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We present a model of industry evolution where the dynamics are driven by a process

of endogenous innovations, followed by subsequent embodiments in physical capital.

Traditionally, the only distinction between R&D and physical investment was one of labeling:

the first process accumulates an intangible stock (knowledge) while the second accumulates

physical capital; both stocks affect output in a symmetric fashion. We argue that the story is

not that simple, and there is more to it than differences in the object of accumulation. Our

model stresses the causal relationship between past R&D expenditures and current

investments in machinery and equipment. This causality pattern, which is supported by the

data, also explains the observed higher volatility of physical investment (relative to R&D

expenditures).
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1. Introduction

Traditionally, economists distinguish between increases in knowledge and

increases in physical capital. tThile such distinction is useful in classifying

the determinants of economic growth (either at the firm level or at the level of

the whole economy), the thesis of this paper is that their interdependence can

fruitfully explain the life—cycle of an industry, i.e., the sequence of events

that occurs between the introduction of a new product and the attainment of a

steady—state. For instance, it can explain the pattern of prices, quantities,

the number of operating firms, the rate of entry and exit, the rate of patenting,

etc. Of particular interest to us here is the relationship between the time

series of R&D expenditures and the time series of physical investments. That is,

the manner in which the two series co—vary over time, and the determinants of

this co—variation.

Empirical investigations of this aspect of industry dynamics exhibit two

salient features. First, it has been shown that past R&D expenditures cause (in

a statistical sense) current investment expenditures. Second, it has been shown

that the volatility of the physical investment series is much higher than its'

R&D counterpart. These findings are mostly derived from firm—level data. See

Ben—Zion (1984), Mairesse and Siu (1984), Cordon, Shankerman and Spady (1986)

Lach and Shankerman (1989), and Hall and Hayashi (1989). Oiven such findings our

aim here is twofold. First, we empirically confirm that the same features

persist at the industry—level as well. Second, we argue that existing

theoretical formulations are not capable of rationalizing such features of

industry dynamics. In their place, we set up a new model where R&D and physical

investments are viewed as vertically linked (see below for details), and where
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the above evolutionary patterns arise quite naturally.

A brief glimpse at the literature might be useful at this point. A variety

of papers use patent—race ideas to explain the persistence of monopoly (Gilbert—

Newbery (1982), Reinganum (1983), Fudenberg—Tirole (1986)), the market structure

as determined by the R&D process (Reinganum (1985), Flaherty (1980)) , the

incentives to invest in R&D as determined by one's position in a Patent race

(Harris and Vickers (1985)), the incentive to invest in R&D as determined by the

market structure (Kamien and Schwartz (1980), Loury (1979)), the discrepancy

between the private and the social incentives to engage in R&D (Loury (1979)),

and many more. All these formulations, however, are purely R&D—theoretic.

Hence, by their very construction, they cannot explain the relationship between

R&D expenditures and physical investments.

At the other end of the spectrum, there is the more measurement—oriented

productivity literature. See the volume edited by Grilichea (1984). This

literature treats knowledge and capital as symmetrical inputs into a common

Neoclassical production function. Hence, it can relate properties of this

production function (eg. substitutability, complementarity, etc.) to the

accumulation paths of R&D and physical investments. This literature, however,

encounters difficultiea in rationalizing a relationship of causality running from

R&D expenditures to physical investments. As mentioned, the formulstion views

knowledge and capital as horizontally related, i.e., as "simultaneous" inputs

into a single production function. Therefore, the two are contemporaneously

determined, not sequentially; so there ia no relationship of causality. A second

difficulty relates to the (empirical) fact that the R&D aeriea ia smoother than

the investment series. Proponenta of the productivity literature are driven to

rationalize this by differential coats of adluatmenta; namely, it must be the



case that R&D expenditures are harder to vary than physical investments. It is

less then clear, however (on a priori grounds at least), whether that is indeed

the case.1 A third difficulty with the productivity literature is that the

formulation ia at the individual—firm level; or, equally restrictively, that

strong aggregation properties are satisfied. Hence, this formulation is not

amenable to industry—level analysis.

Given these difficulties, we suggest a different way of looking at the

relationship between R&D and investments. As in the pstent—race literature we

view R&D aa leading (stochastically) to innovations. The latter, howeve, come

in the form of ideas blueprints, prototypea, etc. So— by themselves—they are not

directly operational. They need to be implemented. That is, new machinery and

equipment which embodies the new ideas must be created and put into place. Dnly

then can one generate a flow of profit. So the basic idea of the formulation is

that investments respond to innovationa,and that the latter occur randomly. We

shall refer to this idea as the implementation (or embodiment) hypothesis.

We embed the implementation hypothesis into an industry context, generating

an equilibrium time—path of entry and exit which settles eventually into a

ateady—state. The nature of the industry's turnover is such that new entrants

introduce technologies superior to incumbents' technologies (in terms of the

unit—costa of production) , thereby replacing them. Each replacement is

associated with investments in physical capital. Hence, the "blipa" in the

investment process. Dn the other hand, R&D expenditures must be maintained at

'Variations in R&D intensity occur via the hiring of more R&D personnel

(i.e., scientists and engineers) and, perhaps, through the purchase of additional
laboratory equipment. Dn the other hand, variations in physical investments
occur via the purchase and installation of new machines, and through the training
of workers to operate them. It is not clear why the marginal cost of the former
should rise more steeply than the latter.
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a steady rate as long as one hopes to generate (eventually) an innovation.

Hence, the relative constancy of the R&D process. So the essence of the

formulation is to create a vertical link between the R&D process and the

implementation—of—innovations process (ie, investments), and to generate

implications concerning their co—evolution. As a by—product of this we also

generate implications concerning the general dynamics of the industry.

In regard to the latter the primary results we report are as follows.

