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WHERE DO BETAS COME FROM?

ASSET PRICE DYNAMICS AND THE SOURCES OF SYSTEMATIC RISK*

Betas, or sensitivities of asset returns to underlying sources of risk, are central to
modern finance. Betas are used by academics and practitioners to model and control
systematic risks. Betas also determine expected asset returns in the Capital Asset
Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) and its descendants such
as the Intertemporal CAPM of Merton (1973} and the Arbitrage Pricing Theory of
Ross (1976).

Given their importance, it is natural to ask how betas are determined. Campbell
and Shiller (1988) and Campbell (1991) have shown that unexpected returns can be
written as an approximate linear function of changing expectations of future cash flows,
real interest rates, and excess returns. They obtain this result by taking a loglinear
approximation to an accounting identity, so the result is not conditional on the validity
of any particular asset pricing model. Since betas are scaled covariances of returns
with sources of risk, the Campbell-Shiller decomposition implies that betas depend on
the covariances of news about cash flows, real interest rates, and future excess returns
with sources of risk. In this paper we make a first attempt to estimate the relative
importance of these beta components.!

If one is willing to impose an asset pricing model, then it is possible to go further
than this. An asset pricing model derives expected excess returns from betas and
market prices of risk. Thus by imposing an asset pricing model one can substitute
out the components of betas that are related to expected future excess returns. One
can then show how the underlying covariances of assets’ cash flows with sources of risk
determine their betas. We carry out this exercise for the CAPM, and briefly discuss
more general models.

Our work bridges a gap between two common modes of analysis in empirical fi-
nance: cross-sectional analysis of multi-factor models, and fundamental analysis using
the present value relation. The former analysis breaks risk down into sensitivities to
various factors, while the latter distinguishes between cash flow risk and discount rate
risk. Here we combine these two models, using both contemporaneous cross-sectional
information and time-series information to describe the dynamic behavior of asset re-

turns.



The organization of the paper is as follows. In Section 1 we explain our theoretical
framework and show how time-series econometric methods can be used to construct
empirical proxies for the various components of betas. In Section 2 we decompose
betas of industry and size portfolios into cash flow, real interest rate, and excess return
components. Section 3 explores the restrictions on excess return components implied

by asset pricing models with constant betas. Section 4 concludes.



1. Where Betas Come From: A Theoretical Framework

1.1. The Campbell-Shiller Approximation

In general stock prices and returns are affected by changing expectations about
both dividends and required returns. The difficulty is that the standard present value
relation is nonlinear when expected returns vary through time. This makes it in-
tractable except in a few special cases.

Campbell and Shiller (1988) propose a log-linear approximation to the standard
model. They argue that the approximation is both tractable and surprisingly accurate.
We follow Campbell (1991) and define the one-period log real holding return on stock
ias by = log(Py 41+ Dy t41) — log(P; ), where P; ¢ is the real stock price measured
at the end of period t (ex dividend), and D; ; is the real dividend paid during period ¢.
The right hand side of this identity is a nonlinear function of the log stock price and

the log dividend; it can be approximated, using a first-order Taylor expansion, as

hitrr = k+ppigqr+(1—p)di i1 — Pigs (1)

where lower-case letters are used for logs. The parameter p comes from the lineariza-
tion and is a number slightly smaller than one, while the constant k = — log(p) —
(1 - p)log(1/p — 1). Equation (1) replaces the log of the sum of price and divi-
dend with a weighted average of log price and log dividend. Intuitively, the future log
stock price gets a larger weight than the future log dividend because a given percentage
change in the stock price is absolutely larger than the same percentage change in the
dividend.

When the log holding return on stock is linearized around the mean log dividend-
price ratio d — p, the parameter p = 1/(1 + exp(d — p)). In this paper we linearize the
log returns on all assets around a common mean log dividend-price ratio, so that p is
the same for all assets. This forces all asset returns to be equally sensitive to changes
in real interest rates. In practice our results are robust to variations in p within a
plausible range, so the use of a common p across assets should not be too problematic.

Equation (1) can be thought of as a difference equation relating p; ¢ to p; 141, di ¢+1
and h; ;41. It holds ez post, but it also holds ez ante as an expectational difference equa-

tion. Campbell and Shiller impose the terminal condition that lim;_, o, Eip? Pit+; = O
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This condition rules out “rational bubbles” that would cause explosive behavior of the

log stock price. With this terminal condition, the ez ante version of (1) can be solved

forward to obtain

o0 [+ o]
pip = — + (1=0) Bt ) Pdipiryj — B Y0 higrsy (2)

1—-p =0 =0

This equation is useful because it enables one to calculate the effect on the stock price of
a change in expected stock returns. It says that the log stock price p; ; can be written as
a constant k/(1— p) plus the expected discounted value of all future dividends d; ;.
less future returns h; ;.44 ;, discounted at the constant rate p. If the stock price is
high today, this must mean that future expected dividends are high unless returns are
expected to be low in the future. Note that (2) is not an economic model, but has
been derived by approximating an identity and imposing a terminal condition. It is
best thought of as a consistency condition that must be satisfied by any reasonable set
of expectations.

Campbell (1991) uses equation {2) to substitute p;, and p; ;.1 out of (1). This
gives a decomposition of the unexpected stock return or stock return innovation, which

we write as h; 44!

higt1 = higrr — Ethigg
m . m .
= (Et41—-Ey) { Y A s — Y P higees } (3)
1=0 1=1

Once again, this equation should be thought of as a consistency condition for expec-
tations. If the unexpected stock return is negative, then either expectations of future
dividend growth must be revised downwards, or expectations of future stock returns
must be revised upwards, or both. There is no behavioral model behind (3); it is simply
an approximation to an identity.

The formulas above concern real log stock returns, but in this paper we work with

excess log stock returns over a short-term interest rate. We define € t+1 = Ry pp1—Ter1s
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where r;4y is the real return on a 1-month Treasury bill. We use &, to denote the

innovation in ¢;;; ;. Then

o0 oo o0
Eietl = (Et+1_Et){EPJAdi,t+1+j - Y P - Zﬂjei,t+l+j}
1=0 7=1

Jj=0

= i+l — Ert+l — €eitl- (4)

