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with New York overnight hours, while New York daytime hours overlap 
with Tokyo overnight hours. We find that in general Tokyo (Mew 

York) daytime returns are significantly correlated with New York 

(Tokyo) overnight returns. This suggests that information revealed 

during the trading hours of one market has a global impact on the 

returns of the other market. One exception is that after the 

October 1987 Crash, the Tokyo overnight returns were not 

significantly affected by New York daytime returns. We propose and 

estimate a signal extraction model with GARCH processes to determine 

the global factor from daytime returns. This is the problem of 

setting the opening price of a domestic market conditional on the 

foreign daytime returns. We also investigate lagged return and 

volatility spillovers. Except for a lagged return spillover from 

New York to Tokyo for the period after the Crash, there are no 

significant lagged spillovers in returns or in volatilities. 
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1 Introduction 

When the New York stock market opens its business day, many things that 

have happened overnight have to be incorporated in its pricing. One relevant 

piece of information is how the Tokyo stock market did earlier in the day. 

Similarly, Tokyo stock brokers take notice how the New. York market ended a few 

hours before the Tokyo market opens. There are many reasons why the returns and 

volatility of the two largest equity markets nay be related. The two economies 

are related through trade and itvestment, so that any news about fundamentals in 

one country most likely has implications for the other country. According to 

this view, stock returns priced by international factors imply international 
correlations in an international asset pricing modal. Growing financial market 

integration implies that, according to this type of model, changes in stock 

prices in one market quickly affect those of another market (often in the same 

direction). 

Another reason for international correlations of stock price changes is 

"market psychology." The October 1987 Crash (Black Monday) in New York setting 

off worldwide stock price declines is often cited as evidence for international 

contagion of bear psychology. Speculations (or fads, noises, or even a herd 

instinct) may be transmittable across borders. One survey (Shiller, Konya, and 

Tsutsui (1991)) has found that Tokyo participants are influenced by what happens 

in New York (and not vice versa). An excellent paper by King and Sladhwani (1990) 

proposes to model such a phenomenon as a signal extraction problem. 

Since Tokyo and New York do not have any overlapping trading hours, clean 

tests of how information is transmitted from one market to the other can be 

formulated. Decomposition of daily movement (returns and conditional volatility) 

into daytime (open-to-close) movement and overnight (close-to-open) movement is 

crucial for meaningful analyses.Z For example, the following efficient market 

hypothesis can be tested: any predictable returns and conditional volatility 

of one market because of the movement of the other market should be incorporated 
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in the opening price (that is, overnight movement). In order to carry out this 

inference, a global factor end a local factor have to be separated. For this, 

the paper proposes a signal-extraction method similar to King and Wadhwani 

(1990). In particular, a test of "heat waves" (market-specific volatility 

clustering) end "meteor showers" (worldwide volatility clustering), as proposed 

in Engle, Ito and tin (1990) and Ito, Engle. and Lin (1991), can be implemented 

in the stock market. 

The purpose of this paper is three-fold: First, we will carefully decompose 

daytime and overnight stock movements in Tokyo and in New York and pay attention 

to the nonaynchronoua trading problem; second, we will estimate "contemporaneous" 

correlation between the (daytime) returns and volatility in one market and the 

overnight returns and volatility of the other; and third, we will test whether 

(daytime) returns and volatility of one market would predict those of the other 

market. 

1.1. Related Literature 

The worldwide scope of the October 1987 Crash stimulated many studies on 

the international transmission of returns and volatility: Bennett and Kelleher 

(1988), }lamao, Nasulis, and Ng (1990), Neumark, Tinsley. and Tosini (1991), 

Schwert (1990), Susmel and Engle (1990). and Von Fursrenberg and .Joen (1989), to 

name a few- In these papers several features were claimed to be found:' (i) 

Volatility of stock prices is time-varying. It rose considerably around October 

1987, but quickly decreased afterwards, even to a level lower than that before 

the Crash. (ii) Vhen volatility is high, the price changes in major markets tend 

to become highly correlated. (iii) Correlations in volatility and prices appear 

to be asymmetric in causality between the United States and other countries. The 

US movement affects other markets, but not vice versa. (iv) Spillovers of price 

changes and volatility are found between major markets even with non-overlapping 

time zones. These features are often presented without a logical link between 
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them. In this paper, we will present a general framework, in which a link 

between these features comes out naturally.4 

In summary, our framework is based on a contagion model proposed by King 

and Wandhwani (1990), but with finer frequency so that daytime returns and 

overnight returns are separated. In particular, we provide a direct test of the 

contagion model, identify the proportions of global and local factors 

(information contents) in the variances of prices, and examine how promptly 

market prices would react to news revealed in the other market. Our approach 

also yields an insight into a often-made claim that correlations in international 

equity prices are positively related to volatility. 

1.2. Tokyo Stock Exchange and New York Stock Exchange 

The Tokyo Stock Exchange (TSE) and the New York Stock Exchange (NYSE) are 

the world largest equity markets. We adopt the Nikkei 225 and S&P 500 as the 

stock price indices for our analysis.5 The NYSE opens its trading at 9:30 a.m. 

and continues trading until 4:00 p.m. The TSE opens at 9:00 a.m. and trades 

until 11:00 a.m., then breaks for lunch until 1:00 p.m.' The afternoon session 

continues until 3:00 p.m. Since Tokyo is ahead of New York by 14 hours (in the 

winter) or 13 hours (in the summer), these trading hours do not overlap in real 

time. 

At the beginning of the day, overnight orders for each stock have to be 

marched at some price. Tm the NYSE, trading is done through specialists who can 

directly participate in trading and take inventory positions. In the TSE, a 

particular type of securities firms, saitori members, specialires in matching 

orders without taking positions.7 Not all stocks are traded as anon as the 

market opens. It often takes from several minutes to am hour before most of the 

"major" stocks have transactions.' Whenever a stock price index is used, the 

"opening" price of the index has to be carefully dealt with, since many of the 

individual stock prices included in the index are not transaction prices of that 
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day. In the usual case, "stale quotes" such as the preceding day's closing price 

are used if en initial transaction of the day is yet to come.' It may be the 

case that the market is groping for a price level to balance demand and supply 

of the moment, which may be quite different from the preceding day's closing 

price. If so, the measured index does not accurately reflect the true underlying 

price index. This is a problem of nonsynohronous trading. In order to minimize 

this problem, we take 10:00 am, quotes as the opening of the day for both Tokyo 

and New York. By 10 am., most of the stocks in both the Nikkei225 and S&P 500 

have had their initial trade of the day. 

2. Model and Econometric Speoifcations 

2.1. General Framework and Notation 

For both Tokyo and New York, daily (close-to-close) returns are divided 

into daytime (open-to-close) returns and overnight (close(t-l) -to-open) returns: 

NY, — NEST4 + NED, 

SF, — SF5, + SF0, 

where STE and SF denote returns in Nikkei 225 and S&F 500, respectively, and 

suffix 0 or N defines daytime or overnight, respectively. 

During the trmding hours of each of the two markets, information or trading 

noises will be incorporated into stock prices. We denote as en, or as, that parr 

of returns which can not be predicted based upon public information when the 

market opens. Suffix n or s denotes Nikkei 225 or S&F 500, respectively. 

Allowing for possible autocorrelations from overnight returns, and for post- 

holiday effects through a dummy variable, OH, and Friday effects through a dummy 

variable, OF, we can write the daytime returns as follows:" 

NED. — c + aw5TEN, + bDM, + d,,,DF, + en, (1) 

SF0, — c,4 + a,4SFN, + b,dDM, + d.9DF, + as, (2) 

Note that NED and SF0 do not overlap in real time. 

The following analysis is an exercise for investors who plan to place 



orders and price stocks at the opening. While the domestic market is closed, the 

information from the foreign market is available to domestic investors. This 

information is vsluable for pricing domestic stock returns when the market re- 

opens. If the market is efficient, it should be reflected in the opening price 

of the domestic market. The question is how to use the foreign market 

information. 

The first avenue is to use the unexpected returns of the foreign market. 