First, entry and exit occur as new innovations arise, and at certain stages they

occur simultaneously. Second, the survivors of this selection process make

(possibly) substantial profits. Third, the R&D process is less volatile than the

investment process. Fourth, prices decline and quantities increase along the

induatry's evolutionary path. Most of these implications match the stylized

facts presented in tort and Klepper (1982), Klepper and Graddy (1990), Mueller

(1986), Ericson and Fakes (1989), and Jovanovic and MacDonald (1990).

Furthermore, as regard the relationship between R&D and investments we present

further empirical evidence to support the model's implications.

The paper is organized as follows. The following section presents basic

statistics on R&D expenditures and capital investments in U.S. manufacturing.

Section 3 sets up the model and defines the equilibrium concept. Section 4

discusses the assumptions required for the existence of such equilibrium and

offers a constructive proof of its existence. Section 5 elaborates on the

implications of the model towards the pattern of entry and exit, prices, sales

and, in particular, the time—path of the investment and R&D series. A brief

summary of the available empirical evidence on these aspects is presented.

Conclusions close the paper.
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2. The Industry Data

This section presents those features of the data that motivate the

theoretical model. The data set extenda over the.period 1958—1983 and over 20

industry groups at the two and three digit level

of the Standard Industrial Clasaification. The 20 industries and their SIC's are

presented in Table 1 (see next page). The R&D data include privately and

federally funded expenditures and comes from the Annual Surveys of Industrial R&D

published by the National Science Foundation. The sales data are the value of

shipments not adjusted for inventory changes while the investment data refers to

new capital spending on structures and equipment. Both sales and investment come

from the Annual Survey of Manufactures, and cover both R&D and non—R&D doers.

All data was converted to 1982 dollars using the DM2 deflator.2

Table 1 presents a succinct summary of the variables of interest: R&D and

investment. The statistics are computed for the 26 years from 1958 till 1983.

It reveals that the more R&D intensive industries, in terms of R&D expenditures

per dollar of sales (R/S), are also the industries with the highest R&D—

Investment (R/I) ratio. These industries are Aircraft and Missiles, Computers

and Electrical Equipment, and Drugs. The correlation between R/S and R/I, across

all industries, is 0.89. What may be surprising is that these industries spent

on R&D than on capital investment. In fact, seven industries spent more

dollars on R&D projects than on plant and equipment over the sample period.

Overall, the manufacturing sector spent 1.4 dollars in R&D per dollar of capital

investment (0.93 dollars excluding the Aircraft and Missiles). For company

financed R&D, this ratio is halved because of the important role played by

2We thank Sam Kortum for kindly providing the data set. A thorough
explanation of the data is provided in Kortum (1990).
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federally supported R&D in the Aircraft and Missiles industry. R/I declines to

0.69 (0.63 excluding Aircraft and Missiles). After 1974, there is a slight

decrease in this ratio to 1.15, but it is still higher than unity (0.77 excluding

Aircraft and Missiles).

Table 1: IR8010RO AVERA011, 0.3. MA5OPROTORING 1958—1983

INIISTR8 RIO R&8 Inceet R68 mccct R6l/ e&0/
Growth Growth Invest balee
Rate Rate

1. Food and Kindred Products 20 532.47 5056.27 0.04 0.03 18.47 0.21

2. Tsnttle & Apparel 22,23 124.28 2309.17 0.01 0.03 5.63 0.11

3. Lorther & Furniture 24,25 102.00 2113.86 0.07 0.02 4.01 0.15

4. Paper 26 385.34 3734.30 0.85 0.04 10.24 0.58

8. Industrial cheninale 281—282,286 2480.73 5202.95 0.02 0.83 52.33 4.03

6. Druge 283 1298.61 674.22 0.07 0.08 188.48 7.28

7. Othen chenioals 284—285,287—289 634.96 1657.56 0.03 0.04 42.83 1.34

8. Petnolsom Refining & rotc. 29,23 1261.38 2957.50 0.04 0.05 47.80 1.48

9. Robber & Plastics 30 638.55 1910.65 0.04 0.04 34.96 1.53

lO.Stnee, clay & Glass 32 384.32 2369.17 0.03 0.01 16.66 0.66

11.Pniceny Metals 33 691.39 5636.23 8.83 0.00 02.40 0.55

12. Fabninated Metale 34 529.62 3132.16 0.02 0.03 16.18 0.50

l3.offins conpoting 357 3110.39 998.94 0.05 0.10 408.19 11.61

14.006cc Nonelsot. 351—356, 366—369 0574.19 4034.01 0.13 0.04 42.65 1.30

15.Cocanonin.& Elect. Egoip. 366—367 5784.73 2239.72 0.03 0.07 311.18 22.06

16.Other Elect. 361—365, 368—369 3778.62 1662.90 0.00 0.04 255.73 6.12

57.Tracs. Equip. 371, 373—375, 379 4217.99 3676.22 0.03 0.05 127.78 2.92

0s.Airocaft 6 Misoiles 372, 376 12276.03 1390.46 0.01 0.03 0042.26 21.66

1g.fnstrosects 36 1982.76 2179.42 0.06 0.06 065.83 5.53

20.Othsr Macofactoring 21,27,31,39 326.91 3169.22 0.01 0.03 10.61 0.26

ALL 2106.13 2774.66 0.03 0.04 140.44 4.22

Notes, Millooca of 1982 dollars.
— 3 year coving aceragee.
— In pcrcsntage terce.

Over the sample petiod, the leading industty in tens of the level of R&D

expenditures is Aircraft and Missiles. Its' mean R&D, 12 billion 1982 dollars

per year, is about twice the mean R&D level of the second largest industry, the
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Communication and Electrical Equipment industry. It is not, however, the largest

growing industry. Anong the industries increasing their annual expenditures on

R&D by 5 percent or more we find some surprises such as Paper along with Drugs,

Scientific Instruments, and Office Computing.3 Computers is also the industry

that is investing in plants and equipment at a much faster pace than the rest,

10 percent yearly, followed by the Communication and Electrical Equipment

industry (7 percent yearly).

