostic statistics, it is useful to note
the connection between the expected growth of a variable at different forecast horizons
and the cyclical component of that variable as defined by Beveridge and Nelson (1981).

Suppose that we define the trend in a difference stationary random variable X, as
Xcr = tllla E(Xi4x ~ k1), (25)

where -« is the unconditional mean of the growth rate of X;. The cyclical component of X;
at time ¢ is just XF = X, — X7, or

Xf" = - *l;l.% E{(Xﬁ.g - X; - k')‘) (27)

So the cyclical component of X, is negative whenever the series is ezpected to grow more
in the long run than predicted by its unconditional mean growth rate. Strictly speaking,
the cyclical component of X;, so defined, is directly related to forecastable changes in X,
at the infinite horizon. This motivates Rotemberg and Woodford's (1694) desire to focus
on forecastable changes in output (and other variables) at various finite horizons. Note
that if output was a random walk, as it is (approximately} in the benchmark model, it
could (and does) exhibit substantial variation even if its cyclical component is identically

equal to zero. As long as the cyclical component of aggregate U.S. output is not i.i.d., the
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benchmark RBC model will not be able to account for any of its variation, even if it could
account for all of the variance in the actual growth rate of output.

To generate the forecasts needed to make their diagnostic tests operational, Rotemberg
and Woodford (1994) use a second-order VAR representation for the growth rate of output,
the log of hours worked and the log difference between consumption and output. In light
of this, we too estimated an unconstrained second-order VAR for these variables. We then
calculated the population values of the VAR implied by the estimated benchmark and
factor hoarding models.>® Unlike Rotemberg and Woodford (1994), the VARs implied by
our models do not have singular innovation covariance matrices. This is because we allow
for three sources of randomness in the variables observed by the econometrician: shocks
to technology, shocks to government purchases and classical measurement error in hours
worked.

Let ?._,. I;'._;, and #ﬂi"‘L.,;= denote the forecastable components of the k period ahead

growth of output, the log of hours worked and average productivity:
Yis = E/(In(Yis) - In(Y;)]

_ ﬁt.k = El[ln(HHh)]_ln(Ht)]
APLiy = E[ln(APLys) - In(APL,)]

We consider the ability of the benchmark and factor hoarding models to account for (i)
the volatility of ]".Ig, H,,, and A?L.Ig, (1i) the correlations among these variables, and (iii)
the correlation between ¥, and Aln(Y)), In(C,) - In(Y;), In(H,) and A In(APL,).

Results for (i) and (ii) are summarized in Figure 13, while results for (iii) are sum-
marized in Figure 14, Column 1 of each graph depicts point estimates of the relevant
moments calculated from the unconstrained VAR and the models. Column 2 depicts the
difference between the benchmark model and unconstrained VAR estimates along with a
two standard error band around the difference. Column 3 is the same as Column 2 except
that it pertains to the factor hoarding model.

Consider first the models’ ability to account for the standard deviation of ?,,., A, x and
A‘}?L,_;. Figure 13 indicates that the most important failing of the benchmark model in

this regard lies in its inability to generate sufficient variation in the predictable component

*The diagnostic statistics which we discuss can be calculated from these VAR's. A detailed appendix is
available from the authors upon request.
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of output growth. In fact, this model generates virtually ne variation in f’g'g. This is
consistent with our finding that output is close to being a random walk in the benchmark
model. Figure 14 indicates that the factor hoarding model does considerably better at
accounting for the standard deviation of ¥, ;.

Next consider the correlation of ¥;, with H,, and APL,,. From Figure 13 we see that
both models do very well at matching the strong positive correlation between f’,_g and
E’.,; found in the data at long forecast horizons. However, neither model fully accounts
for the magnitude of the correlation found at short horizons { k < 8). Still the factor
hoarding model does better on this dimension than the benchmark model, in that it
predicts a stronger positive correlation at short forecast horizons. Both models do a
reasonably good job of matching the correlations between f’.,; and A?L._, at short forecast
horizons. In large part this ‘success’ reflects the imprecision with which those correlations
are estimated. The performance of both models deteriorates somewhat at longer forecast
horizons, although the factor hoarding model does better than the benchmark model.