We tall this the aggregate shock model. In this model, the 541' 500 overnight 

returns are modeled as a function of the preceding 54? 500 daytime returns, the 

Monday dummy, and influences from abroad: 

SPN, — c,, + a,,S?D,., ÷ s,,,en, ÷ bJJM + vn, (3) 

where the effect of unexpected returns from Tokyo is p,,,en,, and effects revealed 

after the close of the Tokyo market but before the opening of the New York market 

are denoted by vn. Similarly, the Nikkei 225 overnight returns of calendar date 

t exploit information revealed during the New York market hours of calendar date 

t-l: 
5KM — c,,, ÷ ajflCD,, + p,,,es, + b,,0M, + vs, (4) 

Again, vs is information revealed after the New York close but before the Tokyo 

open. The Friday dummy is not used in equations (3) and (4) because, for 

overnight returns, the Monday dummy covers the weekend (Friday close to Monday 

open). 

The second avenue is to decompose the unexpected returns in the foreign 

market into two types of shocks, uncorrelated with each other, global end local. 

Specifically, we assume that 

en, — wn, + tin, 

and 

as, — ws, + us, 

where wit, and ws, are the globsl factors, and un, and us, are the local factors. 

The global factor influences stock returns in hone and foreign markets, and the 



local factor contains only ahocks and noises idiosyncratic to the home market. 

A global factor may be a shock to intarnatonal fundamentals or internationally 

contagious psychology, and a local factor may be a shock to local fundamentals 

ot local market moods. 

In an efficient market, information that is revealed in Tokyo and that is 

relevant for New York -- in short, the global factor -- will be fully reflected 
in the opening price in New York. The key assumption here is that investors and 

econometrioians cannot identify global and local shocks, but would try to infer 

them. Investors are assumed to lusow the parameters of returns generating 

processes and to estimate, through the signal extraction process, relevant 

information about the global factor from observed daytime returns.t1 Through 

this signal extraction procedure, we denote the estimate of the global factor as 

wn, and ws',. Henoe, in an efficient market, the global factor in Tokyo, wn,, will 

influence the S&P 500 overnight returns, SPN, but not its daytime returns, SF0. 

Nence, the New York overnight return could be written as 

SPN, — c,, ÷ emSPO,.l + b,,0M, ÷ vn, (5) 

where * indicates the estimate conditional upon information after the close of 

the Tokyo market and the effect of the global factor from Tokyo is j,,. 
Similarly, the Nikkei overnight returns of t exploit global information revealed 

during the New York trading hours of calendar date t-l. 

NKN, — c, ÷ a,,N100,4 ÷ ts,,,ws,' + b,,0M, + vs, (6) 

At this point, it is instrnctive to summarize timing and notation as shown 
in Figure 1, where TKO, TKC, NYO, and NYC, are the time of Tokyo opening, Tokyo 

closing, New York opening, and New York closing in real time. The daytime 

returns and overnight returns are defined as the changes between those timings, 

respectively. 

The information set containing returns and other stock price related public 

information up to the point of time j (j 
— TKO, TKC, SF0, NYC) is denoted by 

0(j). In the aggregate shook model, shocks em and vm, for m—n or a, are assumed 



[Location 
Uate ano local. 

MT t-1,1200am 6am 2:30pm 9pm t,l2am 6am 2:30pm 9pm 

okyo t-1,9am 3pm 11:30pm t,6am 9am 3pm 11:30pm t+1,iam 
ew York F F t-1,9:3Oam 4pm F F t,9:3Oam 4pm 

F F F F F I F 

efinition TKO TKC NY0 NYC TKO TNt NYO NYC 

ariable NKD(t-1)F NKN(t-1) F NK0(t)F NKN(r) 

SPN(t-1) F 5F0(t-1) F SFN(t) F SP0(t) F 

Shocks F en Fvn F 
es Fvs F en FvnF em 

F 

F en—wn+unF F es—ws+us F Fen—wnfunF F es—ws+ua F 

lotation: 

TKO — Tokyo market, opening time 
TNt — Tokyo market, closing time 
NYO — New York market, opening time 
NYC — New York market, closing time 

NXD — Nikkei 225 daytime (open-to-close) return 
NNN — Nikkei 225 overnight (close-to-open) return, with close of date t-l 
SF0 — SM' 500 daytime (open-to-close) return 
SPN — SM' 500 overnight (close-to-open) return, with close of date t-l 

en — aggregate shock tn Nikkei daytime return 
em — aggregate shock to S&P daytime return 
vn — shock to Nikkei overnight return 
vs — shock to S&P overnight return 
wit — global factor contained in Nikkei daytime return, part off en 

tin — local factor contained in Nikkei daytime return, part of en 
ws — global factor contained in S&P daytime return, part of ea 
us — local factor contained in S&P daytime return, part of ea 

lore: The horizontal line shows the timing in real time. For example, when i 

is 9:30 a.m.(EST) in New York on dare r-l, it is 11:30 p.m. (same day) in Tokyo. 
Tarious vertical lines show the correspondence of the timings, with the 

following exceptions: the opening time in arrual market hours are 9:00 a.m. it 

:okyo and 9:30 a.m. in New York, but it is 10:00 am. in the definitions ot 
returns of price indioes of both markets. This adjustment is done to correot 

for the non-synchronous trading problem at opening. 

Figure 1: Timing and Notation 
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to be serially uncorrelated and mutually independent. Moreover, those shocks are 

assumed to follow a OARCH process: 

em[Q(j) — N(0, cm1) ((m,Th ((n,TKO) (s, NYO)) (7) 

vmQ(j) — N(E, Ir.) ((m,j)) ((n,TKC) (s, NYC)) (8) 

The same assumptions are held for the distribution of the global end the local 

factors in the signal extraction model. That is 

wmO(j) — N(0, gr) {(m,j)) ((n,TKO) (a, NYO)) (9) 

un0(j) — N(O, hr.) ((m,j)) — {(n,TKO) (a, NYO)) (10) 

where N(,,.) denotes a normal distribution with the first element being the mean, 

and the second element being the variance ccndticnal on 0(j). 

2.2 Aggregate Shock Model 

The aggregate shock model can be formulated as equations (1) to (4), and 

(7) to (8). Since the shocks em and vm, for m n end s, are mutually 

uncotrelated, we can apply a two-stage GAROH estimation method cc estimate the 

model. In the first stage, we employ the GARCH method to the Nikkei 225 daytime 

returns in equations (1) and (7). Obtaining the fitted value of unexpected 

return en1 in the first stage and substituting it into the mean equation of the 

S&P 500 ovor-night returns, we can estimate equations (4) and (8) by the OARCN 

method again. A similar procedure can be applied to S&P 500 daytime returns 

and Nikkei overnight returns. Note that this two-stage procedure will yield 

consistent estimators if the model i5 correctly specified. 

The aggregate shock model and the estimation method are similar to those 

used in Namac et al. (1990). However, there is a technical difference between 

Hamac et el. and this paper in the specification of daytime ( or overnight) 
returns: we have included a term for the preceding domestic overnight ( or 

daytime ) returns and they have a CAPON in mean, We choose our apecificetion 

for intra-daily stock returns for two ressons. First, the intra-daily stock 

returns exhibit some significant serial dependence that will be discussed in 
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section 3. Second. the GARtH-in-Mean model does not perform well in short high 

frequency samples. 

2.3 Signal Extraction Model 

From equation (1), the unexpected part of daytime returns of the Tokyo 

market, that is, en,, has two components: wn, and un,. However, New York investors 

are assumed to observe only the combined shock, not the individual components. 

This is a classic problem of signal extraction. To minimize the mean squared 

errors of the estimators, New York investors can estimate the global factor vu, 

from the unexpected Tokyo price changes as 

vu', 
— [ go, / (gn, + hn,)1 en, (11> 

where * is the expectation based on public information Q(TKG). The estimate of 

the Tokyo global factor is proportional to the unexpected foreign daytime 

returns, with the proportion equal to the variance ratio of the global factor to 

the unexpected returns. As the global information becomes more important in the 

total variances, the proportion of the extracted global factor in the unexpected 

returns increases. 

The variance of estimated global information, gn',, conditional on the 

information available after the close of the Tokyo market becomes 

gn'. 
— gn, Cl - [go, / (gn, ÷ hn,)] (12) 

gecause part of Tokyo closing prices reflects the global factor, using the Tokyo 

closing prices to estimate the global factor can reduce the uncertainty of the 

estimated global factor. This information ( or Kalman filter ) gain decreases 

the variance of the estimated global factor as shown in the second 
term of 

equation (12). As the prices contain more global information (or the 

noise-to-information variance ratio is lower), information gain from observing 

Tokyo closing prices becomes larger, and then the variance of the estimated 

global information will be smaller. 

