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1. Introduction

Mainstream research in empirical asset pricing has traditionally treated the vari-
ances and covariances of asset returns as being exogenous. Tle questions asked concern
thie optimal response of utility-maximizing agents to these variances and covariances,
and the resulting equilibrium pattern of mean returns on securities.

Recently, however, a number of authors have cliallenged the finance profession to
bring the second moments of asset returns within the set of plienomena to be explained.
One of the first rescarchers to pose this challenge was Robert Shiller, who argued in the
carly 1980's that it is hard to account for the variance of stock returns using a model
with constant discount rates,! Richard Roll has issued a similar challenge in a recent
Presidential Address to the American Finance Association (1988), saying that “The
immaturity of our science is illustrated by the conspicuous lack of predictive content
about some of its most intensely interesting phenomena, particularly changes in asset
prices”.

One straightforward way to meet this challenge is to regress asset price changes on
contemporaneous news events. Roll (1988) does this for individual stocks and finds that
less than 40% of the variance of price changes is typically explained by the regressions.
Eugene Fama (1990a) has applied a similar methodology to the aggregate stock market.
He finds that almost two-thirds of the variance of aggregate stock price movements can
be accounted for by innovations in variables proxying for corporate cash flows and
investors’ discount rates.? Other recent papers using this approach include Cutler,
Poterba, and Summers (1989) and Stambaugh (1990).

The use of contemporaneous regressions to explain asset price variability is ap-
pealing because it is simple, and because it is an extension of the well-established event
study methodology in finance. However there 1s a major conceptual difficulty with this
approach. Suppose that innovations to a particular variable, say industrial production,
are associated with stock market movements. Tlis could reflect an association of indus-
trial production with changing expectations of future cash flows, or an association with
changing discount rates (perhaps because both industrial production and stock prices
arc responding to intercst rate movements). The contemporaneous regression approach

cannot distinguish these possibilities, or tell us about their relative importance.

} This research is reprinted and summarized in Shiller (1990),
2Fama uses leads of some variables as well as contemporaneous values. This is an informal way to allow for extra
information that market participants may have about future macroeconomic developments.
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In this paper we use au alternative approacl developed in Campbell aud Shiller
(1988a,b) and Campbell (1990a, 1991). Those papers study the stock market in iso-
lation, whereas here we try to account for the variance of stock returns jointly with
the variance of long-term nominal bond returns and the covariance between stock and
bond returns. We first express the innovation to a long-term asset return as the sum
of revisions in expectations of future real cash payments to investors, and revisious in
expectations of future real returns on the asset. (Expected future returns are further
broken down into expected future real interest rates and expected future excess returns
on the long-term asset.) In general this asset pricing framework holds as a log-lincar
approximation (Campbell and Shiller 1988a). However we provide an exact log-lincar
relation for the case in which the long-term asset is a zero-coupon bond.

We combine the asset pricing framework with a vector autoregression (VAR) in
long-term asset returns, interest rates, inflation, and other information that helps to
forecast these variables. We assume that the VAR adequately captures the information
used by investors., From the VAR we can calculate revisions in multi-period forecasts
of real returns and cash flows, and thus we can break asset returns into several compo-
nents. In the case of stocks, the components are changing expectations of future real
dividends, future real interest rates, and future excess returns on stocks. In the case of
long-term nominal bonds, the components are changing expectations of future inflation
rates (which determine the real value of the fixed nominal payment made at maturity),
future real interest rates, and future excess returns on long bonds. The variances and
covariances of these components constitute the variances of stock and bond returns,
and the covariance between them.

This approach builds on the vast literature on forecasting long-term asset returus,
interest rates, and inflation rates. Many recent papers have shown that dividend yields
and short- and long-term interest rates have a modest degree of forecasting power
for excess stock returns (Campbell 1987, 1990a, 1991, Campbell and Shiller 1988a,
Cutler, Poterba, and Summers 1990, Fama and Schwert 1977, Hodrick 1991, KKeim
and Stambaugh 1986). The forecastability of stock returns seems to increase with the
time interval over which returns are measured (Campbell and Shiller 1988b, Fama and
French 1988b), altliough there is some dispute about the statistical properties of long-
Liorizon forecasts in a finite sample (Nelson and Kim 1990, Richiardson 1989, Richiardson
and Stock 1989). Other work has shown that the slope of the term structure of interest

rates helps to forecast excess bond returns (Campbell and Shiller 1991, Fama 1984,
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Fama and Bliss 1987, Shiller, Cainpbell, and Schoenholtz 1983). There is sonie evidence
that forecasts of excess bond and stock returns are correlated (Fama and French 1989).
At the same time, the term structure has considerable long-horizon forecasting power
for norninal interest rate movements (Campbell and Shiller 1987, 1991, Fama and Bliss
1987), and for inflation rates (Fama 1990b, Mishkin 1990). In contrast with most of
this research, our objective is not merely to forecast asset returns, but to derive the
implications of our forecasts for the ez post variability of returns.

An important characteristic of our approach is that we use a multivariate informa-
tion set. Much recent work on the time series behavior of asset returns has concentrated
on the autocorrelation function of returns (Conrad and Kaul 1988, Fama and Frenclh
1988a, Lo and MacKinlay 1988, Poterba and Summers 1988). But as we discuss below,
it is possible for ez post returns to be driven largely by changing expectations of future
returns, even if the autocorrelations of returns are all zero or very close to zero. Thus
there can be a big payoff to using all relevant information for forecasting returns, and
not merely the history of returns themselves.

The paper closest to ours is Shiller and Beltratti (1990). The main difference is
that Shiller and Beltratti concentrate more on testing hypotheses that certain compo-
nents are absent from returns. In addition we distinguish more separate components of
returns than do Shiller and Beltratti, we use monthly rather than annual data, we con-
centrate on the postwar period, and we study zero-coupon bonds of various maturities
while Shiller and Beltratti look at consols and other long-maturity coupon bonds.

The organization of the paper is as follows. Section 2 describes the asset pricing
framework for stocks and bonds. Section 3 explains our data sources and VAR method-
ology. Section 4 presents empirical results for U.S. data over the period 1952-1987, and

section 5 concludes.



2. Asset Prices, Expected Returns, and Unexpected Returns

In this section we first use the log-linear approximate asset pricing framework of
Campbell and Shiller (1988a) to express unexpected excess stock returns as a function
of news about future dividend growth rates, real interest rates, and excess stock returns.
We develop the corresponding expression for nominal zero-coupon bonds, which holds
exactly rather than as an approximation. We then show why asset prices are useful
for forecasting long-horizon returns, and why lagged asset returns may not help to
forecast returns even when expected returns vary through time. Finally, we express
the unexpected bond return as a sum of returns on portfolios that are sensitive to the
level (but not the slope) and the slope (but not the level) of the term structure. Returus
on these level and slope portfolios can be decomposed in the same way as bond and

stock returns.

2.1. Expected and Unexpected Stock Returns

The basic equation for stock returns relates the unexpected excess stock return in
period ¢t + 1 to changes in rational expectations of future dividend growth, future real
interest rates, and future excess stock returns. We write ¢;4; for the log excess return
on a stock held from the end of period ¢ to the end of period ¢ + 1, relative to the return
on short debt.d We write dyy1 for the log real dividend paid during period ¢ + 1, and
141 for the log real interest rate from ¢ to ¢ + 1. Then the equation is

0 o o0
ar1—Eere1 = (Bp~Ey) { ZP’Adt+l+j - ZPJTt+l+j - ZpJet+l+j } (2.1)
j=0 j=0

i=1

Here E; denotes an expectation formed at the end of period t, and A denotes a 1-

period backward difference. The parameter p comes out of the log-linear approximnation

procedure; it is a number a little smaller than one (0.9962 in our empirical work).
Equation (2.1) is not a behavioral model; rather, it is a dynamic accounting identity

that imposes internal consistency on expectations. If the unexpected excess stock return

3The excess retum can be defined in either real or nominal terms. Since €4 is just the difference between two
continuously compounded returns, Lhe price defiator cancels from ¢4, .
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is negative, tlien either expected future dividend growth must be lower, or expected
future real stock returns must be higher, or both. To see why, consider an asset with
fixed dividends whose price falls. Its dividend yield is now higher; this will increase
tlie asset return unless tliere is a further capital loss. Capital losses cannot continue
forever, so at some point in the future the asset must have higher real returns. These
may come either in the form of higher real interest rates, or in the form of higher excess
returns on stock relative to short-term debt.

The discounting at rate p in equation (2.1) means that an increase in stock returns
expected in the distant future is associated with a smaller drop in today’s stock price
than is an increase in stock returns expected in the near future. To understand why this
is, consider the arrival of news that stock returns will be higher ten periods from now.
If the path of dividends is fixed, the stock price must drop to allow a rise ten periods
from now. Most of the drop occurs today, but for nine periods there are smaller declines
which are compensated by a higher dividend yield. These further declines reduce the
size of the drop which is required today.

Formally, equation (2.1) follows from the log-linear “dividend-ratio model” of
Campbell and Shiller (1988a). This model is an appropriate framework because it
allows both expected returns and expected future cash flows to affect asset prices. The
model is derived by taking a first-order Taylor approximation of the equation relating
the log stock return to log stock prices and dividends. The approximate equation is
solved forward, imposing a terminal condition that the log dividend-price ratio docs
not follow an explosive process. Details are given in Appendix A.

1t will be convenient to simplify the notation in equation (2.1). Let us define v 441
to be the unexpected component of the excess stock return e;41, €441 to be the term
in equation (2.1) that represents news about cash flows, ¢, ;41 to be the term that
represents news about real interest rates, and €. 41 to be the term that represents
news about future excess returns. Thus we use v to denote an innovation or surprise in
a variable, and we use the Greek letter corresponding to the variable’s Roman symbol
to denote the news components making up that surprise. The different news compo-
nents are distinguished by the appropriate subscripts. Our notational conventions are

sumnmarized in Table 1. Then equation (2.1) can be rewritten as

Vetrl = €di4l — Ert+l — €ettl- (2:2)
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2.2. Expected and Unexpected Boud Returns

The basic equation for bond returns has a form similar to the basic equation for
stock returns. We define 1, ¢4 to be the log excess one-period return on an n-period
zero-coupont bond held from time ¢ to time ¢ + 1. (At tine ¢ 4 1, the bond becomes an
(n — 1)-period bond.) We define 7y} to be the log one-period iuflation rate from t to
t + 1. Then we have

n—1 —l

1

Tt = EtTater = (Et+1—Et){" D Mg — Y Tealei = 9 Tue xt+l+:}
= iZ1 i1

2.3)

This equation is derived in Appendix B. Like the stock decomposition (2.1) it is a
dynamic accounting identity rather than a behavioral model, but unlike (2.1) it holds
exactly rather than as an approximation. It says that unexpected excess bond returus
must be associated either with decreases in expected inflation rates over the life of the
bond, or with decreases in expected future real returns on the bond. The latter can
take the form either of decreases in future real interest rates, or of decreases in future
excess bond returns.* Changes in expected inflation rates appear in (2.3) because they
alter the expected real value of the fixed nominal payoff on the bond, so thiey can cause
capital gains and losses even if expected real bond returns are constant.