The second equality in (4) introduces simpler notation for the components of the unex-
pected excess stock return &; ;1. The variable €4i 1+1 Tepresents revisions in expected
future dividends or news about future dividends on asset ¢, while €rt+1 is News about
future real interest rates and €, ;1 is news about future excess returns on asset 1.
Equations (1) to (4) hold only as approximations, but in the remainder of this
paper we treat them as exact. Campbell and Shiller (1988) studies approximation error
in (1) and (2), while an Appendix to this paper, available from the authors on request,
studies approximation error in (3) and (4). In all these equations the approximation
error seems to be small enough for U.S. stock market data that it should have no

important effect on our results,

1.2. A Beta Decomposition

In this paper we define beta using unconditional variances and covariances of sn-
novations in returns and factors. That is, we study the unconditional covariance of the
return innovation with a factor innovation, divided by the unconditional variance of the
factor innovation. This is neither a full conditional beta (which would use conditional
variances and covariances), nor a straightforward unconditional beta (which would use
returns themselves rather than innovations in returns). Beta as defined here has the
advantage that it can be broken into components in a relatively simple way. If all
elements of the conditional variance-covariance matrix of innovations are constant or
changing in proportion to one another, then our beta equals the full conditional beta.
Under these conditions asset pricing theory can be used in a deeper analysis of beta;
we discuss this fater in the paper, but for the present we simply take our beta as a

useful summary measure of an asset’s sensitivity to a factor.
Y
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The most familiar type of beta is a market beta. Our definition of market beta is

_ Cov(#,ém)
Bim = Var (€m) (5)

Here é; is the unexpected excess return on asset 1 and €n is the unexpected excess
return on the market. (For notational simplicity we suppress time subscripts on these

and similar variables wherever possible.) Equation (4) allows us to decompose g, ,, as

g = Cov (€4i18m)  Cov(ér,ém)  Cov (&,ém)
W™ Var (Em) Var (¢m) Var (ém)
= ﬂdt',m — Brm - ﬂﬁ',mx (6)

where B4; m is the market beta of news about asset i’s future cash flows, 8, m is the
market beta of news about future real interest rates, and B,; ,, is the market beta of

news about asset 1’s future excess returns.

More generally, one may want to work with K common factors in asset returns.
Our definition of beta with the k’th factor f, is

Cov (&, fx)
o= k) 7
S E "

Equation (4) allows us to decompose this beta as follows:

ﬁ'}c — Cov(idi__’fk) — Cov(éf:fk) _ Cov(éc{:fk)
K Var (i) Var (f}) Var (i)

= Baik — Brk — Beik (8)

Equations (6) and (8) give the basic decomposition we use in our empirical work.
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1.3. Empirical Proxies for Beta Components

In order to implement our beta decomposition, we need to construct empirical
proxies for news about future cash flows, excess returns, and real interest rates. To
do this, we assume that we observe N excess returns over a 1-month Treasury bill
return. The first excess return is on the value-weighted market portfolio of stocks.
We postulate that expectations of these excess returns are linear in a vector of state
variables z; with L elements z;,! = 1...L. The first of these elements is the excess
return on the market and the second is the real return on a 1-month Treasury bill,
while the other elements are variables known to the market by the end of period t.

Thus the excess return on any asset can be written as

_ :
G+l = 4; T + €44 (9)

for some L-element column vector a;. The expected excess return on the market is
given by a'1 z¢, and the unexpected excess return on the market is €141

Next we assume that the state vector follows a first-order VAR:

Zepr = Ilze + Zyqg, (10)

where we again use the notational convention that Z,.; is the innovation in zi+1. The
assumption that the VAR is first-order is not restrictive since a higher-order VAR can
always be rewritten in first-order form as discussed by Campbell and Shiller (1988)
among others. The matrix IT is known as the companion matrix of the VAR. The
assumptions we have made imply that a'1 is the first row of II. Given the VAR model,

revisions in long-horizon expectations of z,,; are:

(Bes1 = B) 24551 = Wiy (11)

Finally, we define 15 to be an L-element column vector whose second element is

one and whose other elements are all zero. This vector picks the real interest rate out
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of the state vector. Then equation (11) and the definitions of &4, & and é,; in (4)

imply that the components of asset returns can be written as follows:

Eem = pay (I —pIl) 'Eeyy,
Eam = Erp41+ (4 + pal)(J = pI) "1y,

& = (I -pl) 1z,

i = pal(l—pl)"1Z,,

Eai = &1t (g +pal)(] - pT) My (12)

Innovations in expected future excess returns and cash flows are determined by innova-
tions Z to the economic state variables, by the matrix IT governing the evolution of the
state variables, by the vectors a; which map state variables to expected returns, and by
unexpected asset returns &; ;3. The term (I — pI1)~1Z,,, which appears in the above
expressions represents the revision at time t + 1 in the discounted multi-period forecast
of the state vector into the infinite future. Appropriate elements are taken from this
state vector forecast revision to form the components of asset returns.

Once we have the asset return components above, it is straightforward to take
ratios of covariances to variances to construct betas. In our empirical work we look at
betas with the innovations in the economic state variables z;.;. That is, we use state
variable innovations as factors, as in Chen, Roll, and Ross (1986) or Ferson (1990).
The innovation in the market return is just the first element of Z;,;. When we need
the factors to be orthogonal, we can orthogonalize the vector of VAR innovations in
the manner of Sims (1980).



2. Empirical Results
2.1. Data and Econometric Methods

In this section we apply our methods to study the systematic risks of industry and
size portfolios. The industry portfolios are twelve value-weighted portfolios constructed
using two-digit SIC codes. The size portfolios are ten value-weighted portfolios based
on size deciles using the market value of equity outstanding at the beginning of each
year.?

We use several aggregate variables as the elements of the state vector. The first two
elements must be the market excess return and the real interest rate. The remaining
variables are the dividend yield on the market portfolio, the inflation rate, and the
growth rate of industrial production. Our measure of the market return is the return
on the value-weighted New York Stock Exchange (NYSE) index. The dividend yield
on this index is calculated in standard fashion by taking total dividends paid over the
previous year relative to the current stock price. The real interest rate is the one-
month treasury bill rate less the CPI inflation rate, where both these variables are
Ibbotson Associates data series provided by the Center for Research in Security Prices
(CRSP). The seasonally-adjusted monthly real industrial production index is taken
from the Citibase tape. Our sample covers the time period from 1952:1 to 1987:12.
Following Campbell (1991) we set p = 0.9962, which corresponds to an annual mean
dividend-price ratio of 4.7%.

To estimate the parameters in equations (9) and {10), and to calculate the variance-
covariance matrix of their error vectors, we estimate (9) and (10) jointly across all
portfolios and state variables, using Hansen's (1982) Generalized Method of Moments.
Let us denote the entire set of parameters <, and the variance-covariance matrix of
these parameters V. To calculate a standard error for a statistic such as the cash flow
beta, we write the statistic as a nonlinear function f() of the parameter vector . The
standard error for the statistic can be estimated in standard fashion as /15 (7)'V f5 (7).

In our empirical work, we have tried two variants of this basic estimation procedure.
The first variant allows for sampling error both in the parameters of equations (9) and
(10) and in the covariances between &; ;11 and Z;4;. This requires that we treat the
covariances, {1, as parameters of the model, so the number of parameters to be estimated
increases very rapidly with the VAR lag length. Accordingly we have only implemented

this variant of our procedure with one VAR lag.
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The second variant takes account only of sampling error in the parameters of
equations (9) and (10). In effect, the covariances between ¢, ;) and Z;,; are treated
as known. One could think of this variant as analyzing sample betas rather than
population betas. This procedure significantly reduces the number of parameters to be
estimated, allowing us to explore higher-order VAR systems.