Finally, consider the models’ implications for the correlations between l"._g and A In(Y,),
In(Cy) — In{Y}), In(H,) and Aln(APL). Figure 14 indicates that the most important
failings of the benchmark model lie in

1. its inability to account for the strong positive correlation between A In(Y;) and ¥;,

at short forecast horizons, and

2. its inability to generate a positive correlation between Aln{APL;) and f’,_g at all

forecast horizons.

These failures reflect the nature of the propagation mechanisms embedded in the bench-
mark model. Recall that in that model, output initially responds by just over 1% to a
1% shock in technology. Thereafter output is expected to decline to its long-run path.
So other things equal, the model predicts a counterfactually negative correlation between
the current change in output and the expected growth rate of future output relative to
the current level of output. Since average productivity also rises in the impact period of
the shock, the model also generates a counterfactually negative correlation between the
growth rate of average productivity and the expected growth rate of output.

Figure 14 reveals that the factor hoarding model does significantly better at accounting

for these {eatures of the data. Indeed the model fully accounts for the correlations between
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?,,. and Aln(Y;) as well as the correlations between f’..; and Aln{APL;). To see why,
recall that, in the factor hoarding model, output initially rises by 1.08% in response to a
1% technology shock. In the period after the shock output continues to grow, climbing
1.51% above its instia! level. So the initial 1.08% increase is followed by another predictable
0.43% increase. Thereafter, output falls steadily. However, it does not return to the level
it attained in the impact period of the shock until more than 24 quarters have elapsed. So
the initial positive growth rate in output, A In(Y;), is expected to be followed by at least 24
quarters of growth relative to the time t level of output. So here we expect A In{Y;) to be
positively correlated with ;. for a large range of k. Since the impact period response of
average productivity is identical to the output response the model also generates positive
correlations between Aln{APL;) and ¥;,.

We conclude that while there are certainly dimensions along which the factor hoarding
model does not fully account for the diagnostic statistics proposed by Rotemberg and
Woodford it does substantially better than the benchmark model.

5 Conclusion

This paper formulated and estimated an equilibrium business cycle model in which capital
utilization rates vary over the business cycle. We argue that cyclical movements in effective
capital services are substantially more volatile than cyclical movements in the stock of
capital, In addition we argued that variable capital utilization rates are a quantitatively
important source of propagation to business cycle shocks. Because of this feature, our
model is able to account for various features of post war business cycles that are anomalous
from the perspective of existing RBC models.

A virtue of our model, is that it represents a minimal perturbation of the standard RBC
model. This greatly simplifies comparisons with existing work in the literature. However
this simplicity is purchased at the cost of descriptive realism. For example, using data
from the auto industry, Bresnahan and Ramey (1993) argue that of the multiple margins
used by the managers of an automobile assembly plant, varying regular hours by shutting
the plant down for a week is the most important. Second most important is adding or
dropping a shift. We view the model considered in this paper as approximating these

sorts of adjustments. We conjecture that the aggregate capital utilization rate that would
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emerge from explicitly modeling those richer environments would also respond positively
to technology shocks and innovation to government purchases, In this sense we expect
the qualitative features of our model to be quite robust to alternative ways of modeling
variable capital utilization. However the robustness of our quantitative results remains

very much an open issue to be addressed in future research.
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TABLE 1

Model Parameters ¥,
Estimates and Standard Errors®

Benchmark Model | Factor Hoarding Model
Parameter | Estimate Std. Error | Estimate  Std. Error
g 5.1199  (0.057T) | 3.5955 {0.0440)
a 0.6553 (0.0062) 0.6422. (0.0225)
5 00208  (0.0002) | 00208  (0.0003)
-7 0.0031  (0.0018) | 0.0038  (0.0014)
o, 0.0135  (0.0014) | o0.0088 (0.0008)
9/v 0.1763  (0.0024) | 0.1763 (0.0025)
% -1.8753  (0.0366) | 1.7885 (0.0943)
% -0.0013  (0.0002) | -0.0019  (0.0003)
p 09150  (0.0453) | 09456  (0.0349)
o 0.0163  (0.0014) | 00152  (0.0014)
o 0.0088  (0.0012) | 00088  (0.0012)
By 2.51 2.7 ]

* All standard errors shown in this table are based on estimates of Sr computed using
the Bartlett window suggested by Newey and West (1987). The row Br indicates the
bandwidth of the lag window used to estimate St as chosen by the automated procedure
described in the text.