Substituting equation (11) into equation (5), we can vrite the New York 



overnight returns, SPN,, as 

SPN,— c + aSPD,4 + p.( gn, / (gn+ hnj]en + bDN + 'vn (13) 
If the shocks have tine-varying conditional variances, the signal extraction 

model predicts that the correlation coefficient between the foreign daytime and 

ihe domestic overnghr returns, i.jgnJ(gn,+ hn31en, is time-varying and is 

dependent on volatility measures. If the shocks do not have time-varying 

variances, then the correlation coefficient is tine-invariant and the New York 

overnight return process becomes equation (3) with $ equal to [gn/(gn÷ hn)] 

The assumption of GARCH processes can reconcile two stylised facts in the 

literature survey of section 1.1: (i) time-varying vo1atilty and (ii) the time- 

varying correlations in international stock returns, 

A similar signal extraction process can also be employed by Japanese 

investors to estimate the global factor revealed in the New York market. Hence, 

the Tokyo overnight returns are 

NKN c + aNKDn + p,[ gs / (gs1+ hs3jes + bDH + vs (14) 

2.4. CARCH Hodel 

The GARCH approach is very popular in modeling the second moments of 
financial data (see a recent survey by Bollerslev, thou, and Kroner (1990)). It 
captures the phenomenon of volatility clustering by specifying that large price 
changes are likely to be followed by large price changes but of either sign. We 

assume that gm1, qm, hip, and Ici follow (pseudo) GARtH processes: 

gis — + am[(vIsa? + gm,4] + fL gm,4 + Ym Dli, ÷ & OF, (15) 

his, — sib,, + e,,j(um,,)' ÷ hm,,) + D5 hm,., + y,,, Dli, + OF, (16) 

I'm,, 
— a,. ÷ a,,, (vn,,)' ÷ ,,,km,, + Y,, Dli, (17) 

qm, — + a,,, (em,.,)' ÷ n,,, qm,., + Y,,, 081 + 8, OF, (18) 

for suffix m — n or s. 

The process is analogous to the ARCH models employed by Diebold and Nerlove 

(1989), and King, Sentena, end Kadhwani (1990) with latent factor structures, as 
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well as one by Harvey and Ruiz (1990). Specifically, if news win, or usi, follows 

a CARCH process with a normal density, than without directly observing win, or urn,, 

the best estimators of urn2., conditional on public information 0(j) for j — TKC 

or NYC, is 

I(i) ) — (w,,)Z + gm•.t. 

Hence, gm', enters into the variance process of equation (15). Similarly, hin, 

enters in equation (16).' The density function of win, or urn, conditional on the 

information Set is no longer normal. As a result, the Kalinan filtering process 

still produces 6MS (minimizing mean squared errors) estimators, but is not 

optimal. Diebold and Nerlove (1989). and King, Sentana, and Wadhwani (1990) 

estimate the conditional variance process similar to equations (15) to (16) 

without the term of gil,., in equations (15) and (16). However, fonte Carlo 

experiments by Harvey and Ruiz (1990) show that a correction of gil,, is needed. 

in order to obtain a better estimator with smaller mean Squared errors. Hence, 

their correction of the conditional variance is adopted in equations (15) and 

(16). 

The scoring algorithm described in Pagan (1980), and Watson and Engle 

(1983) is employed to estimate the whole system for the Tokyo daytime and the New 

York overnight returns, or for the New York daytime and the Tokyo overnight 

retu.rns. The log likelthood function is 

log L — - 
for suffix m — n or s. 

The scoring algorithm is to calculate the values of vm,, em,, gm,, and his, 

according to the signal extraction process described in equations (11) to (18), 

and to use the updating process to seek the estimates that maximize the log 

likelihood function. The standard errors are calculated by H'(S'S)H' where H is 

the Hessian matrix and S is the score vector. In the second step, we examine 

whether this model can fully explain the volatility and the return correlations 

across markets. Such tests are conducted by Bollerslev and Wooldridge (1988)'s 
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robust LM tests, The LM tests and standard errors that we construct here are 

robust to the density function, which will minimize the problem of non-normality 

of the shotks. 

3. Primary Analysis 

3.1. Data Summary 

Because the effect of the Crash of 1987 on international stock returns has 

generated great interest in the literature, Table I reports the data summary for 

the Nikkei 225 and the Standard and Poor 500 (S&P 500) indices over the periods 

before, around, and after the Crash as well as the whole sample period. The 

stock returns on October 19, 1987 experienced the largest one-day drop in the 

history of major stock indices since 1885. The S&P 500 fell about 20.4 percent 

on October 19, 1987 During the two months around the Crash, the average daily 

returns for the S&P 500 decreased by 34.6 percent. As this financial shock was 

transmitted to the TSE on the following day, the average daily reruns for the 

Nikkei 225 fell by 29.3 percent. Before and after this abnormal avent, the two 

markets have a positive daily return. In general, the daily N[kkei 225 returns 

were higher than the S&P 500 returns before and after the Crash. Particularly 

after the Crash, the Nkkei 225 rebounded and surpassed the pre-Crash record high 

n the two years. On the last day of 1989, it reached 38915, or 77 percent 

above the day after the Black Monday (29190). The gain in the Nikkei 225 returns 

was larger than a 57 percent rebound of the S&P 500 returns from 224 to 353 

during the same period. Further examinstion of Table 1 reveals that the 

distribution of stock returns is not normal. During the Crash period, the 

distributfon of daytime stock returns became fatter tailed, indicating a more 

volatile movement of the stock prices. 

Investigating the variance ratio of daytime returns to overnight returns 

also shows a pattern similar to that found by Amihud and Siendelson (1987), 

Oldfield and P.ogalski (1980), and Stoll and tmaley (1990) in the NYSE before the 
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Crash. Despite different sample periods and stock returns, the variance ratio 

ranges from 4.26 to 5.40 in the NYSE. Amihud and Nendelson (1989) also show that 

this ratio amounts to 2.40 for the fifty moat traded stocks in the TSE. Because 

we measure the 10:00 a.m. quote as the opening price, the variance ratio before 

the Crash is 3.1 in the S&P 500 and 1.60 iq the Nikkei 225, smaller.than the 

previous results. Around and after the Crash, the variance ratio dropa. 

Table 1. also reports the correlation between the overnight and the daytime 

returns in the NYSE and the TSE, which have an overlapping time segment. The 

correlation between the MEN and the SF0 returns increases around the Crash, and 

drops after the Crash. Bennett and Eelleher (1988) report that daily 

correlations of returns for three major world stock markets ranged from 0.09 in 

1980 to 0.26 in September 1987, and were much higher than thoae in the l970a. 

0-or last obaervation from Table 1 is that the significant Ljung-Box 

statistics for the serial correlation of the twelfth order indicate evidence for 

aerial correlation in the intra-daily stock returns. The evidence will be 

further examined in the next section for dependence between the daytime and the 

overnighc returns. 

3.2. Teats for Serial Dependence of Stock Returns 

The fact that the close-to-close stock returns have positive auto- 

correlation has long been recognized in many studies. Foterba and Summers (1988) 

and Fame end French (1988) exemine the proposition that stock prices take long 

temporary swings from fundamental values; the eventual reversal causes a negative 

correlation in some future holding period. Lo end NacKinlay (1989) investigate 

the importance of nonsynchronous trading in generating positive serial 

correlation, and show only week evidence in favor of this interpretation. The 

role of noisy traders and positive feedback traders in inducing positive 

correlations of stock returns has been modeled by Campbell end Kyle (1988) end 

De Long, Shleifer, Summers, end Weldmenn (1990). 
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It is well-Intown that price correlations exist in the high frequency data. 

In Table 2 we test for serial dependence of intra-daily stock returns. The 

results are presented for the SPD, the SPN, the MCD, and the NICN returns, end the 

standard errors are adjusted for hereroskedasricity of an unirnown form. Table 

2 shows some evidence for positive serial dependence of daytime returns on the 

overnight returns. This is different from the findings of negative serial 

dependence by Atsihud and Mendelson (1999). As we measure the opening prices at 

thirty minutes or one hour after the market re-opens, the finding of positive 

significant impacts of the previous overnight returns on the daytime returns more 

likely indicates that price reversals last only for one hour or less. As shown 

in Table 2, White heteroskedastcity tests or Lagrangean multiplier tests for 

ARCH reveal that the volotllty of stock returns is time-varying. 