In the literature on the term structure of interest rates, the “expectations theory
of the term structure” implies that the third term on the right Lhand side of (2.3) is
always zero; the “Fisher hypothesis” implies that the second term is always zero. When
both these hypotheses hold, then only the first term varies through time and changing
expected inflation is the only source of unexpected capital gains and losses on long
bonds relative to short bonds.

Using the more compact notation summarized in Table 1, (2.3) beconies

Vel = ~Erptl — Ertel — Ezitl- (2.4)

4 Note that the maturity of the bond shrinks as time passes, so the relevant expectations are for the returns on a bond
that will have a maturity of (n — i) at time t 4+ i. Also note that the summation in the first two terms on the right hand
side of (2.3) could atart at O rather than 1, and the equation would remain valid. The two extra terins would cancel out
because they add to the nominal interest rate, which is known at time 2.
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2.3. Asset Prices, Yields, and Returns as Forecasting Variables

Scveral authors have recently found that long-term asset prices can be surpris-
ingly powerful forecasting variables. Prices are sometimes used in raw form, but niore
commonly they arc used as elements of assct yields or yield spreads. For example,
Campbell and Shiller (1988a,b) and Fama and French (1988b) use dividend yields to
forecast stock returns, while Campbell and Shiller (1991), Fama (1990b) and Mishkin
(1990) use bond yield spreads to forecast future bond returns, interest rates and infla-
tion rates. The forecasting power of asset price variables is particularly evident when
forecasts are made over long horizons. The asset pricing framework described above
can be used to interpret these findings.

The approximate log-linear asset pricing framework for stocks implies that the real
stock price py embodies investors’ forecasts of future real dividends, real interest rates,

and excess returns on stock. Appendix A shows that

[» <)
poo= E > P [(1-pi14j — mia14f — ere1ei)s (2.5)
Jj=0

where a constant term has been suppressed since it plays no role in our analysis. It is
often argued that real dividends follow a time serics process with a unit root (Kleidon
1986). Equation (2.5) shows that a unit root in real dividends will lcad to a unit root
in stock prices; this will cause econometric problems if stock prices arc used to forecast
stationary variables. In this case one might want to work with the log dividend-price

ratio or dividend yield, which satisfies

[>o]

d-p = E Z/’][_Adt+l+j + Tigle; t 6(+1+j]~ ) (2.6)
j=0

The log dividend yicld is stationary if dividend growth rates, real interest rates, and
excess stock returns are all stationary. As we discuss further below, in our data set
these conditions appear to be met.

Equation (2.6) helps to explain why the dividend-price ratio has forecasting power

for excess stock returns at long horizons. The third term on the right hand side of
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(2.6) is approximately equal to the conditional expectation of the long-horizon excess
return.® Provided that the other two terms on the right hiand side of (2.6) are not too
variable, the dividend-price ratio should perform well as a proxy for the long-horizon
expected excess return. More generally, if there is any variation in the expected excess
return, the dividend-price ratio should have some forecasting power.%

A similar point can be made for bonds, without the use of any log-linear approxi-
mation. In the case of bonds, it is conventional to begin by transforming nominal prices
to yields to maturity. The nominal log yield to maturity, Ynt, is minus the nominal
log bond price divided by n. Appendix B relates the nominal bond yield to expected

future real bond returns and inflation rates:

-1

1 I N

Ynt = (;) Ey E (Tiq14i + Togtai + Taciggitil (2.7)
=0

Inflation rates take the place of real dividends in the bond analysis. Just as with real
dividends, it is often argued that inflation rates follow a nonstationary unit root process.
In this case the nominal bond yield will also be nonstationary and one may want to
work with a yield spread instead of the yield itself. The yield spread between the n-
period nominal interest rate and the 1-period nominal interest rate, spy = ynys — yi 4

can be written as

] n-1 .
Sng = (;) B Y [(n—1-i)XAmpagi + Arppogd) + Tnoigpigil (28)

i=0

The yield spread is stationary if excess bond returns, iuflation changes, and real interest

rate changes are stationary. In our data set these conditions appear to be met.
Equation (2.8) relates nominal yield spreads to expected future changes in infla-

tion rates and real interest rates, and to expected excess returns on long bonds. The

expectations theory of the term structure makes the third term on the right hand side

* Campbell and Shiller (1988b) emphasize this point.
© This will fail only if the long-Dorizon expected exceas return is perfectly negatively correlated with some other coempo-
nent of the dividend yield, and these two components have exactly the riglt variances so that their variation cancels out

of the dividend yield.
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of (2.8) constant, while the Fisher hypothesis makes the second term on the right hand
side zero. These hypotheses are extreme. In general, the nominal yield spread will
be a uscful proxy for expectations of all the terins on the right hand side. This helps
to explain why yield spreads help to forecast long-horizon movements in inflation and
interest rates, as well as excess returns on long bonds.”

An alternative way to forecast asset returns is to use the history of asset returns
themselves. This univariate approach was popular in the early empirical finance liter-
ature; more recently it has been used by Fama and French (1988a) and Poterba and
Summers (1988), who emphasize that one should look at the entire autocorrelation func-
tion of returns. Specifically, there may be negative autocorrelation at low frequencies
which makes long-horizon lagged returns better forecasters than short-horizon lagged
returns. Poterba and Summers argue that “If market and fundamental values diverge,
but beyond some range the differences are eliminated by speculative forces, then stock
prices will revert to their mean. Returns must be negatively serially correlated at some
frequency if ‘erroneous’ market moves are eventually corrected” (pp.27-28).

Campbell (1991) uses the asset pricing framework developed above to clarify the
circumstances under which univariate regressions will have forecasting power for re-
turns. Campbell studies a simple example in which the expected stock return follows
a first-order autoregressive process. He shows that persistent movements in expected
returns have offsetting effects on the autocorrelations of realized returns. On the one
hand, the positive autocorrelations of expected returns carry over to realized returns;
on the other hand, the capital loss associated with an increase in the expected re-
turn creates negative autocorrelations in the realized return series. These offsetting
cffects make it possible that all the autocovariances of stock returns are zero, even
when expected returns are variable and persistent. Contrary to the claim of Poterba
and Summers, time-varying expected returns do not necessarily imply negative (or
positive) autocorrelations at any frequency.

Of course, in practice it is unlikely that rcalized stock returns will have autocovari-
ances that are all exactly zero. Campbell’s examnple simply shows that autocovariances
may be close to zero even when changing expected returns contribute a great deal to the
ez post variability of returns. Thus lagged returns may be less effective than dividend

yields and other price-based variables in forecasting future returns.

T Estrella and Hardouvelis (1991) and Stock and Watson (1990) show that yield spreads also help to forccaat the levd
of econoumic activity. Equation (2.8) should be helpful in thinking about why this is so.
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2.4. Level Portfolios and Slope Portfolios

In studying the properties of bond returns, it is common to distinguish between
returns that are associated with changes in the general level of interest rates, and
returns that are associated with changes in long-term interest rates relative to short-
term rates (shifts in the slope of the term structure). In fact, theoretical bond pricing
models often assume that there are two “factors” driving interest rates whicl can be
associated with shifts in the level and slope of the term structure.

Our variance decomposition approach is perfectly consistent with this way of think-
ing about bond returns. We now sliow that the excess return on an n-period bond can
be written as the sum of excess returns on two portfolios, a “level portfolio” of 2-period
bills whose excess return Iy 441 is sensitive only to innovations in the level of short-term
nominal interest rates, and a “slope portfolio”, long in n-period bonds and short in 2-
period bills, whose excess return my 14 is sensitive only to changes in the yield spread
between long rates and short rates. The returns on the level and slope portfolios can be
broken into components in just tlie same way as excess bond and stock returns. These
decompositions answer the questions “What moves the short-terin nominal interest
rate?”, and “What moves the slope of tlie term structure?”, respectively.

The excess return on an n-period bond can trivially be written as

Tpt+l = ln,t+1 + mp 4l (2.9)

where the components lp 441 and mg 4] are defined by

lpge1 = (n—1)z92441

il

Mg, t41 Tnt4t ~ (n—1)z9441- (2.10)

It is straightforward to show that the unexpected return ou the n-period bond is
—(n — 1) times the iunovation in next period’s yicld on the bond, while the umex-
pected return on the level portfolio is —(n — 1) times tlie innovation in next period’s

short-term interest rate and the unexpected return on the slope portfolio is —(n — 1)
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times the innovation in next period’s yield spread. It follows from this (or from equa-

tions (2.3) and (2.10)) that the level and slope portfolio returns can be decomposed as

follows:

lnt+1 = Ednggel = =(n—1)(Eiq1 = Et)[mig2 + resz),

Muerl — Egmp g =

n-1

— (Ep1 - E0) Y [(n =1 = i)(Amyoyi + Bregag) + Tnoigsrsil-

i=]

In our more compact notation, (2.11) becomes

Vel = —Argel — Argals

Umg+l = “Hat+l ~ Hrt+l — HPzt+l-

(2.11)

(2.12)

These equations say that level portfolio returns are driven by changing expecta-

tions of inflation and real interest rates one period ahcad. Slope portfolio returns are

determined by changing expectations of longer-term changes in inflation and real in-

terest rates between the next period ahead and the more distant future, and also by

changing expectations of future excess returns on long-term bonds. In our empirical

work, the distinction between these portfolios turns out to be important. Our variance

decomposition for bond returns places little weight on news about future real inter-

est rates, but real interest rate variability is important for both the level and slope

portfolios considered separately.
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3. Alternative Methods for Empirical Variance Decomposition

In the previous section we have stated a number of identities relating innovations
in long-term asset returns to revisions in investors’ expectations of future dividends,
real interest rates, inflation rates, and excess long-term asset returns. Qur objective is
to use thiese identities to estimate the relative importance of the different components
for the historical behavior of asset returns.

