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I. thtroduction

An important feature of fixed exchange rate regimes is that parities are usually

imperfectly credible and not permanent. There have been numerous realignments of

central parities during the life of the Exchange Rate Mechanism (ERM) of the European

Monetary System (EMS). In this paper we attempt to provide an empirical model of

imperfect credibility in a system of limited exchange rate flexibility. We estimate market

expectations of future realignments of the French Franc/Deutsche Mark exchange rate

during the ERM. We then use these estimates to examine the empirical content of the

theoretical model developed by Bertola and Svensson (1990); we also attempt to predict

actual realignments.'

Although we often couch our discussion in terms of the Bertola-Svensson model, most

of our analysis does not test or rely upon a specific model of exchange rate determination.

Our paper relies only on the assumption of uncovered interest rate parity, which we argue

is a reasonable assumption for relatively narrow target zone exchange rate regimes; thus

our technique is fairly general. The assumption of uncovered interest rate parity implies

that the interest rate differential reflects the total expected rate of exchange rate

depreciation. The total expected rate of exchange rate depreciation is the sum of two

components: the expected rate of depreciation of the exchange rate within the exchange

rate band, and the expected rate of devaluation (the expected rate of change of the central

parity). (By convention a negative expected devaluation is an expected revaluation.)

Hence, with an estimate of the expected rate of depreciation within the currency band, an

estimate of the expected rate of devaluation can found by subtracting the estimate of the

expected rate of depreciation within the band from the interest rate differential.

Empirically, we find substantial mean reversion in the exchange rate within the band,

For alternative empirical approaches to target zone credibility see for instance
Bartolini and Bodnar (1991), Bertola and Caballero (1990), Bodnar (1991), Collins (1986),
Fratianni and von Hagen (1990), Giovannini (1990), Svensson (1990b,c) and
Weber (1990).
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which we exploit in forming estimates of expected rates of depreciation.

This paper has six sections. In section lIthe theoretical model of expected rates of

devaluation is summarized. Section III presents the data and our estimation of the

expected rate of depreciation within the band and the expected rate of devaluation.

Section IV presents the resulting empirical exchange rate function. Section V uses the

estimated expected rates of depreciation to forecast actual realignments and conducts a

few tests of the model. Section VI summarizes and concludes.

II. Model of Expected Rates of Devaluation

Bertola and Svensson (1990) present a theoretical target zone model with a stochastic

time-varying devaluation risk and argue that the existence of such devaluation risk can in

principle explain empirical patterns of exchange rates and interest rate differentials.

Bertola-Svensson also suggest an empirical method to extract implicit devaluation risk

from data on exchange rates and interest rate differentials. In this section we briefly

outline this empirical method; Bertola-Svensson provide full theoretical treatment and

technical details.

We let i — denote the home country's interest rate differential at time 1, the

difference between a default-free home currency interest rate i and a default-free foreign

currency interest rate f, both of maturity t > 0. Furthermore, we let s denote the

natural log of the exchange rate, measured as units of domestic currency per foreign

currency. Then we can express uncovered interest rate parity as

(2.1) (S1 =

where denotes expectations conditional upon information available at time 1. That is,

the interest rate differential reflects the expected average rate of depreciation of the home

currency during a time interval corresponding to the maturity. Uncovered interest rate

parity is a good approximation if the foreign exchange risk premium is small. Svensson

(1990a) argues that the foreign exchange risk premium is likely to be small in exchange
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rate target zones, even when there is devaluation risk.2 There is also empirical support

for uncovered interest rate parity for the FF/DM during the EMS. Consequently we rely

on uncovered interest rate parity.

Let denote the log of central parity, and let - denote the deviation of

exchange rate from central parity. We shall informally refer to as the exchange rate

within the band. We can then separate the right-hand side of (2.1), the expected rate of

depreciation of the home currency, into two components,

(2.2) E[st]/1 E1[Ax1]/Lt +
the expected rate of depreciation within the band and the expected rate of change of

central parity.