We have found that our empirical results are similar whichever variant of our
method we use, and for the second variant are insensitive to VAR lag length. Thus
we present our beta decomposition results using the first variant of our method with a

first-order VAR system.

2.2. A Beta Decomposition for Industry Portfolios

Table 1 studies the betas of industry portfolios with the aggregate stock market.
The first column of the table shows the overall market beta for each portfolio. This
is decomposed in the second and third columns into market betas of cash flow news
and excess return news, fy; . and ﬂc;'m. The future real interest rate beta, f, , is
estimated to equal 0.012 over this sample period as reported at the bottom of Table
1. Thus the second column of Table 1 shows the contribution to each portfolio’s mar-
ket beta of news about its cash flows. The negative of the third column shows the
contribution to each portfolio’s market beta of news about its future expected excess
returns.

Several features of Table 1 are worth noting. First, the absolute values of excess
return betas are always much larger than the absolute values of cash flow betas. This
reflects the fact, documented by Campbell (1991) and Campbell and Ammer (1993) for
the aggregate stock market, that much of the variability in stock returns is associated
with changing expected future excess returns.

Second, the estimated cross-sectional pattern of cash flow betas is quite reasonable.
Cyclical industries such as Basic Industries, Capital Goods, and Textiles have high cash
flow betas whereas stable industries such as Utilities and Services have low (indeed
slightly negative) cash flow betas. This pattern is not just a replication of the pattern
of overall betas; Services, for example, is an industry with high overall beta but low
cash flow beta. Our model attributes the high overall beta of this industry to the fact
that its expected return is highly sensitive to market expected returns. It is important

to note, however, that the standard errors for cash flow betas are always rather large.
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An alternative measure of cyclicality is the beta of an asset’s cash flow news with
the market’s cash flow news (as opposed to the beta with the overall market return,
which is also driven by news about future market returns). The last column of Table
1 presents estimates of this alternative beta. We use the notation fy; 4, to indicate
that this is the sensitivity of news about future cash flows on asset i, é4;, to news about
future cash flows of the market, €4,,- We find that the cash flows of cyclical industries
are more sensitive to changes in market cash flows; in fact, Bai,dm is always fairly close
to the overall market beta of an industry. This result should be interpreted cautiously,
however, as the standard errors for f4; 4, estimates are even larger than the standard
errors for f4; ,, estimates.

Since cash flows are a residual in our approach, one might suspect that portfolios
with large cash flow betas in Table 1 are also portfolios whose excess returns are hard
to forecast. The fifth column of Table 1 presents the R? statistic and the standard
deviation of the fitted value for each excess return forecasting regression. There is
no clear relationship between the forecastability of monthly excess returns and our
estimates of cash flow and excess return betas; evidently the longer-run dynamics of
the excess return forecasts, as captured by the VAR system, are critical in determining
excess return betas.

Next we study the betas of the overall market and of industry portfolios with
innovations in economic state variables. The left hand panel of Table 2 presents the
estimated betas of news about cash flow with innovations in the real interest rate, the
market dividend yield, the inflation rate, and the growth rate of industrial production.
In each case betas are defined in the manner of equation (7) as covariances of asset
returns with factors divided by factor variances, but we do not orthogonalize the factors.

The table shows that an unexpected increase in the ex post real interest rate
is associated with a significant increase in expected future cash flows on almost all
portfolios. Positive innovations in industrial production also increase expected future
cash flows, although this effect is much weaker. Increases in the market dividend yield
have no strong relationship with cash flow news, while increases in inflation rates are
associated with downward revisions in expected future cash flows. The results for the
real interest rate and for inflation are consistent with one another, since ex post real
interest rate innovations are strongly negatively correlated with inflation innovations
(and would in fact be perfectly correlated if we included the nominal interest rate in

the VAR system). These results contradict the notion that real cash flows to holders
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of equity are insensitive to inflation. Of course, Fama and Schwert (1977) and many
other authors have shown that stock returns are sensitive to inflation, but the cash flow
component of stock returns has not been separately investigated.

The bottom row of Table 2 reports the beta of news about future real interest
rates with innovations in the state variables. Future real interest rates rise with the
current real interest rate and fall with the current inflation rate, but are only weakly
associated with innovations in the dividend yield and industrial production.

The right hand panel of Table 2 presents the estimated betas of news about future
expected excess returns with innovations in economic state variables. We can see that
unexpected increases in the market dividend yield are strongly positively related to
news about future expected excess returns. Other state variables are only weakly
correlated with news about future excess returns.

Since the overall return beta with the innovation in a state variable, §; i, is just
the cash flow beta less the real interest rate beta less the excess return beta, we can
combine the different parts of Table 2 to get the implied values for j§; ;. For example,
an unexpected 1% increase in the annual ex post real interest rate is associated with
a 0.08% (0.20%-0.15%+0.03%) excess return on the aggregate market. For both the
aggregate market and the individual portfolios, the positive impact of the real inter-
est rate through increased cash flows and reduced future excess return outweighs the
negative impact through increased future real interest rates. As one would guess, the
effect of an inflation innovation is the opposite of the effect of an ex post real interest
rate increase: When inflation goes up, stock returns are typically negative because the
negative impact through cash flows and future excess returns outweighs the positive
effect of declining future real interest rates.3 To put it another way, stock portfolios
would be even more sensitive to inflation if real interest rates were constant.

The pattern of results for industrial production is also interesting. We find that
the generally positive impact of industrial production growth on cash flow is largely
offset by the negative impact of an increase in expected future excess returns. This
explains the otherwise puzzling fact that good news about production growth has little
impact on current stock returns. Our results enrich the story told by Chen (1991},
who discovers that industrial production innovations are negatively correlated with
current stock returns and positively correlated with expected future returns. Lacking
any way to break returns into components, Chen is unable to relate his findings to the

time-series behavior of equity cash flows.
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2.3. A Beta Decomposition for Size Portfolios

In Tables 3 and 4 we repeat the previous analysis for ten size portfolios. The
first column of Table 3 shows the well-known fact that overall market betas on size-
sorted portfolios decline almost monotonically with size. The second and third columns
attribute this pattern mainly to the fact that expected future cash flows on small stocks
are more sensitive to the market return. The betas for excess return news are not
strongly related to size. The fourth column of Table 3 shows that the beta of cash flow
news with market cash flow news generally declines with size, but the decline is not
monotonic. Finally, the fifth column of Table 3 shows that small stocks typically have
more variable expected excess returns, but this does not translate into expected excess
return betas that are larger in absolute value for small stocks.