In this section we first discuss some conceptual difficulties with the decomposition
of return variance when the components of returns are correlated with one another.
We then address the question of how one can form empirical proxies for revisions in
expectations. We discuss the contemporaneous regression approach to this problem

before introducing our preferred vector autoregressive method.

3.1. Variance Decomposition with Correlated Components

For concreteness, we consider the decomposition of excess stock returns. We begin

with the identity (2.2), which we restate here:

Vet4l = €dgq] — Ert+l — €ettl- (3.1

For the present we will assume that the components €g 11, €141, and €, 441 are directly
observable; below we discuss the difficulties that arise from the fact that the components
are unobservable.

In general the components in (3.1) can be correlated with each other. This creates

a conceptual difficulty in stating a variance decomposition for v ¢41. Trivially we have

Var(veg+1) = Var(egep1) + Var(ents1) + Var(eegq1)

— 2Cov(eg st ent+1) = 2Cov(eqrqs ept1) + 2Cov(enst1, ter1)  (3.2)

One way to state a variance decomposition is simply to report the six numbers on the

right hand side of (3.2), and we do this in our empirical work below. A number like
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Var(eq¢41) answers the question, “What would the variance of stock returns be if the
process for stock dividends remained unchanged, but interest rates and expected excess
stock returns became constant?”. Wlhether tliis question is meaningful depends on the
context. In an exchange economy, for example, stock dividends are modelled as an
exogenous endowment while interest rates and expected excess stock returns depend
on the dividend process and on the risk aversion of a representative agent. In such an
economy one could imagine reducing the risk aversion of tlie representative agent to
zero, while leaving the endowment process unchanged. Tlie effect of this would be to
change the variance of stock returns to Var(eg41).

Alternatively, one may want to transform the components in (3.1) so that they are
orthogonal to one another. Var(v, 1) can then be written as a sum of variances of the
orthogonalized components. One siniple and popular way to orthogonalize components
is to order them and then apply a Cholesky decomposition. The variance of the first
component in such an ordering is given by the variance of the fitted value in a siinple
regression of ve 441 on that component.

It is tempting to think that a component will have the largest share of variance
when it is given first place in the ordering, in other words that the R? statistic of
a simple regression of ve 41 on a component will be an upper bound on the variance
share of that component. Unfortunately this is incorrect. It is possible for a component
to have a larger share of variance when it is placed lower in the ordering. To see this,
note that if one component is negatively correlated with the others then it can be
uncorrelated with the sum of the components. This component will get a zero share of
variance when it is ordered first, but in general it will get a nonzero share when it is
given a lower place in the ordering.® Despite this difficulty of interpretation, a popular
measure of the importance of a component is the R? statistic from a simple regression
on that component. Accordingly we report this measure in our empirical work below.

Although correlation among components leads to ambiguity in the notion of a
variance decomposition, this does not mean that the decomposition summarized by
(3.1) and (3.2) is uninteresting when the components are correlated. The observation
that the various components of an asset return are highly correlated may itself be an

important stylized fact.

¥ Below we show that this is not just a theoretical possibility, but occurs in some of our asset return decompositions.
For similar reasons the sum of the A? statistics from simple regressions on all the individual components may be either
greater or less than one, which would be the R? from a multiple regression on the components.
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3.2. The Contemporaneous Regression Approach

In practice the expectational revisions in equation (3.1) are not directly observable.
Cutler, Poterba, and Summers (1989), Fama (1990a), and Stainbaugh (1990) have used
contemporaneous regressions to deal with this problemn. As we noted above, a popular
mcasure of the importance of a particular component is the variance of the fitted
value obtained when v, ¢4 is regressed on that component. The contemporaneous
regression approach uses instead a vector of explanatory variables wy, that proxies
for the unobserved component. For concreteness, assume that w;] is supposed to be

a proxy for €444 1. The following ordinary least squares (OLS) regression is run:

Vegt1 = Bwpet + 41 (3.3)

Then the variance of the fitted value of (3.3) is taken as a proxy for the variance of
the fitted value of a regression of veyy1 on €541 The condition for this to be valid,

of course, is

Var(Efveest lwer1]) = Var(Elvest learan]). (3.4)

A sufficient condition for (3.4) to hold is that

Efvegr1|wig1] = Elvegsrlegesr] (3.5)

Equation (3.5) is of course not necessary for (3.4), but we focus on this condition
because it is hard to construct plausible examples in which (3.5) fails but (3.4) holds
(other than by an unlikely coincidence). The condition (3.5) is in fact a fairly stringent
one. To see this, note that (3.5) is not necessarily satisfied even if the vector w4 is a
perfect proxy for €1 in the sense that eg,41 can be written as a linear combination

of the variables in w4 :

i+l = g (3.6)
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for some vector 8. Even when (3.6) holds, it could be the case that the other components
of ve ¢4 can also be written as linear combinations of the variables in w 4. For this
or other reasons the vector w4 may coutain more information about v, ;4| than does
the single component fd,t+1'9

Finally, we note that the contemporaneous regression approach can at best provide
an estimate of the share of variance attributed to a component when it is ordered first
in a process of sequential orthogonalization. This is not even an upper bound on the
share of varianee that ean be attributed to the component, because other positions in
the ordering might give the component a larger share of variance. Thus the inforination

that can be obtained from the contemporaneous regression approach is quite limited.

3.3. The Vector Autoregressive Approach

The vector autoregressive (VAR) approach is more ambitious than the contem-
poraneous regression approach in that it seeks to use the time-series structure of the
.problem to identify revisions in expectations. The VAR approach postulates that the
unobserved components of returns can be written as linear combinations of innovations
to observable variables: that is, equations like (3.6) hold for each of the components
of returns. The coefficients in these linear combinations are identified by using a time-
series model to construct forecasts of the discounted value of future dividends, real
interest rates, excess returns, and so forth. Revisions in these forecasts are then used
as proxies for revisions in investors’ expectations. This approach must confront two
problems. First, the relevant expectations are of variables that are realized only over
very long periods of time. (In the case of stocks, in fact, the expectations concern the
infinite future.) Second, investors may have information that is not available to us.

We handle the first problem by using a VAR model to calculate multi-period
expectations, In effect, we use the short-run behavior of the variables to impute the
long-run behavior. This procedure seems to have better finite-sample properties than
direct regression methods with long-horizon variables, although of course it is necessary

to assume that the VAR adequately captures the dynamics of the data.10

? Note that even when (3.5) and (3.6) hold, the OLS regression coefficients g in (3.3) will not generally equal the
parameters 8 in (3.6). Equality of 8 and 6 would require in addition that ¢4 (41 be orthogonal to the other components of
Ve t41-

{OVARS are used by Campbell and Shiller (1987, 1988a,b) and Kandel and Stambaugh (1983). Fama and French
(1988a,b) pioneered the use of long-horizon regressions. The finit ple properties of such regressions are investigated
by Richardson and Stock (1989) and Hodrick (1991); Hodrick explicitly compares them with VAR procedures. Campbell
(1991) also unchertakes a Monte Carlo study of the propertics of VAR variance decompositions.
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The secoud problem is more difficult. In general there is no way to rule out the
possibility that investors may have information, omitted from our VAR, which affects
the decomposition of variance. A special case wliere investors' superior information
causes no problem occurs when only one component of an asset price is time-varying.
In this case the asset price itself summarizes all the information investors liave about
that component (Campbell and Shiller 1987). Thus if one is interested in testing the
hypothesis that expected real interest rates and excess returns on long bonds are con-
stant, this can be done using a VAR that includes the long bond yield or yield spread;
under the null hypothesis the yield varies only because expected inflation varies, so
it embodies all the relevant information about inflation that investors possess. When
several components of an asset price are variable, however, tlie asset price will be an
imperfect proxy for investors’ information about any one component. In this case the
VAR results must be interpreted more cautiously, as giving a variance decomposition
conditional on whatever information is included in the system. In practice it seems
likely that the VAR results will tend to overstate the importance of whicliever compo-
nent is treated as a residual, but the sign of the bias will depend on the covariances
between omitted and included variables.!!

The VAR approach begins by defining a vector of state variables that help to
measure or forecast excess returns. These variables are chosen to be stationary, and
for notational convenience we treat them as having zero means. (In our empirical work
we remove sample means from all variablés before estimating the VAR process.)

In order to measure excess returns and their components, our state vector must
include at least the excess stock return, the real interest rate, the change in tlie nominal
interest rate, and the long-short yield spread. In addition we use other variables that
liave been shown to forecast excess bond and stock returns, real interest rates, and
inflation rates. These variables are the dividend-price ratio, the 2-period yield spread,
and the “relative bill rate”. The relative bill rate, which is given further motivation
below, is defined as the level of the short rate relative to a 1-year backwards moving
average of short rates, or equivalently as a triangular 1-year moving average of changes

in short rates. We use the notation rb; for the relative bill rate, where

11 This potential problem of omitted information bias is of course shared by the contemporaneous regression approach.
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Writing z; for the state vector and making the relative bill rate the last element,

we liave

7 = e, re, Byrg sny di—piy sap rhi’ (3.8)

Next we assume that the state vector follows a first-order VAR process:
241 = Az +wyg. (3.9)

The matrix A is tlie coefficient matrix of the VAR, and wy is the error vector. The
assumption that the VAR is first-order is not restrictive; higher-order VAR models are
handled by augmenting the state vector and reinterpreting A as the companion matrix
of the system. We also define vectors el through e4 as the four columns of a 4 x 4
identity matrix. The vector ef is used to pick out the ’th element of the state vector.

Innovations to excess returns can now be obtained directly from the VAR error
vector. We have ve g4 = el’wy4) simply from the fact that ;) is the first element of
the state vector. The remaining innovations satisfy vz 441 = —(n— 1)(ed + edNwy4,
vier = —(n—1eFwyg, and vy = —(n -~ 1)e4'w;41. These expressions
follow from tlie facts that tlie unexpected slope portfolio return is —(n — 1) times
the innovation in the yield spread, the unexpected level portfolio return is —(n ~ 1)
times the innovation in the short-term nominal interest rate, and the unexpected bond
portfolio return is the sum of the unexpected slope and level portfolio returns.!? To

obtain VAR estimates of revisions in long-horizon expectations, we use the fact that

(Eepr = E)zney = Awign (3.10)

12 Thense formulas use the fact that the innovation in the level of the short rate is the same as the innovation in the change
of the short rate, since investors know the lagged short rate level beforehand. Also we ignore the distinction between sn ¢
and 3,_; ¢. This introduces an approxination ertor that is very small when n is large.
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This can be used to calculate eacl of the components of portfolio returns as a linear
combination of the elements of the shock vector wy41.