Central parities remain constant except at realignments. We think of central parities

as being stochastic jump processes. During the next small time interval t the central

parity remains constant with probability 1 - v1At, whereas it takes a jump of independent

random size 21 with probability vtAl. Here can be seen as the probability intensity of a

jump, the probability of a jump per unit time. It follows that the expected change in

central parity can be written

(2.3) E1[c] = (1—v1t).O + v1t.E1z1]
=

where =
E1[z1]

denotes the expected size of the realignment (positive if expected

devaluation, negative if expected revaluation). The expected rate of realignment can

consequently be written as

2 Svensson (1990a) shows that the foreign exchange risk premium has two components:
one arising from exchange rate uncertainty due to exchange rate movements within the
band, and the other arising from exchange rate uncertainty due to realignments of the
band. The first component is likely to be very small, since conditional exchange rate
variability inside the band is smaller than conditional exchange rate variability in a free
float, and since foreign exchange risk premia even in a free float appear to be fairly small.
The second component is likely to be much larger then the first, but still of moderate size:
Even with a coefficient of relative risk aversion of 8 and expected size of devaluations of
10 percent, the foreign exchange risk premium is no more than 20 percent of the total
interest rate differential.

See footnote 10 below.
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(2.4) E[Ac]/1 =
the product of the probability intensity of a realignment and the expected size of a

realignment.

We use "devaluation" to mean the actual jump in the exchange rate at the time of a

realignment, as opposed to "realignment" which denotes the jump in the central parity.

The size of the devaluation will differ from the size of the realignment if the exchange

rate's position within the band (xt) jumps at realignments.4

For simplicity, assume that the position of the exchange rate within the band remains

the same immediately before and immediately after a realignment (the complications that

arise when this assumption does not hold will be dealt with in section V). Furthermore,

let g denote the expected rate of devaluation. In this case, we may identify the expected

rate of devaluation with the expected rate of realignment,

(2.5) fit

It follows that we may express the expected rate of devaluation as the difference between

the interest rate differential and the expected rate of depreciation within the band,

(2.6) -

As observed by Bertola-Svensson, equation (2.6) has obvious empirical implications.

Even though the expected rate of devaluation is not directly observable, it can be

extracted from the data if one forms an estimate of the expected rate of depreciation

within the band and then subtracts this estimate from the interest rate differential.

Equation (2.6) holds regardless of the direction of causality. In the Bertola-Svensson

model, the causality direction is specified so that the expected rate of devaluation is an

exogenous stochastic process which, together with another exogenous stochastic process

(the traditional "fundamental" in the standard exchange rate model), determine the

This is often the case: often the exchange rate for the weak currency is in the upper
(weak) half of the band immediately before a realignment and near the lower (strong)
edge of the band immediately after a realignment. In that case the size of the devaluation
is less than the size of the realignment.
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endogenous exchange rate. In this case the exchange rate is a sufficient statistic for, and

hence the only determinant of the expected exchange rate depreciation within the band.5

The interest rate differential is then the sum of the endogenous expected rate of

depreciation within the band and the exogenous expected rate of devaluation. The

interest rate differential hence depends separately also on the expected rate of

depreciation. The expected rate of depreciation within the band and the determination of

the interest rate differential is illustrated in Figure 1. The expected rate of depreciation

is shown as the lower downward sloping curve in the Figure; it is a decreasing function of

the exchange rate within the band. This is easily understood since the exchange rate band

introduces a powerful element of mean reversion to the exchange rate within the band: at

the lower (strong) edge of the band the exchange rate cannot appreciate any further, only

remain constant or depreciate back into the band. Hence there is positive expected

depreciation. Conversely, at the upper (weak) edge of the band, the exchange rate cannot

depreciate any further, only remain constant or appreciate back into the band. Hence

there is negative expected depreciation. The precise curvature of the expected rate of

depreciation within the band need not concern us here; we only note that the theory

predicts a nonlinear shape with the curve being convex towards the strong edge of the

band and concave towards the weak edge of the band.

The interest rate differential as a function of the exchange rate within the band (for a

given expected rate of devaluation) is given by the upper downward-sloping curve in

Figure 1. It is simply the curve corresponding to the expected rate of devaluation, shifted

up by the expected rate of devaluation. With fluctuating exchange rates and expected

5 The exchange rate is a sufficient statistic for the expected exchange rate depreciation
within the band only if the the stochastic processes of the expected rate of devaluation
and the "fundamental" has constant parameters.