The left hand panel of Table 4 presents cash flow betas of size portfolios with inno-
vations in economic state variables. We find that news about cash flows on small firms
is generally more sensitive to unexpected changes in real interest rates and inflation.
An unexpected 1% increase in the annualized real interest rate has a 0.38% positive
cash flow effect on the smallest firm portfolio, but only a 0.15% positive cash flow ef-
fect on the next-to-largest firm portfolio and a 0.21% positive cash flow effect on the
largest portfolio. Similarly, an unexpected 1% increase in the annual inflation rate has a
0.36% negative cash flow effect on the smallest portfolio, but a 0.17% negative effect on
the next-to-largest portfolic and a 0.31% negative effect on the largest portfolio. This
finding complements the study by Chan and Chen (1991), which examines differences
in firms’ structural characteristics that lead firms of different sizes to react differently
to economic news. Chan and Chen find that firm size is highly correlated with firm
characteristics such as entry type, financial ratios, leverage and dividend behavior. But
Chan and Chen are not able to directly examine the relationship between a firm’s size
and its cash flow sensitivity to economic variables.

Finally, the bottom row and right hand panel of Table 4 give the sensitivity of
news about real interest rates and future expected excess returns on size portfolios
to economic variables. All the main results we obtained for industry portfolios appear
again here. The cash flow effect of inflation outweighs the future real interest rate effect.
And both cash flow effects and future excess return effects play a role in accounting for

the cross-sectional variation in the overall betas on real interest rates and inflation.
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2.4. Alternative Measures of Cash Flow News

So far we have treated cash flow news as a residual component of the stock return.
If equation (3) is an accurate approximation, and if the VAR system fully describes
the true process for expected returns, then this residual calculation procedure should
accurately measure cash flow news. However, if the VAR process used is misspecified,
then the “residual cash flow news” measure may be a poor proxy for actual cash flow
news. To study this issue, we calculate an alternative “direct cash flow news” measure
for the value-weighted NYSE stock price index.

The monthly dividend series is strongly seasonal, because most companies in the
value-weighted stock index pay quarterly dividends. Simple seasonal adjustment pro-
cedures such as the use of seasonal dummies do not seem to remove the seasonality, so
we use quarterly data over the period 1952:Q1-1987:Q4. We first form residual cash
flow news by using the VAR procedure with quarterly values of the state variables. We
adjust the value of p for the change in the time unit of the data. We then form direct
cash flow news by regressing quarterly log real dividend growth on the state variables
.and using the VAR process for the state variables to form revisions in expectations of
future dividends. Specifically, if ¢ is the vector of regression coefficients of dividend
growth on the state variables, and if the residual from this regression is gy, then

direct cash flow news is

Eam = Mep1 + o (I - pI) 20y (13)

Table 5, panel B, reports the correlation between the residual and direct cash
flow news measures as the monthly value of p varies between 0.991 and 0.997. This
correlation always lies between 0.92 and 0.935, and it increases with p. Panel A shows
the residual and direct cash flow betas with the market return and the other factors
considered in the paper. The residual and direct cash flow betas are always close to
one another. The results in the table are based on a 1-lag VAR process. Results are
generally similar for a 2-lag VAR process; however, the correlation between the residual
and direct cash flow news measures drops from about 0.93 to about 0.88. Results are
also fairly similar if we include dividend growth in the state vector and recalculate both

the residual and direct cash flow news measures.
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We conclude that the choice between the residual and direct measures of cash flow
news is not critically important for our results. We use the residual measure in the rest
of the paper because it enables us to avoid dealing with the seasonality in the dividend

growth series.
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3. Beta Determinants in Asset Pricing Models

Under certain conditions asset pricing theory may impose that expected excess
asset returns are proportional to betas as we have defined them. This will be true, for
example, if expected excess returns are proportional to full conditional betas and if the
variances and covariances of innovations are constant or changing in proportion to one
another, so that conditional betas are constant and equal to our betas.? Under these
conditions asset pricing theory can be used to eliminate the expected excess return

components from {6) and (8).

3.1. The CAPM

As a first example, consider the market beta decomposition given in (6). Suppose
that the CAPM holds for our definition of market beta. Then expected excess returns

in any future period are linear in beta:

E; Cit+i+1 — ﬂi,m Ey Cmt+5+1: (14)

Using equations (4) and (14), we can calculate the news about future excess returns

for asset 7 at time ¢ + 1:

3 1]
i

o]
(Ety1 — Ey) Z P e
j=1

[+ o]
= (Bie1— Be) > 0 EiyjlBi memprir1]
j=1

= ﬂi,m €em, (15)

where &.n is news about future excess returns on the market. Equation (15) says that
if the CAPM holds, news about future excess returns on any stock equals that stock’s
beta times news about future excess returns on the market.

We can now use equation (15) to rewrite (6) as
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COV (Edi - Er, am) COV (Ecm, Em)

Bim = Var (ém) = Bim Var (&m) (16)
Solving for f; r, in the above equation, we have:
g = [14 S (Eem, ém) 1™ Cov (E4; —~ &r, Em)
wmo Var (&m) Var (ém)
= (1 + ﬂem,m)—l (ﬂd{,m - ﬁr,m): (17)

where G¢m m is the market beta of news about future excess returns on the market.

Equation (17) says that an asset’s overall market beta is a linear function of the
market beta of news about future cash flows on the asset. In Figures 1 and 2 this
linear function is shown as a solid line. The intercept and slope in (17) depend on the
market beta of news about real interest rates, Br,m, and the market beta of news about
future excess market returns, Bem,m. Over the period 1952-87 we estimate Brum to be
very close to zero at 0.01, while B¢ m is negative and quite large in absolute value at
about -0.8. These estimates are similar to those implied by the results of Campbell
(1991). The small estimate of Br,m reflects the fact that the stock market is much more
volatile than real interest rates so the market beta of real interest rate news is close
to zero. The size of Bem m reflects the fact that much of the variation in stock returns
is associated with changing expected future stock returns. Holding dividends and real
interest rates fixed, a higher expected future return requires a lower stock price today,
hence the negative sign of Bem,m-

The effect of 8, y, in (17) is common to all assets, reflecting the common influence
of real interest rate variation on all long-term returns.> To see the role of Brm in
determining individual assets’ market betas, consider a stock whose cash flows have a
positive market beta fy; ., exactly equal to f;,n. When the market rises, good cash
flow news tends to increase the price of this stock but higher real interest rates tend to
reduce the price of the stock. Overall, the stock has zero covariance with the market.

The slope coefficient (1 +,8,m,m)'1 in equation (17) has a more important influence

on assets’ overall market betas. If Bem,m = —0.8, then {1 + ﬂem,m)‘1 = 5, indicating
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that an asset’s overall market beta is about 5 times the market beta of its cash flows.
This is because an increase in the market is associated with a decrease in expected
future excess returns on the market, and hence a decrease in expected excess returns
on any asset that has a positive beta with the market. This decrease in expected future
excess returns leads to a capital gain on the asset today, increasing the asset’s beta
with the market.