For stock returns, we obtain the compouents ¢, aud e, by forecasting excess stock
returns and real interest rates respectively, while the remaining component ¢4 is ob-
tained from (2.2) as a residual. We give details of this procedure, which follows Cainp-
bell (1990a, 1991), in Appendix C. Oue could instead include dividend growth rates in
the vector z;, leaving some other term to be the residual. However this would have two
important disadvantages. First, monthly dividends display seasonal variation, which
would need to be handled as part of the forecasting procedure. Second, there is some
doubt as to whether dividends follow a linear time-series model with constant coeffi-
cients.13

For bond returns, we first note that the change in inflation can be obtained from the
elements of the state vector as Amyy) = Ayy ¢ — Arg41, so the innovation in the change
in inflation and the innovation in the ez post real interest rate both equal —e2'w;q].
One component of the excess bond return is a sum of revisions in expected inflation
levels, but this can be rewritten as a weighted sum of revisions in expected inflation
changes. We obtain inflation and real interest rate components by direct forecasting,
leaving the revision in expected excess returns as the residual. This choice of residual
is forced on us because we cannot directly measure the sequence of excess returns on
the bond as its maturity shrinks over its remaining life. The components of slope and
level portfolio returns are calculated in the analogous manner to the components of
bond returns. The formulas for these components are given in Appendix C.

The one remaining issue to address is how we calculate standard errors for statis-
tics such as the variance of a particular component of returns. Our approach is to
treat the VAR coeflicients, and the elements of the variance-covariance matrix of VAR
innovations, as parameters to be jointly estimated by Generalized Method of Moments
(Hansen 1982). The GMM parameter estimates are numerically identical to standard
OLS estimates, but GMM delivers a heteroskedasticity-consistent variance-covariance
matrix for the entire set of parameters (White 1984). Call the entire set of parameters

v, and the variance-covariance matrix V. Consider a statistic such as the variance of

13 The Modigliani-Miller propositions on the irrelevance of dividend policy give us no thicorctical reason to cxpect man-
agers to pursuc any particular dividend policy. Soine have argued thiat this undermines empirical work that applies
standard time-serics methods to dividends. Lehmann (1991), for example, says that “The conventional practice of assum-
ing a particular dividend policy and computing its present value is franght with hazard.... There is substantial reason to
belicve that any assumed dividend policy is misspecified since managers have no obvious incentive to adopt or maintain a
consistent dividend policy.” (p.1). Whatever the merits of Lehmann’s argument, it does not apply here since our approach
nses no information on the timing of dividend payments as opposed to their present value.
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news about future excess stock returns relative to the variance of unexpected stock re-
turns. This can be written as a uoulinear function f(7) of the parameter vector y. Then

we estimate the standard error for the statistic in standard fashion as /fy(7)YV f1(7).
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4. An Application to Postwar U.S. Data

4.1. Data and Sample Period

We now apply our methods to postwar U.S. data on stock and bond returns. Qur
stock index is the value-weighted index of stocks traded on the NYSE and AMEX, as
calculated by the Center for Research in Security Prices (CRSP) at the University of
Chicago. We measure the dividend yield on the index in a standard fashion, taking
total dividends paid over the previous year relative to the current stock price.

For nominal interest rates, we use McCulloch’s (1990) data set on zero-coupon
yields implied by the yield curve for U.S. Treasury securitics. At maturities beyond
one year, U.S. Treasury securities pay coupons so McCulloch uses a cubic spline method
to calculate an implied zero-coupon yield curve. The McCulloch data are available at
the beginning of each month from 1947:1-1987:3, but we start our sample in 1952:1 in
order to avoid the period before the 1951 Treasury-Fed Accord. We set n, the maturity
of our long bond, equal to 10 years (120 months) as this is the longest maturity that
is available throughout the sample period.!

Our final piece of data is a price index for deflating nominal asset returns. We use
the Consumer Price Index, adjusted before 1983 to reflect the improved treatment of
housing costs that is used in the official index only after 1983.

Throughout the paper we report results for the full sample period 1952:1-1987:2,
as well as for subsamples 1952:1-1979:9, 1952:1-1972:12, and 1973:1-1987:2. The first
of these subsamples is chosen to exclude the period after the change in Federal Reserve
operating procedures in October 1979. The level and volatility of interest rates in-
creased considerably during the 1979-82 period, and it may be unreasonable to impose
a constant linear time-series model on the pre- and post-1979 data together. The sec-
ond subsample is chosen because it has been argued (Fama 1975) that the real interest
rate was constant during the 1950’s and 1960’s; this would imply that all movements in
nominal interest rates during this period were due to changing expectations of future
inflation (and perhaps terin premiums on longer-maturity bonds). The third subsample
is the complement of the second subsample.

Table 2 reports some basic summary statistics about the second moments of excess

4 Campbell and Shiller {1991) also use the McCulloch data. The main alternative zerocoupon yield series is due to
Eugene Fama and Robert Bliss and is available from CRSP. This alternative has the advantage that it is available up to
the present, but the disadvantage that the longest maturity is five years.
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returns on stocks, 10-vear bonds, the level portfolio (2-month bills), and the slope
portfolio (long in 10-year bonds, short in 2-month bills). All excess returns are measured
monthly over the return ou a 1-month Treasury bill. For each sample period we report
variances and covariances (on and below the diagonal) and correlations (in bold face
above the diagonal).

The main results in Table 2 are as follows. Looking first at the variances of excess
returns, we see that stock returns are more volatile than 10-year bond returns but the
difference in variance is much larger in the early part of the sample. In 1952-72, the
stock variance is about 4 times as large as the boud variance, whereas in 1973-87 the
difference in variance is less than 10%. It is also noteworthy that both the level and
slope portfolios have higher variances than 10-year bonds; below we interpret this fact.

As for the correlations, the most striking feature of Table 2 is the very low cor-
relation between excess returns on stocks and bonds. Conventional wisdom is that
long-term asset prices move (or should move) together, but the monthly correlation
between stock and bond returns never exceeds 0.075 in any sample. The correlations
between stock returns on the one hand and level and slope portfolio returns on the
other are also very close to zero. However the level and slope portfolio returns have a
very strong tendency to move in opposite directions, with correlations lying between
-0.85 and -0.90 in every sample. This reflects the fact that long-term interest rates are
smoother than short-term rates, so an increase in short-term rates (a negative return
on the level portfolio) tends to be associated with a decline in the yield spread (a pos-
itive return on the slope portfolio). The negative correlation between level and slope
portfolios also explains why these portfolios each have higher variances than the bond
portfolio, which is their sum.

The next step in our analysis is to run the VAR system described in the previous
section. This system includes seven variables: the excess stock return, real interest
rate, change in the nominal 1-month interest rate, and 10 year-1 month yield spread,
which are needed to measurc returns and their components; and the dividend-price
ratio, 2 month-1 month yicld spread, and relative bill rate, which are useful forecasting
variables. The main variable that may need some discussion is the relative bill rate.
This is defined to be the current 1-month bill rate, less a backwards 1-year moving
average of bill rates. Equivalently, it can be described as a triangular 1-year moving
average of past changes in bill rates. The relative bill rate helps to capture some of

the longer-run dynamics of changes in interest rates without introducing long lags, and
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hence a large number of parameters, iuto the VAR systein,!®

All the variables in the VAR systemn appear to be stationary in our sample period.
Dickey-Fuller tests and augmented Dickey-Fuller tests with 4 lags reject the unit root
hiypotliesis at the 5% level or better for each series included in the VAR.!6

The number of variables in the VAR increases very rapidly with the lag lengtl, so
there is some danger of overfitting when a high-order VAR is used. For this reason we
report results from a parsimonious first-order VAR in the full sample and all subsani-
ples. We also give results from a third-order VAR estimated over the full sample, to

show that our findings are robust to VAR lag length.!”

4.2. Variance Decompositions for Excess Bond and Stock Returns

In Tables 3 and 4 we report the variance decompositions implied by the VAR for
excess stock and bond returns, respectively. The first row of each table shows the R?
when the VAR is used to forecast the monthly excess return on stocks or bonds, along
with the joint significance level of the forecasting variables. Then the tables report the
variances and covariances of the different components of the portfolio returns. These
are normalized by the variance of the return innovation itself so the numbers reported
are shares that add up to one. Finally the tables show the implied R? statistics that
would be obtained in simple regressions of the unexpected excess return on each of the
estimated components. As discussed above, these R? statistics are alternative measures
of the importance of components. The variance and covariance shares and implied R?
statistics of the components are reported with asymptotic standard errors, reflecting
the fact that the components are not directly observed but are estimated from a VAR
system.

Table 3 gives a variance decomposition for excess stock returns, similar to the one
reported in Campbell (1991). The R? for forecasting excess stock returns at a monthly

frequency is quite modest: just over 5% for the full sample, although it is somewhat

'2 Tlie relative bill rate is also used by Canipbell (1990a, 1991) and Hodrick (1991).

16 Barsky and DeLong (1989} argue that tlic dividend growth rate may have a unit root, wliich would put a unit reot
in the dividend-price ratio. However there is very little direct evidence for this proposition; Barsky and DeLong argue
for it on the grounds that unit root tests may falsely reject the null hypothesis in finite samples. Here we use unit root
tests to indicate whethier stationary asymptotic distributions are likely to be a good approximation to the finite-saniple
distributions of VAR coefficients and test statistics.

17 Over the full sample, a Wald test for joint significance of the second lag variables when these are added to the first-
order VAR provides strong evidence tliat a sccond lag should be included. Therc is weaker cvidence for a third lag; the
third lag variables are jointly significant at the 5% level only in the forecasting equation for thie dividend-price ratio. We
also calculated variance decompositions for a six-lag VAR, whiclt were similar to those reported.
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higher in the subsamples.!® The joint significance of the forecasting variables is 0.1%
in the full sample, and less than 0.1% in the earlier subsamples. In the 1973-87 period
the forecasting variables narrowly fail to be significant at the 10% level.