4. Aggregate Shock Nodel 

A focus of attention in the study of world equities market has been how 

returns and volatilities in major markets are correlated and have changed as 
financial integration has progressed.° Using a vector autoregressions approsch 

to model the transmission of daily stock returns, Eun and Shim (1989) have found 

that only United States stock returns can explain the movements of nine other 

world stock returns, but not vice versa. Hamso, Hasulis, and Hg (1990), and King 

and Wadhwani (1990) also have given empirical support to this asymmetric 

transmission pattern between the New York market and the Tokyo market. The 

former paper estimated that the impact of the S&P 500 Daytime returns on the 

Nkkei overnight returns amounts to only 0.02 by the CARCN-in-mean model with 

HA(l) errors, whereas the latter work estimates the contagion coefficient implied 

by daily S&P 500 and Nikkei 225 returns ranging from 0.40 to 0.11. 

In this section, we employ an aggregate stock return model, that is, we do 

not attempt to decoripose unexpected daytime returns into global or local factors, 
but investigate whether the (non-decomposed) unexpected daytime returns in Tokyo 
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have any impact on the overnight returns in New York. If any information 

revealed in Tokyo is relevant to the stock prices in New York, then New York 

investors will use it in pricing the New York stock returns. This will show 

international, contemporaneous spillovers from unexpected daytime returns of the 

Tokyo market to the unexpected overnight returns of the New York market. The 

contemporaneous spillovers themaelves do not violate the efficient market 

hypothesis, but indicate that the unexpected returns in Tokyo contain aome global 

information. The sensitivity coefficient of the contemporaneous apillovers is $. 

Conditional variances of unexpected returns in the two markets are modeled 

as CARCN processes. The two-stage GARtH estimation method is applied to the 

aggregate shock model for Tokyo daytime returns and New York overnight returns 

aa described in section 2.2. The results are reported in Table 3. In Table 4, 

a parallel investigation is done for daytine New York and overnight Tokyo 

returns. After fitting the GARtH model, we calculate the skewness and the 

kurtosis of standardized residuals. These statistics are still too large to 

accept the null hypothesis of normal distribution. Therefore, we report the 

robust standard errors as calculated by Bollerslev and Wooldridge (l9g). 

The first salient feature in Tables 3 and 4 is the existence of 

contemporaneous spillover suggested by significant t statistics of •. Put 

differently, information revealed in trading hours of a market 
has glohal impacts 

on stock returns in the other markets. Moreover, results in Tables 3 and 4 show 

that (i) before the Crash, the contemporaneous spillover was synnetric: Tokyo 

daytime returns affected New York overnight returns and vice versa; and (ii) 

after the Crash, the contemporaneous spillover became asymmetrit: Tokyo daytime 

returns influenced the New York overnight returns, but New York daytime returns 

did not influence the Tokyo overnight returns. In a sense, Tokyo returns 

contained a statistically significant global factor, while New York returns did 

not. 

The results (i) and (ii) are in sharp contrast to those of Namao et al. 

15 



(1990), Becker, Finnerty, and Gupta (1990), and King and Wadhweni (1990). These 

researchers fonnd that the stcck returns of the U.S.A. can influence other stock 

markets in a sizable way, but not vice versa. This difference in results must 

oome from the fact that we correct fot non-synchronous trading by taking 10 am. 

as opening time, while Namao et al. (1990) takes 9:01 am. for Tokyo and 9:30 

am. for New York, and the fact that King and Wadhwanl (1990) use da1y (close- 

to-close) returns without decomposing into daytime and overnight returns. It is 

our understanding that our new finding offers a clear-cut conclusion to this 

issue. 

Next, we examine the estimates of parameters in the variance process. The 

persistence of a shock to volatility is measured by the sum of s and fl. The sum 

of s and fl ate mote than 0.85 in all cases except for NKN after the crash (the 

sum was 0,70). We interpret these results as evidence for a persistent effect 

of a shock on volatility. Tables 3 and 4 show the lower persistence of 

volatility of the NKD, the NK3, and the SPD returns after the Crash. The 

conclusion here is that volatility would diminish much faster for the post-Crash 

period than for the pre-Crash period. This conclusion is in accordance with 

Engle and Muatafa (1989) and Schwert (1990). Neither the Monday duy nor the 

Friday dcy shows significant effects on the returns in most cases. The 

overnight returns are more volatile during holidays partly because more 

no-trading hours and the clustering of foreign news during the domestic holidays 

raise the total volatility. 

5. Signal Extraction Model 

It is an implicit assumption in the aggregate shock model that all the news 

revealed during the trading hours of one market has global impacts on stock 

returns. Realistically, part of the infornation revealed through trading may 

affect the returns locally. Only a global factor influences the other market. 

If the market is efficient, the impacts of the global fsctor will be priced at 
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the opening of the subsequent market. The question is how investors learn about 

the global factor when they do not have any precise information about the global 

and the local factors. In the signal extraction model, domestic investors are 

assumed to optimally extract the global information from the observed price 

changes. Consequently, the estimate of the global information is proportional 

to unexpected price changes with the proportional coefficient equal to the 

variance ratio of the global information to unexpected price changes. 

In Table 5 (and similarly in Table 6), the equations for Tokyo daytime 

returns and New York overnight returns are simultaneously estimated via a state- 

space model with GARCH errors as described in Section 2.4. After estimation, 

we test whether local factors, Un,, have a CARCH(l) term im the conditional 

variance processes. 5y evaluating the 126 test statistics, we find that the null 

hypothesis of a GARCIT(l). — 0 , cannot be rejected at least at the 5% level. 

From Tables S and 6, we draw four conclusions: 

First, in Table 5, we investigate bow the New York investors extract the 

global factor from Tokyo daytime returns and how much New York overnight returns 

are sensitive to the estimated global factor. Table 6 is similarly done for 

Tokyo investors learning overnight from New York daytime returns. In Table 5, 

the coefficient of is the sensitivity of New York overnight returns to the 

estimated global factors revealed in Tokyo daytime returns. The estimated global 

factor, wn*,, is the product of the time-varying signal extraction coefficient 

(gn,J(gn,+hn)) and estimated unexpected returns (en,). Table 5 shows that the 

sensitivity increased after the Crash. Put differently. New York investors 

became more sensitive to what is revealed to be a global factor in Tokyo. Table 

6 shows that the sensitivity became statistically insignificant after the 

Crash. Tokyo investors' sensitivity to a global factor in New York became less 

statistically significant after the Crash. 

Second, a coefficient of contemporaneous spiliover is compared. Recalling 

that the sensitivity 4, shown in Table 3 was with respect to the aggregate 
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unexpected returns, we have to adjust for the signal extraction coefficient in 

order to compare the sensitivity obtained from Table 5. Let us denote 

p(gm/(gm+hm)), for suffix m n or s, as the time-verying sensitivity, 

comparable to $ in Table 2. Sfnce p(gm/(gm+hz)) is time-varying, only its time- 

series average over the sample period is presented in Table 5. The estimated 

p(gm/(gn+hm)) for SFN is 0.075, 0.064, and 0.191 for the whole sample period, the 

periods before and after the Crash, respect1vly. Comparing $ in Table 2 with 

p(gm/(gm+hm)) in Table 5, we find a similar pattern; the sensitivity increased 

after the Crash, and the magnitude is snilar, too. Comparing Tables 4 end 6, 

we also find that the sensitivities are sni1ar. This shows a robustness in our 

procedures. 

Third, the estimated variance ratio of the global factor to the local 

factor in the Tokyo market is presented as gn/hm. This is also time-varying, so 

that a time-series average over the sample period is presented. We find, as 

shown in Table 5, that the weight of the global factor revealed in Tokyo 

increased after the Crash. This suggests that the Tokyo stock returns after the 

Crash contain more of a global component than before, Table 6 also shows that 

the variance ratio of a global factor to a local factor increased in the New York 

market. Nowever, recalling that the Tokyo investors' sensitivity js 
became 

statistically not different from zero, an increase in the weight of the global 

factor in New York does not contribute to explafning the Tokyo overnight returns. 

Fourth, we corpare the performance of the aggregate shock model with the 

signal extraction model. The signal extraction model will be nested into the 

aggregate shock model because, if unexpected returns have no local impacts, then 

the two models become equivalent. We compute the Weld statistics, shown in the 

lest rows of Tables 5 and 6, to examine the null hypothesis that the parameters 

in the conditional variance of the local factor equal zero. These show that the 

null hypothesis can be rejected in cases where the estimate of $ or z is 

signifcent. The result suggests that if the stock returns contain some global 
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effects, then the signal extraction approach is a batter way to characterize the 

investors' use of the information in pricing opening quotes than the aggregate 

shock model. 