All the beta components in (17) are betas with the overall market return. But
it is possible to break the market return itself into components ¢4, é,, and é.m,
representing news about future market cash flows, real interest rates, and market excess
returns. (This is the exercise undertaken in Campbell (1991) and Campbell and Ammer
(1993).) Then the covariances of individual asset cash flows and real interest rates
with the market can be broken down into covariances with market cash flow news, real
interest rate news, and market excess return news. An asset whose cash flows have a
high market beta (a high 84 ,,) need not be an asset whose cash flows have a high
covariance with market cash flow news &4,. A high-beta asset could instead be an
asset whose cash flows covary negatively with real interest rate news &, or with news
about future market excess returns é.,.

Equation (17) also illustrates the conditions under which overall market betas
B;,m equal cash flow market betas By; ,,,. This requires B, n = 0 {real interest rates
uncorrelated with the market return), and B.mm = 0 {expected future excess market
returns uncorrelated with the market return}. Sufficient but not necessary conditions
are that real interest rates and expected excess market returns are constant; in this
case we have the stronger result §; ;, = 4 4, and betas are determined by covariances
of asset cash flow news with market cash flow news.

It is interesting to ask whether our empirical beta decomposition for industry
and size portfolios conforms to the pattern predicted by the CAPM with constant
conditional betas. Figure 1 (for industry portfolios) and Figure 2 (for size portfolios)
show the theoretical relation derived in equation (17) as a solid line. The intercept
and slope are VAR estimates of Prym and (1+ ﬁ,m,m)'l respectively. Our unrestricted
estimates of By; ,, and B; m for each portfolio are shown as scatterpoints in the figure,
and an unrestricted OLS regression through these points is shown as a dashed line.
It is apparent from Figures 1 and 2 that the CAPM does not fit these results. The
CAPM predicts that the scatterpoints should lie along a line with an intercept close to

zero and a slope of about 5. Instead, in both figures the points lie along a line with an
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intercept close to one and a slope between 0.2 and 0.5. There is considerable variation
in B4; m but the Beim components dampen this variation rather than amplifying it as
required by the CAPM. This result can also be seen directly in Tables 1 and 4, where
assets with large cash flow betas are not necessarily those with large excess return betas
(in absolute value). As one would expect from this informal visual presentation, the
restrictions imposed by the CAPM on the econometric model are statistically rejected.

We report tests of the restrictions in Table 6 below.

3.2. Multi-Factor Models

The above analysis generalizes straightforwardly to a multi-factor asset pricing
model. A K-factor model for returns with constant conditional betas implies that the

unexpected excess return on asset 1 satisfies

K
Eit+1 = Zﬁi,kfk,tﬂ + i1 (18)
k=1

The unexpected excess return is written as the sum of K factor innovations f—k"ﬂ
times their factor loadings ﬁ,-,k plus an idiosyncratic shock Yy t41
Given the factor structure (18), no-arbitrage or equilibrium arguments can be used

to derive the standard restriction on expected returns:

K
Erejpry = Zﬂi,k Aktr (19)
k=1

where A, is the conditional risk premium on the k'th factor, known at time ¢ and
applying to time ¢ + 1. The news about future excess return on asset 1 can now be

rewritten as
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K oo
E = ) Bik(Err1—E) ) o Mierj
k=1 =1

K
= Eﬁi,kﬁ)k = B, (20)
k=1

where 7}, is news about future risk prices on the k'th factor, and f; and # are column
vectors containing f; x and iy, k = 1... K, respectively. Substituting (20) into (8),
we find that

Cov (! iy, fi)

Var(fy) (2)

Bik = Baik — Brk —
This implies that the vector §; obeys

Bi = (I+A)7 (B~ Br), (22)

where A = Var(f)~! Cov(f, 73), and By and B, are column vectors containing fy; &
and fx, k =1... K, respectively.

Equation (22) is the multi-factor generalization of equation (17}. It is complicated
by the fact that the risk price of one factor can covary with other factors; this is what
requires us to solve for the whole vector of betas simultaneously. If we rule this out,

imposing that Cov(ﬁ,\k,f;) = 0 for k # {, then we get the simpler relation

Cov (77 ,- -1
6 = |1+ (Trk: /i)

, Var () (Bdi k — Br )

(1 + Bk k) ™Y (Bai k= Bk (23)

which is directly analogous to (17).
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3.3. Beta Decomposition with Multi-Factor Restrictions

Multi-factor models can be used in empirical work to reduce the number of pa-
rameters that must be estimated. The general VAR methodology described in Section
1.3 places very little structure on expected asset returns. The expected return on each
asset depends on the same vector of state variables, but in an unrestricted way. This
means that the number of parameters increases very rapidly with the number of assets,
which can create econometric difficulties. If we are willing to apply the restriction (19)
implied by a K-factor asset pricing model, however, we can put extra structure on the
problem. (19) says that expected excess returns on any asset are given by the sum of
K factor loadings ff; x times K prices of factor risk Ax;. Under our assumption that

the information set at time ¢ is the vector z;, we can write Ay, as

L
Mg = Y Ouzy. (24)
i=1

Substituting equation (24) into equation (19}, we find that the coefficients a;; of

the vector a; in equation (9) are restricted as follows:

K
&% = ) Bl (25)
k=1

Equation {25) is a latent variable model with K latent variables, as introduced to the
asset pricing literature by Gibbons and Ferson (1985) and Hansen and Hodrick (1983).
Whenever there are more assets than factors, the restrictions in (25) greatly reduce the
number of free parameters in the model. This is true even when we treat the factors
and factor loadings as unobservable; if the factors are assumed to be innovations in
the economic state variables, then the f;; can be estimated from the contemporaneous
covariances of asset returns and state variables, leaving only the f; to be estimated
from the regression coefficients for expected returns.

The decomposition of systematic risk into cash flow risk and discount rate risk is
quite robust to whether we impose asset pricing restrictions (25) and to the number of

systematic factors in the economy. We support this claim in Table 6, which presents
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point estimates of the sensitivities of cash flow news on the market portfolio to macroe-
conomic state variables, using four different estimation procedures. Panel A imposes
no asset pricing restrictions in estimating equations (9} and (10). Panel B estimates the
model imposing the CAPM, that is equation (25) with the market return as a single
observable factor. Panel C imposes (25) assuming that there is a single unobserved
factor. Panel D imposes (25) assuming that there are five observable factors which
are the five variables in the VAR system. Panel E reports tests of the overidentifying
restrictions implied by these asset pricing models. The CAPM is rejected, but there is
only weak evidence against the other sets of restrictions.®

As one would expect from this, the market portfolio’s cash flow betas in Table 6
are affected most strongly by imposing the CAPM, but are barely altered by imposing
the other asset pricing models. Results for other portfolios (not reported in the table)
follow a similar pattern; CAPM restrictions alter the results by forcing the points shown
in Figures 1 and 2 to lie along a line with a slope of 4 or 5, but other restrictions have
little effect. The main exception is that the pattern of results across size portfolios
becomes smoother when a single-unobserved-factor model is imposed.

