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1. Introduction

An important characteristic concerning the innovation of a new product is that the

initial research breakthrough is just a first step: aflr that breakthrough, the new technology

can be further developed, improved and adapted to market conditions. At what point of

this development stage does a firm adopt the new technology? For a monopoly, the trade-

offs are clear: the longer it develops the innovation, the better the quality of the eventual

product and the higher the subsequent flow profits but, of course, the more delayed the
commencement of such returns.1 In an oligopoly, how long any one firm waits to adopt

the new technology will also be determined by the adoption decisions of other firms. The

question.of interest is: will competition lead to stagnered innovations as early adopters

market lower-quality products and later adopters wait to develop the technology further and
then market higher-quality products?

In this paper we model the strategic behaviour of firms in the development stage as
a process of vertical differentiation. Other papers that have examined the adoption of a new

technology include Reinganum (1981), Fudenberg and Tirole (1985), Quirrnbach (1986)
and Katz and Shapiro (1987). The key difference between the currentpaper and that
literature is that we model continuing innovations and improvements whereas in those

papers the adoption of a newly discovered technology is almost always analyzed under the

assumption that at the time of discovery, it is already in a form that can be marketed and

undergoes no technical or economic modification afterwards. This difference in modelling

motivates the following two questions.

If there is no room for differentiation after the first introduction, the crucial aspect

of R&D activity becomes the to be first in the discovery and introduction of a new

product. As Fudenberg and Tirole (1985) showed, in such a model, to preempt the entry
of other firms becomes the dominant feature of the development phase. Firms dissipate all

intra-marginal rents which go to the first adopter, because any such profits to the first
mover prompts a preemptive adoption by the others. Indeed endogeneous diffusion in
adoption times emerges only if firms are able to precommit to their adoption decisions. The

first objective of this paper is to examine the question: are staggered innovations likely

when finns can improve a technology by waiting or does preemption remain the dominant

feature of the adoption stage?

A second objective is to examine the "incumbency inertia" hypothesis: that a firm
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already in the market, or more generally the firm earning the highest flow profits under the

old technology, will be less likely to adopt a new technology.2 The intuition underying this

hypothesis is simply that such a firm has the most to lose by way of cannibalization of its

existing product and hence requires the incremental benefit of a new technology to be the

highest before it switches. Note that if preemption is the dominant incentive of all firms
then this issue cannot be meaningfully analyzed.

The model we consider is motivated directly by the adoption models of Reinganum

(1981) and Fudenberg and Tirole (1985) and somewhat more indirectly by vertical
differentiation models (for example, Shaked and Sutton (1982)). In our analysis we
consider a duopoly. An idea or a new technology arrives exogenously into an industry, it

is commonly available, and it can be improved by the two firms.3 At any point of this

development stage a firm can incorporate the currently available technology into a product

and market it. The main conclusions of this model are:

Maturation and Rent Escalation There are two types of equilibria in the game. The first is

the classic race outcome- a preemption equilibrium with rent equalization and dissipation.

A second type of equilibrium appears with different return functions and other primitives.

Here the unique4 subgame perfect equilibrium induces staggered innovations: one firm, the

leader, enters first with a low quality product and earns temporary monopoly rents, while

the other continues to develop the technology and eventually markets a high quality
product. We call this a maturation equilibrium. Interestingly, in such an equilibrium
there is rent escalatiorr a later entry yields a higher lifetime profit (and there is no rent
dissipation). In a parametric example we show that one underlying determinant of the type

of equlibrium is consumer diversity: in this example, maturation equlibria exist if and only
if there is sufficient diversity in preferences.

incumbent Adopts First A natural conjecture for the staggered equilibrium is that an
incumbent will innovate later. We argue that this conjecture overlooks a subtle signalling

problem that multiple equilibria generate. Given rent escalation, each firm prefers the
equilibrium in which it is the later adopter. However, precisely because of the
cannibalization effect, the incumbent would pick a later entry date ifit ended up as the low

quality finn. This fact is common knowledge and gives the non incumbent the ability to

make a credible commitment to be the high quality firm, by simply passing up its own best

opportunity to be the first entrant

The adoption and differentiation model is presented in Section 2 while Section 3
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contains the discussion of preemption and maturation equilibria. The examination of
incumbent incentives is in Section 4. Section 5 contains a brief discussion of extensions

and further bibliography while Section 6 concludes.

2. The Innovation and Product Differtntiptipn Problem

Consider a duopolistic market with finns indexed by a genericindex, i = 1,2. j will
index the 'other" firm. Suppose the payoff relevant attributes of finn i's product can be

represented by a single-dimensional variable: x(t) is the level of technology or quality that
is available to firm i at instant t. The quality level can be improved at a (common) constant

rate, which we normalize to one. One may either imagine that this basicidea grows in a

publicly accessible environment like a government or university laboratory or that it grows

on account of the private activities of individual finns.5 A firm's innovative activity is

completely described by the decision on when to incorporate current quality and market its

product. Each firm is allowed a single adoption choice.6 Hence, in the sequel we shall
sometimes refer to the latter, i.e. the adoption decision, as an innovation. The flow profits

of a monopoly selling a product with attribute x will be denoted R(x). If firm i has
introduced a product with attribute x while j introduces a product at Xj. then flow profits to

the duopolists from that point on depend on (Xi, Xj) and (Xj. x) respectively. These profits
could be thought of, for example, as the returns to (one-shot) Cournot or Bertrand
competition in the duopoly market.