Despite the modest degree of forecasting power for stock returns, the full sample
variance decomposition attributes less than 15% of the variance of stock returns to
the variance of news about future dividends, and alimost 75% to the variance of news
about future excess returns. The decompositions for subsamples are fairly similar; the
variance of news about future dividends is never more than 25% of the variance of
excess returns, while the variance of news about future excess returns is never less
than 60% of the variance. Simple regressions of unexpected excess stock returns on the
estimated components show a similar pattern. In the full sample, news about future
cxcess returns can explain (in the sense of least-squares regression) more than 85% of
the variance of unexpeccted excess stock returns, while news about future dividends
explains less than 15% of the variance. Across subsamples, news about excess returns
never cxplains less than 79% and news about dividends never explains more than 42%
of the variance.

At a mechanical level, the reason why excess return news plays such an important
role is that changes in expected excess returns are highly persistent. Thus modest
movements in short-run expected returns are capitalized into large changes in stock
prices. The persistence of expected returns arises from the persistence of the dividend-
price ratio, which is an important forecasting variable for excess stock returns. This
point is discussed in greater detail in Campbell (1990a, 1991).

News about real interest rates plays a relatively minor role in the variance decom-
position for stock returns. This is particularly true in the earlier subsamples, 1952-79
and 1952-72. In these sample periods the ez post real interest rate is hard to forecast.
The R? for the VAR’s real interest rate equation (not reported in the table) is only 5%
in 1952-79, and 6% in 1952-72.19 This lack of forecastability means that the variances
and covariances involving rcal interest rate news are tiny and precisely estimated, while
the R? statistics for simple regressions of stock returns on real interest rate news are
1% in the period 1952-79 and 3% in 1952-72.

Iu the late 1970’s and 1980’s the real interest rate becomes more forecastable, with

18 To some extent of course the relatively high R? statistics in subsamples reflect overfitting in smalier data scts.

19 Even in thesc sample periods the forecasting variables are jointly significant for the real interest rate at the 5% level,
indicating that the er ante real interest rate is not literally constant, This contrasts with Fama's (1975) finding. The
restlts here are based on a large information set and use a different price index, which may account for the difference in
results.
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R? statistics (not reported in the table) of 20% in 1952-87 and 46% in 1973-87. Even
here, however, real interest rate variation is largely transitory; it does not cumulate
over time in the way that changes in expected excess returns do. Thus the variance of
rcal interest rate news remains simall in all our sample periods. There is however an
imprecisely estimated positive covariance between real interest rate news and excess
return news in the later subsamples, This covariance is attributed to the independent
variable in a simple regression of unexpected stock returns on real interest rate news,
so the simple regression R? is over 20% in our sample periods that include the 1980’s.

Table 4 presents a VAR analysis of excess bond returns. The results have some
similarities with the results for stock returns, but also some interesting differences. The
monthly forecastability of excess bond returns is similar to the forecastability of stock
returns over the full sample, with an &% of 5% and a joint significance level of 0.2%.
However the forecastability of bond returns comes from the post-1973 or post-1979
data rather than the earlier data. This is the opposite pattern from Table 3, which
showed that stock returns are more forecastable in the earlier subsamples.

In the subperiods 1952-79 and 1952-72, the variance decomposition for bond re-
turns can be described very simply. Almost all the variation in bond returns over this
period can be accounted for by news about future inflation, while the other components
are small and imprecisely estimated. The variance of inflation news is insignificantly
different from the variance of unexpected excess bond returns, and a simple regression
of bond returns on inflation news yields an R? insignificantly different from one.

In the sample periods that include 1980’s data, the story is somewhat more com-
plicated. Inflation news is still the dominant component of bond returns, whether one
looks at variance shares or R? statistics from simple regressions. But now there is some
variation in news about future excess returns on bonds, and it appears to be negatively
correlated with news about future inflation. In words, this means that when investors
learn that long-run inflation will be higher than they expected, they also tend to learn
that excess bond returns will be lower than they expected. This has the effect of de-
creasing bond price variability because the capital loss from higher expected inflation
is partly offsct by a capital gain from lower expected excess bond returns. It should
be kept in mind, however, that the terms involving excess bond returns in Table 4 are

extremely imprecisely estimated.
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4.3. A Covariance Decomposition for Excess Bond and Stock Returns

In Tables 5 and 6 we study the determinauts of the covariance between excess stock
and bond returns. Table 5 reports tlie correlation matrix of the return components
€ds €y €, Exy Ery and €, estimated from a 1-lag VAR over the full sample and each of
our subsamples. Tle first row of Table 6 gives the covariance between the stock return
innovation v, and tlie bond return innovation v,. This is always close to zero, as one
would expect from the covariances of the raw excess returns reported in Table 2. The
lower panels of Table 6 show the covariance of ve with each of the components of v,
and the covariance of vz with each of the components of ve. Thus Table 6 answers
the question, “What would be the covariance of bond and stock returns if one of these
asset returns consisted of a single component while the other return were as measured
in the data?”.

We can now see some of the reasons why the covariance of excess stock and bond
returns is so small. In our earlier subsamples 1952-72 and 1952-79, the excess stock
return has small covariances with all the components of the excess bond return. In this
period stocks do not seem to be negatively affected by long-run increases in inflation,
while expected real interest rates and excess bond returns are not very variable.

When we include data from the 1980’s, there appear to be offsetting effects. The
excess stock return covaries positively with news about future inflation {x, but nega-
tively with news about future real interest rates £r and news about future excess bond
returns £;. The negative correlation between the excess stock return and the bond
return comnponent £ is due largely to a positive correlation between news about future
excess stock returns e, and news about future excess bond returns £z, shown in Table
5.20 In any event, the positive inflation covariance tends to offset the negative real

interest rate and excess return covariances, leaving tlie overall covariance close to zero.

4.4. Variance Decompositions for Level and Slope Portfolio Returns

Further insight into these results can be gained from Tables 7 and 8, which decom-
pose the variances of returns on level and slope portfolios. The only two components
of returns ou the level portfolio of two-month bills are the news about inflation and

real interest rates one month ahead. Table 7 shows that these two components have a

20 Farna and Frends (1989) emphasize this positive correlation among expected returns on different long-term assets. We
note however that our estimates of Gorr{c,,£;) never exceed 0.4,
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strong tendency to offset each other. The variances of both news components exceed
the variance of the level portfolio return, but they have a large negative covariance.
This reflects the fact that short-run forecasts of inflation and real interest rates are
negatively correlated. A positive innovation in expected inflation tends to be associ-
ated with a negative innovation in the expected real interest rate, so that the effect on
the short-terin nominal interest rate is dampened.

Table 7 also illustrates the point, discussed as a theoretical possibility in section
(3.1), that a variable component of an asset return can have almost no explanatory
power in a simple regression of the return on that component. According to Table
7 short-term real interest rate variation is important and tends to offset short-term
variation in inflation, but because inflation news dominates the level portfolio return
the explanatory power of real interest rate news in a simple regression is negligible.?!

The pattern of results in Table 7 is very striking, but for two reasons it should be
interpreted with some caution. First, in the earlier subsamples 1952-79 and 1952-72
the real interest rate terms are not significantly different from zero and the variance
share of inflation news is not significantly different from one. This reflects the weak
forecastability of ez post real interest rates in this period. Second, forecastable mea-
surement error in inflation might create the pattern of results in Table 7 even in a
world in which true real interest rates were constant. Measurement error is unlikely to
be the whole explanation, however, as numerous authors have recorded the opposing
low-frequency movements of inflation and real interest rates in the late 1970’s and early
1980’s,

Table 8 gives a variance decomposition for the excess return on a slope portfolio,
long 10-year bonds and short 2-month bills. Here again we find an important role for
forecasts of both inflation and real interest rates, now measured as changes from a one-
month horizon to a ten-year horizon. Just as in Table 7, innovations in these forecasts
of inflation and real interest rates have a tendency to offset each other. Each considered
in isolation implies a more variable portfolio return than we observe, but they have a
strong negative covariance which tends to reduce the variability of the slope portfolio
return.

It may seem puzzling that real interest rate variation plays an important role for
level and slope portfolio returns but is much less important for the excess bond return,

wiiich is the sum of the level and slope portfolios. The reason is that VAR forecasts

2t A gimilar but slightly less drainatic patiem is found in Table 4 for news abaut excess bond returna.
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of the real interest rate have the mean-reverting property that short-run real interest
rate forecasts are more variable than long-run forecasts. An increase in the expected
sliort-run real interest rate 1 month ahead is associated with expected decreases in real
interest rates between 1 month ahead and 10 years ahead as the expected real interest
rate returns to its long-run average level. Thus the real intercst rate components of
the level and slope portfolios are negatively correlated and more variable than their
sum, which is the real interest rate component of the excess bond return. This fact is
documented in Table 9, which gives the correlation matrix of components of the level
and slope portfolios. In every sample period the correlation between Ay and ., the
real rate components of the level and slope portfolios, lies between -0.998 and -1.000.
Tables 7, 8, and 9 also clarify the role of changing expected excess bond returns,
* or term premiums, in the term structure of interest rates. Recall that Table 4 showed a
negative correlation between long-run expected inflation and term premiums, helping to
dampen the variability of excess bond returns. Table 9, by contrast, reports a positive
correlation between tlie inflation component of the slope portfolio, uy, and the term
premium component, pz. Table 8§ shows that this increases the variance of the slope
portfolio return, which is the conditional variance of the yield spread.

The results in Tables 8 and 9 are consistent with the result in Table 4 because VAR
forecasts of inflation rates also display some mean-reversion, albeit less strong than in
the case of real interest rates. Table 9 shows that the inflation components of the level
and slope portfolios, Ay and g, are highly negatively correlated. A 1% increase in
expected inflation over a 10-year horizon is typically associated with a greater than
1% increase in expected inflation 1 month ahead, so that expected inflation rates fall
between the 1 month and 10 year lorizons. This by itself lowers the yicld spread; at

the same time the term premium falls, amplifying the decline in the spread.
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5. Conclusions

In this paper we have used a dynamic accounting framework and time-series econo-
metric methods to break excess returns on long-term assets into components associated
with news about future cash flows and discount rates. Since we use an accounting
framework rather than a behavioral model, we are able to make statements only about
proximate causes and not about fundamental causes of asset price movements. Never-
theless, our empirical results shed light on several issues that have been debated in the
finance literature during the last ten years.