The Bertola-Svensson framework can also incorporate a feedback from the exchange
rate within the band to the expected rate of devaluation, by allowing the expected rate of
devaluation to be the sum of two components: one exogenous and one a monotonic
function of the exchange rate within the band.
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rates of devaluation, the interest rate differentials will be generated by corresponding

shifting curves in the Figure. Conversely, with observations of exchange rates and interest

rate differentials, and a given estimated expected rate of depreciation within the band in

the form of a curve as in Figure 1, the expected rates of devaluation can be extracted by

taking the vertical differences between each observation and the curve corresponding to

the expected rate of depreciation.6

III. Estimation of Expected Rates of Devaluation

In this section we first estimate the expected average rate of depreciation within the

band, E[Lx1]/t E,[xt+t_xt]/t, conditional upon information available at time t,

where we set t to one month. Then we examine the extracted estimates of expected

rates of devaluation. In Section V we use these to predict actual realignments.

Estimating the expected rate of depreciation over a finite time interval is equivalent

to estimating the expected future exchange rate. We choose for convenience to discuss the

problem in terms of the expected future exchange rate.

The theory in Svensson (1990c) derives expected future exchange rates within the

band for different time intervals as in Figure 2. Although the precise calculation of the

expected future exchange rate requires the solution of a second-order partial differential

equation, similar to those arising in option theory, the intuition for Figure 2 is

straight-forward. Roughly, there is more reversion towards the mean the longer the time

6 Bertola-Svensson clarify in detail the determination of the term structure of interest
rate differentials with time-varying devaluation risk, and the distinction between the
expected instantaneous expected rate of devaluation and the expected average rate of
devaluation for finite maturities. Depending upon the precise properties of the stochastic
process of the expected instantaneous rate of devaluation, the expected average rate of
devaluation for finite maturities may be a complicated nonlinear function of the expected
instantaneous rate of devaluation. These complications need not concern us here. It is
enough in this paper to interpret the expected rate of devaluation as the expected average
rate of devaluation during the maturity considered, which in our data will be one month.

The expected rate of depreciation within the band over a finite time interval has been
computed by Svensson (1990c) for the standard target zone model, and the theory predicts
that the corresponding curve in Figure 1 would be less sloped and less curved the longer
the t1me interval. The slope should be negative, except for an infinite maturity when it
should be zero.
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interval, with proper adjustment for the drift of the exchange rate. The relationship is

nonlinear and S-shaped, although for typical parameters the relationship is almost linear.7

Although the Bertola-Svensson model predicts that the expected future exchange rate

will depend only on the current exchange rate (in a non-linear fashion), we take an

eclectic view in our empirical estimation and allow other determinants of the expected

future exchange rate as well. Although some of the other determinants are statistically

significant, they end up being economically insignificant; the dominating determinant of

the expected future exchange rate remains the current exchange rate.

Data

We apply the model to the French Franc/Deutsche Mark (FF/DM) nominal exchange

rate during the Exchange R.ate Mechanism (ERM) of the EMS.8 ERM data is a natural

choice, both because of intrinsic interest, and because the ERM has experienced a number

of realignments since its inception in March 1979. However, the FF/DM exchange rate is

the only obvious possibility, since the Bertola-Svensson model is designed to explain

exchange rate jumps which are coincident with realignments. Most other ERM exchange

rates do not actually jump at realignments, since exchange rate bands before and after

realignments typically overlap. Indeed, only four of the six realignments of the FF/DM

central parity rate actually involve a jump in the exchange rate.

Our daily BIS data were used and described by Flood, Rose and Mathieson (1990).