We are aware that the model is simple but we believe that it is rich enough to

examine our central intuition that quality competition shapes the nature of product
development. In future work we would like to examine several generalizations; for
instance, the possibility that the growth rate of quality is endogeneously determined by the
finns. Of course, the models that have been studied in the standard homogeneous good
framework are similarly simple and this allows a comparison of conclusions.

2.1 Assumptions

The principal simplifying assumption that we make is that duopoly returns depend

only on the relative qualities, i.e.

(Al) Firm i's duopol profits are given by a function, r(x - Xj), i = 1,2, i

This assumption facilitates the analysis considerably: in Section 5 we discuss the
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consequences of relaxing it. From hereon we place a symmetry restriction ott the duopoly

profits, i.e. r = rj = r, say. This assumption is relaxed in Section 4. Also denote U =x -

Xj, the generic difference in qualities. The natural monotonicity assumptions are

(A2) i) Monopoly returns, R(x) are increasing in x.
ii) In a duopoly, r(U) is increasing in 0, whenever 0 � 0.

Whether a quality laggard makes more or less as B increases, depends on the
market's preferences over diversity. We make no assumptions hence on r(B), for 0 < 0.

Further, consider the following quasi-concaviw and non-negativity assumptions:

(A3) 1) e' [aR(x) + b] is strictly quasi-concave on R, for a,b e P.4. and attains a

maximum.

ii) ear(e) is strictly quasi-concave on P÷ and attains a maximum.

(A4) r and R are non-negative and differentiable.

To complete the specification of the model, we have to specify what happens if both

firms attempt to introduce a product at the same time. As is generally acknowledged, in

continuous-time modelling there is no completely satisfactory way to treat simultaneous

moves. We will make the following simplifying assumption:

(A5) If both i and] attempt to enter at any period t, then only one of them succeeds in
doing so. The probability of firm 1 entering isp E (0,1).

Remark: Simultaneous adoption is hence ruled out although adoption at any 'C > t 5

feasible. This assumption can be interpreted in at least two ways:

1) As a rationing rule induced by capacity or institutional constraints. For instance, if

there is a common "adoption technology", like advertising, with limited capacity, the firm

with first access to this technology is the one that successfully adopts. It can also be
interpreted as an institutional feature such as a patent office which randbmly selects one of
the two adoption attempts.

ii) As a consequence of the belief that the decision to adopt cannot be carried out
instantaneously. Suppose that if the decision to adopt is taken at time t, the adoption itself

occurs at t+s, where s is an atomless random variable. (In this case the payoffs should be

interpreted in an expected sense).7 Here p should be interpreted as the probability of the

event "firm l's actual adoption occurs before that of firm 2."8

2.2 An Example
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The strong assumption on returns is (Al). We present an example of Bertrand
competition, adapted from the vertical differentiation model of Shaked and Sutton (1982)

(as reported in Eaton-Lipsey (1989)) that satisfies (Al) (and additionally (A2) -(A4)).

Consumers have preferences on quality, with this preference index ranging over
[a,b], b > 2a > 0. Each consumer has y units of a numeraire good and uses it to buy a

single unit from either producer. The m-th consumer's utility from buying a good of
vintage x is mx + y - P1 • = 1,2, mc [a,b]. Letting, without loss of generality, xl > x
(and writing 6 = x - x2 from now on), prices P1 yield market shares of [a,rnl and [rn,b]

where the high quality customers buy from firm 1 and the market divides at rn =

(p1 > P2). Straightforward computation yields prices (and profits) in Bertrand equilibrium
as

p1(O) = 2ba8 p2(6) = b-32a0 (I)

r(9) =
(2 ) 0, r(-O) =

( a)
0, 0 �O (2)

Symmetry gives the returns for 0 c 0. In this case it is easy to see that bQth ri and

r are increasing in 8, i.e. the more diverse the products the greater the profits for both the

technological or quality leader as weU as the laggard. This is of course the well-understood

phenomenon of differentation lessening the severity of Bertrand price competition. Clearly
(Al) - (A4) are satisfied in this example. Incidentally, it is also straightforward to show

that the monopoly profits for a product of vintage x is

b2
(3)

It depends only on the upper bound of consumer preference on quality, since a
monopolist only services a fraction of the market optimally, and the choice is which of the

high quality seeking customers to serve.9

2.3 Strateaies and Equilibrium

A pure strategy of firm i, aj, specifies at any time t a decision on "adopt" or "do not

adopt", if the firm has not adopted already. This decision is conditioned on the transpired

history ht, which is the knowledge: has j adopted at any s c t and if yes, when. A strategy
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pair a = (a,a) associates with every history an outcome, a pair of adoption dates (t,t).'°

For instance if t � t1 � t, then writing 0 =t -
4 (and hence 0<0), we get

W(h;a) = e4tt) ((1 - e88)R(tl) + eBOr(0)}

W(h;a) = e(t1_t) (e5Or(0))

The lifetime returns associated with other configuration of adoption times are easily

computed. The equilibrium concept is that of subgaxne perfection: a strategy pair a is an

equilibrium if W1(h;a*) � for all other strategies a and all histories h1.