TABLE 2

Tests of the Models®

Moment | U.S. Data Benchmark Factor Hoarding
Model Model
a.]o, 0.437 0.453 0.480
(0.034) (0.005) (0.010)
0.633] [0.225)
g;/o, 2.224 2.224 2.244
(0.079) (0.069) (0.085)
[0.999) [0.858]
or/o, 0.859 0.757 0.795
(0.080) (0.050) (0.059)
[0.183] |0.394]
cr,g/cr,,; 1.221 1.171 1.033
(0.132) {0.032) (0.043)
[0.729] [0.198]

TABLE 3

Propagation and the Volatility of Output”

Model o, (Model) o, (Data) W ox 0y /0,
Benchmark 0.0183 0.0192 0.137 ; 0.0174 1.051
(00018)  (0.0021) [0.712] | (0.0018) (0.014)
Labor Hoarding 0.0157 0.0192 2.951 0.0155 1.011
(0.0012)  (0.0021) ([0.086] | {0.0013) (0.014)
Factor Hoarding 0.0167 0.0192 1.185 | 0.0114 1.467
(0.0015)  (0.0021) [0.276] | (0.0010) (0.031)

*The statistic o, is the standard deviation of HP filtered output. The statistic o, is the
standard deviation of the HP filtered level of technology. Standard errors of the statistics
are in parentheses. W statistics are for tests of the hypothesis o, (Model) = o, {Data).
P-values are in brackets.
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FIGURE 1
MEASURES OF CAFPITAL AND UTILIZATION®

a5

— Official Series
— Model-Based Series

8555 80 65 70 75 80 as

* The thick line is the Federal Reserve’s measure of capacity utilization in the manufac-
turing sector. The thin line is our measure of capital utilization.
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FIGURE 2
CORRELATION OF APL; WITH H,y; (HP FILTER)"
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FIGURE 4
IMPULSE RESPONSE FUNCTION OF QUTPUT"
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FIGURE 5
IMPULSE RESPONSE FUNCTION OF HOURs®
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*The dashed lines represent a 2-standard error band around the impulse response functions
due to parameter uncertainty. :
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FIGURE 6
IMPULSE RESPONSE FUNCTIONS — FACTOR HOARDING MODEL"
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FIGURE 7
IMPULSE RESPONSE FUNCTION OF CONSUMPTION®
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*The dashed lines represent a 2-standard error band around the impulse response functions
due to parameter uncertainty.
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FIGURE 8
IMPULSE RESPONSE FUNCTION OF INVESTMENT®
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FIGURE 9
IMPULSE RESPONSE FUNCTIONS — FACTOR HOARDING MODEL®
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*The dashed lines represent a 2-standard error band around the impulse response functions
due to parameter uncertainty.
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FIGURE 10
AUTOCORRELATIONS OF OUTPUT GROWTH®
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FIGURE 11
AUTOCORRELATIONS Of THE SOLOW RESIDUAL’
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*In the Correlation panels: solid line — model predicted correlations, dashed line — sample
correlations. In the Difference panels the dashed lines represent a 2-standard error band
around the difference.
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FIGURE 12
THE SPECTRUM OF OUTPUT GROWTH®
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*The solid line represents the spectrum of output growth, while the dashed line represents
the spectrum of technology shocks. The spectrum for U.S. data was computed using the
RATS 4.0 example program SPECTRUM.SRC.
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FIGURE 13
MOMENTS OF PREDICTED GROWTHE IN QUTPUT, HOURS AND PRODUCTIVITY®
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FIGURE 14

CORRELATIONS OF PREDICTED GROWTH IN OUTPUT WITH MACRO TIME SERIES®
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Appendix

A.1 A Note on Steady State Conditions in the Factor Hoarding Model

In this section we show that the parameter ¢ is restricted by the nonstochastic steady state
conditions {rom the factor hoarding model, Furthermore, since the linearized model does
not depend on us being able to separately identify the values of § and the nonstochastic
steady state value of capital utilization, denoted U, we only estimate the nonstochastic
steady state value of depreciation, § = §U?. Take the planner’s Euler equations for
utilization and the next period’s capital stock. These are, respectively,