The period covered is March 13, 1979, through May 19, l990. The exchange rates are

7 The parameters for both Figures 1 and 2 are drift and rate of variance of the
aggregate fundamental equal to 2 percent/year and 1 percent/year, respectively (the latter
corresponding to an instantaneous standard deviation of 10 percent/fl, and a
semi-elasticity of money demand (ct) equal to 1 year.
8 The bandwidth of the FF/DM rate is percent throughout the ERM.
O Data and programs are available from the authors upon receipt of one 3.5-inch
diskette.
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recorded at the daily "official fixing"; interest rates are annualized bid rates for 1 month

Euro—market bills at around lOam Swiss time. Figure 3a contains a time—series plot of the

spot exchange rate, along with the ERM bands; Figure 3b provides a comparable graph of

the interest differential.1° (Disregard Figure 3c at the moment.) The six realignments in

Figure 3a define seven regimes, which we will refer to as Regimes 1—7. Table 1 reports the

precise dates of realignments.

Estimation of Expected Future Exchange Rates within the Band

Figure 4a can be used to illuminate the problem of estimating the expected future

exchange rate. The top left panel in the Figure, labeled "Theory", reproduces Figure 2,

the theoretical plot of expected future exchange rates within the band against the current

exchange rate within the band, except that only the 1-month expected exchange rate and

the 45-degree line is shown. The dots in the other panels, labeled "Regime 1", etc., in

Figure 4a show for each regime a scatter plot of the actual realized 1-month future

exchange rates (measured in percent deviation from central parity) within the band

plotted against the current exchange rate within the band (realizations across a

realignment are not shown.) (Disregard the S-shaped curves in the regime plots for a

moment.) While there is no theoretical reason to presume that the stochastic process of

the exchange rate within the band remains the same through all regimes, completely

unrestricted estimation (allowing the process to vary regime by regime) potentially runs

10 We note that there is empirical support for uncovered interest rate parity for FF/DM
exchange rates and interest rate differentials during the ERM period. An OLS regression
of the equation As/t = a + + u122 (where s = log(FF/DM), List s4.22-s and

= 1/12) results in (rates of depreciation and interest rate differentials in percent per
year; Newey—West standard errors with 22 lags):

(s.e.) N 2542
a -1.70 (1.14) R-squared .18
b .94 (.24) 11.0

This result seems to be unique to the FF/DM rate. The result is robust to inclusion of
lags of 6, other ERM bs and division of the sample. Regressions of other ERM/DM cross
rates result in values of b ranging from -1.04 to .33. See Hodrick (1987) and Froot and
Thaler (1990) for a discussion of many years of failed attempts to estimate similar
equations for different exchange rates and sample periods.
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into senous small sample problems. The use of daily data does not obviate small sample

problems, since the data is highly persistent; further, the relevant observation interval is

the expected time for the exchange rate to hit the edge of the band (starting from the

middle). (Svensson (1990c) shows that for typical parameters, that time is on the order of

magnitude of a year.)

The theory panel in Figure 4a suggests that a restriction to linearity may be

reasonable, although it seems safer to include nonlinear terms (but see Meese and Rose

(1990)). However, it would seem (from inspection of Figure 4a) that unrestricted

nonlinear regression of future exchange rates against current exchange rates would give

rather bizarre results, especially for regimes 3 and 411 The latter regimes are also rather

short, so that small sample problems may be severe. We have chosen to handle these

problems by introducing quadratic and cubic functions of the exchange rate and imposing

constancy across regimes on all coefficients except the intercept, which is allowed to vary

across regimes. Alternatively, one may restrict quadratic and cubic terms to be zero but

allow both slopes and intercepts to vary across regimes; we will also discuss and report

results from that restriction.

The regressions estimated are of the form:

(3.1) ix1/L.L = E/30d + f31X + + 133rt + + kkXkt +

where: t is in daily observations; Lix —
zt;

t = 1/12; i = 1,...,7 refers to regime j;

d is a dummy for regime i; j = 1,..., 5; the terms denote the log of the bilateral DM

exchange rates for the five other long—term participants in the ERM (Belgium-

Luxembourg, Denmark, Netherlands, Ireland and Italy); and the random disturbances

are uncorrelated with information available at time by the assumption of rational

expectations. All exchange rates within the band are measured in percent deviation from