Over all industries end over the whole period l95g—1983, the levels of R&D

and investment do not differ much. However, these are not evenly distributed

across industries. R&D expenditures are as high (or even higher) than capital

expenditures in most high—tech industries while considerable less so in

traditional sectors. The inescapable conclusion is chat, compared to capital

investment, R&D is certainly not a negligible activity in the US manufacturing

sector.

It is well known that investment at the aggregate level is very volatile

relative to other aggregates such as ON? and consumption. The same is true

within the U.S. manufacturing sector. Table 2 shows that the investment's

volatility, as measured by the standard deviation of its 3 year moving average

growth rate, is higher than R&D's in all but two industries. The same

relationship holds in levels: the coefficient of variation of investment is

higher than that of sales in 19 industrial groupings, and higher than that of R&D

in 16.'

31n 1970 the Lumber end Furniture industry experienced an almost 200 percent
increase in its R&D expenditures, from 18 to 52 million (nominal) dollars, which
is responsible for the reported 7 percent annual increase in R&D.

'The almost 200 percent increase in R&D expenditures experienced by the
Lumber and Furniture industry in 1970 is responsible for the large variability
of R&D over time. The coefficient of variation up to 1969 is 17.6 (against 20.2
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Table 2: VOLOTILITO STOTIST000. 0.5. ?6003FOCT001NG 1911—1913

R&0 Invest lalee Iovest R&0

Growth Rate Growth Rate
ITT ITT TV TV TV

0. food and oindred Produote

2. textile & hpparel

3. Lumber & Furniture

4. Papal

V. loduetnoel Tteoioa he

6. Drags

7. Other oheohools

8. Petroleoo ReTiniog & Ootr

9. butter & Plaetioe

l0.Otote, Clay & glees

10. Primary eetels

12. Fotninated eatels

13.Offioe computing

14.other noneleot.

1S.Toeiounin.& Eleot. Equip.

lITtler Eleot.

17. Trans. Equip.

16.hiroraft & deco lee

29. Instruments

21.Othor eanuf 000unoog

0.03 0.03 0.24 0.22 0.27
0.06 0.00 0.09 0.21 0.11
0.23 0.09 0.23 0.32 0.62
0.09 0.09 0.20 0.33 0.37
0.04 0.10 0.32 0.33 3.23
0.02 0.06 0.30 0.42 0.50
0.07 0.10 0.24 0.39 0.22
0.05 0.11 0.62 0.46 0.29
0.05 0.09 0.29 0.34 0.28
0.02 0.09 0.05 0.23 0.21
0.04 0.11 0.29 0.24 0.22
0.03 0.06 0.20 0.29 0.25
0.03 0.12 0.52 0.79 0.40
0.04 0.03 0.27 0.40 0.28
0.06 0.00 0.32 0.59 0.21
0.04 0.09 0.07 0.33 0.07
0.04 0.04 0.22 0.53 0.23
0.07 0.20 0.05 0.46 0.09
0.06 0.00 0.33 0.42 0.50
0.10 0.05 0.12 0.26 0.26

Notes, Standard deohotcon of 3 pear 000109 averages grout I ratee.
— Coeffarheot of Vsroathuo of the heoel oS the rerioble foot in loge) Obsreodsrd Deutetine loose.

Perhaps the easier way to form an impression of the data is to plot the

investment end R&D series against time. Figure 1 presents such plots for all 20

industries. The variables being plotted are 3 year moving averages of the growth

rates of investment and R&D to smooth out business cycle and size effetts.

Visual inspeotion indicates an investment series which is much more volatile

than the R&D series in almost all industries.

for investment), and after 1971 it is 11.5 (against 19.3 for investment).
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These plots cepture the variability of the series over time. Cross—

sectional variances are also informative since they neutralize cyclical

fluctuations and other macroeconomics events3. As can be seen in Figure 2, the

cross—sectional variances of the R&D and investment growth rates obey the seine

relationship. Figure 2 also indicatea that these variances remain, by and large,

stationary over time.'

I
>

Figure 2

3The total variances of R&D and capital investment growth rates are O.0D85
and O.D350 respectively. The within—year (cross—sectional) variances account for
91 and 73 percent of them. In the other dimension, the within—industry variances
eccount for 96 and 99 percent of the variances of R&D and investment growth
rates.

'The outlier in the R&D variance is caused by the Lumber and Furniture

industry. Deleting this industry decreases the 197D variance form D.053 to
0.0078. The first two outliers in the investment variance are due to the 90
percent increase in investment in 1959 and the subsequent 120 percent decrease
in the Aircraft and Missiles industry. Deleting this industry decreases the 1959
and 1960 variances form 0.89 to 0.052 and to 0.028, respectively.

Figure 2: Cross.Sectional Variances of Growth Rates

Thi vwtwn ol m,1 ed we not uho.et They .q.S anol, beth yen.
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Finally, thaae featurea are not excluaive to induatry—level data. Lath and

Schankarman (1989) report a similar volatility pattern at the firm—level in

science—based industries. In their aample of 191 firma, the sample variante of

the logarithm of investment is 2.3 times higher than the sample variance of the

logarithm of R&D expenditures, all variables measured as deviations from firms'

means. The corresponding result for growth rates is 5.1 times. For only seven

of the 191 firms is the ranking of these variances reversed. Similar results

have been observed in other aamples (Mairesse and Siu, (1984)).

In the next two sections we suggest a theoretical model which generates

this excess volatility of investments. We then empirically verify the hypothesis

underlying the model; namely, the causality relationship between R&D and

investments.

3. The Model

3.1 An Informal Descriytion of the Model

We analyze the dynamics of an industry in which a single, homogenous

product is traded. Demand is constant7 and the resulting dynamics are generated

by an endogenous process of technological improvements being introduced into the

industry by successive generations of firms. These improvements are such that

the costs of production (both fixed and variable) are monotonically reduced over

time .