Table 6 also reports the sensitivity of our results to two other changes in speci-
fication. Dropping the last three months of our sample, to avoid the volatile period
following the stock market crash of October 1987, has little effect on the estimated
market cash flow betas. The beta decomposition appears to be somewhat more sensi-
tive to the choice of VAR lag length. When we increase the lag length to 2 in Table 6
we estimate a slightly higher cash flow sensitivity to real interest rates and inflation,
but otherwise get results similar to the single-lag VAR cases.

Although our point estimates are insensitive to specification, as shown in Table 6,
we find that the standard errors of our estimates are quite sensitive to different sets of
restrictions and different VAR lag lengths. This is to be expected, because as we relax
restrictions and increase lag length we greatly increase the number of parameters to be

estimated.
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4. Conclusions

In this paper we have used a dynamic accounting framework to break unexpected
asset returns into components associated with changing expectations of future cash
flows, real interest rates, and expected future excess returns. We have then calculated
the betas of the individual components with the aggregate market and with various
economic state variables. This approach has produced several intriguing results.

First, expected excess return betas with the aggregate market are typically much
larger in absolute value than cash flow betas with the market. Variation in expected
excess returns on individual portfolios acts to increase the covariation of these portfolios
with the overall stock market.

Second, cash flow betas, future real interest rate betas and expected excess return
betas often have offsetting effects on the overall betas of assets with economic state
variables. When inflation increases or the ex post real interest rate declines, the nega-
tive effects on stock prices of reduced cash flow and increased expected excess returns
outweigh the positive effect on stock prices of declining future real interest rates. When
industrial production increases, the negative effect of increased expected excess returns
largely offsets the positive effect of increased expected cash flow.

Third, there is no strong cross-sectional correlation between assets’ cash flow betas
and their expected excess return betas. Cash flow betas with the market, for example,
vary inversely with firm size but expected excess return betas with the market do not
vary strongly with firm size. The CAPM predicts that assets whose cash flows covary
strongly with the market should also have expected excess returns that covary strongly
with the market, but we find no evidence of this effect in the data.

There are of course some caveats that should be kept in mind when interpreting
these results. Our approach depends on the use of a loglinear approximation to the true
present value relation. It also depends on the correct specification of the information set
used by investors to forecast future returns. We have treated cash flows as a residual,
and so a misspecification of the information set could affect our estimates of both cash
flow betas and expected excess return betas. An Appendix to this paper, available
from the authors on request, shows that the loglinear system used here has only small
approximation error which should not affect our results in any important way.

This paper has also made a methodological contribution. We have integrated

several approaches which are often used separately in empirical finance: estimation of
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a contemporaneous multi-factor model, analysis of the present value relationship, and
analysis of asset expected returns in relation to the dynamic behavior of economic state
variables. We believe that the best future research in asset pricing will treat these as
elements of a single system.

The approach of this paper can be extended in several ways. We have used only
aggregate variables to forecast returns on stock portfolios; it would be interesting to
see whether portfolio-specific forecasting variables would affect the results. We have
explored the restrictions imposed by asset pricing models only in the most preliminary
way, and there is much more research that can be done in this area. It would also be
interesting to use the methods of this paper to study time-varying conditional betas.
Finally, our approach can be applied to other types of common factors, such as the
nominal interest rate movements studied by Campbell and Ammer (1993), and to

other assets, such as the national stock indexes studied by Ammer and Mei (1992}.
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research grant.

1. Qur paper builds on the vast literature showing that expected asset returns
change through time, for example Campbell (1987), Fama and French (1988a,b, 1989),
Keim and Stambaugh (1986), Lo and MacKinlay (1988), and Poterba and Summers
(1988). There has also been some cross-sectional work relating betas to observable
characteristics of firms, for example Rosenberg and Marathe (1975) and Chan and
Chen (1991), but this work does not make the distinction emphasized here between

different sources of news.

2. We are grateful to Wayne Ferson for providing us with these portfolic returns.

Ferson and Harvey (1991) give more detail on the construction of the portfolios.

3. These results are sensitive to the way in which inflation is measured. Campbell
and Ammer (1993) study not contemporaneous inflation, but news about long-run
future inflation. They find that if anything such news has a positive effect on the stock

market.

4. Campbell (1987), Ferson (1990), Ferson and Harvey (1991), Shanken (1990),
and others test for constant conditional betas in multi-factor asset pricing models. The
hypothesis that conditional betas are constant is easy to reject in models with a small
number of factors, but much harder to reject when more factors are allowed. Ferson
and Harvey (1991) argue that for the portfolios studied here, variation in betas is small

relative to variation in factor risk prices.

5. Recall that our application of the Campbell-Shiller linearization imposes the
same p for all assets, effectively assuming that all assets are equally sensitive to a given

change in the expected time path of real interest rates.

6. All these tests take the variance-covariance matrix of VAR innovations as being

known. We have also experimented with using a larger number of iterations in the
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GMM estimation procedure. As pointed out by Ferson and Foerster (1991), this can
improve the finite-sample properties of latent variable model estimates. We find that
our results are quite robust to the number of iterations, presumably because our sample
size is large compared to the number of asset portfolios we study. Ferson and Foerster
(1991) also suggest using a finite-sample correction for standard errors in GMM models.
In our application this correction would increase reported standard errors for industry

portfolios by 17% and for size portfolios by 13%.
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Table 1

Decomposition of Market Betas for Industry Portfolios

Bim Baim Bei,m Bdi,dm R?

Petroleum 0.949 0.171 -0.789 0.779 0.028
{0.042) {0.207) (0.207) (0.410) (0.855)

Finance/ 0.996 0.029 -0.978 0.690 0.047
Real Estate {0.023) (0.163) (0.158) (0.224) (0.986)

Consumer 1.122 0.060 -1.073 1.219 0.064
Durables {0.033) {0.204) (0.201) (0.274) (1.315)

Basic Industries 1.078 0.381 -0.708 1.197 0.033
{0.019) (0.150) (0.148) (0.214) (0.864)

Food/Tobacco 0.853 0.235 -0.630 0.684 0.037
{0.029) (0.151) (0.137) (0.377) (0.784)

Construction 1.171 0.098 -1.084 1.081 0.054
(0.043} (0.212) (0.211) (0.269) (1.293)

Capital Goods 1.063 0.372 -0.703 1.689 0.066
(0.024) (0.222) (0.217) (0.387) (1.282)

Transportation 1,180 0.273 -0.918 1.092 0.037
(0.037) {0.210) (0.203) (0,270 1,110

Urtilities 0.619 -0.125 -0.736 0.407 0.030
(0.030) (0.161) (0.155) {0.304) (0.750)

Textile/Trade 1.043 0.359 -0.696 1,222 0.048
(0.053) (0.215) {0.211) (0.400) (1.153)