3. Pre-emntion and Maturation Equilibria

Either of two equilibria can result in our product innovation model. The first, the

classical Dre-emotion equilibrium (Fudenberg-Tirole 1985, Tirole 1989), arises from an

inability by firms to sufficiently differentiate theft products because of factors as market

lock-in by a first enD-ant, a slow imitation technology or insufficient diversity of consumer

preferences. Under alternative specifications of such primitives, a different, maturation.

equilibrium obtains: competition results in an even flow of innovations. A potential

technological leader optimally waits to develop a differentiated product. The other firm

enters earlier to exploit a temporary monopoly position. None of the rent associated with

this monopoly position is dissipated. However, an early entrant makes strictly less in

equilibrium than the eventual quality leader. An early entrant cannot, in equilibrium, make

strictly more (as Fudenberg and Tirole (1985) pointed out) but, given that time (or
technology or quality development) is unidirectional, there is no inconsistency in its making

strictly less: a first entrant cannot after all unilaterally decide to be the follower.

3.1 The Follower's Problem

Consider a continuation subgame after firm i adopts the technology at x. is
problem is to pick an optimal state x + e at which to follow. In other words, j solves11

Max e-69r(O) (4)
0�0

By (A3) ii), r50r(0) is single peaked on R+. Let this peak occur at 0* > 0. It
follows that firm j would follow at x + 0*. Hence, in any best response, all strategies
prescribe: if the other firm has already moved, then move if and only if 0* has elapsed
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since the competitor's adoption. Let F(x) denote the lifetime returns

F(x) = e6X ( e$*r(O*) e6'0 (5)

$, the optimal returns to a follower's differentiation activities, is the direct index of

differentiation possibilities in the market. $is determined by underlying factors as diversity

in consumer preferences, imitation or learning possibilities and market lock in.

3.2 The Leader's Problem

Following Fudenberg-Tirole (1985), we develop now the returns to a potential
first enrant, or leader. Let L(x) denote the returns to a finn i, evaluated at date 0, if it
innovates at quality x, anticipating an optimal follow by jat x + 0.

L(x) = e8'{(l - e38)R(x) + r&er(O)}a e$x(X1R(x) + x2) (6)

Any potential leader evaluates returns from two sources: X1R(x), the monopoly

phase and X2, the phase in which it is a technological laggard in a duopoly. The effect of
market differentiation possibilities on Xk, k = 1,2 are more ambiguous than the effect on .

By (A3) 1) L(x) is single-peaked. Further, note that = ?R(x) + X2 which is

an increasing function of x. Hence, L and F have at most one intersection and suppose

momentarily that there is in fact such an intersection. Denote this x' and let xM refer to

aigmax L. The two types of equilibria correspond to the two possibilities: a) x' c xM and

b) x1 � xM.

(Figs. 1 and 2)

3.3 Equilibria:

Proposition 1 a) Preemption Suppose that xt <M (figure 1). There is a unique

pure strategy equilibrium to the development game. The associated outcome is:

Both firms uy to simultaneously adopt at 1. Firm I (resp.2) adopts with
probability p (resp. I-p) and the rernainingfinn adopts at1 + 9.

The strategies that support this equilibrium are the following:firms I andj try to innovate at

all dates after x' jf neither has innovated before that date. If £ has innovated already, j

innovates if 9 has elapsed since i's innovation.

b) Maturation Suppose that I �xM (figure 2). There is a unique pure strategy

equilibrium. The associated equilibrium outcome is:

firm i unilaterally adopts at# and jfollows at# + 9.
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The strategies that support this equlibrium are the following: firm i tries to innovate at all
dates after # while j tries to innovate at all dates after x1, if neither has innovated till that
date. If i has innovated already, jinnovates if 9* has elapsed since i's innovation. There

are two asymmetric equilibria for 1=12.

Proof: Since the proof of a) is contained in that of b), we start with the latter. We first
show that the strategies outlined form a subganie perfect equilibrium. Given j's strategy, i
solves the following problem at any x in [O,xT): (if it has not adopted already)

Max e(zx) [X1R(z) + X2]
x

Clearly the solution is xM if x � xM and x if x > xM. So if j does not adopt till x1,
is best response is to adopt at any date after xM, if it has not adopted yet. Moreover for all
x in [xM,xl), L(x) c F(x) and hence j has no incentive to preempt i's adoption. It is further
clear that if the game was ever at x � xT, a dominant strategy for either firm is to move

immediately (recall (A5): if both try to move, nature selects the actual entrant). So the
exhibited strategies in fact form a subgame perfect equilibrium.

Now consider any pure strategy equilibrium. Clearly, forany x C xM, waiting and
adopting at any later x c xM dominates an immediate adoption. We now show that it
cannot be the case that there is Xj <Xj, xi, Xj C [xM, xT), with i adopting at x and j
adopting at xj (in each case if the other has not adopted till that point). For somexi CXJ.
F(x) > L(x), x (xj, Xj). So if i anticipates following at Xj, waiting to follow at Xj is

more profitable than adopting at any xc (xj,x). But then, if firm us going to wait tillxj,
it is better forj to adopt immediately at any xc (xl,xj), rather than wait till Xj. So in factj
moves at x if neither has moved till that point. In turn, there is xj <x2 cxj such that for
any x (x2, x1), is preferred strategy is to wait and consequently j's is to immediately
lead. It is clear that a finite iteration of this logic in fact works backto xj.12 But then, i
should not be moving at x. In other words, there can only be one leader in equilibrium.
Finally consider x � x1. In this region adopting if neither has adopted before is a dominant

strateEy. I-fence equilibrium strategies are necessarily the given strategies.