Technological improvements occur as a result of investments in R&D. The

effect of these investments is to determine the distribution of the success date,

i.e., the random date at which the R&D project is successfully completed end a

7For a formulation based on the uncertainty of demand see Rob (1991).

8For a related formulation see Aghion and Howitt (1990) , who treat the
• successive monopoly case (as opposed to the olizoooly formulation here) . Their
model abstracts from capital—theoretic issues.
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new innovation appears on the scene, ready to be implemented. The act of

innovation is taken by an "R&D specialist firm", who then patents the new

technology and sells it to a lone implementor in the production sector. The

implementor acquires and installs machines, starting production and selling his

output in a product—market where he competes with previous implementors (and

future ones as they enter the market). New innovations are assumed to be always

sold to entrants, not to incumbent producers. This reflects some diaeconomy

in operating with multiple technologies. (The source of auch diaeconomies is not

an integral part of the formulation).

To an outside observer the dynamics of the industry are as follows. At any

given point in time the set of firms who potentially partake in the product

market is historically given (those are the firms who had implemented the new

technologies in the past). The product market is a Cournot oligopoly. The

equilibrium outcome in it determines a market price, individual quantities, and

a set of active producers, i.e., those with unit variable cost of production

below the market price. As time progresses further innovations appear on the

scene, and are implemented by newcomers. This reduces the market price and may

trigger the exit of additional firma. This process of innovation, entry and

induced exit takes place during the industry's growth phase. Eventually, given

a fixed demand function, the technologies that are already in existence are so

advanced, that the introduction of newer technologies is no longer profitable.

New entry and R&D activity both cease at that point and the industry reaches a

steady—state. The purpose of the model is to characterize the evolution of the

endogenous data along such path.
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3.2 Setting up the Model

A. The R&D Sector

Time is continuous, end is indexed by te[O,). The per—period interest

rate is r>O. Demand is linear,

P — D(Q) — l—Q, (1.1)

where Q is industry output and P is the price paid by consumers. Demand is

assumed to be constant over time, and consumers are assumed to behave

non—strategically.

At t—O, no firms are active in the market. Entry takes place at discrete

points of time: at t1>O the first firm enters; at t1+t2 the second enters, and

so on. Entry is always associated with the discovery of a new technology (an

innovation or, more generally, a new idea). Hence, t represents the length of
i 11

the it "discovery period". The time interval is referred

to as "stage i'.

When a firm enters, say firm i at E tj it implements a new technology.

It does so by choosing a capacity level K1 and paying mK dollars (up front).

A unit of capacity is interpreted as the ability to produce one unit of output

per—period, forever. We assume that capacity does not depreciate (alternatively,

the cost of maintaining "machines" is included already in the variable cost) and

that it can be increased later on (although this does not happen in equilibrium).

Capacity cannot be liquidated, i.e. , a firm cannot recover the historical cost,

by selling capacity. The extent to which capacity is utilized in

subsequent periods is endogenous (see below).

The technology introduced at is such that the per—unit capacity

cost is mj�O, whereas the per—unit variable cost is Initially, we only

assume that technological progress is characterized by:



13

> m2 >

(1.2)
c1 > C2 >

Further restriction on the sequences Cc1) 7..1 {m1}7_1 are imposed below

so as to limit the range of equilibrium outcomes to those that are empirically

relevant (see aection 3,2), These sequences are exogenously fixed. Thus, the

only uncertainty in the model stems from the fact that the sequence of discovery

dates of new technologies, {t1)7_1, is not known in advance (see Aghion and

Howitt (1990)).

The length of a typical discovery period, t, is stochastic and its

distribution depends upon R&D expenditures during stage i—l. We denote these

expenditures by 0 � xj..1 C , and consider a monopolistic (innovation) "producer"

who chooses x1 to maximize her profit. The R&D sector is monopolized as a

consequence, perhaps, of large fixed costs which turn this sector into a natural

monopoly. The variable xj is a flow variable that generates an instantaneous

probability of discovery at instant t, given no discovery up to t, equal to:

h(x1) (1.3)

Thus, the production technology in the R&D sector is memoryless in a broad

sense: the probability of immediate success, given no success up to now, depends

only on the current level of x and not on its past values nor on the type of

discovety one is aiming for, This aspect of the R&D technology is standard in

the patent—rate literature, and is represented by an exponential distribution

function:

Pr(�tjx) — l_e))t (1.4)

where E is a (random) discovery date and x is a flow of R&D expenditures.

The following restrictions are placed on h():

h' (')>O, h"(•)<0, h(0)—0, h' (0)<'o (1.5)
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Once a discovery comes about, it is sold to a firm which then enters into

the product market, implementing the new technology. The price at which the

discovery, or patent, is sold is denoted by V. V reflects the discounted value

of future profits to the new entrant; this value is endogenous (see below). The

net (of R&D expenditures) payoff to the monopolist who expends x dollars per unit

time and expects to obtain V dollars upon discovery is:

R(x;tl = f[Ve - xfe th]h(x)etdt = (1.6)

Maximizing the monopolist's payoff, the following first—order condition is

derived:

[Ii' (x)V—l] [r+h(x) J = h' (x) [h(x)V—x] (1.7)

Denote the (unique) x which solves this equation by x*(V). The following

propertiea are straightforwardly derived:

x'(V) > Oif and onlyifV>Ie h'(D) (1.8)

and

= —h'(x)r > D . (1.9)dv hL(x) [x+Vr]

Note that V can never exceed l/4r, which is the monopoly profit under the

demand curve (1.1), assuming zero cost of production (c—m—D). Thus, (1.9)

implies the existence of maximal R&D expenditures denoted by , and a maximal

value for the hazard rate of diacovery, denoted by H. We summarize this in:
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V� ye -1-, (1.10)
41

Finally, we assume that the industry is viable. That is, that profits to

the first implementator under the best scenario possible (i.e., when she

maintains a monopolistic position forever) are large enough to justify initial

R&D expenditure. This is ensured by:

.