Our first important finding is that a large part of the variance of excess stock
returns is attributable to changing expectations of future excess stock returns. The
postwar U.S. stock market displays “excess volatility” in the sense that returns have
a standard deviation two or three times greater than the standard deviation of news
about future dividend growth. We obtain this result by calculating the implications of
a return forecasting equation, making no assumptions about the dividend process; news
about dividends is treated as a residual component of the stock return. At a mechanical
level, the result comes from the fact that our forecasts of excess stock returns are highly
persistent, so that small changes in forecast monthly returns cumulate over time and
have a big effect on the stock price.2?

An important unanswered question is what economic forces create these persistent
changes in expected excess stock returns. Our second finding is that these changes are
not associated with important changes in long-horizon forecasts of real interest rates.
The real interest rate component of the excess stock return has a much smaller variance
than the other components. This suggests that theoretical models of stock market
pricing should not rely heavily on changing real interest rates. Homoskedastic exchange
models like that of Cecchetti, Lam, and Mark (1990) tend to generate large variations
in real interest rates and small variations in equity risk premiums; the opposite pattern
is needed to fit the data.

A similar point can be made for bond returns. The theoretical finance literature
contains numerous pricing models for real bonds, and these are sometimes applied to
data on the nominal term structure (Gibbons 1989, Gibbons and Ramaswamy 1986).

But we find that the variance of excess returns on long-term nominal bonds is accounted

22 This is related to the (act that long-horizon excess stock returns are more highly forecastable than short-horizon excess
returns {Fama and Frend: 1988a,b). Campbell (1991) and Kandel and Stambaugh (1988) explore the implications of a
VAR (orecasting system [or long-horizon forecastability of returns.
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for primarily by news about future inflation rates, which would have no impact if bonds
had real payoffs. Real bond pricing models cannot be applied to the nominal term
structure unless the price of inflation risk is exactly zero; if the inflation risk price is
even slightly positive or negative, the inflation risk premium will be large and will tend
to dominate the pricing of nominal bonds.?3

Although long-horizon forecasts of real interest rates arc not highly variable, there
arc short-run changes in the ez ante real interest rate. We find that news about the
real interest rate one month ahead is an important component of the variance of the
excess return on 2-month bills over 1-month bills (the “level portfolio” return). There
is a strong negative covariance between one-month-ahead forecasts of inflation and real
interest rates, so that the short-term nominal interest rate would be considerably more
variable if the ez ante real interest rate were constant.?? Since the real interest rate
does help to move the short-term interest rate, but has little impact on the long-term
bond yield, we find that real interest ratc news is also a major factor accounting for the
variability of the yield spread between 10-year bonds and 1-month bills (equivalently,
the variability of a “slope portfolio” return long 10-year bonds and short 2-month bills).
These results are consistent with the findings of Fama (1990) and Mishkin (1990).

In the later part of our sample period, there is evidence that cxcess bond returns
are predictable. But news about future excess returns contributes less to volatility in
the bond market than in the stock market. The reason for this seems to be that our
forecasts of excess bond returns are less persistent than our forecasts of excess stock
returns.

We also find some evidence that during the 1980’s, news about excess bond returns
is negatively correlated with news about future inflation over the life of a 10-year bond.
Tlis reduces bond price variability because capital losses from higher expected infla-
tion are partially offset by capital gains from lower cxpected excess bond returns. The
correlation between excess bond returns and inflation has a different effect on the yield
spread, however. News that inflation is higher tends to increase short-term expected
inflation and the short-term nominal interest rate more than long-term expected in-
flation and the long-term nominal interest rate; thus positive inflation news tends to

be associated with a decline in the yicld spread. The negative correlation between

23 Of course, real bond pricing modcls can sometimes be reinterpreted as nominal bond pricing models by changing to a
nominal numcraire. However this may aflect the plausibility of the underlying equilibrium specification.

24 This makes it unlikely that the infiation risk premium is zero, since inflation surprises are correlated with short-term
changes in the investment opportunity set. Campbell (1990b) di ctional asset pridng in the context of a
VAR model like the one used here.
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term premiums and inflation accentuates this decline, so the variability of the yield
spread is increased. Long-term bond yields “underreact” to inflation and yield spreads
“overrcact”, as described by Campbell and Shiller (1984, 1991).

Finally, our results help to explain why bond and stock returns are practically
uncorrelated in postwar monthly U.S. data. There are several reasons for this. First,
the only component which is common to both assets is the news about real interest
rates, but this component has relatively little variability. Second, there is positive
correlation between news about future excess returns on bonds and stocks, as claimed
by Fama and French (1989); but the correlation never exceeds 0.4 and this is not
sufficient to produce a large positive covariance between the two asset returns given
the relatively small variability of news about future excess bond returns. Third, there is
a weak positive correlation between the stock return and news about long-term future
inflation (the major component of the bond return). This tends to make bond and
stock returns covary negatively, offsetting the positive covariance coming from the real
interest rate and expected excess return effects.

Barsky (1989) has suggested that the weak correlation of bond and stock returns
could be due to a tendency for equity risk premiums to increase when the short-term
real interest rate falls. If term premiums are close to constant, declining real interest
rates would be associated with a rising bond market but a flat or even declining stock
market. Qur empirical results do not support this explanation. We do not find that
real interest rate changes are important in moving either bond or stock prices. Also, in
the later part of our sample period we find a significantly positive correlation between
news about real interest rates and news about equity premiums; in the earlier part of
the period the correlation is negative but small and insignificant.

The major caveat about all the results presented here is that they are dependent
on a particular specification of the information set available to investors. The results
do not seem to be very sensitive to the number of lags we include in our VAR system,
but it is always possible that there are omitted forecasting variables that could change
the decompositions of excess returns.

The variance decompositions reported here should have several interesting appli-
cations in cross-sectional asset pricing. First, the metliods of this paper can be applied
to international stock market data to try to account for the common variation in dif-

ferent national stock price indexes. Sccond, the methods of this paper can be used to
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study the cross-sectional behavior of assets’ betas with the aggregate stock market. Be-
tas, like variances and covariances, can be broken into components due to news about
cash flows and news about future discount rates. Finally, the importance of changing
expected excess stock returns suggests that the intertemporal asset pricing literature,
which allows for changes in the investment opportunity set, is empirically relevant for
postwar U.S. data. It should be possible to use intertemporal asset pricing theory to

restrict the structure of the VAR models used in this paper.?

25 Campbell (1990b) is a first step in this direction.
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Appendix A: Stock Return Calculations

The log real return on a stock, which we write hy4 1, is defined by hy | = log(P41+
Dy41)—log(Py), where Py and Dy are the levels (not logs) of the end-of-period real stock
price and dividend respectively. The dividend-ratio model of Campbell and Shiller
(1988a) is derived by taking a first-order Taylor approximation of this equation. The

resulting approximation is

higr =~ k+dp-pr— p(dig1 — pre1) + Adpyy, (A1)

wlere lower-case letters denote logs of the corresponding upper-case letters. The pa-
rameter p is the average ratio of the stock price to the sum of the stock price and
the dividend, and the constant k is a nonlinear function of .20 Equation (A.1) says
that the return on stock is high if the log dividend-price ratio is high when the stock is
purchased, if dividend growth occurs during the holding period, and if the log dividend-
price ratio falls during the holding period.

Equation (A.1) can be thought of as a difference equation relating d¢ — pr to
di+1 — pt+1, Adi41 and hyy). Solving forward, and imposing the terminal condition
that hm;_, o pi(d¢+; — pr+i) =0, Campbell and Shiller (1988a) obtain

o
; k
di-pr = Y Plhep14j — Dldiprygl - =, (A.2)
j=0

This equation says that the log dividend-price ratio dy — p; can be written as
a discounted value of all future returns ;434 ; and dividend growth rates Adyyy4;,
discounted at the constant rate p less a constant k/(1 — p). If the dividend-price ratio
is high today, this will give high future returns unless dividend growth is low in the
future. It is important to note that all the variables in (A.2) are measured ez post;
{A.2) has been obtained only by the linear approximation of h;y; and the imposition

of a condition that é;;; does not explode as ¢ increases.

2% Equation (A.1) and the other formulas given here differ slightly from those in Campbell and Shiller (1988a, 1988b)
because the notation here uses a different timing convention. In this paper, as in Campbell (1990, 1991), we define the
time ¢ stock price and conditional expectation of future variables to be measured at the end of period { rather than the
beginning of period {. This conforms with the more standard practice in the finance literature.
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However (A.2) also holds ez ante. If one takes expectations of equation (A.2),
conditional on information available at the end of time period t, the left iand side is
unchanged since dy — py is in the information set, and the right hand side becomes an
expected discounted value. Using the ez ante version of (A.2) to substitute d; — py and

di+1 — pi+1 out of (A.1), we obtain

o0
higt = Ethipt = (Bt = E0) Y 07 Adyy
j=1
0 .
—(Ep1 =~ E) Y phigyyj (A.3)
=1

To obtain the equations in the text, we use the definition of the excess return,

el = hpgpr — g (A4)

To obtain (2.1) we substitute (A.4) into (A.3). To obtain (2.6) we substitute (A.4) into
(A.2). (2.5) then follows straightforwardly from (2.6).

In the empirical work in the paper, we use sample means to set p = 0.9962. The
results are not sensitive to variation in p within a plausible range. Campbell and Shiller
(1988a) conduct an extensive analysis of the accuracy of the approximation described

in this Appendix.
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Appendix B: Bond Return Calculations

Define the log nominal price of an n-period nominal bond at time t as p, ;. Define
the log nominal 1-period holding return on a bond with 1 periods to maturity at time

t, held fromt tot + 1, as

bnt+l = Pn-1t41 = Pnt (B.1)

Equation (B.1) can be thought of as a difference equation in the log bond price.
It can be solved forward to the maturity date of the bond, using the fact that at this

date the bond price is unity so its log price is zero: pgi4n = 0. We obtain

Pnt = —[bn,t+1+bn—1,t+2+---+bl,t+n]

n—1
= =Y buigslti- (B.2)
=0

Equation (B.2) holds ez post, but it also holds ez ante. If one takes expectations
of equation (B.2) at date ¢, the left hand side remains unchanged because the nominal
bond price is in the information set at time ¢. The right hand side becomes a sum of

expected future returns, rather than realized returns:

n-1

pny = —E Z bp—i g 14i- (B.3)
i=0

Equation (B.3) can be substituted into (B.1) to express the log nominal bond return

as a function of news about future nominal bond returns:

n—1

bngst = Etbnger = —(Etg1—Et) Y bnojpgitic (B.4)

i=1
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This equation expresses the well-known fact that nominal bond returns are known over
the life of the bond, so that unexpected positive nominal returns today are always offset
by decreases in expected future nominal returns.