The exhibited strategies are the only equilibrium strategies in case a) as well.
Clearly, for any x c xl, waiting and adopting at any later x' < x1 dominates an immediate

adoption. Consider any history starting at x > x1. It cannot be the case that only one of the

two players adopts at x. In fact, since the profit from a joint move is at this point strictly
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larger than F(x), it is better for the other player to attempt to adopt as well. On the other
hand it cannot be the case that the outcome adoption time is some x > x, with, say firm

being one of the adopters, (and possibly the only one). This cannot be an equilibrium since

firm i is better off being the sole adopter at some x" cx'. .13

Remark I From the arguments above it is clear that the "no simultaneous move"
assumption. (A5), can be replaced by a requirement that there are equilibria in subgarnes
starting at x' which result in payoffs no more than L(x1) =F(x1).

Remark 2 Consider the adoption of a (homogeneous) technology. If the fixed cost of
adoption is unchanged over time (we have in fact normalized it to zero), then 8* = 0 and

hence x' = 0. Consequently the only possibility is that of preemption. In Shaked-Sutton

(1982), and other vertical differentiation models, there exist asymmetric equilibria (like our

maturation possibility) but there is no dynamic story for their emergence.

We shall say (see Tirole (1989)) that rents are (partially) dissipated if the first
adopter does jj realize the returns that it would get if it had proprietary rights on first

adoption , i.e. if in an equilibrium the first adoption is x xM.

Corollary 2 In a pre-emption equilibrium, rents are equalized and this is achieved

through a dissipation of rent. In a maturation equilibrium afollower makes strictly higher
profits, although a leader realises the full monopoly rent.

3.4 An Illustrative Example

We compute equilibria in the Shaked and Sutton model to illustrate how consumer

diversity determines whether the equilibrium is of the preemption or maturation type.

Recall that in this model (Example 2.1) consumer preference for quality (which scales the

utility function) is uniformly distributed on [a,b], 0 < a c b. We define an increase in
diversity as a decrease in a, keeping b fixed (since a change in b has an additional scale
effect as well). It can be shown that

L(x)= e.6X{U
- et)b2 x + (&e)dC -2a)2} e8(?ix +

F(x) = e.ôX(Se)1
Cb3 )2

e6' (a) (7)

It is easy to show that we have a maturation (resp. preemption) equilibrium if and
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only if .c (resp. > )where is a positive constant independent of the primitives

of the model.'4 It is also clear from (7) that as diversity increases, a potential leader would

like to innovate earlier, i.e. xM(a) is an increasing function of a. This follows directly from

the fact that not adopting has a higher waiting cost, the postponement of greater duopoly

returns X2( a).

4. Entrants Versus Incumbents

In this section we examine the incumbency inertia hypothesis: incumbent firms are

less likely to be innovators in new product development.'5 There are at least two reasons

why we investigate this hypothesis in some detail. Incumbency, as we define it here, is

one way to incorporate asymmetry between firms in an industry and it is a good proxy in

many cases to differences in size or experience. The question that interests us is whether or

not such asymmetries can identify uniquely the order of adoption (and of course whether

the order is that suggested by the hypothesis). Further although this hypothesis has been

widely investigated in many different contexts and models (for example, see Arrow (1962),

Gilbert and Newbery (1982), Reinganum (1983) as also the excellent summary in Tirole

(1989)), a number of these investigations were in essentially static models.

The main result of this section shows that although incumbents prefer postponing

innovations, in equilibrium they may be unable to do so precisely because they are known

to have this preference. An incumbent is a firm which is in the relevant market at period 0
and making some instantaneous profits it > o. These profits disappear upon the adoption
of the new technology. The size of the current profits it is then a measure of incumbent

inertia. Our principal finding (Proposition 3) is that there is a critical level of profits, say

above which the non-incumbent (entrant) does adopt first (and makes lower lifetime
A

profits). However, for it <it a forward inducuon argument suggests that in fact an
incumbent is the first to adopt . The intuition for this result is the following: suppose that
the firms are unaware which of two equilibria (incumbent high-quality or entrant high-

quality) is being played. However it is common knowledge that if the entrant were to be
the low-quality firm it would only develop the product till date T (whereas the incumbent, if

it were low-quality, on account of cannibalization likes to wait till a later date). If date T

passes and there is no new product on the market, forward induction logic suggests that the

only reasonable conclusion that the incumbent can reach is that the potential entrant plans

on being the high-quality (second-adopter) firm in the industry. Hence the incumbent
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maximizes its returns by adopting earlier and making lower profits. The implication of

forward induction that we invoke is the one suggested by van Damme (1987, 1989) (see

also Fudenberg and Tirole (1991), pp. 464, Definition 11.8, which we report): "A

solution concept S is consistent with forward induction in the class of generic two-person

extensive forms if there is no equilibrium in S such that some player i, by deviating at a

node along the equilibrium path, can ensure (with probability one) that a proper subgame G

is reached where (according to 5) all solutions but one give the player strictly less than the

equilibrium, and where exactly one solution gives the player strictly more."

From hereon, let firm 1 refer to the incumbent and firm 2 to the entrant. Then,
between period 0 and the first adoption x, firm 1 makes a flow profit Sit (and firm 2, the

entrant, makes nothing). So,
Fj(x) = (I - eX)it + F(x) (8)

Ll(x) = (1 - e)ir + L(x)

Of course, F2 =F and L2 = L.