6. Lagged International Spillovera 
6.1 Lagged eturns Spillovers 

In Tables 3 to 6, we investigate contemporaneous spillovers from daytime 

returns in one market to overnight returns in the other market. The two returns 
are defined in hours that are overlapping in real tine. In this section, we 

investigate whether returns spillover from the daytime returns in one market to 
the daytime returns in the other market which starts trading several hours later, 

If the strict version of the efficient market hypothesis holds, we should not 

expect any (mean) spillovers of this type. 
In Table 7, the Tokyo daytime return is a function of its preceding 

overnight returns and the New York daytime return (plus dummy variables). Note 

that the two regressors, the Tokyo overnight and the New York daytime returns, 
overlap in real time. The coefficient s shows the sensitivity of the Tokyo 
market returns to the New York daytime returns (of day t-l). The equation could 

be regarded as a causality test of whether New York daytime returns have any 

additional information (additional to Tokyo's own market overnight returns) in 

predicting Tokyo daytime returns. Alternatively, the equation maybe interpreted 
as the test of lagged spillover effect from New York daytime returns to Tokyo 

daytime returns a half day later. In panel A of Table 7, the Lagrangean 

multiplier test shows that there is indeed such an effect in the post-Crash 

period, but not the pre-Crash period. 

This result is somewhat counter-intuitive. If the market is efficient, one 

expects no spillovers from New York daytime returns to Tokyo daytime returns. 

Note that we have allowed one hour in the beginning of the day to avoid the non- 

19 



synchronous trading problem, giving a favorable setting 
for the efficient market 

hypothesis14 In panel S of Table B, we re-estimate the model and find the 

impact of the S&P 500 daytime returns on the Nikkei 225 overnight returns 

emounting to 0.13. The significant t statistic confirms the findings of the 

Lagrangean multiplier tett statiatica. The estimates of other parameters in the 

mean and variance proceaaes of Tokyo ( New York ) daytime returns are similar to 

those in Table S ( Table 6), showing the robust results. 

Recall that Tables 4 and 6 showed that the Tokyo overnight returns were 

insensitive to the New York daytime returns. Combining the lagged spillover 

result with the results in Tables 4 and 6 and with those in Table 8, the 

following scensro emerges. After the Crash, Tokyo investors became less 

confident in calculating the impact of New York daytime returns 
on Tokyo, taking 

time to react to the news. The spillover appears to last more than one hour 

after the opening of the Tokyo market. This, however, is a major puzzle from the 

efficient market point of view. 

Table S shows that there is no lagged spillover from Tokyo daytime returns 

to New York daytime returns. All information revealed in the Tokyo daytime 

returns seems to be incorporated in the New York stock prices by 10:00 e.m., so 

that overnight returns are affected <Tables 3 and 5), but not daytime 
returns. 

6.2 Lagged Volatility Spillovera 

In this section, we will investigate what kinds of information influence 

the conditional variance of the global factor. The equation of gm has a CARtS 

process with an additional tern to capture a possible effect from past shock, r. 

Several candidates we use for s are: the unexpected daytime returns of the 

foreign market, the global factor of the foreign market, the shocks revealed 

after the close of the foreign market but before the opening of the domestic 

market, and the overnight returns of the doreatic market. These candidates 

contain information which is available to domestic investors at the opening of 
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the market. Hence, we are able to perform a clean test to examine whether eny 

of this information will generate volatility clustering across the border. 

Table 9 shows that the conditional variance of Tokyo's global factor is 

influenced, for the post -Crash period, by the squared shocks observed between the 

New York close and the Tokyo open (or the estimated error terms of the New York 

overnight equations). Table 10 shows that New York's global factor, for the pre- 

Crash period, is influenced by the squared shocks observed between the Tokyo 

close and the New York open. However, on the whole, the effects of other 

possible realized volatility measures do not affect the conditional variance 
of 

the global factor. In particular, there is no statistically significant effect 

from the squared shocks in the global factor in one market to the conditional 

variance of the other market's global factor (see the second line of Tables 9 and 

10) .° 

The results are different from those of Nanso et al. (1990) who found a 

volatility spillover from the New York daytime returns to the Tokyo daytime 

returns, This difference is likeiy attributable to their use of the opening 

quote of 9:01 a.m., which may contain some stale quotes, as opposed to our 10:00 

a.m. Our result conforms more with that of Susmel and Engle (1990), who used 

hourly data and found that the volatility spillovers between New York and London 

equity markets only last for one hour after the market is open. 

7. Comclusiom 

Using intra-daily data to decompose daily returns into daytime and 

overnight returns, this paper re-assesses several characteristics that have been 

found in the literature on the transmission of returns and volatility among world 

stock markets. Our data, methods, and findings contain several novel aspects. 

First, we define the opening price of a carket as a price index thirty minutes 

(in New York) or one hour (in Tokyo) after the market is actually open, in order 

to minimize the problem of stale quotes or nonsynchronous trading Second, we 
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investigate contemporaneous correlations, Tokyo daytime with New York overnight, 

and New York daytime with Tokyo overnight. Our results show that the foreign 

daytime returns cen significantly influence the domestic overnight returns, 

resulting in a price jump at the opening of the domestic market. Put 

differently, the bull or bear trend moves across the border. It has been 

suggested in the literature that spillovers take place in the direction from New 

York to other markets including Tokyo, but not in the opposite direction, In 

contrast, we find that returns and volatility spillovers are generally symmetric. 

Information (market fundamentals or psychology) revealed during the trading hours 

of one market are taken into account in the other markets when they open. 

Second, we propose two models to describe the ways that investors learn 

information revealed in the foreign market during the overnight. One is the 

aggregate shock model, in which investors uae the unexpected returns from the 

other model for setting opening prices. The second is the signal extraction 

model in which unexpected returns are decomposed into two parts, global and local 

factors, and in which investors optimally extract the information from the 

observed price changes. We compare these two models and find that the signal 

extraction mudel characterizes investors' behavior better than the aggregate 

shock model. 

Third, several competing hypotheses regarding lagged spillovers in both 

returns and volatility are also tested. We find some evidence of the lagged 

return spillovers from New York daytime to Tokyo daytime in the period after the 

Crash. This is a puzzling finding. We conjecture that after the Crash, Tokyo 

participants needed more time to extract the global factor from the New York 

market, On the other hand, we also find that, in general, there is no 

volatility spillover from one market to the other several hours later. 
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END NOTE S 

1. See Solnik (1974a,b) and Abler and Dumas (1983) for modela of international 
asset pricing. 

2. Many studies have used daily returns in studying international transmission. 

Among them are King and Wadbwani (1990), von Furstenberg and Then (1989), and Kun 

and Shim (1989), Without decomposing daily returns into overnight and daytime 
returns, it is impossible to test the type of questions related to an efficient 
market hypothesis. For example, King and Wadhwani (1990) show the signal 
extraction method that market participants of country A can use to infet from 

country B's stock returns, but their analysis cannot address the question of 

whether all adjustments are done at the opening of B's market. 

3. King and Wadhwani (1990) report features (ii) and (iii); Hamao et al. (1990) 
document (i), (iii), and (iv); and Schwert (1990) reports (i). 

4. Our framework is similar to King and Wsdhwani (1990) in its use of the signal 
extraction method, but wa decompose daily returns- that was the frequency of King 
and Wadhwani--into overnight and daytime returns. This finer frequency is also 

adopted in Hamao, Masulis, Hg (1990), but we define tha opening price at 10 a.m. 
in order to avoid nonsynchronous trading problems which seem to bias their 
results in favor of volatility of spillovers. In addition, our model has several 
features, such as an explicit modeling of a signal extraction problem and a one- 

step estimation of a multi-variate (two country) GARtH problem, that are improved 
over Hamao, et al. (1990). 

5. The Standard and Poor 500 (542 500) is the equity-value weighted arithmetic 
mean of 500 stocks selected by Standard and Poor. The hourly data of S&P 500 are 

kindly provided to us by Dr. J. Harold Mukherlin. The Nikkei 225 (Hikkei 225) 
is sprite-weighted simple average of 225 stock prices selected by Nikkei. The 

equity-value weighted index in Tokyo is TOPIX, which covers all stocks in the 
first section of the TSK. Because of its broad coverage, the nonsynchronous 
trading and stale quotes problems become serious if we use TOPIX. Moreover, the 

opening TDPIX is very hard to obtain. 