[+c1÷rnr
—

(ci+mir)]
>2. (1.11)

B. The Product Market

The product market is modelled as a Cournot oligopoly, quantities being the

strategic variables. Consider a point in time, , at which firm i is to

make a capacity decision (K1), implementing the itl technology, (cj,mj). At that

point an asymmetry arises: firm i must pay capacity costs (mjK), whereas

incumbent firma need not. This asymmetry is based on the presumption that firm

i's predecessors, firms i—l 1, are already in the market, and are planning

to produce from this point onwards 1QM their pre—installed capacity. In

section 3.2 we impose sufficient conditions on the fundamentals of the model to

ensure that this presumption is indeed verified.

Denote the quantities produced by different vintage firms during stage

i by q'cK, l�j<i, and q11—K1. Hence, one can dispense with the variable 1(1,

identifying it with qjj.

R&D expenditures during stage i, xj, are determined by the monopolistic R&D
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sector and are independent of what occurs in the industry during that atage.9

Hence, each firm takes Xj, and its implications on the length of stage i, as

exogenoualy fixed. Firm i's objective then is co maximize:

jji,[s_cLk_cJ]e"dt
h(x) en1tdt —

(2.1)

q11
=

r+h(x1)
—

whereas firm j'a objective is to maximize:

ii[i- i,s_ci]
(2.2)

-1

r+h(x1)

Expressions (2.1) and (2.2) describe the expected discounted profits during

stage i. Discounting is taken with respect to the factor e" whereas

expectations are taken with reepect to the length of stage i which, as indicated

above, is exponentially distributed with parameter h(x). To abbreviate, we

shall use the notation h — h(x1).

The Cournot equilibrium of the game defined by the above objective

functions is as follows. There exists an integer L, O�L<i, denoting the "last

firm to exit", such that:

The monopolist only cares about the price, V11, at which she sells the

forthcoming patent. This price depends only on the industry's evolution from

onwards, and not on the industry's evolution from outcomes of prior

stages. These assertions are substantiated in the proposition below.
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l+c1+m1(r+h1) + C, (2.3)
=

i—L1l
£

where P denotes the equilibrium product price during stage i. And,

C1 + m1(r+h1) c1 ( P1 < CL4. (2.4)

These inequalities reflect the idea that firm L1 and all its predecessors have

exited, their variable costs being above the product price, while firm L4+l and

all its successors are active producers. Hence, condition (2.4) describes the

pattern of gçj from the industry. Next,

o j=1,2, . . 211

L11�j<i (2.5)
P1—(c1+m1(r+h4)] ji
o j>i

describes the (Cournot—equilibrium) quantities produced by the

various firms at the various stages. And,

$ (2.6)

describes the fl profits to each firm at each stage.

C. The Equilibrium Concept

Using the above notation we may write firm i's discounted profit as

follows:

(2.7)£ ,. r+h 4

The terms in the above expression(s) represent firm i's profit over the
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different stages of its life—cycle — discounted to its point of inception i.e.

to t V represents the (stock market) value of firm i once its optimal

capacity, qjj, is installed and paid for. Assuming perfect competition among

potential buyers of patent i, V is the price at which patent i is sold to a new

entrant.

We can now introduce an equilibrium concept, reflecting the

interdependencies among the three economic activities in the model; nsmely, R&D,

physical investments and per—period production. Therefore, the equilibrium is

such that the levels of these activities are simultaneously determined.

Definition: An equilibrium consists of sequences

(v) , (x1, h1) , (PJ) , (L1) , (ci,j) . (.i) )L-
so that the following requirements hold:

h1 — h(x)
— x*(Vj.i)

P satisfies (2.3)

L satisfies (2.4)

qjj satisfies (2.5)

irj satisfies (2.6)

and V1 satisfies (2.7), i,j — 1,2

The first two requirements in the above definition reflect maximization in

the R&D sector, the next four reflect equilibrium in physical investments and in

the product market, whereas the lest requirement links together the various

variables in the model.



19

4. Analysis

In this section we construct sn equilibrium, proving thereby its existence.

The construction hinges on several assumptions, the effect of which is to

restrict the values of the model's parameters to lie within certain regions. The

following remarks briefly explain the purpose of these assumptions. They also

suggest the type of industries where these assumptions are likely to be

satisfied.

The reason for introducing additional restrictions lies in the existence

of externalities (or "spillovers") in the R&D sector. These externalities are

due to the fact that in doing R&D one is building on the base of knowledge

created by one's predecessors, but one is not remunerating those predecessors.

As a consequence, the incentives to engage in R&D are blunted, which may result

in a degenerate equilibrium , i.e. , in a situation in which the industry never

opens. This possibility is illustrated by a simple example contained in the

appendix. Thus, without any parametric restrictions, the theoretical possibility

arises where an evolutionary growth—path is either "abrupt" or simply non-

existent.

On the other hand, common sense and the data we report below suggests the

existence of "diffused" growth paths; in fact, the essence of our empirical

findings is to verify the behavior of certain variables jsjjg such time—paths.

Accordingly, the restrictions stated in the proposition below limit the

theoretical scope of equilibrium configurations. They do this by placing a

limit on the effect of R&D spillovers, which guarantees that the private return

to R&D is sufficiently high. Thereby, activity in the R&D sector is not stifled,

and the industry's growth path is diffused, not abrupt.

A special case of production processes which satisfies the set of
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assumptions stated below is where (a) technical progress affects primarily the

canital component of production, i.e., where Thj is reduced much faster than cj;

and where (b) the capital component accounts for the bulk of production expenses,

i.e., where mjr>>cj.10 (Clearly, these two conditions are not independent: R&D

efforts are likely to be concentrated on the costlier component of production).