(Fig. 3)

Proposition 3 Suppose the 3ynunetric game had a maturation equilibrium. Then

there is a a unique forward induction proof equilibrium anda critical level of incwnbent
A

profit ir > 0 such that:

i) for Jr �ir, the outcome is: incumbentadopts at4 and the entrant follows at41 + e*.

ii) for ir> , the equilibrium outcome is: entrant adopts at4' and the incumbent follows at

If the symmetric game had a pre-ernption equilibrium, then so does the asymmetric

game with an outcome:

probabilistic move byfirm i atxt,jfollows atyf +

Proof: It is immediate, from (8), that x, the intersection of F1 and L1, are identical

for both firms. Let us maintain the notation for this common intersection point and call it

x'. Further, precisely because adopting a new product means foregoing current profits it,

if firm 1 Jj to lead it would lead later than firm 2 in a similar situation, i.e. 44 >

Note that in terms of our earlier notation, 44= M and we use the notation interchangeably.

It should be easy to see that any increase in it increases 44 (i.e. increases incumbency

inertia) and leaves x' and xM unchanged.

Suppose now that the symmethc game had a maturation equilibrium. i.e. that x1>
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M We have two cases to consider:

Case 1: L(xM) � F( xr): By arguments identical to those in Proposition 1 one can show

that there are only two subgame perfect equilibria. The first has the entrant moving at all x

� 4, if the other firm has not moved yet while the incumbent (firm 1) only adopts at x �

x1 if neither has adopted till such point. Of course, as a follower each follows after the
optimal gap of O. Beyond x' both firms will try to adopt if neither has adopted till that

point. The second equilibria has the roles reversed with firm 1 (the incumbent) leading at

and firm 2 only adopting (together with firm 1) after xt. Since L(4') � F(xt'), the

entrant would rather follow at 4, than lead at 4. In fact because of this preference, the

forward induction implication of van Damme (1987, 1989) (reported above) will now be

used to show that only the second of the two equilibria survives that refinement.

Suppose in fact that the first equilibrium is consistent with the refinement. Suppose

further that the subgame we are in is that starting at 4. Firm 2 can now deviate from the

proposed strategy by not adopting at 4' (and adopting instead at I e (4', xt')). This

deviation by finn 2 takes us into a subgamewith two equilibria. In the first, firm 2 adopts

immediately and receives as payoff L(x') while in the second it waits for firm 1 to adopt at

x and gets F(4'). But L(x') c L(4') c F(4') contradicting the above necessary

condition for forward induction. Note that firm 1 cannot credibly signal before 2's
adoption date precisely because the cannibalization factor means it is strictly better off not

innovating early.

Case 2: L(xM) > F( ) It is not difficult to see that there are two subgame perfect

equilibria in this case. The first is identical to the first equilibrium in case 1 with the entrant

leading at x"t. Define x" through L(x*) = F( ). The second equilibrium is: firm 2

adopts for all x in [xM,x*] or x � xT, if neither has adopted before, whereas firm 1 adopts

for all x � An argument identical to that for case 1 but applied now to the region

[xk,xr) shows that only the second equilibrium is consistent with forward induction. Of

course, the outcome in either case is: the entrant adopts at xM and the incumbent follows at

+ 0*.

Since is increasing (and hence F(xr ) is decreasing) in incumbent profit
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A
there is a cntical profit level it which divides the two cases above and below which the

entrant can credibly signal his unwillingness to lead and force the incumbent, despite the
A

cannibalization effect, into a leadership position. For it � it, the cannibalization effect

dominates. Finally note that if the syrnmeuic game had a preemption equilibrium, i.e. if xt

<AM, then xt c xr and hence the only equilibrium is one in which both firms try to adopt

after x'.

An alternative notion of incumbency advantage can also be defined. We will call

this indirect incumbency and we will now discuss briefly its consequences. An indirect

incumbent is a finn which may not be in the precise market under consideration but has

better information about it, perhaps by virtue of selling similar products. As an index of

indirect Incumbency advantage we shall maintain that the incumbent makes higher profits:

an incumbent makes m1R, mj � 1, as a monopolist, whereas an entrant only makes R (as

before) and it makes m2r as a duopolist, m � 1, whereas an entrant only makes r (as
before). Denote m = ml/m2. We show (Proposition 4) that for aiiy. m> 1, the unique

equilibrium is one in which the incumbent necessarily adopts first. The reasoning is as
follows: monopoly rents are higher for the indirect incumbent and consequently the date at

which it prefers to adopt rather than be a follower is earlier for such a firm. A backward

induction argument then establishes the result.16 We have

L1(x) = e'((l - e88)miR(x) + m2e60*r(_O)} (9)

F(x) = m2F(x)

For expositiortal purposes, in this sub-section we assume r(-6) = 0. The reader

can check that flQn of the results are predicated on this; it merely makes the presentation a

lot clearer since in this case Li(x) = miL(x) and consequently xr = We maintain

notation and call this common maximum xM. Of course, L2 = L, F2 = F. Clearly, starting

from a maturation equilibrium in the symmetric game, we have figure 4.

(Fig. 4)

Proposition 4 Suppose that m 2 1. Suppose also that the symmetric game has a
A

maturation equilibrium. Then, there is some critical incumbency advantage m s.t.

i) for m ci, tile unique equilibrium has incwnbent adopting at xM, the entrant atxM

+ r. No rent is dissipated but the entrant makes strictly more in equilibrium.

ii) for m � art, the unique equilibrium has the same outcome as above, but the

14



incumbency advantage is sufficiently big to overwhelm the first mover disadvantage. The
incumbent makes more.