6. A change took place in the spring of 1991, so that the afternoon session 
starts at 12:30 p.m. Howevet, the sample period of this paper does not extend 
to the time of change. 

7. See Mscey and Kanda (1990) for a good survey comparing the institutions of 
the NYSE and TSE, including legal perspectives on specialists and saitoti 
members. 
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8. 1rge order imbalances at the opening of the day are likely to result, due to 
divergent beliefs of investors regarding overnight news. As pointed out by Brook 
and Kleidon (].989), large overnight changes in underlying pricing of stocks are 
nor fully reflected the opening price, but extend over several trades at the 

beginning of the day. Put differently, it may take some time for inveators to 
rebalance their portfolios after the opening. This produces volatility 
continuation or spillover. 

9. In Tokyo, the bid or ask price maybe substituted for the stale quote In the 

process of groping for an equilibrium price. 

10. See Gibbons and Hess (1981) who reported the existence of day-of-week 
effects. 

11. As noted above, our approach is similar to the one by King and Wadhweni 
(1990). Gut approach is en improvement on theirs, in that time-varying variances 
are considered, daytime and overnight returns ere separated, and thus updating 

procedures ste explicitly specified. 

12. Note that hm,4— because the aggregate shook is observed. In order to 

see this, after wn is observed, Un — en - wn, where wn is known. Hente, the 

conditional variance of en equals the conditional variance of un. 

13. The exsisinstion of monthly international stock returns and their 
impliostions of financial integration have long been discussed. Recently, 
several papers have studied correletions in high frequency stock returns. In one 
of the early studies, Hillimrd (1979) concluded that daily contemporaneous 
returns among ten world stock markets were not so highly correlated, even during 
the l973-4974 oil crisis. 

14. Hsmmo et al. (1990) find a similar spillover effect from New York returns 
to Tokyo returns. However, they speculate that it is due to the beginning-of- 

the-dsy nonsynohronous trading problem, because they use 9:01 mm. We have used 

10:00 a.m. as open so that the efficient market hypothesis will work, but still 

find evidence of spillovers. King end Wedhwsni (1990) find similar effects, but 
since they use the close-to-close returns of the two markets, they cannot judge 
from their results whether the spillover effect is resolved in overlepping hours 

or in lagged hours. 

15. This means that there are no "meteor shower" effects (in the sense of Engle, 
Ito and Lin (1990)) in the stock price indices of Tokyo and New York. 
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Table I ata Summary 

ho1e period Before Crash Around Crash After Crash 

9/28/85-12/29/89 9/28/85-9/30/87 10/1/87-12/31/87 1/1/85-12/29/89 

A: MXD 
Mean 0.069** 0.021 -0.226 0.154** 

Variance 0.707 0.507 5.257 0.346 
Skewness _4.014** -0.078 -3.252* 0.210 
Kurtosis 73983** 6.461** 23.461** 7.725** 

L5(12) 23.074** 25.262** 12.100 12.562 

B: NKN 
Mean 0.036* 0.121** -0.067 _0.035* 
Variance 0.240 0.306 1.036 0.067 
Skewness _0.249** -0298** -0.511 0.837** 

Kurtosis 15.l13** 8.662** 8.662** 9.241** 

LB(12) 49.698** 16.251 7.043 12.049 

C: SPD 
Mean 0.042 0.088** -0.358 0.045 

Variance 1.118 0.635 8.452 0.682 
Skewness _6.317** _0.357** -4.654** _1.635** 

Kurtosis 112.831** 5j5** 33042** 20.005** 

1.5(12) 20.699* 5.822 11.998 14.243* 

D: SPN 
Mean 0.019* 0.026 -0.088 0.025 
Variance 0.393 0.216 3.433 0,197 
Skewness 0.671** 0945** 0.740** 0.165 
Kurtosis 22.364** 10.796** 10.796** 9.633** 
1.5(12) 173.202** 60.546** 8.489 14.119 

Contemporaneous Corr. Coeff. 
NXD & SPN 0.007 0.137 -0.104 0.170 
NKN & SPD 0.222 0.212 0.400 0.042 

Notes: 

(1) Single asterisk (*) indicates the significance at a 10% level and double 
asterisks (**) indicate the significance at a 5% level. 

(2) In the row of mean, asterisks indicate the significance at a 5% level for 
the null hypothesis that mean equals zero. 

(3) In the rows of skewness and kurtosis, asterisks indicate the 
significance for the null hypothesis of the normal distribution. 

(4) LB(12) indicates the Ljung-Box statistics for the serial correlation 
of order twelve. 
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TabLe 2 Tests for Serial Dependence 

Whole period Before Crash After Crash 

Exog. Var. 9/29/85-12/29/89 9/29/85-9/30/87 1/1/88-12/29/89 

A: Dependent Variable: NKD 
Constant 0.062** (0029) 0.006 (0.034) 0.165** (0.031) 
NKN 0.383** (0.159) 0.132* (0.070) 0.135 (0.198) 

-0.093 (0.078) 0.011 (0.063) -0.032 (0.054) 
pZ 0.054 0.011 0.004 
White: 81.715 (0.000) 14.086 (0.002) 79.336 (0.000> 

ARCH(1): 7.066 (0.007) 13.649 (0.002) 13.789 (0.000) 
ARCH(S): 22.697 (0.000) 28.023 (0.000) 17.773 (0.003) 

B: Dependent Variable: NKN 
Constant 0.029* (0.017) 0.104** (0.024) -0.041 (0.121) 
MCD, 0.044 (0.073) 0.176** (0.043) 0.064** (0.023) 
NKN 0.144** (0.047) 0.108** (0.053> 0.059 (0.058) 

0.031 0.068 0.026 
White: 272.439 (0.000> 6.854 (0.077) 6.385 (0.094) 

AP.CH(1): 37.668 (0.000> 1.822 (0.177) 0.028 (0.867> 
ARCH(5): 55.788 (0.000> 21.772 (0.001> 1.277 (0.937> 

C: Dependent Variable: SPD 
Constant 0.034 (0.036) 0.090 (0.036) 0.057 (0.031) 
SPN 0.277 (0.178) 0.042 (0.101) 0.190** (0.093) 

SPD 0.026 (0.094> -0.062 (0.050> -0.212** (0.074) 
0.027 0.004 0.052 

White: 358.897 (0.000) 9.321 (0.025) 10.448 (0.015) 
ARCH(l): 7.301 (0.007) 1.353 (0.245> 10.675 (0.001) 

ARCH(5): 8.006 (0,155) 4.055 (0.542) 11.714 (0.039) 

Dependent Variable: SPN 
Constant 0.021 (0.021) 0.012 (0.021) 0.019 (0.020> 

SPD.1 -0.026 (0.088) 0.149** (0.029) 0.062* (0.035) 

SPN -0.004 (0.108> 0.064 (0048) 0.042 (0.501) 
0.002 0.070 0.016 

White: 590.935 (0.000> 4.075 (0.254) 5.583 (0.134) 

ARCH(1): 418,151 (0.000> 0.444 (0.505) 0.208 (0.648) 

ARCH(S): 476.872 (0.000> 6.618 (0.251) 10,035 (0.074) 

Notes: 
(1) Standard esters are adjusted to heteroskedasticity with an unknown form. 
(2) "White" is White's (1982> heteroskedastcity test statistics and ARCH(p) 

is the Lagrange multiplier tests for ARCH processes of order p. The 
p-value is in the parenthesis. 