Cese (a) is specially appealing given the extraordinarily rapid pace of advance

in electronics process technology. As Rosenberg and Steinmuller (1982, page 181)

put it: "New IC (integrated —circuit) products tend initially to be both more

expensive and of higher performance. But, subsequently, the price of these

higher—performance devices falls so that the all important cost per unit of

performance dramatically declines as each new product reaches the mature stage

of the product cycle".1' In particular, the costs associated with

computerization of production and administrative systems has been greatly

reduced.12 Case (b) is characteristic of industries such as drugs, chemicals,

transportation, plastics, and machinery where the process of production requires

investments in heavy equipment.

Pronosition:

Assume that for all i�2:

(i) cj + mjr > c0..1

10 The most extreme case of this is where cs—c, and m0r>c, for all i.

In the same article the authors quote from A. Osborne's book (Running
Wild — The Next Industrial Revolution): ". . . a ticket for a Concorde flight would
have to cost less than a penny if it were to compare with the rate at which
microelectronics has gotten cheaper".

12 For example, the decline in the real price of personal computers,
adjusted for quality improvements, is estimated to be around 25 percent annually

during the 1980's (see Berndt and Griliches (1990)).
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(ii) c1_1 — c1 < s, where t is defined below

(iii) c1 <

(iv) rs1(r+E) � (j+]j(j+2)
(v) For every i, there exists a fl so that:

l+rs1r+c+.
C5 > . ) c1+m1r121+1

Then there exists an equilibrium where each firm produces below its

preinstalled capacity in all stages except for the stage at which it first enters

into the market.

f: The proof is simple, but long. We relegate it to appendix A.

Remarks: 1. The special case alluded to above is where cj—c, where mjr>c

and where only condition (iv) is required to hold. As one can verify, all other

restrictions are automatically satisfied in this case.

2. Condition (iv) states that innovations are sufficiently

drastic (see Arrow (1962) for the origins of this condition), i.e., that mj

diminishes rapidly enough. This condition enaurea the profitability of new

entrants and, at the same time, it ensures that incumbents are producing below

their preinstalled capacity.

5. Implications and Empirical Results

5.1 Industry Dynamics

The construction and analysis of the model point towards an industry that,

along its equilibrium path, sees its number of firms increase at first, followed
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by simultaneous entry and exit. Total industry output increases and prices

decline. Nevertheless, each firm, leaders end incumbents alike, produces less

output and has lower current profit as time goes on. Furthermore, in the special

case (see remark 1 above) where cj—c additional monotonicity properties hold:

prices decline end total output increases at a declininz rate; the stock market

values of entering fins, V1, and the rate of technological improvements, h1,

both decrease over time.

Broadly speaking, these implications seem to be confirmed by the data

presented in such studies as Gort and Klepper (1982) and Klepper and Graddy

(1990). They analyze the evolution of 46 new products, which include consumer

and producer goods, from the date of initial commercial introduction of the

product through 1972. Among their many interesting observations, the ones

relevant to the present paper are the following. Initially, the number of fins

in the industry grows but, later on, industries experience a period in which

there is a decline in the number of producers. This shakeout stage is followed

by a stabilization in the number of firms. All along, there is a continuous

process of gross entry into and gross exit from industry. During both the growth

and the shakeout stages total industry output grows and price declines at a

decreasing percentage rate. During the stage in which the number of firms

stabilizes, the output grows and price falls at a constant percentage rate.

Furthermore, data on counts of innovations suggest the "major innovations"

occurring during the early stages of development of new product industries are

of greater importance than those occurring later. This data, however, do not

indicate a decline in the number of innovations over time; it seems to remain
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constant.13 Finally, and most relevant to the model in this paper, there

appears to be sn association between rises and declines in the rate of innovation

and the rate of entry into new markets. Cort and Klepper interpret the causal

relation as being positive, and flowing primarily from innovations to entry rates

during the period of positive net entry.

5.2 Investment and R&D

A central point of this paper is that each time a new discovery is made it

generates a new burst of economic activity: entry and exit, additional

investment and output. But, discoveries or innovations are D exogenous to the

economy. Rather, they represent the uncertain outcomes of R&D activity. These

outcomes, in turn, partly depend on the investments in R&D done by the firms.

This ressoning establishes a causal nexus between R&D expenditures on the one

hand and measures of economic activity on the other.

Lach and Schankerman (1989) present empirical evidence on this issue in

their analysis of a panel of large firms in the high—tech sector of U.S.

msnufscturing during the 1970's. They find that R&D expenditures Granger csuse

investment in physical cspitsl and the other way around. Here we extend

these findings to the industry—level case, using the same dsts set described in

section 2.

A word of caution is in order regarding the empirical results. To properly

test the implications of the theoretical model we would ideally like to know the

13 Their patent data indicates an increase over time in the rate of
patenting but it is well known that the patent series have s lot of noise and,
as the authors conclude, are not s good messure of the rate of technological
change. On the other hand, Kortum (1990) finds a large decline in patents per
R&D during the period 1958—1983 in all of his 20 industrial groups (2—3 digit
level). This decline is caused by reduction in the sbsolute number of patents
granted to the industries.
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timing of the innovations. This knowledge would enable us to compute the

"correct" changes in investment and R&D as well as guide us in the analysis of

the causality pattern. Needless to say, the industry level data do not provide

this kind of information.14 In addition, the observed data reflects the

effects of many fsctors which were ignored in the theoretical model such as the

(artificial) distinction between R&D doers and producers, business cycles effects

and the impact of an evolving market size. Some of these issues have been taken

care of in the empirical work, albeit in an sd—hoc fsshion. The results are,

therefore, meant to be suggestive and conducive to future research. The paper by

Lach (1992) deals more systematically with these issues.