Finally, if the symmetric equilibrium is a pre-emption equilibrium, then so is the
asymmetric with the outcome:

incumbent adopts ati and entrant follows aix1 +.

Proof: See Appendix 2. .17

Remark Propositions 3 and 4 illustrate the usefulness of a dynamic formulation of a
vertical differentiation problem. In standard formulations as Prescott-Visscher (1977) or

Shaked-Sutton (1982) (see also the survey of such models in Eaton-Lipsey (1989)), quality

choices are essentially made in a static model: they are chosen in stage one prior to price

competition in stage two. Consequently neither the forward nor backward iAduction
arguments made above can be applied. Even in asymmetric versions of such games
typically both of the outcomes contained in the maturation possibility remain equilibrium

outcomes. By contrast we have shown that some kinds of asymmetry, no matter how

small, can uniquely identify particular equilibrium outcomes.

5. Extensions and Other Research

The principal assumption which facilitated the analysis is (Al), that duopoly returns

depend only on relative qualities. Dropping this assumption complicates the analysis but,
in a qualitative sense, leaves the main intuition and results unchanged. Note that ifduopoly
returns depend on the quality levels of both products, then the optimal amount of product

differentiation engaged in by a follower will depend on the level of the rt innovation.
Denote this dependence 0(x). The principal complication arises from not knowing, in

general, qualitative features of this function.

Yet, in two senses, the current analysis generalizes. First, it is clear that the critical

properties driving all of our results are that the follower and leader payoffs, F and L, are,

respectively, decreasing and single-peaked. These properties are consistent with duopoly
profits that depend on the quality levels of both products, under appropriate restrictions.
Second, even if F and L do not inherit these properties, there may be several equilibria but

it is still the case that all of them are of the maturation or pre-emption type. The gencral
analysis for this class of games may be found in Dutta and Rustichini (1993).

The controversial element of our formulation is our simplification that firms do all
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of the development before adoption and adopt only once. We can allow limited"learning
by doing", i.e. we can let a product in the market continue to be exogeneously improved.
This generalization can be straightforwardly incorporated into our formulationprovided the
rate of improvement prior to an introduction (in the laboratory) isgreater than the rate of
improvement after the introduction (in the market).

A second generalization is more difficult and that relates to repeat innovations.
Repeat innovations are an important stylised fact of the innovativeprocess. Indeed, this
issue has been discussed in a number of recent papers; see Grossman and 1-Ielpman
(l991a, 1991b), Aghion and Howiti (1992) and Segerstrom, Anant and Dinopolos (1991).
These papers, although they provide valuable insight into the innovation process, share a
critical common feature with the Reinganum (1981), Fudenberg and Tirole (1985),
Quinnbach (1986) and Katz and Shapiro (1987) papers that we have tried to innovateon in
this current work. This common feature is that all inventionscome "ready-made' and do
not undergo any further improvements; in the repeat innovations papers there are, of
course, many such inventions. Hence, whenever a discovery is made it is immediately
adopted. Our central concern in this paper has been with inventions that can be further
improved and our interest is in the question of how much of improvements are actually
made.

It would clearly be interesting to put the waiting and improving considerations into
a repeated framework, as well. One aspect of this problem has been modelled in Dutta-
Rustichini (1990a), although we are far from a good understanding of the overallprocess.

We have already discussed the preemption and rent equalization result ofFudenberg
and Tirole (1985).' Reinganum (1981) showed that, given precommitment possibilities,
there would be a diffusion of adoption times if the fixed costs of adoption decline over
time. These papers, as well as related work by Quirmbach (1986) and Katz andShapiro
(1987) of course consider a homogeneous good model in which the initial technology
cannot be subsequently improved.

8. Conclusions

In this paper we argued that an important determinant of the decision of a firm on

when to adopt a new technology is how much and how quickly future improvement of this
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technology is likely to occur. In an oligopoly an additional, strategic determinant is a

firm's expectations of the timing of other firms' adoption. We studied thesedecisions as a

process of vertical differentiation anddemonstrated equilibria in which firms emerge with

products of different qualities. In such diffusion of a new technology late adopters make

strictly higher profits. We suggested that incumbents may be unable to delay their adoption

decisions since they are known to have a preference for doing so.

As a more general point we believe that it is important to recognize that the same

initial technological breakthrough can be developed in many different directions. In this

manner firms are able to compete around patents. This suggests that the organization of

research as well as its intensity is likely to be determined by the extent of competition in the

post-breakthrough development phase, i.e.that the adoption dynamics of a breakthrough

will influence the conduct of the research phase of R&D. We hope to investigate in the

future issues as the attractiveness of RJVs and optimal patent policies in just such a

framework.
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Apoendix 1

In this appendix we formally construct a sequence of discrete time games whose

equilibrium outcomes have the equilibrium outcomes of our continuous time game as a
limit. For any h > 0 consider a set of discrete time periods, t = h, 2h and define a
family of games G: at each of the time periods either player can choose an action 1mm the

set (0,1) (corresponding to "do not adopt" or "attempt to adopt respectively), if only one
player chooses 1, the adoption is successful whereas if both players choose 1, then player

I adopts with an exogeneously given probability p and player 2 adopts with probability 1-
p. The growth of quality level and the flow payoffs are identical to the symmetric

continuous time model (and assumptions (A2)-(A4) are maintained). For any pair of
adoption dates, t and tj we define the lifetime payoffs as in Section 2.3, with the obvious

restriction that the quality levels have to be on the time-grid

A strategy for player i maps any history, which in our game is summarized by the

knowledge: has j adopted and if yes when, into the action set. Of course, if I has already

adopted, then his action is identically 1 thereafter. To every pair of strategies there is an

associated outcome which specifies the first and second adoption dates (or quality levels).