Services 1.164 -0.151 -1.327 0.733 0.056
(0.041) (0.300) (0.299) (0.5486) (1.393)

Leisure 1.209 0.178 -1.042 1.210 0.063
(0.048) (0.257) (0.256) (0.449} (1.505)

Note: By is the return sensitivity to the market return. Baim is the sensitivity of
cash flow news to the market return. Bg p is the sensitivity of excess return news to
the market return. By qm is the sensitivity of cash flow news to the market's cash
flow news. B, which is the sensitivity of real interest rate news to the market
return, is equal to 0.012. The number in parenthesis below R2? gives the standard
deviation of conditional expected excess returns. We use the value-weighted NYSE

index for the market portfolio. The sample covers the time period from 1952:1 to
1987:12.
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Table 2

Decomposition of Observable Factor Betas for Industry Portfolios

Cash Flow Components Excess Return Components

rate D/Pn infn IPG frate D/Pg infn IPG

Market 0.202 -0.015 -0.262 0.014 -0,030 0.201 0.011 0.010
(0.070) (0.030) (0.093) (0.012) (0.093) (0.029) (0.119) (0.019)

Petroleum -0.071 -0.023 -0.057 0.006 -0.143 0.188 0.047 0.006
(0.146) (0.050) (0.229) (0.031) (0.152) (0.051} (0.240) (0.033)

Finance/ 0.113 0.020 -0.107 -0.002 -0.128  0.236 0.154 0.007
Real Estate (0.103) (0.038)} (0.134) (0.017) {0.126) (0.037) (0.156) (0.022)

Consumer 0.234 0.020 -0.312 0.020 -0.038 0.260 0.003 0.020
Durables (0.123) (0.048) (0.171) (0.024) {0.147) (0.049) (0.196) (0.030)

Basic 0.228 -0.063 -0.336 0.013 -0.022 0.171  -0.035 0.046
Industries {0.105) (0.035) (0.149) (0.018) {0.110) (0.036) (0.163) (0.025)

Food 0.358 -0.030 -0.288 0.012 0.058 0.154 0.050 0.006
Tobacco  (0.100) (0.035) (0.146) (0.020) {0.099) (0.033) (0.133) (0.018)

Constru- 0.086 0.013 -0.127 0.026 -0.148  0.265 0.167 0.013

ction {0.128) (0.050) (0.162) (0.025) (0.147) (0.051) (0.186) (0.030)
Capitai 0.383 -0,05¢ -0.603 0.040 0.167 0.169  -0.332 0.029
Goods (0.156) (0.053) (0.223) (0.030} (C.158) (0.053) 2.229; (2.023)
Transpor- 0,212 -0.033 -0.263 0.011 -0.062 0224 0.092 0.018

tation {0.122) (0.050) (0.175) (0.026) (0:140) (0.049) (0.192) (0.027)

Utilities 0.213  0.047 -0.166 0.002 -0.057 0.182 0.126 -0.001
(0.106} (0.038) (0.154) (0.020) (0.088) (0.037) (0.156) (0.020)

Textile/ 0.483 -0.049 -0.462 (.045 0.156 0.170  -0.092 0.040
Trade {0.140) (0.051) (0.192) (0.026) (0.137) (0.051) (0.185) (0.025)

Services 0.118 0.075 -0.032 0.008 -0.233 0.324 0.363 0.008
(0.171) (0.071) (0.227) (0.032) (0.195) (0.071) (0.241) (0.036)

Leisure 0.359 0002 -0315 0.012 -0.015 0.258 0.113 0.007
(0.153) (0.061) (0.202) (0.029) (0.164) (0.062) (0.203) (0.028)

Brx 0.154 -0.002 -0.126 -0.001
(0.021) (0.007) (0.033) (0.004)

Note: The unit for each variable is percentage point per annum for rrate (real
interest rate), basis point for D/P, percentage point per annum for infn (inflation),
percentage point per annum for IPG (industrial production growth, seasonally
adjusted). The sample covers the time period from 1952:1 10 1987:12.
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Table 3

Decomposition of Market Betas for Size Portfolios
Bi,m ﬁdi,m Bei,m Bdl,dm R?
Decile 1 T1.170 0.467 -0.715 1.152 0.048
(0.079) (0.278) (0.28%) (0.523) (1.412)
Decile 2 1.153 0.267 -0.898 0.962 0.050
(0.062) (0.239) (0.241) (0.475) (1.313)
Decile 3 1.156 0.256 -0.912 1.037 0.054
(0.058) (0.217) (0.217) (0.406) (1.288)
Decile 4 1.128 0.198 -0,942 0.958 0.051
(0.045) (0.197) (0.192) (0.350) (1.206)
Decile 5§ 1,115 0.202 -0.925 0.987 0.052
(0.041) (G.187) {0.184) (0.315) (1.185)
Decile 6 1.101 0.150 -0.963 0.892 0.050
(0.038) {0.179) (0.175) (0.346) (1.132)
Decile 7 1.097 0.169 -0.940 0,993 0.051
(0.027) (0.166) (0.162) (0.216) {1.096)
Decile 8 1.076 0.156 -0.932 0.892 0.044
M2 0,147} (0.144) 0.213 (0,993
Deciie 9 1.625 0.094 -0.94+ 0.80+ C.049
(0.014) (0.145) (0.140) (0.155) (0.987)
Decile 10 0.956 0.201 -0.767 1.058 0.053
(0.013) (0.140) (0.135) (0.127) (0.944)

Note: By o is the return sensitivity to the market return. Bg;m is the sensitivity of
cash flow news to the market return. gy is the sensitivity of excess return news to
the market return. Bgjqm is the sensitivity of cash flow news to the market's cash
flow news. B, which is the sensitivity of real interest rate news to the market
return, is equal to 0.012. The number in parenthesis below R? gives the standard
deviation of conditional expected excess returns. Decile 1 is composed of small stocks
from the first decile of size-sorted portfolios and Decile 10 is composed of large stocks
from the last decile of size-sorted portfolios. We use the value-weighted NYSE index
for the market portfolio. The sample covers the time period from 1952:1 to 1987:12,
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Table 4