11 In regime 4 it is easy to see from Figure 4a that out of sample forecasts of future
exchange rates for current exchange rates in the strong part of the band will lie outside
the band. This is dearly inadmissible, since what is being forecasted is the exchange rate
within the band! Also see footnote 12.
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central parity; rates of depreciation are measured in percent per year. This equation

allows the future rate of depreciation to depend on the current exchange rate, as well as

its square and cube; the latter terms are included to pick up any non—linear dependency

which may exist. Lags of x, and levels of other ERM exchange rates are included as

specification checks; the latter may be relevant in a multilateral exchange rate target—zone

(the Bertola-Svensson model is of a unilateral target_zone).12 13

Estimation of (3.1) is complicated by the well—known overlapping observations"

problem (see Hansen and Hodrick (1980)); in addition, e1 is likely to be heteroskedastic.

We use ordinary least squares, but compute standard errors using a Newey—West

covariance estimator (with the number of off-diagonal bands in the error covariance

matrix equal to 22 (t = 1/12 year corresponds to 22 daily observations)).

Estimation of (3.1) is equivalent to estimation of

(3.2) Zj22 = + (fii+l)zt + 2' + 3Ij + + kkxL + 1+22'
where fl f31, etc. We choose to discuss the estimation in terms of (3.2).

Figures 4a-c show estimated expected future exchange rates within the band (that is,

fitted values of (3.2)) under different sets of restrictions (all exchange rates are expressed

in percent deviation from central parity).

Recall that the dots in the regime panels in Figure 4a show for each regime the actual

realized 1-month future exchange rates within the band plotted against the current

12 The restrictions that 2 and /33 do not vary across regimes are statistically
rejected at a low level of significance. This can be intuitively understood from Figure 4a.
Regime 4 results in a highly significant large positive coefficient for the cubic term,
whereas Regime 3 results in a highly significant negative coefficient. for the cubic term.
13 In the Bertola-Svensson model the current exchange rate is the only determinant of
the expected rate of depreciation of within the band. As mentioned, this requires the
assumption of constant parameters of the exogenous stochastic processes of the
"fundamentaU' and the interest rate differential. If that assumption does not hold, the
interest rate differential may also affect the expected rate of depreciation within the band.
Therefore we have also done regressions of (3.1) with the DM/FF interest rate differential
as an explanatory variable. Interestingly, and in consistency with the Bertola-Svensson
model, the coefficient of the interest rate differential is not significantly different from
zero.
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exchange rate within the band (realizations across a realignment are not 8hOWfl.) The

S-shaped curves in the regime panels show expected future exchange rates within the

band (fitted values of equation (3.2)) under the most restrictive non-linear estimation.

Only the cuirent FF/DM exchange rate, its square, and its cube are used as regressors (as

well as the intercepts); the coefficients and are restricted to be zero. Estimates are

reported in Table 2, column (2). This is the estimation suggested by the theory, except

that the nonlinearity need not necessarily be a cubic function. Comparing the regime

panels with the theory panels we see a fairly remarkable consistency with the theory: The

estimates display mean reversion as the theory predicts, and the curvature is correct, with

concavity to the right and convexity to the left.

The dots in the regime panels in Figure 4b show the expected future exchange rates

within the band (fitted values of (3.2)) when 5 lags of FF/DM are included among the

right-hand side variables (that is, the coefficients are no longer restricted to zero).

(Since the current exchange rate within the band is no longer the only right-hand side

variable, the fitted values no longer form a curve when plotted against the current

exchange rate wit.hin the band. The actual realized future exchange rates within the band

are not shown in Figures 4b and c.) The regression is reported in Table 2, column (3).

The hypothesis that the coefficients of the lags are zero is only rejected at a marginal

significance level of 10 percent. The relationship between the expected future exchange

rates and the current exchange rate is a bit fudged compared to the case with no lags in

Figure 4a. Even so it is clear that the current exchange rate has a dominating influence

on the expected future exchange rate.

The dots in the regime panels in Figure 4c show expected future exchange rates within

the band when the other current ERM exchange rates are also included, that is, when the

coefficients are no longer restricted to equal zero. The regression is reported in Table

2, column (4). The hypothesis that those coefficients are zero is rejected only at a

marginal significance level of 8 percent. We see in Figure 4d that the relationship
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between the expected future exchange rate is blurred further, but that the current FF/DM

rate still has the dominating influence.