(1-a)ft = 407K, (A1)
cl o= BECT) [(1 - a):?“ +(- 6,+1)] . (A:2)
t+1

Given that & = 6U?, it follows that the nonstochastic steady state value of 6, which we
denote & is equal to §U*, where U is the nonstochastic steady state value of U;. Rewrite
(A.2) as

1= ﬂE,g—‘x'“ Yin X

X, Cont [(1 ~ % K )?i l)] : (A.3)

Denote the nonstochastic steady state value of ¥, /X, and K,/X,_, as y and k respectively.
Then, in the nonstochastic steady state (A.2) is given by

+ (1 = 6141)

1=8[(1- )} + (1= 8 exp(-)] . (A4)
This can be solved for the output-capital ratio

y_ 8- (1 -8 exp(—)
k l1-a ’

(A5)

Notice that (A.1) can be rearranged as {1 — a)Y;/K, = ¢6U?. This implies that in the
nonstochastic steady state

a- a)%exp('r) = g6U* = 3. (A.6)
Substituting (A.5) into (A.6) and solving for ¢ we have
b= —ﬁ-le"psh) L I (A.7)

Therefore, given values of g, v and § the parameter ¢ need not be treated as a free
parameter, We estimate § by matching its logarithm to the mean of the logarithm of our
official depreciation series. This implies a value of ¢. The reader may refer to Burnside
(1993} to see that in order to compute the coefficients in the linearized model we never
require specific values of § and U.
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A.3 Measuring Capital, Depreciation, Utilization, Effort and Technology

In this section we describe how we can measure various series given a vector of model
parameters, ¥;. In the next section we describe our scheme for identifying V¥. The
first measure of capital we have is the official series K,. We treat this as an imperfect
measure of the true capital stock. Our first (imperfect) measure of the depreciation rate
isd =1+ (fi - f(.ﬂ)/f{.. Given values of the parameters 5, § and v and a we recursively
generate time series on & and K,. We parameterize the ratio of the initial true capital
stock to the initial official capital stock by defining, 4, = K)/K). Our recursive procedure
exploits the progression

Kl = A;f-{;
& = (1- “)Yll(ﬂ“{:)
Kis = (1-&)Ki+ 14

& = (1-a)Yy/(¢K3)

ér = {1-a)¥r/(¢Kr).

The value of ¢ is determined by the values of &, 8 and ~ according to (19).

The only purpose for which we need a series on utilization is in order to create Figure 1.
For this purpose we chose § = 0.0285, and used the relationship U; = {4,/4) /¢ However,
we do not estimate § so it is not included in our specification of ¥,.

The variable W, is not observable, nor is the level of technology X;. However, as
described in section 3, we can construct measures of these variables using the decision rule
for the log of effort, we, and using the form of the production function. The decision rule
for effort is

Wy = Ko + Kok + Kany + Kyt + Kot (A.8)

where the vector of coefficients x depends on the parameters of the model. Notice that
we = xo+ mln(K) — In{Xi-1)] + ma{ln(H) - In(f)] +
xs(ln{X) — (X1} ~ 7] + xifln(G} — In{X,}].

Here we use the notation In{H;) to refer to true hours worked. In the next section we
adjust our analysis to take into account the effects of measurement error.

An artifact of the model is that x; = —xgs. Therefore, for some constant 7, the decision
rule for effort implies that
ln(W.) =%+ M ln(K.) + 3 hl(H;) + Ay ln(G;) + my ln(Xd, (AQ)

where 7, = &,, #3 = K3, s = K4 and 7y = Ky — Ky
The production function implies that

In{Y;) = (1 - a) In(K;) + (1 — a) In{U,) + aln(H;) + aln(W,} + ein{X)). (A.lp)

Substituting in the expression for In(W;) and noting that In(U) = ¢! [In{é) — In(é)] =
¢~ (In{1 — &) — In(¢) + In(Y;) — In(K.)], and solving for the value of In(X,) we see that

In(X\) = o + 11 In{Y) + 3 In(K) + s In(H}) + ¢4 In(Ge), (A.11)
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where

—[(l —a)¢ "} a— a"‘]/(l + )

L

pr = -[1-a)(1-¢"Y/at+m]/(1+m)
oy = —(1+m)/(1+m)

po = —w/(1+7),

and pq is some constant which depends on ¥,. Given the values of X;, (A.8) can be used
to determine W,.