For our purposes, it will be more useful to work with excess bond returns. We

define the log excess 1-period bond return as

Tngtl = bngtl ~ T4t — T4l (B.5)

To obtain (2.3) we substitute (B.5) into (B.4). To obtain (2.7) we substitute (B.5) into
(B.3) and then use the fact that yn¢ = —pn/n. Equation (2.8) follows straightfor-
wardly.
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Appendix C: VAR Calculations

Given the state vector and VAR system defined in section 3, the components of

asset returns can be derived as follows. For stock returns, we have

o0
eprl = el Y pPAwy = el'pA(I - pA) gy
j=1
i . .
eart = 2y PAwy = e2(I - pA) wiyy
j=0
€dit] = Vertl + €erql + €rgtl. (C1)

The components of the excess bond return can be obtained in a similar manner.

We have

n-1
raer = 2 Awyy = 2(I - A HA - A"wiqy
i=1
Erisl = sl + ea'{a—A)-‘[(n—1)I+(I-A>-1<A"—A)1}wt+1
€zi41 = —Urg4l — Ergtl — Erpsle (C.2)
For the level portfolio, we have
Mgt = (n—1)e2dwiyg
Amt4l = V4l — Aridls {C.3)

For the slope portfolio, we define a matrix Cy = (1/n)(I —~ A)~Y(I - A®) ~I. Then
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i+l

Hrt41

He 41

= (n-1)e2 AC;_ w4

~Hrgg1 = (n=1)ed (I - Ay AC_ 1wy

Ezg41

“Umt4l — Het4l — Brg4)-
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Table 2: Variances, Covariances, and Correlations of Portfolio Returns

e z¢ l my
15.965 0.039 -0.018 0.041
0.481 9.471 0.429 0.053
—-0.474 8.520 41.653 -0.879
0.954 0.951 -33.133 34.084

et
1952:1 —1987: 2 ”‘
t

e T¢ It m¢
15.252 0.031 0.009 0.006
0.239 3.912 0.369 0.088
0.150 3.199 19.243 —0.893
0.089 0.713 —16.044 16.757

€t

1952:1-1979:9 *t

¢ Ty b my
€ 13.049 —-0.019 -0.055 0.047
-0.137 3.783 0.351 0.192
-0.731 2.488 13.276 —0.852
0.594 1.295 —10.788 12.083

1952:1~1972: 12

et 4 I my
20.159 0.075 0.008 0.030
1.433 17.892 0.452 0.016
0.327 17.343 82.362 -—0.885
1.106 0.550 —G65.019 65.569

€t
1973:1~1987:2
I
my

e M5 — . S~ N~

Notes: ¢, z¢,l; and m; are the excess returns on stocks, 10-year zero-coupon bonds, a level
portfolio of 2-month bills, and a slope portfolio long 10-year bonds and short 2-month bills.
All excess returns are measured in percentage points, monthly, relative to the return on a
1-month bill. Sample variances and covariances are shown along and below the diagonal
of each matrix; correlations are shown in bold face above the diagonal.



Table 3: Variance Decomposition for Excess Stock Returns

VAR lag length 1 1 1 1 3
Sample period 52:1-87:2 52:1-79:9 52:1-72:12 73:1-87:2 52:1-87:2
Return R? 0.054 0.0% 0.126 0.065 0.082
Significance 0.001 0.000 0.000 0.106 0.015

Shares of:

Var(eq) 0.138 0.180 0.237 0.141 0.095
(0.022) (0.062) (0.112) (0.070) (0.021)

—2Cov(egq, €,) —0.016 -0.017 —0.024 —0.091 -0.013
(0.020) (0.014) (0.027) (0.078) (0.018)

—2Cov(ed, €.) 0.008 0.104 0.179 —-0.409 0.050
(0.178) (0.189) (0.125) (0.349) (0.120)

Var(er) 0.016 0.006 0.005 0.044 0.023
(0.006) (0.002) (0.003) (0.028) (0.009)

2Cov(er, €.) 0.112 -0.012 —0.012 0.283 0.103
(0.061) (0.048) (0.041) (0.159) (0.064)

Var(e.) 0.742 0.738 0.615 1.033 0.742
(0.181) (0.235) (0.205) (0.237) (0.133)

R(eq) 0.130 0.279 0.417 0.085 0.136
(0.202) (0.285) (0.219) (0.170) (0.168)

R%(e,) 0.257 0.012 0.029 0.446 0.202
(0.183) (0.081) (0.113) (0.238) (0.174)

R (c.) 0.867 0.834 0.793 0.910 0.903
(0.017) (0.039) (0.077) (0.011) (0.020)

Notes: This table is based on a monthly VAR that includes the excess stock return, real interest rate, change
in the l-month bill rate, 10-year and 2-month yield spreads, log dividend-price ratio, and relative bill rate
(the difference between the bill rate and a l-year backwards moving average). “Return R?” is the R* in
the regression of the excess stock return on the VAR explanatory variables, while “Significance” is the joint
significance of the explanatory variables in this regression. The VAR is used to calculate the components of
the unexpected excess stock return v, (4 in equation (2.2), v 41 = €41 — €141 — €141 - The component
€441 can be interpreted as news about future dividends, while ¢, 41 is news about future real interest rates
and ¢, (41 is news about future excess stock returns. The table reports the variances and covariances of these
components, divided by the variance of v, 41 so that the numbers reported add up to one. The bottom panel
gives the implied R? statistics [rom simple regressions of Ve,1+1 ON each component. Asymptotic standard
errors are reported in parentheses below each statistic in the table.



Table 4: Variauce Dccowmposition for Excess Bond Returus

VAR lag length 1 1 1 1 3
Sample period 52:1-87:2 52:1-79:9 52:1-72:12 73:1-87:2 52:1-87:2
Return R? 0.051 0.025 0.029 0.073 0.092
Significance 0.002 0.276 0.383 0.062 0.003

Shates of:

Var(€x) 1.904 1.280 0.951 2.288 2.383
(0.885) (0.402) (0.384) (1.492) (1.314)

2Cov{€x, &) —~0.209 -06.011 0.086 -0.338 —0.287
(0.147) (0.061) (0.079) (0.333) (0.097)

2Cov(£x,€x) —1.532 —0.452 -0.167 ~2.172 -2.108
(1.482) (0.538) (0.444) (2.613) (2.205)

Var(&,) 0.029 0.021 0.018 0.054 0.042
(0.013) (0.007) (0.013) (0.036) (0.017)

2Cov(ér,€2) 0.051 -0.003 0.013 0.066 0.093
(0.108) (0.038) (0.047) (0.253) (0.164)

Var(€z) 0.758 0.165 0.099 1.102 0.878
(0.695) (0.173) (0.104) (1.256) (0.959)

R(£x) 0.560 0.859 0.871 0.466 0.589
(0.225) (0.112) (0.109) (0.268) (0.232)

R2(€,) 0.087 0.009 0.255 0.125 0.074
(0-090) (0.032) (0.189) (0.120) (0.080)

R(E.) 0.000 0.024 0.005 0.002 0.019
(0.011) (0.116) (0.097) (0.026) (0.065)

Notes: This table is based on a monthly VAR that includes the excess stock return, real interesi rate,
change in the 1-month bill rate, 10-year and 2-month yield spreads, log dividend-price ratio, and relative
bill rate (the difference between the bill rate and a l-year backwards moving average). “Return R is the
implied ¢ in a regression of the excess bond return on the VAR explanatory variables, while “Significance”
is the joint significance of the explanatory variables in this regression. The VAR is used to calculate the
components of the unexpected bond return v 41 in equation (2.4), v 41 = Exyerr = Erewr — €y The
component €x,¢41 can be interpreted as news about future inflation, while £, ¢4, is news about future real
interest rates and £+ is news about future excess bond returns. The table reports the variances and
covariances of these components, divided by the variance of v (4 so that the numbers reported add up to
one. The bottom panel of the table gives the implied I? statistics from simple regressions of vz 4 on each
component. Asymptotic standard etrors are reported in parentheses below each statistic in the table.



Table 5: Correlations of Componcuts of Bond and Stock Returns

€4

[

€

1952:1 - 1987:2

&

Ef

€4

&

€

1952:1-1979:9

§e

&
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(]
0.168
(0.210)

1.000

Cr
0.255
(0.180)

1.000

€
-0.012
(0.280)

0.515
(0.201)

1.000

€e
—=0.143
(0.263)

-0.088
(0.357)

1.000

8'
-0.051
(0.188)

~0.405
(0.266)

~0.181
(0.267)

1.000

8'
0.090
(0.159)

0.065
(0.183)

0.005
(0.225)

1.000

I
0.060
(0.306)

0.384
(0.044)

0.783
(0.157)

—0.446
(0.226)

1.000

&
0.258
(0.580)

0.780
(0.179)

-0.327
(1.240)

~0.033
(0.188)

1.000

¥
0.114
(0.230)

0.193
(0.344)

0.273
(0.422)

~0.638
(0.210)

0.173
(0.361)

¥
0.165
(0.291)

~0.031
(0.317)

0.275
(0.534)

~0.492
(0.319)

—0.028
(0.321)




€y €e Ex 1 19
€4 0.334 -0.234 0.342 0.514 0.142
(0.245) (0.170) (0.182) (0.260) (0.469)

& 1.000  ~0.106 0418 0.567 0.138
(0.323)  (0.180)  (0.286)  (0.548)

€ 1000 0176  —0.211 0.036
(0.213)  (0493)  (0.561)

1952:1-1972:12

&x 1.000 0330  —0.272
(0.208)  (0.612)

13 1.000 0.157
(0.561)
€ €e Ex & 19

& 0.581 0536  —0.359 0.581 0.243
(0.230)  (0.282)  (0.277)  (0.262)  (0.374)

. 1.000 0.667  —0.477 0.965 0.165
(0207)  (0.336)  (0.022)  (0.492)

e 1000 -0.313 0.775 0.359
(0.335)  (0.210)  (0.478)

1973:1-1987:2

£x 1.000 —0482  —0.684
(0.343)  (0.240)

£ 1.000 0.136
(0.508)

Notes: This table is based on a monthly 1-lag VAR that includes the excess stock return, real interest
rate, change in the l-month bill rate, 10-year and 2-month yield spreads, log dividend-price ratio, and
relative bill rate (tlie difference between the bill rate and a l-year backwards moving average). The VAR
is used to calculate the components of the unexpected excess stock return ve 41 in equation (2.2), ve 41 =
€4u4t = €ret1 — €capt. The component €ge41 can be interpreted as news about future dividends, while
€r.e41 is news about future real interest rates and e,,(41 is news about future excess stock returns. The
VAR is also used to calculate the components of the unexpected bond return vz 41 in equation (2.4),
Ve 41 = Extpt — Ergel = Ecur 1. The component €4 ¢41 can be interpreted as news about future inflation,
while & (41 is news about future real interest rates and £ 41 is news about future excess bond returns.
The table reports the correlations of tliese components, with asymptotic standard errors in parentleses.