We interpret these results as implying that although determinants other than the

current FF/DM rate are of marginal stalstical significance, they are economically

insignificant. The current exchange rate remains the dominating determinant, and the

error made in disregarding the other determinants seems minor. We nevertheless choose

as our base case the intermediate one in Figure 4c and column (3), Table 2, where lags of

the FF/DM rate are included.

Estimation of Expected Rates of Devaluation

In accordance with equation (2.6) the expected rates of devaluation can now be

estimated by subtracting from each observed interest rate differential the corresponding

estimate of the expected rate of depreciation. In order to see more clearly what is

involved, in Figure 5 we show a scatter plot of the interest rate differentials (measured in

percent per year) against the exchange rate within the band (measured in percent

deviation from central parity). The curved line shows the expected rate of depreciation

resulting from the most restricted estimation without lags and other exchange rates

(Table 2, column (2)). The consistency with the theoretical Figure 1 is striking. We also

see that the expected rate of depreciation and the interest rate differentials are often of

the same order of magnitude. In regime 2, for instance, the interest rate differentials are

between 5 and 20 percent per year in the weak third of the exchange rate band, whereas

the expected rate of depreciation is between -5 and -15 percent per year. The difference

between the interest rate differential and the expected rate of devaluation is considerable

in these cases.

As mentioned, we do not use the most restrictive estimate of expected rates of

depreciation within the band as our benchmark, but the intermediate one illustrated in

Figure 4c (Table 2, column (3)). The expected rates of depreciation in Figure 5 would

then be accordingly fudged, although the expected current exchange rate would remain
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the main determinant of the expected rate of depredation. The resulting time series of

the expected rate of depreciation is depicted in Figure 3c.

The expected rate of devaluation in Figure 3c (measured in percent per year) is

(naturally) highly correlated with the interest rate differential in Figure 3b, especially

when the interest rate differential takes extreme values in the first half of the ERM

period. But the expected rate of devaluation is certainly not identical to the interest rate

differential. For instance, the interest rate differential is always positive and and fairly

stable in the second half of the ERM period, but the expected rate of devaluation

fluctuates quite a bit, and occasionally indicates zero or even negative expected rates

devaluation (positive expected rates of revaluation).

The overall variability of the expected rate of devaluation is less in the later regimes

than in the earlier regimes. The average expected rate of devaluation is also lower in the

later regimes. In line with conventional wisdom, the average credibility of the FF/DM

band appears to have increased in the later regimes. However, we see that expected rates

of devaluation still fluctuates quite a bit in later regimes, normally between 0 and +10

percent per year. At the beginning of Regime 6 there is evidence of an expected

revaluation.

In order to interpret what an expected rate of devaluation of 10 percent means, recall

that the expected rate of devaluation by (2.4) is the product of the expected size of a

devaluation and the probability intensity of a devaluation. Suppose the expected size of a

devaluation is 5 percent. Then the probability intensity of a devaluation is 200 percent

per year (5 percent 200 percent/year = 10 percent/year). This can be interpreted as the

probability of a devaluation occurring within the next month being 200 percent/12 = 1/6,

or that the expected time to a devaluation (if the probability intensity is expected to

remain constant) is .5 year (= 1/(200 percent/year)).

In the Bertola-Svensson model, the expected rate of devaluation is assumed to be a

Brownian motion. It is therefore interesting to see whether the estimated expected rate of
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devaluation has a unit, root and is consistent with the Bertola-Svensson assumption. We

have done Dickey-Fuller unit root tests on a number of different estimates of the expected

rate of devaluation, and the unit-root hypothesis cannot be rejected.

Restriction to Linearity

The discussion above and Figures 3c and 4a-c concern the nonlinear estimation of the

expected rate of depreciation within the band which includes the square and the cube of

the exchange rate as explanatory variables in (3.1) (column (2)-(4) in Table 2). As

mentioned we impose constancy across regimes of all coefficients except the intercept.

This restriction is certainly a bit controversial.