29 



Table 3 Aggregate Shock yodel for Stock Returns 
NKD and 5PM 

Stage 1: Stage 2: 

SPN_c5+a5SPD. 

enIQ(TK0) — N(Cqn) vnQ(TKC)— M(0,kn) 

qetqn*qnt.5qYqeMtenD8 
Whole period Before Crash After Crash 

— 

9/29/85 -12/29/89 9/29/85-9/30/87 1/1/88-12/29/89 

Coeff. St. Error Coeff. St Error Coeff. St. Error 

Stage 1: 
c 0.120** (0.022) 0.028 (0.032) 0.175* (0.034) 

0.022 (0.320) 0.124 (0.078) 0.026 (0.171) 

b -0.080 (0.224) _0.168** (0.067) .0.068 (0.062) 

d -0.031 (0.070) 0.025 (0.061) -0.080 (0.057) 
0.0291- (0.055) 0.013* (0.010) 0.013** (0.038) 

Pqn 
0.729** (0.290) 0.870** (0.026) 0.830* (0.121) 

eq5 0.2021- (0.350) 0.1l6** (0.029) 0.0571- (0.038) 
Tqn 0.066t (0.127) -0.060 (0.048) 0.125t (0.091) 

-0003 (0.107) 0.042 (0.052) -0.030 (0.078) 
lo'L -1204.787 -469.525 -425.568 
Skewness -5.322** -0.489** 0.049 
Kurtosis 90.758** 5.061** 7.191** 
1.5(12) 10.562 12.120 12.174 
LBS(12) 0.200 14.452 2.600 

Stage 2: c 0.058** (0.014) 0.058** (0.019) 0.053** (0.020) 

0.075** (0.036) 0.137** (0.027) 0.0331- (0.038) 

b55 _0.191** (0.037) _0.215** (0.053) _0.133** (0.040) 
0.082** (0.029) 0083** (0.025) 0.103** (0.036) 
0.010 (0.011) -0.007 (0.009) 0.020t (0.013) 

0.791** (0.081) 0.804** (0.099) 0.950** (0.047) 
0.156* (0.083) 0.098** (0.042) 0.018t (0.017) 

0.0201- (0.048) 0.113* (0.059) -0.071t (0.045) 
log L -689.435 -274.065 -262.319 
Skewness -0.574** ..0598** 0.539** 
Kurtosis 9.104** 6.164** 7.751** 
1.5(12) 16.601 10.187 12.000 
LBS(12) 5.834 12.816 2.694 

Notes: 

(1) f indicates significance at a 5 % level when the standard errors are 
calculated from the outer product of scores. 
(2) The statistics of skewness and kurtosis are for the standardized residuals 

en/(qn)112 or 
(3) 1.5(12) and LBS(12) are the Ljung Box statistics for the standardized 

residual and its square, respectively. 
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Notes: see Table 3. 

Table 4 Aggregate Shock Model for Stock Returns 
SPD and NKN 

31 

Stage 1: 
S PNt+bsdDM +d55D F+es 

esj(NiO) — N(0.qs) 

i11qsDMt+8qsDF 

Stage 2: 
4es+vs 

vsIQ(NYC)_ N(0ks) 

ks t_Oks*P k5h5 . 1+5kV5 'ksDMs 

Whole period 
9/29/85- 12/29/89 

Coeff. St. Error 

Before Crash 
9/29/85-9/30/87 

After Crash 
1/1/88- 12/29/89 

Coeff. Sr. Error Coeff. St. Error 

Stage 1: 

c 0.026 (0.03U) 0.086* (0.035) -0.014 (0.038) 

a O.224** (0.066) 0.090 (0.099) O.290** (0.116) 

bsd O.142** (0.066) 0.107 (0.094) O.143t (0.082) 
dSd 0.040 (0 O°5) -0.014 (0.083) 0.107 (0.104) 

Uq5 

eq5 

8q5 
log L 

0.014 (0.063) 
Q799** (0.338) 
0.083t (0.252) 
-0.218 (0.366 
0.556* (0.304) 

-1376.706 

0.008 (0.049) 
0.865** (0088) 
0.054* (0.036> 
0.187 (0.140> 
0.009 (0.106) 

-59r.592 

0.054 (0.041) 
0.761** (0814) 
0.092-f (0.0663 
-0.125 (0.640) 

0.300 (0.562) 
-579.53.1 

Skewness -1.8130* Q359** 1.285** 
Kurtosis 19.0320* 4.700** 12.745** 
LB(12) 10.018 6.638 14.495 
LBS(12) 16.691 4.806 2.631 

Stage 2: 
c 0.030** (0.012) QQ59** (0.021) 0.047** (0.011) 

a 0.057* (0.033) 0,163*0 (0.034) 0.049** (0.022 
b. 0.027t (0.026) 0.1550* (0.032) 0.004 (0.017) 
$,,, 0.039t (0.055) 0.199** (0.061) 0.017 (0.037) 

ks 0.007** (0.004) -0013 (0011) 0.034 (0007) 
ks 0.904*0 (0.053) 0.797 (0.082) 00350* (0.073) 

a5 0.0820* (0.042) 0.143*0 (0035) 0.035 (0.023) 

ks 0.05*x* (0.016> 0.151** (0.061) 0.110* (0.029) 

log L -5..0.434 -330.016 2*197 
Skewness -0.764** -0.346*0 0.4*0 
Kurtosis 13.799** 6.2410* 54930* 
LB(12) 49.888 34.072 8.960 
LBS(l2) 4.345 9.721 3.691 



Table 5 Signal Extraction Model for Stock Returns 
- SliD and 585 

NKD — a NKN1 + b SM1 + d DF8+ 
+ un1 

+ as, SPD11 + bar SM. + w + 

Var. eq. wnjS(TKO1)—N(0,gn1), un1to(TKO1)_N(0hn1) vn1jQ(TKC)—N(0kn1) 
gn1 Cgr 

* + gr[ (wn.)2+ gn1.1) + Y5.0M1 
+ DF1 

+ 5hr [ (Un 1) + hn1 j + 1ha DM1 
+ DF 

+ ke ku,1 + + ke 

Parameter 

Whole Period 
9/28/85-12/31/89 

Coeff. St. Error 

Before Crash 
9/28/85-7/31/87 

Coeff. St. Error 

After Crash 
1/1/88 -12/31/89 

Coeff. St. Error 

c. 0.120-k* (0.021) 0.038 (0.032) 0.182t (0.031) 

a b 
-0.008 (0.437) 

-0.061 (0.301) 

0.1141- (0.080) 

-0.l57** (0.072) 

-0.001 (0.108) 
-0.070 (0.058) 

d -0.044 (0.080) 0.038 (0.060) QQ97* (0.054) 

a 

y9 
8g e 

0.008 (0.011) 

0.151f (0.198) 
0.829t (0.174) 

-0.002 (0.152) 

-0.011 (0.123) 
0.022** (0.026) 

0.013 (0.020) 
0.108** (0.053) 
5•857** (0.054) 

-0.025 (0.058) 

-0.008 (0.082) 
0.003 (0.035) 

0.004 (0.051) 

0.108 (0.177) 
0.663 (0,426) 
0.174 (0.115) 
-0.054 (0.076) 
0.083 (0.053) 

ha 
ha 

0.9481- (0.612) 
0.lllt (0.250) 

0.964** (0.145) 
-0.018 (0.066) 

0.948 (0.612) 
-0.071 (0.103) 

6ha 0.001 (0.180) 0.058 (0.080) 0.063 (0.064) 
c 

a55 

0.059** (0.016) 
0.094** (0.042) 

0.052** (0.019) 
0.l43** (0.027) 

0.053** (0.020) 
0.059 (0.040) 

b55 0.199** (0.051) 0.204** (0.054) (0.044) 
g55 

5kn 

0.192-5 (0.112) 

0.008 (0.011) 
0.126** (0.045) 

-0.012 (0.011) 
0.219* (0.131) 

0.040** (0.015) 
a. 0.134t (0.096) 0.072** (0.034) 0.085** (0.044) 

3ki 
1ka 

0797** (0.100) 
0.0371- (0.045) 

0.834** (0.097) 
0.139** (0.060) 

0.785** (0.085) 
-0.081 (0.051) 

Log L -1857.779 -748.281 -646.516 
gn/hn 0.645 0.064 6.889 

gn/(hn+gn) 0.075 0.064 0.191 

CARCH(1) 3.204* 3085* 0.038 
Wald(4) 43533** 161.383** 83.850** 

to the sample era Notes: (1) gn/hn is the ratio of the sample average of gn1 
of hn1 

(2) GARCM(1) is the tsst statistics for a CARCH(l) term in hn, i.e. null 
hypothesis is that — 0. 