Table 3 presents the regression coefficients and, in the lower panel, the

results of the tests for the direction of Granger causality. The first two

columns present the results of OLS regressions of investment and R&D on 3 lags

of both variables. The joint test for the absence of all three or the first two

lags of R&D in the investment equation is strongly rejected. Conversely, the

point estimates of the parameters of lagged investment in the R&D equation are

very close to zero, and the hypothesis of no effect of past investment on R&D

cannot be rejected. Columns 3 and 4 report similar regressions when, in addition

to lagged R&D and investment, lagged sales are added to esch equation. The

estimates do not appear to change much because of these additions. Finally, the

last two columns perform the ceuselity tests on the growth rates of R&D end

investment yielding similar results.

'4This ideal situation could probably be well approximated by "case—study"
type of data sets and, in particular, case—studies of those firms which are
involved in big R&D projects. An example may be the data set of the Bell System

analyzed in Gordon, Schankerman, and Spady (1986).



Table 3: CAUSALITY TESTS. U.S. MANUFACTURING, 1958—l983

I R I R 51b 81b
(1) (2) (3) (4) (5) (6)

I_ 0.92 0.01 0.78 —0.03 0.06 0.02
0.06 0.02 0.07 0.03 0.06 0.02

—0.15 0.00 —0.12 0.01 —0.17 —0.00
0.08 0.03 0.08 0.03 0.08 0.02

I_3 0.02 —0.00 0.04 0.00 —0.05 —0.00
0.03 0.03 0.05 0.03 0.08 0.02

0.28 0.96 0.21 0.94 0.24 0.05
0.07 0.08 0.06 0.09 0.08 0.08

R_.2 —.021 0.11 —0.14 0.12 0.02 0.13
0.09 0.10 0.08 0.15 0.08 0.11

—0.03 —0.21 —0.03 —0.20 —0.06 —0.11
0.07 0.11 0.07 0.11 0.07 0.05

0.64 0.16
0.19 0.06

—0.37 —0.07
0.20 0.06

5_3 —0.13 —0.04
0.13 0.03

N 460 460 460 460 440 440

Adj. R2 0.96 0.99 0.96 0.99 0.34 0.06

Serial
Correlation0 0.01 0.10 0.01 0.11 0.12 0.05

(p—value)

PROBABILITY VALUES OF CAUSALITY TESTSd

I

(1)

R
(2)

I
(3)

R
(4)

g
(5)

g'
(6)

H0

R.1—L2—R..3—0 0.001 0.013 0.029

R..1—R..2—0 0.000 0.005 0.012

I_—I_—I_—0 0.826 0.755 0.938

I_I..0 0.725 0.566 0.852

Industry and year dummies are included in all regressions. Heteroskedastic
consistent standard errors appear at the bottom line of each entry.

b Growth rates are regressed on lagged growth rates, not on lagged levels.
C Probability values of UI test for first order serial correlation.

H0 is rejected at the a percent significance level whenever the p—value is less than

o/100.
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The picture that emerges is that past R&D matters in the investment

equation but past investment does not affect current R&D. Or, R&D Granger—causes

investment but investment does not (Orsnger) cause R&D. These results support

the assumption that lies behind the theoretical model and is consistent with

similar results found at firm—level data.

Another manifestation of the causal relationship between R&D and investment

in physical capital is that it provides an alternative explanation for the higher

volatility of the investment time series relative to that of the R&D time series,

es par the evidence presented in section 2. This empirical observation is also

implied by our model of industry dynamics with respect to investment and R&D

expenditures at the industry level.

The equilibrium of our model is characterized by both the R&D and physical

capital series declining over time. However, the former is a smooth series with

downward .tfD1 at discrete points in time, while the latter consists of soikes

at the same points in time, also declining in magnitude over time — see Figure

Figure 3

R&D Investments

K1

I; 1<2

K3

ti t2 t3 t ti t2 t3 t
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This pattern is a result of the distinct nature of investment in knowledge

(R&D) and investment in physical capital. The latter responds to the realized

values of the R&D process, i.e. to ideas for new products or production

processes, and comes about in the form of additional purchases of new equipment

and structures necessary for their implementation, i.e., additional capital

investment. On the other hand, the response of R&D resources to R&D outcomes is

of a different nature. In cases where the distribution of R&D outcomes or

completion times are known with certainty, as in our model, observed values of

the R&D process do not provide additional information to the firm and, therefore,

do not affect subsequent R&D investments. Hence, there is no variability of the

R&D series on this account.15 In other cases, the firm will update its prior

beliefs on the distribution of R&D outcomes or completion times using the

realized values of the R&D process. In general, though, it seems reasonable to

expect R&D's response to R&D's observed outcomes to be much smoother than the

response of physical investment; the channels by which these responses are

elicited being of a different nature for each type of investment.'6

In sum, the theoretical model explicitly posits a causality pattern between

the two investment activities, from R&D to physical capital investment. Such

pattern, coupled with the uncertainty in the timing of the innovations, implies

a more volatile capital expenditures series at the industry level. The model's

implications on causality and volatility are consistent with the data.

'5Of course, both types of investment respond to market conditions; probably
in different ways.

16 For an alternative explanation of the excess variability of investment
relative to R&D see Hall and Hayashi (1989).
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6. Conclusions

It is widely accepted that the arrival of innovations is one of the key

determinants of industrial growth (see Schumpeter (1939) or Nelson and Winter

(1982)). Innovations act like a trigger that sets in motion a set of activities

such as entry into and exit from the industry, new investments, and changes in

the levels of production. It is slso accepted that these innovations are not

exogenous to the economy. Rather, they are the fruit of a continuous process of

investment in research and development performed by profit maximizing firms.

This paper presents a simple model of industry growth that captures this

scenario. It emphasizes the causal relationship between expenditures in R&D, its

output in the form of inventions, and subsequent expenditures necessary for the

implementation of such inventions, such as the acquisition of new machinery and

equipment, i.e., capital investment. The implications of the model regarding the

evolution of the endogenous variables (output and prices, entry and exit rates)

are consistent with the empirical observations of Cort and Klepper (1982) and

Klepper and Craddy (1990). The model also predicts that, along the equilibrium

path, capital investment exhibits greater variability than R&D expenditures.