It is therefore relevant to consider also the alternative restriction to linearity: to

restrict the coefficients in (3.1) of the square and the cube of the exchange rate within the

band to zero. There are several reasons for considering this restriction. First, the

theoretical Figure 2 suggest that the relationship may be nearly linear. Second, the

coefficients of the quadratic and cubic terms in column (2)-(4), Table 2, are only

marginally significant. Third, the restriction to constancy across regimes of the

coefficients for the quadratic and cubic term, required in the nonlinear case, implies an

implicit assumption that some parameters and possible unofficial bands within the official

band have remained similar across regimes.

An estimation of a linear version of (3.1) without imposing any constancy of

coefficients across regimes results in negative slopes (coefficients for the current exchange

rate) which are very similar. The hypothesis that the slopes are equal across regime

cannot be rejected. Column (1), Table 1, shows the result of the estimation without lags

and other exchange rates when slopes but not intercepts are (non-bindingly) restricted to

be equal across regimes. Column (1) shows a strong rejection of a unit root, and strong

support for mean reversion in the exchange rate.

In order to reduce the number of figures, the graphs for the linear case are not shown.

It is easy to imagine in Figures 4a and 5 what they look like, though. In Figure 4a the
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estimated future exchange rates would be straight lines with slopes less than unity and

different intercepts, similar to the theory panel. In Figure 5 the estimated expected rates

of depreciation would be straight lines with slopes equal to -2 and different intercepts

It is apparent from Figure 5 that the expected rate of depreciation within the band

will be of less magnitude at the edges of the band for the linear case, compared to the

nonlinear case. As a result the variability of the expected rate of devaluation will be

somewhat less in situations when the exchange rate within the band is near the edge.

This can be seen in Figures 6a and b. Figure 6a shows the expected rate of devaluation

estimated in the nonlinear case (column (2), Table 2). Figure 6b shows the expected rate

of devaluation estimated in the linear case (column (1), Table 2). (Since no lags are used

here, there are fewer missing values than in Figure 3c, corresponding to column (3), Table

2.) The variability of the expected rate of depreciation is clearly less after 1986 for the

linear case.

IV. The Exchange Rate Function

As mentioned, our method of estimating the expected rate of devaluation does not

depend on whether the Bertola-Svensson model or any other target zone model is a

correct representation of actual exchange rate regimes. Nevertheless, in this section we

look more closely at the relations between our estimates and some results of the rapidly

growing target zone theory.

The standard target zone model in Krugman (1990) starts from an assumption that

the (log of the) exchange rate depends on a "fundamental" and the expected instantaneous

rate of depreciation according to

(4.1) s1 = + o'E1[ds1]/dt.

Here > 0 is a constant (which may in some specifications be interpreted as the interest

rate semi-elasticity of money demand), and f, the fundamental, includes (the log of)

relative domestic and foreign money supplies, velocity shocks, etc. For given assumptions
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about the stochastic processes of the exogenous components of and the rules of

intervention in the central-bank controlled components of J, the exchange rate can be

solved as a function of

(4.2) = S(j),
with a characteristic S-shape. Flood, Rose and Mathieson (1990) observed that under the

assumption of uncovered interest rate parity (2.1), and given an estimate (or guess) c of

, a direct estimate of the fundamental is given by

(4.3) ft = s —

A plot of s against f should then result in the graph of the S-shaped function (4.2).

Flood, Rose and Mathieson constructed a number of those plot for the different ERM

countries and for different regimes between realignments. The results were disappointing,

in the sense that no deterministic relation between s and f were found, and both

nonlinear and nonparametric regressions of on f1 resulted in a wide variety of shapes,

unless c is very small (in which case the scatter plot is trivially close to a 45-degree line).

The Bertola-Svensson model offers an explanation to these results. In the

Bertola-Svensson model the exchange rate is a function of two "fundamental" variables,

the traditional f in (4.1) and the expected rate of devaluation g. In particular, the

exchange rate within the band can be written as a function

(4.4) =
X(f1,g) X(h),

where f equals f1 — and the aggregate fundamental h equals f + a linear function

of the two primitive fundamentals. Subtracting ct from both sides of (4.1) and

manipulating results in

(4.5) = f + oE1[di]/dt + o.E1[dc1]/dt.