The payoffs to optimally following, which we denote Fh, is defined in the obvious

way (see (4)). It is easy to see that the optimal lag in the discretised problem, say 8'(h), is

within h of the optimal lag, Ow', in the continuous time model. The payoffs to the first

adopter, conditional on an optimal action of the follower, will be denoted Lh.19 It is also
easy to see that Fh and Lh converge uniformly to F and L, as h —+ 0.

We now show the following convergence result:

Lemma The set of equilibrium outcomes of the games Gh converge to the unique.
preemption or maturation, equilibrium outcome of the continuous time game.

Proof: For simplicity, we consider only the maturation case, x1 > xM. Associated with G

are the analogs, x' (h) and xM(h) (and for small h, xt(h) > xM(h)). Define a strategy pair
for the discrete game as follows: player 1 plays action 1 if neitherplayer has adopted and x

� xM(h). Player 2 plays action 1 if neither player has adopted and x � xt(h). As a
follower, each player adopts with the optimal lag of O'(h).

Since Fh and Lb converge uniformly to F and L, they inherit the properües of the
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latter two functions for small h. In particular, Lh is strictly increasing (resp. decreasing)

for x � xM(h) (resp. x � xM(h)) and Fh is strictly decreasing. From these properties, it is

straightforward to see that the above pair of strategies constitutes a subgame perfect
equilibrium in the game (with associated outcome xM(h), xM(h)+O*(h)). Hence, the set of

equilibrium outcomes in Gh is nonempty.

We now demonstrate the fact that the set of equilibrium outcomes converges to xM,

+ as h — 0. It evidently suffices to show that any sequence of equilibrium first

adoption times converges to xM. Suppose, to the contrary, that we have a sequence of

equilibrium first adoption times converging to x' > M, it is easy to show that,

for small h, at least one player is strictly better off by adopting at the period before the first

adoption date. If x' c M, then, for small h, waiting one period and then adopting
dominates immediate adoption at the candidate first adoption date.

The proof is similar for the preemption case.•

Notice that the construction above is not, specific to the symmetric game. Indeed,

the asymmetric continuous time game can be discretised in an analogous fashion.
Moreover, the lemma on equilibrium outcome convergence holds in this asymmetric game

approximation as well.
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Appendix 2

Proof of Pronosition 4: Suppose the symmetric game has a maturation equilibrium.
Note that on account of the indirect incumbency advantage 4 c 4 and indeed x\ is

decreasing in m. This of course just says that the opportunity cost of the incumbent for
staying out of the market is higher than that of the entrant and this cost is increasing in mt.

Clearly, in any equilibrium, a dominant strategy for firm us to adopt beyond 4 if neither

has adopted before, But then, there is x' <4 such that adoption is a dominated snutegy

for 2 at any x e [xt, 4). x1 is formally defined through

xl = max {z: L(x)F(x) x � (A.1)

In the figure, x' = 0. More generally, there is some left neighborhood of

4, in which firm 2 does better by waiting to follow, than by leading. Given this, firm l's

dominant strategy is to lead on [xt, 4). An identical argument as in Proposition 1 now

leads through an iterated elimination of dominated strategies to: firm 1 adopts at xM (and

any time thereafter). The entrant, firm 2 follows at xM + q. Note, despite the incumbency

advantage, the entrant makes strictly more than the incumbent. As ml, 4 decreases

and hence at some critical advantage , 4 = xM. Clearly, for any m � , the equilibrium

outcome is incumbent moves at xM and makes more than the entrant..

22



Addendum

In this addendum we discuss the case where duopoly profits depend on quality
levels and comment on the precise sense in which the results of the current paper, in which

the profits depend only on the difference in qualities, generalize. The arguments draw from

the enclosed paper that two of us wrote, "A Theory of Stopping Time Games with
Applications to Product Innovations and Asset Sales" (hereafter DR). The reason for not

including this discussion in the text is our belief that too much of a background discussion

of our other paper would be required in order to do a complete job. Hence this exercise,

which is only intended for the referees' eyes.

In DR we considered a general class of stopping games which are defined as

follows: either of two players can, at any instant, "stop" a (possibly multi-dimensional)
stochastic process (X(t): t � 0). If the process is stopped by player i at time t, then his
payoffs are l(XØ) whereas those of playerj are f(X(t)); these functions are only required to

be continuous. Simultaneous moves result in a payoff to player 1 (resp. 2) of pl(X(t) + (1-

p)f(X(t)), (resp. pf(X(t) + (l—p)l(X(t))), p in (0,1).