Data on twenty U.S. manufacturing industries for the period 1958—1983 confirm

this prediction. Regression results indicate that, as assumed in the model, R&D

(Cranger) causes capital investment and not the other way around.
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Appendix

A. Proof of Proposition: Denote the middle term in condition

(v) by Zj, and note that

1+m1r+c1+. . .+C1 (3.1)
i1

where c — lim cj. The left hand inequality follows from the fact
i4"

that z1 is an arithmetic average of terms that are greater than c, while the

right hand inequality follows from the fact that

1+m1r+c1+. . .c = 1+m1r+c1+. . i—j+i + cj1. . . c1 j1 (3.2)

f+i .i—jj+1 i1 j1 1+1'

and from the definition of ii which implies

1+m1r+c1+. .+c1,1 (3.3)
ii i—j11

Now, the right hand side of (3.1) converges to c (as a Cesaro average of

a sequence that converges to ce). Thus, lim (z—[c+mr]) — 0. Hence, there
i-.w

exists an N such that:

V5
[z5—(c5+m5r)]2

> (3.4)

whereas for all n>N:

(z,,—(c,,+m,,r)]2 (3.5)

From (1.11) it follows that N�2.

We shall now use "backwards construction" to exhibit sn equilibrium where

firm N is the last to enter. Thus, stage N corresponds to the industry's

"steady—state", its length being infinite (i.e., xrhro). The product price

during thst stage is Przs>cs+rm,,. Thus, firm N is profitable. Furthermore, firm

N's value, V5 is sufficiently large (i.e. V5�3() to induce R&D effort leading to
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the Nth discovery. Note siso, from condition (i), that firm N—i is profitabie

during stage N, i.e., c5_1<c5+m5rcP5 and q5,5_1>q5,5 (this presumes, though, that

firm N—i has preinstaiied capacity, a presumption which we now confirm).

Define x5_1 as the maximizer of R(x,V5), and iet h5_1—h(x5_1). Consider the

(N—i) stage oiigopoiy, the set of potantiai producers in it being (i,2,...N—i).

Let the set of actual producers he (m N—i), with cardinality k(—N—m). Then

= . . ÷cJ,1+m51(r+hJ1)
(3.6)N1 k÷l

whereas,

l+c+. . .+cJQ1+c7f+mJfr1z (3.7)k2

The term on the right hand side of (3.7) presumes that no firm drops out

between stages N—i and N; since dropouts are always by inefficient firms, their

effect is to jgjg prices. Hence, the right hand side is indeed en upper bound

on stage N price. Combining (3.6) and (3.7) we have:

p -p 1+0+.. .+c51+m1(r+h,) - l+Cm+ .

J&1 N ki-l k2
1+c+. . .+cff1—(k+l)cN+mN_l(r+h51) ( h

(k+l) (k+2)
I N-i

where the iast inequaiity foilows from the fact that c, 0s.z�cs, from

condition (iii) which implies c5.1+m5..1(r+h5) � 2c, and from condition (iv).

Hence firm N—i is profitable during stage N—i, i.e. , P5..1 > c5_1+m5_1(r+h5_1)

(as remarked above, it is profitable during stage N; and stage N—i price is

higher than stage N price by more than its capacity insteiiment cost, m5_1(r+h5_

.) Furthermore, qM,)( < q5,5_1 <

Let us now verify that firm N—i's vaiue, V5..1, is iarge enough to induce

R&D expenditures aimed at attaining the (N—i)tt' innovation, i.e., let us verify

that V5_1 � . By (2.7) above:



33

= Q-i,a-i + QLN-i h,1 = r Q'-i,N-i + h..1 > - v .vN-i i+JiNi r p;ii— - N

since, as we have already remarked, q5_15_1,cs,w-i > q5,5. Given V5_1 we define

x5_2x(V5..) and h52h(x5_2).

We now turn to the stage N—2 oligopoly where we must again verify: (a) that

firm N—2 is profitable, c5_2+m5.2(r+h5_2) C P5z and (b) that firm N—2's value

justifies its R&D expenditures, V5_2 �

The proof of the first claim is completely analogous to firm (N—l)'a case,

so it will not be repeated. As to the second claim we have:

r cZ-2,w-2 + ________________ Q-i,N-a +N-i x+h53 r (r.h52) (r+h1) r

+ h52h_1 QN-i
(r+h2) (r+h1) r

This convex combination is such that q5252 > q5-1,5-2 > q5-1,5-1, whereas for

sufficiently small E>O (Note that:

I q5N-2 — N.N-1 I I P5—c2- (P5-c51) I I C510N2 H

c1—c5_2 I<t_&!:2 _3&i(g...v �I(orevenV as' )

This proceaa can be continued all the way to firm 1, yielding the c>O

stated in the proposition. The proof is complete.
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B. An example where R&D soillovers are sufficiently strong to cause a degenerate

eouilibrium.

Welet m1—m2—...—O, c1—O.6, c2—c3—...—O, r—O.l, and h'(O)—l

(eg, h(x) —

Then c1 > c2 + m2r. Thus, the second stage entrant monopolizes the

industry, her discounted profit being V2 ...
a 2.5. This satisfies

V2 > .... — 1, as per (1.8) above. Hence, there is an incentive to create the

second innovation. The intensity of R&D leading to that innovation, ie, x2, is

datarminad from (1.7):

(4 +x)h'(x) -r+h(x) (1.7')

Denote the solution to this by x2, and let h2 — h(x2) > 0.

The prize facing the first innovator is then

V ,lc1 1 <04
1. \71 p7ç —

substituting for c, and noting that V1 is diminishing in h2.

Therefore, according to (1.8), x — 0 and the industry never opens. The example

is somewhat extreme in that it assumes t2 — 03 — . . . 0. On the other hand, it

is robust in that small perturbation of the dats will leave the degeneracy of

equilibrium intact.