Table 6: Covariance Decomposition for Bond and Stock Returus

VAR lag length 1 1 1 1 3
Sample period 52:1-87:2 52:1-79:9 52:1-72:12 73:1-87:2 52:1-87:2
Cov(v,, ve) 0.230 0.145 —0.252 0.968 0.475
Cov(v,,£&x) 2.962 0.235 -0.013 7.442 3.149

(3.858) (1.653) (1.150) (8.663) (3.595)
Cov(v,,&,) -1.038 0.100 0.20t —-2.699 —1.088
(0.565) (0.443) (0.346) (1.421) (0.625)
Cov(v,, &) —2.205 —0.481 0.063 -5.711 —2.537
(3.457) (1.587) (1.133) (7.834) (3.240)
Cov(vg, €4) —0.163 —0.547 -1.309 1.085 0.013
(0.771) (0.423) (0.812) (1.486) (0.602)
Cov(ve, €r) 0.407 —0.051 -0.235 1.273 0.440
(0.292) (0.092) (0.155) (0.827) (0.308)
Cov(v,, €.) -0.850 —0.642 ~0.822 —1.156 —-0.901
(0.938) (0.514) (0.849) (1.912) (0.858)

Notes: This table is based on a monthly VAR that includes the excess stock return, real interest rate, change
in the I-month bill rate, 10-year and 2-month yield spreads, log dividend-price ratio, and relative bill rate
(the difference between the bill rate and a I-year backwards moving average). The VAR is used to calculate
the components of the unexpected excess stock return Ve,e41 in €quation (2.2), v 141 = €441 —Cr 41 —€e i41-
The component €44 can be interpreted as news about future dividends, while €r (41 15 news about future
real interest rates and €4 is news about future excess stock returns. The VAR is also used to calculate the
components of the unexpected bond return vg 41 in equation (2.4), Vetel = Exttt —Erppt = Exs1. The
component {x+1 can be interpreted as news about future inflation, while £, (4, is news about future real
interest rates and £: (4 is news about future excess bond returns. The table reports the covariance of the
unexpected stock (bond) return with the components of the unexpected bond (stock) return. Asymptotic
standard errors are given in parentlieses.



Table 7: Variance Decomposition for Excess Level Portfolio Returns

VAR lag length 1 1 1 1 3
Sample period 52:1-87:2 52:1-79:9 52:1-72:12 73:1-87:2 52:1-87:2
Return R*? 0.127 0.181 0.298 0.096 0.206
Significance 0.000 0.000 0.000 0.009 0.000

Shates of:
Var(Ay) 4.806 3.128 1.351 4.825 3.318
(1.590) (1.578) (1.032) (1.445) (1.245)
2Cov(Ax, Ar) -7.638 -3.940 —-0.974 -1.797 —4.644
(3.034) (2.740) (1.581) (2.118) (2.264)
Var(A,) 3.833 1.812 0.623 3.972 2.327
(1.488) (1.240) (0.675) (1.343) (1.084)
R%*()x) 0.203 0.429 0.553 0.178 0.299
(0.098) (0.208) (0.312) (0.092) (0.141)
R2(A,) 0.000 0.014 0.030 0.001 0.000
(0.002) (0.062) (0.166) (0.009) (0.001)

Notes: This table is based on a monthly VAR that includes the excess stock return, real interest rate, change
in the 1-month bill rate, 10-year and 2-month yield spreads, log dividend-price ratio, and relative bill rate
(the difference between the bill rate and a l-year backwards moving average). “Return R?” is the implied
R? in a regression of the excess return on a “level portfolic” of 2-month bills on the VAR explanatory
variables, while “Significance” is the joint significarce of the explanatory variables in this regression. The
VAR is used to calculate the components of the unexpected level portfolio return vy,4.1 in equation (2.12),
U4l = —Ax ekl — Art+1. The component Ax,t41 can be interpreted as news about future inflation, while
Art41 is news about future real interest rates. The table reports the variances and covariances of these
components, divided by the variance of vg,e41 so that the numbers reported add up to one. The bottom
panel of the table gives the implied R? statistics from simple regressions of ve41 ON each component.
Asymptotic standard errots are reported in parentheses below each statistic in the table,



Table 8: Variauce Decomposition for Excess Slope Portfolio Returns

VAR lag length 1 1 1 1 3
Sample period 52:1-87:2 §2:1-79:9 52:1-72:12 73:1-87:2 52:1-87:2
Return R? 0.178 0.206 0.301 0.163 0.276
Significance 0.000 0.000 0.000 0.000 0.000

Shares of:

Var(py) 4.932 3.040 1.157 4.743 2.406
(1.547) (1.631) (0.983) (1.159) (1.201)

2Cov(piy, pe) -9.397 —4.487 -1.164 —9.504 —5.034
(3.288) (2.992) (1.614) (2.584) (2.509)

2Cov(px, piz) 0.552 0.333 0.257 0.676 0.590
(0.428) (0.325) (0.259) (0.637) (0.535)

Var(p,) 4.858 2.095 0.657 5.130 2.961
(1.759) (1.421) (0.714) (1.513) (1.362)

2Cov(p,, pr) -0.189 -0.029 0.050 —0.378 -0.230
(0.448) (0.264) (0.235) (0.728) (0.634)

Var(p.) 0.243 0.047 0.043 0.333 0.306
(0.232) (0.052) (0.046) (0.387) (0.350)

R?(py) 0.053 0.305 0.428 0.023 0.014
(0.061) (0.199) (0.324) (0.051) (0.057)

R*(pr) 0.001 0.013 0.015 0.007 0.037
(0.007) (0.054) (0.111) (0.020) (0.067)

R(p1,) 0.742 0.840 0.895 0.698 0.773
(0.129) (0.396) (0.261) (0.214) (0.170)

Notes: This table is based on a montlily VAR that includes the excess stock return, real interest rate, change
in the l-inonth bill rate, 10-year and 2-month yicld spreads, and the relative bill rate {the difference between
the bill rate and a 1-year backwards moving average). “Return R?” is the implied R? in a regression of the
excess return on a “slope portfolio”, long 10-year bonds and short 2-month bills, on the VAR explanatory
variables, while “Significance” is the joint significance of the explanatory variables in this regression. The
VAR is used to calculate the components of the unexpected slope portfolio return vy, (41 in equation (2.12),
Um,t41 = —fx, 041 —Hr 41— HBze41- The component gy ¢4 ) can be interpreted as news about future infiation,
while pp ¢4y is news about future real interest rates and gz 41 is news about future excess bond returns.
The table reports the variances and covariances of these components, divided by the variance of vy, 141 s0
that the numbers reported add up to one. The bottom panel gives the implied R? statistics from simple
regressions of Um 41 on each component. Asymptotic standard etrors are reported in parentheses below
each statistic in the table.



Table 9: Correlations of Componcuts of Level and Slope Portfolio Returns

A, Hx #r He
As -0.890 ~0.954 0.888 -0.419
(0.039) (0.025) (0.038) (0.167)

A 1000 0958  —1.000 0.088
(0.027)  (0.000)  (0.184)
1952:1~1987:2

ix 1.000  —0.960 0.252
(0.025)  (0.178)

ir 1000 —-0.087
(0.183)
A e He Hs

A [ -0827  —0.952 0832  —0.550
(0.103)  (0.030)  (0.101)  (0.315)

A 1000 0887  -1.000 0.040
(0.073)  (0.000)  (0.416)
1952:1-1979:9

ir 1.000  -0.889 0.440
(0.072)  (0.417)

Hr 1.000 —0.047
(0.416)
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Ar Ax Ar fr
Ay [ —0531 —0.856 0.546  —0.642
(0.420)  (0.138)  (0.412)  (0.367)

Ar 1.000 0.682 —0998  -0.139
(0.312)  (0.003)  (0.712)
1952: 1 - 1972: 12

fix 1000  ~0668 0.575
(0.325)  (0.561)

e 1.000 0.147
(0.702)
Ar Hr He Hr

Ar [ —0891  —0.953 0.889  —0.447
(0.034)  (0.034)  (0.034)  (0.226)

A 1.000 0.960  —0.999 0.144
(0.035)  (0.001)  (0.248)
1973: 1 1987:2

P 1.000  —0.963 0.269
(0.030)  (0.260)

fr 1.000 -0.144
(0.244)

Notes: This table is based on a monthly 1-lag VAR that includes the excess stock return, real interest rate,
change in the 1-month bill rate, 10-year and 2-month yield spreads, log dividend-price ratio, and relative
bill rate (the difference between the bill rate and a l-ycar backwards moving average). The VAR is used
to calculate the components of the unexpected return on a “level portfolio” (long 2-month bills) vy,
in equation (2.12), vye41 = ~Ag 41 — Ari41. The component Ag (41 can be interpreted as news about
future inflation, while Ar ¢4, is news about future real interest rates. The VAR is also used to calculate the
components of the unexpected return on a “slope portfolio” (long 10-year bonds, short 2-month bills) v, (41
in equation (2.12), vm 41 = —fu, 041 = Brig1 = fiz,41. The component fix,141 €anl be interpreted as news
about future inflation, while g, 4, is ncws about future real interest rates and fiza41 Is news about future
excess bond returns. The table reports the correlations of these components, with asymptotic standard
errors in parentheses.