A.3 The Moment Restrictions Underlying the GMM Estimator

This section describes our method for estimating the parameter vector ¥. We use an
exactly identified GMM (Hansen 1982} estimator as in Christiano and Eichenbaum (1992)
and Burnside, Eichenbaum and Rebelo (1993). In the previous section we described our
method for measuring effort, utilization, capital and the level of technology given a vector
of parameters. In this section we describe moment restrictions which enable us to identify
these parameters.

As in the latter two papers we assume that the measures of hours worked available to us
are measured with error. In our model the true measure of hours is defined as H; = N, f,
the number of workers employed times the fixed shift length. The two measures of hours
we have are Hansen's {1985) hours series based on the household survey, denoted H,, and
a measure of hours based on the establishment survey, denoted H,., We assume that in
logarithms each of these deviates from the true level of hours worked according to inde-
pendent white noise processes, § and §, with standard deviations o; and & respectively.
The primary hours series we use is the household series. In order to obtain an estimate
of the standard deviation of the measurement error in this series we use the following
identifying restriction,

E{a: - %[A In(l’:’.)]= + %A In(H,)A ln(I-Ig)} =0. (A.12)

We fix the parameters § = 1.03"!/%, T = 1369 and ¢ = 60 a3 in Burnside, Eichenbaum
and Rebelo (1993). Furthermore, f is chosen in order to normalize the nonstochastic
steady state value of effort to 1. The remaining parameters to be estimated are ¢, a, &,
v, ou, (9/¥), %0y 41, P, 0. and A;. Measurement error in hours worked forces us to adjust
several of the natural restrictions that would identify these parameters.

The nonstochastic steady state level of employment N is implicitly a function of ¥;.
Therefore, we use the following restriction implied by the model

E[n(H) - (N )] =o. (A.13)
Note that measurement error in hours worked does not change the mean of the log of

hours.
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We assume that the official capital series, while not capturing variations in capital
utilization, leads to the correct depreciation rates on average. l.e. we assume that

E[in() - 1n(3)]‘ =0, (A.14)

even though b # 6.
We use the intertemporal Euler equation

Ce -1y Yin -
E [1 ﬁ(cm)((l a)(1 — ¢ )Km + 1)] =0, (A.15)
In the previous section we derived an expression for the level of technology in terms of
mode] parameters, observables and true hours worked. If we simply substitute measured
household hours into this expression we obtain a measured level of technology, In{(X})
related to the true level of technology according to In(X?) = In(X;) + waéi.
Since ¢, is mean zero we can use the condition

Ev; = E[In(X?) - In(X7,) —4] = 0. (A.16)
Furthermore, we have
E(v)? = E[(w ~ p26)] = 02 + 20302, (A.17)

Since we only identify In{X;) up to a constant, we do not estimate the value of g, the
steady state value of G, relative to X,. Instead, we estimate the value of (g/y) the steady
state share of government expenditure out of output. Thia parameter is identified using
the moment restriction

E[In(G:) - In(¥) - In(g/v)] = 0. | (A.18)

Our measure of In(G;) — ln(Xf) displays a downward trend. Since our model does not
capture this feature, we define g7 = In(G,) — In(X?} — go — 1 t, in order to obtain a mean
zero, trendless process for shocks to government expenditure consistent with our model’
specification. We then impose the following restrictions

Eg; = E[n(G)) - In(X}) —go—gat] = O (A.19)
E(g}t/T) = E[In(Gy) - In(X7) —go — gut]t/T = 0 (A.20)

I

The measurement error in X} implies that gf = g — wa&s. Thus we have the moment
restrictions