Decomposition of Observable Factor Betas for Size Portfolios

Cash Fiow Components

Excess Return Components

rmate D/Pp infn IPG rmate D/Py infn IPG
Decilel 0.381 -0.074 -0.359 0.001 0.062 0.180 0.024 -0.001
(0.172) (0.067) (0.255) (0.040) {0.171) (0.069) (0.250) (0.037)
Decile 2 0.316 -0.026 -0.258 -0.007 0.015 0.223 0.111 -0.007
(0.148) (0.057) (0.214) (0.032) {0.160) (0.059) (0.213) (0.032)
Decile 3 0.301  -0.023 -0.266 0.006 0.012 0.226 0.088 0.004
(0.138) (0.052) (0.197) (0.028) {0.153) (0.G53) (0.201) (0.028)
Decile 4 0.228 -0.010 -0.196 -0.002 -0.074 0.233 0.169 -0.002
(0.126) (0.047) (0.171) (0.024) (0.144) (0.047) (0.178) (0.027)
Decile 5 0.231 -0.011 -0.210 -0.003 -0.049 0.228 0.134 0.000
(C.118) (0.045) (0.158) (0.023) {0.136) (0.045) (0.165) (0.026)
Decile6 0.225 0.000 -0.181 0.005 -0.053 0236 0.15¢ 0.001
(0.114) (0.043) (0.153) (0.020} (0.136) (0.043) (0.163) (0.023)
Decile7 0.176 -0.006 -0.185 0.008 -0.091 0.230 0.138 0.008
(0.094) (0.040) (0.125) (0.018) (0.123) (0.039) (0.146) (0.023)
Decile 8 0.166 -0.005 -0.164 0.016 -0.111  0.227 0.163 0.010
(0.088) (0.035) (0.119) (0.016) {0.115) (0.035) (0.139) (0.021)
Decile9 0.151 0.007 -0.169 0.006 -0.124¢ 0.230 0.157 0.007
(0.081) (0.034) (0.103) (0.014) (0.110) (0.034) (0.130) (0.021)
Decile 10 0.213 -0.023 -0.311 0.019 0.007 0.184 -0.073 0.013
(0.082) (0.033) (0.118) (0.016) {0.097) (0.033) (0.140) (0.021)
Brx 0.154 -0.002 -0.126 -0.001
(0.021) (0.007) (0.033) (0.004)
Note: The unit for each variable is percentage point per annum for rrate (real

interest rate), basis point for D/P, percentage point per annum for infn (inflation),

percentage point per annum for IPG (industrial production growth,

seasonally

adjusted). Decile 1 is composed of small stocks from the first decile of size-sorted
portfolios and Decile 10 is composed of large stocks from the last decile of size-sorted
portfolios. We use the value-weighted NYSE index for the market portfolio. The
sample covers the time period from 1952:1 to 1987:12.
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Table 5

idual Cash Flow Beta (RCER) vs. Direct Cash Flow Beta (DCEE

p Cash flow betas  market rate D/Pgy infn IPG
0.991 RCFB 0.759 1.394 0.116 -1.647 -0.330
DCFB 0.614 1.415 0.111 -1.512 -0.274
0.993 RCFB 0.750 1.400 0.118 -1.667 -0.341
DCFB 0.623 1.462 0.110 -1.587 -0.292
0.995 RCFB 0.741 1.407 0.120 -1.690 -0.353
DCFB 0.631 1.514 0.108 -1.672 -0.313
0.997 RCFB 0.730 1.416 0.121 -1.717 -0.366
DCFB 0.641 1.574 0.106 -1.770 -0.337

B. Correlarion | Residual Cash Flow N i Di ~ash Fl

P 0.991 0.993 0.995 0.997

corT. coefficient 0.922 0.926 0.830 C.933

Note: Both cash flow betas are calculated based on a one-lag VAR process for the state
variables. The unit for each variable is percentage point per quarter for the market,
percentage point per annum for rrate(real interest rate), basis point per annum for
D/Pg, Percentage point per annum for infn (inflation), percentage point per annum

for IPG (industrial production growth, seasonally adjusted). In the calculation, we
use p* = p3 instead of p to make adjustment for the use of quarterly data. We use

Quarter]y data covering the time period from 1952:Q1 to 1987:Q4.
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Table 6

Robustness to Specification
(Cash Flow Components of Observable Factor Betas for the Market Portfolio)

Specifications rrate D/Py infn IPG
A N - .

L=5, VAR Lag=1, Qunknown 0.202 -0.015 -0.262 0.014
(same as above, drop 87:10-87:12) 0.210 -0.017 -0.271 0.015
1L=5, VAR Lag=1, Q known 0.202 -0.015 -0.262 0.014
L=5, VAR Lag=2, Q known 0.302 -0.016 -0.354 0.023
B. CAPM _

L=5, VAR Lag=1, Q known 0.231 -0.035 -0.320 0.035
1=5, VAR Lag=2, Q known 0.532 -0.049 -0.713 0.067
C. Unot ble § fel -

1L=5, K=1, VAR Lag=1, Quoknown 0.195 -0.010 -0.258 0.016
L=5. K=1, VAR Lag=1. Q known 0.202 -0.015 -0.262 0.014
1=5, K=1, VAR Lag=2, Q known 0.302 -0.015 -0.355 0.022
D. Ol hle f fel -

L=K=5, VAR Lag=1, Q known 0.202 -0.015 -0.263 0.015
L=K=5, VAR Lag=2, Q known 0.300 -0.017 -0.353 0.023
E x2-statistics f . te] -

1=5, VAR Lag=1, Q known 85.79 df=55 P=0.005 (CAPM)

L=5, VAR Lag=2, Q known 133.68 df=110 P=0.062 (CAPM)

L=5, K=1, VAR Lag=1, Q known 67.06 df=48 P=0.036 (unobservablefactor)
L=5, K=1, VAR Lag=2, Q known 111.53 df=108 P=0.388 (unobscrvablefactor)
L=K=5, VAR Lag=1, Q known 30.85 df=35 P=0668 (obscrvablefactor)
1=K=5, VAR Lag=2, Q known 61.96 df=70 P=0.742 (observablefactor)

Note: I, is the number of state variables in the economy.

K is the number of

systematic factors in the factor model.  is the variance-covariance matrix for
innovations to the economic state variables and unexpected portfolio excess returns.
The statistics in this table are estimated based on excess returns on the twelve
industrial portfolios and the five economic state variables.
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Figure 1: Overall Market Beta and Cash Flow Macket Beta for Industral Portfolios
The horizonial axis shows the mariket bela of an asset's cash fiow news. B4; ;. The
vertical axis shows the asset's overall market beta. Bj i. The solid straight line is the

relationship between the two implied by the CAPM, equation (2.12) in the text:

-1
.Bi,m = (1+£rm,m) (ﬂa&;m - ﬂr,m)-

The figure assumes Bgp =-0.832 and Br.m=0.012. based on estimates calculated for
the period 1952-87. The scalterplot provides the empirical relationship between Pgj
and B; . The dashed line is the regression line for Lhe scatter points.
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Figure 2: Overzll Market Beta and Cash Flow Market Beta for Size Portfolios

The horizontal axis shows the market beta of an asset's cash flow news, Bdi,. The
vertical axis shows the asset’s overall market beta, Bj . The solid straight line is the

relationship belween the two implied by the CAPM, equation (2.12) in the text:
-1
ﬁi,m = (1+ﬁc-m.m) w-ﬁ,m - ﬁr,m)-

The figure assumes Pop m=-0.832 and Br"m-0.0lZ. based on estimates calculated for
the period 1952-87. The scatterplot provides the empirical relationship between Pdim
and B n. The dashed line is the regression line for the scatter poiats.