(3) Wald (4) is the test statistics for the null hypothesis that 
Uha 

— hs hr — — 

Model: 
Mean eq. 
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Table 6 signal Extraction Model for Stock Returns 
- SF0 and 61(24 

Model: 
Mean eq. : SP0 — 

aSd SPIII ÷ b5 DM 
+ 

OF9 ws ÷ us 
NKN o a NK0i + b55 DM + 

41r0 
ws vs 

Var. eq. : wsjO(NIDJ—N(0gst), uaI0(,NY0)_N(0hs) vnIQ(NYC)-'N(0ks) + 
1ss 65t'l 

+ eae t.1)2+ gs + + ee 02t 
ha 5hs + eb jus + he t.1J+Yhs DM 8hs DF 
ks 0ks 3ks ka_j + &ks vs ke DM 

Whole Period Before Crash After Crash 
9/28/65-12/31/89 9/28/85-7/31/87 1/1/88- 12/31/89 

Parameter Coeff. St. Error Coeff. St. Error Coeff. St. Error 

0.021t (0.031) 0.0841' (0.045) 0.018 (0.037) 

a5 0.203* (0.066) 0.040 (0.086) 0.236** (0.087) 

bsd 0.143* (0.063) 0.145 (0.069) 0.106 (0.096) 
0.0421' (0.084) 0.029 (0.081) 0.114 (0.107) 

a95 
-0.001 (0.045) -0.046 (0.034) 0.016 (0.067) 

U95 0.082t (0.119) 0.2111' (0.172) 0.099 (0.202) 0574 (0.135) 0.748** (0.138) 0.884** (0.196) 
as -0.035 (0.423) 0.1111' (0.167) 0.093 (0.235) 

0.136 (0.345) 0.201 (0.187) -0.147 (0.208) 
0hs 0.053 (0.101) 0.307** (0,114) 0.085 (0.225) 
ehe 0.771** (0.219) -0.047 (0.153) 0.185 (0.323) 

0.023 (0.157) -0.091 (0.142) 0.064 (0.153) 
8ee 0.280t (0.428) -0.170 (0.156) 0.108 (0.698) 
cnn -0.0221' (0.015) 0.059** (0.020) -0.042** (0.011) 

QQ734 (0.021) 0.163** (0,034) 0.019 (0.022) 
0 0741' (0.048) 0.203** (0.060) 0.004 (0.037) 
0.0911' (0.061) 0.265** (0.120) 0.012 (0,021) 

01kn 0. 01 (0 009) -0.011 (0.011) 0.031** (0.005) 
5kn 0.165'k* (0.082) 0.146** (0.038) 0.049* (0.077) 
kn 0 668** (0.152) 0.791** (0.080) 0,036 (0.016; 
Tkn (09ff (0.063) 0.139** (0.057) 0.096* (0,029) 

Log L -1859.807 -924.033 -540.342 
ge/he 5.135 2.089 6 860 
s gs/(gs+ks) 1.195 0.179 0.007 
CARCH(1) 0 067 1.691 0.662 
Wald(4) 21.644a* 7,893* 2.564 

Notes: see Tcble 5 
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Table 7 La8ged Return Spillovers: New York Daytime to Tokyo Daytime 

Model 
Mean eq. NKD1 — c+ a NKN + b DM14- d DF1 + it SFD1.1 + 

W111 
+ un 

SEN1 
— c + 

a55 SPD1 + b55 DM 
+ .s. wn + vn 

Vat. eq. 1Q(TKO1)—&(0gn1) un1fD(TKO)_N(0hn1), 11D(TKC)—N(0,kn1) 

gn1 e + + agr[( •.1)2+ gn1] + y5. Dli. + B DR1 

ho1 
— + ehlj(Unll) + hn1 + 'hn DM1 + 8hn DF1 

kn1— 5kl 3kn kn11 + 5kn t-l + kn ON1 

Panel A: US Test for Null hypothesis: e 0; Alternative hypothesis: s C C 

Whole Period Before Crash After Crash 

9/28/85-12/31/89 9/28/85-7/31/87 1/1/88-12/31/89 

test stat. 0.393 0.004 12.852** 

Panel B: Estimated Results for the 

Whole Period 
9/28/85-12/31/89 

Parameter Coeff. St. Error 

mean equation of NKD 

Before Crash 
9/28/85 - 7/31/87 

Coeff. St. Error 

After Crash 

1/1/88 - 12/31/89 

Coeff. Sr. Error 

c 0.119** (0.021) 0.035 (0.032) 0.174*-k (0.032) 

a -0.001 (0.334) 0.119t (0.077) -0.029 (0.101) 

b -0.047 (0.054) 0.037 (0.060) -0.081 (0.053) 

d -0.065 (0.299) 0.l56** (0.071) -0.071 (0.057) 

e 0.091 (0057) 0.007 (0.034) 0.130** (0.033) 

a95 
0.140 
0.837 

(0.158) 

(0.162) 

0.105** 
0.872** 

(0.050) 

(0.051) 

0.086 
0.695 

(0.161) 
(0.378) 
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Table & Lagged Return Spillovers: Tokyo Daytime to New York Daytime 

Model: 
Mean eq. : SPD — 

Csd 
+ 

aSd SPN + bSd DM + dd DF+ s NKD 
+ ws + us 

NKN — c+ a NKD + b DM + p ws + vs 
Var. eq. ws[0(NY0)-.N(0,gs5), usIQ(NY0).N(0,hs). vn[Q(N'C)_N(O,ks) 

gs + gs1 + a[ (ws*t.j)z+ gs*1J + y DM + 8 DF 
hs — + a {(us1)2+ hsiJ+ DM + DF 

ks — 'ks + + akS vs ÷ 'ks DM 

Panel A: LM test for Null hypothesis: ,t — 0; Alternative hypothesis: 5sd e 0 

Whole Period Sefore Crash After Crash 

UI Test for 1.363 0.066 0.018 

Panel ? 8stimated coefficients for 

Whole Period 
9/28/85- 12/31/89 

Parameter Coeff. St. Error 

Csd 0.024 (0.031) 
0.206** (0.066) 
-0.004 (0.039) 

bSd 0.139** (0.064) 

dSd 0.042 (0.085) 
0.080 (0.109) 
0.879** (0.119) 

the mean equation of SPD 

8efore Crash After Crash 
9/28/85-7/31/87 1/1/88-12/31/89 

Coeff. St. Error Coeff. St. Error 

0.084** (0.045) 0.007 (0.043) 
0.040 (0.086) 0.209** (0.102) 
0.010 (0.042) 0.008 (0.076) 
0.145 (0.089) 0.136 (0.085) 
0,029 (0.081) 0.114 (0.108) 
0.211 (0.171) 0.120 (0.161) 
0.748** (0.138) 0.864 (0.150) 
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Table 9 Lagged Volatility spillovers to Tokyo Global Factor 

Model: 

Mean eq. : NKD 
— c + a NKNi + b DMt + d OF + wn + un 

SPN — ÷ a55 SPD. + b55 DM + ji * + 

Var. eq. : wnjQ(TKO)—N(Ogn), unIQ(TKO)N(Ohn) vtjG(TKC)—N(Okn) 

gn — u + , + c95[(wn1)2+ gn1 + y DM + tr DF + 
hn — + hn hn1 + Cbet tn1t)+ hn1] + Thn DM + 6hn OF 

kn — 
Uke + 3. kn1 + e vt41 + 1ke 0M 

Null hypothesis: X — 0 Alternative hypothesis: X * 0 

Ver. for z Notation Whole Period Before Crash After Crash 

N.Y. Daytime Returns: SPD1 0.961 2.142 0.192 

N.Y. Global Factor: (ws1)2+gs.1 1.108 1.631 0.161 

TK. Overntght Shocks: vs1 0.784 0.034 6.304** 

TM. Overnight Returns: NKNt.12 
1.847 3.129* 0.124 
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Table 10 Lagged Volatility Spillovere to New York Global Factor 

Model; 

Mean eq. : SPD — c + a 6'Nt.j + b DM + dSd DF + ws + us 
— c + a, NKD. + b DM + ws + vs 

Var. eq. 

wsI0(NYO)_N(O,gs), uslQ(NY0)—N(0,hs), vntG(NYC)—N(0,ks) 

gs — + gs + a95[(ws.1)2+ gs.1) + y9 DM DF f l z 
— hs + hs + ahs[ (us )2+ hs.1 + hs + DF 

ks — ks + ks1 + 5ks"5t1 + Tks DM 

Null hypothesis: l— 0 Alternative hypothesis: X55 * 0 

Var. for z Notation Whole Period Before Crash After Crash 

1K. Daytime Returns: NKD1 1.048 3.291* 0.346 

1K. G1obat Factor: sn2+gn.1 1.075 0.001 0.699 

N.Y. Overnight shock: 1.065 1l.427** 0.906 

N.Y. Overnight Return: SFN2 2.682 3.786* 0.864 
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