E((9? - pgi1) In(gr)] = -pele} (A21)
E[(g7 - pg2-1)"] = (1+0Y)0d0} + ! (A.22)
Finally, since deviations between K; and K, are transitory, we impose the restriction

that the capital-output ratios implied by these two series have the same mean. lLe. we
impose the restriction

E(in(K,/Y;) - n(K,/¥:)] =0. (A.23)
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Equations (A.12) and (A.13)-(A.23) are used to identify the 12 elements of ¥,. These
equations identify the parameters since our measures of technology, X7, and capital X,
both depend on ¥,

As in Christiano and Eichenbaum (1992), we focus on three types of moments as
diagnostics for the performance of our model.

i. the standard deviation of a variable of interest, z,, denoted o,,

il. the standard deviation of one variable, s, relative to that of another variable,
2, denoted o, /0,,

iii. the correlation between s, and z, denoted p,,.

Ignoring means (which are zero for HP filtered data), in order to identify these moments
in our data, we use moment restrictions of the form

E|z} -af] =0
E[s} - (o.ja.)i2l] = o

Elaez -p..a.a.] = 0.

A.4 GMM Estimation Procedure and Diagnostic Tests

To define our joint estimator of ¥, and ¥, consider the following generic representation

of our moment conditions:
E[M(¥)] =0ovi>0 (A.24)

where ¥ is the true value of (W1, W3). Here M, is a vector valued function of dimension
equal to the dimension of ¥°. Let gr denote the vector valued function

or(¥) = %zf;u.m (A.25)

Under the conditions discussed in Hansen (1982), ¥° can be consistently estimated by
choosing the value of ¥, say ¥y, that minimizes the quadratic form

Jr = Tgr(¥)'Sr'¢r(¥) (A.26)

where Sr is a consistent estimate of 2x times the spectral density matrix of M;(¥?) at
frequency zero. For the sake of convenience, we refer to Sy as ‘the weighting matrix’.
A consistent estimator of the variance-covariance matrix of ¥y is given by

1 -1
Var(¥r) = = [Drs7 Dy (A.27)
where Dy = dgr(¥r)/9¥'.
Suppose we wish to assess the empirical plausibility of the model’s implications for

a ¢ X 1 subset of ¥; which we denote by w. Let the value of w implied by the model,
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given the structural parameters ¥, be denoted by TI(¥). Here I denotes the (nonlinear)
mapping between the model’s structural parameters and the relevant population moments.
The value of w obtained directly from the data (without imposing the restrictions of the
model) is given by I'¥, where T is a conformable matrix of zeros and ones that selects the
vector w from ¥;. Many of the hypotheses we are interested in investigating are of the

form
Ho: F(¥°) =I(¥°)-T¥° =0 (A.28)

Christiano and Eichenbaum (1992) show that
Var(F(¥r)] = [F'(¥r)][Var(¥7)][F'(¥7)] (A.29)
and that the test statistic
Wr = F(¥r)'Var[F(¥7)] 7'(F(¥7)] (A-30)

is asymptotically distributed as a x* random variable with g degrees of freedom.

In exactly identified systems, ¥y is invariant to the way the weighting matrix Sy is
estimated. However the covariance matrix of ¥y and the Wy statistic in (A.30) do depend
on Sy. We report results based on Andrews’ (1991} modification of the estimator suggested
by Newey and West (1987). We treat this estimator as a benchmark because the results
in Burnside and Eichenbaum (1994) suggest that it has attractive small sample properties
relative to other widely used alternatives,® Our estimator is of the form:

T T-1 J ~
Sr=1_3 ’_=§‘1) k(}:)‘l’:‘ (A.31)

where d is the dimension of ¥, T is the sample size,

5. - { T Tris Mo(¥r)Mij(¥r)'  forj 20 (A.32)

FE TSR M (%)M, (¥7)  for j <O

and
ko) = {3 Cherwie (r)

Here (T/T — d) is a small sample degrees of freedom adjustment suggested by Andrews
(1991), and By is ascalar that determines the bandwidth of the lag window, k(-). Applying
Andrews’ (1991) automatic bandwidth selection procedure to our problem yields a value
of By equal to 2.77. ‘

¥ For a more complete discussion of alternative estimators for Sy eee Burnside and Eichenbaum (1994)
or Christiano and den Haan (1993).
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