Within this class of games, first introduced by Bensoussan and Friedman (1977)

and evidently a more general framework than the adoption game studied in this paper, we

studied stopping equilibria. In the adoption game, these are equilibria in the following

strategies: player j only adopts beyond xt, if neither player has adopted before. Player i
solves the following maximization problem at all x � x': max 40t.o) l(x'), xe [x,x1j and

stops at all x at which the solution to the problem is x itself (and also stops beyond xt, in

both cases if j has not adopted already). When the maximum in the above problem is

realized at xt, we have a preemption equilibrium whereas if the maximum is at x cxt we

have a maturation equilibrium (and there may be several of these). We showed
(Propositions 3-4 in DR) that j subgame perfect equilibrium outcomes in a game of timing

(like the adoption game) are generated by stopping equilibria.

It is also worth noting that, in any case, all of our results in the current paper were

driven by the fact that the functions F and L are, respectively, decreasing and single-

peaked. These properties while straightforward to derive in the difference-dependent
profits case, are evidently not limüed to this case. In this sense even our exact results are

not limited to this specification of the duopoly profit function.
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1 For instance, in commenLing on the possibilility that a new technology may be further improved,
Rosenberg (1982, p.108) remarks: "In their earliest stages, innovations are often highly imperfectand
known to be so. ... Ifone anticipates significant improvements, itmay be foolish to undertake the
innovation now - the more so the greaser the size of the financial commitment." Rosenberg also documents
many historical instances of gradual adoption of a new technology. Indeed, theoptimal time to "stop" and
adopt the available technology is the instant at which the marginal benefit to waiting, the expected
improvement in profits, is exactly equal to the discounted cost of profits foregone for another instant
2 For example. Schumpeter (1934)says. "...it is not essential to the matter—though it may happen--that
the new combinations should be carried out by the same people who control the productive or commercial
process which is to be displaced by the new. On the contrary, new combinations are, as a rule, embodied,
as it were, in new firms which generally do not arise out of the old ones but start producing beside them."
This phenomenon was called by Arrow the "replacement effect' (see Tirole (1989) pp 392-396 for a very
instructive discussion and Reinganum (1983) (or a result on incumbency inertia in patent races). In what
follows we have in mind what Tirote calls 'drastic innovation", i.e. one which replaces the old technology.
3 In contrast, in Reinganum (1981) and Fudenberg and Tirote (1985), technology remains unchaged over
time although the cost of adopting it declines monotonically.

The equilibrium is unique up to a permutation in the labelling of the finns.
The growth rate of quality is in general stochastic and firm-specific but in the current model we abstract

from these considerations - see Section 7 for further comments.
6 Repeat innovations, although empirically of great importance, bring up a set of issues tangential to the
main questions of interest in this paper. See, however. Section 5 for a further discussion.

In this case there is an issue as to whether the decision to adopt is reversible once the other firm is
observed to have adopted the new technology. The analogy is exact if the adoption decision is reversible.
8 Note that (AS) is equivalent to an assumption that allows 'public randomization" by the (inns. The
reader can verify that our results will remain unaltered under the alternative assumption that the two firms
can adopt simultaneously and their payoffs, if they do so, are a convex combination of the payoffs to the
leaderand follower.

In Dutta, Lach and Rustichini (1990) we also give an example of Cournot duopolisLs, with imperfectly
substitutable products, whose returns satisfy (A1)-(A4).
10 It is well known that continuous time game strategies in which sudden moves are possible, as in the
innovation game, may fail to have well-defined outcomes associated with them. AU of the anomalies stem
from the fact that "instantaneous" reactions are typically admissible in such games but there is no instant
after. A sufficient condition to have well-defined outcomes is the requirement that all strategies a satisfy
limsupt.>. a(h) � a(h1.) (writing a(hJ=I (resp. 0) for "adopt" (resp. "not adopt")). As Section 3 witl
show, the fact that firm j cannot react instantaneously to firm i's adoption is not a restriction in a best
response. That firm j cannot react instantaneously to i's non-adoption (i.e. that strategies of the form "j
adopts the first instant after t if i has not adopted till that point" are not allowed) is a restriction but
arguably anon-critical one.
11 Note that flow returns were normalized to 6r(6), so the infinite horizon discounted returns are r(6).
12 Else, there is an accumulation point x 'C x1, 51. F(x) =

The remaining two possible configurations arc: L � F always. The equilibrium then is triviaL each
firm attempts to move at every instant. The outcome is probabilistic entry by i at 0 and an optimal follow
by j at C. Conversely, F � L throughout. The equilibriumstrategies are: i moves at all x � M. j never
moves if i has not moved before. The outcome is the rent preserving one of M. xM + 9. These two
trivial equilibria are of course special versionsof pre-emption and maturation equilibria respectively. From
hereon we supress discussion of these trivialcases.

14 In fact = 2- - Dl 2
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It is worth reiterating thatwe only consider a drastic innovation. When an innovation is not drastic, i.e.
the profits of aproduct employing the old technology are not driven to zero upon the entry ofa product
embodying the new technology, incumbents may weil innovate first. (See Tirole (1989). pp. 346-348 for
an example).
16 The intuition is similar to that driving the Ghemawat-Nalebuff (1986) result that in a declining
indusay the larger finn may be the first to exit.

7 If mc 1, then the entrant is the first finn to adopt. The arguments in this case are exactly the reverse
of those in the proof of Proposition 4.
IS Fudenberg-Tirole also showed that for some specification of returns in their model there might be a
continuum of joint adoption equilibria which do not involve a race but do result in rent equalization and (in
all except one equilibrium) rent dissipation.

19The functions 1% and Lh are extended to the real line by linear interpolation.
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