Using (2.5) we can then write

(4.6) = (f + ) + E[dxJ/dt 1 + E1[dx]/dt.
Equation (4.6) has the same form as (4.1). The solution to (4.6) will be identical to the

Krugman solution to (4.1), except that f in (4.2) will be replaced by the aggregate
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fundamental h1.

Plots of x1 against f will not reveal the underlying exchange rate function, when the

expected rate of devaluation fluctuates. In order to graph the exchange rate function one

should instead plot Xg against an estimate of ht. Such an estimate is easy to construct

according to

(4.7) f - +

where is given by (4.3) and is an estimate of the expected rate of devaluation.

Figure 7a and 7b correspond to & = 1 year and = 0.1 year, respectively.14 15 The

theory panel shows the theoretical relation between and h (the right curve), and the
corresponding relation between and -

c1
for a given level of (the left curve). The

horizontal difference between the curves is The curves in the regime panels are plots

of the actual r against the estimates ht. We see the characteristic S-shape, emphasized in

the theory (the S-shape is more pronounced with larger a). We also see Krugman's

"honeymoon" effect; the band for the aggregate fundamental is wider than the exchange

rate band (this is more pronounced with larger a). The dots in the regime panels show

the actual z plotted against the estimate f1 -
c1.

These scatters can be understood as

generated by horizontal shifts of the curve depicting the exchange rate function. Put

differently, the horizontal distance between an observation (ft_ct,xt) and an observation

(h,zt) on the curve is equal to The regime panels in Figure 7a and 7b are remarkably

similar to the theory panels and the theoretical and simulated graphs in Bertola-Svensson.

14 There is considerable uncertainty in the literature about the appropriate value of a
(cf. Flood, Rose and Mathieson (1990)), but hopefully the true value is not too far from
this interval.
15 We use the one-month interest rate differentials as proxies for instantaneous interest
rate differentials.
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V. Prediction of Realignments

In this section we examine how well the estimated expected rates of depreciation

predict actual rates of realignment. In view of (2.5) and (2.6) we write our model as

(5.1) Et[?ctJ//.t —

It is therefore natural to estimate and do hypothesis testing on the coefficients , and

in the equation

(5.2) L'c1/Lxt = + + + t+22'
where E[xJ/t denotes the estimate of the expected rate of depreciation. The model

suggests the null hypothesis H0: = 0, = = 1.

Estimation of (5.2) is complicated by two factors, in addition to the overlapping

observation problem. First, Ej[ixg]/t is a generated regressor, and has associated

measurement error problems. Pagan (1984) shows that an instrumental variable

procedure delivers correct estimates of the covariance matrix.'6 The second problem is

that the dependent variable in (5.2) is a jump process and not Normal; thus 't+22 '''
not be Normal. Consistent (but inefficient) estimates are available through OLS.

Maximum likelihood estimation would produce efficient results but underlying

distributions are unknown. Reliance on an assumption of underlying normality is

questionable (Flood, Rose and Mathieson (1990)) and may yield inconsistent estimates.

We prefer OLS as an estimator, since it delivers consistent estimates of the coefficients of

interest, , and 2' but are wary of over—interpreting our results.'7 18

16 Pagan (1984) shows that there is no efficiency gain to estimating the expected rate of
depreciation and prediction equations simultaneously.
I? The difficulties with a maximum likelihood estimations seems formidable. They
involve simultaneously handling non-Normal disturbances, overlapping observations,
generated regressors and missing values, each of which is a considerable complication.
18 As the parameters of interest in (5.2) are not country-specific, data for other
currencies or exchange rate regimes could, in principle, be pooled with the FF/DM data in
estimating (5.2). Adding more data is potentially important given the relatively few
realignments experienced by the FF/DM rate during the ERM. However, it is not clear
how to pool such data in practice (given the sample selection issues induced by the long
spells without realignments). Further, the empirical results indicate that at least some of
the hypotheses can be tested with enough precision to be rejected.
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The actual size of devaluations (meaning the actual jump of the exchange rate at a

realignment) usually differs from the size of realignments (meaning the jump of the

central parity), since the exchange rate's position within the band often jumps at

realignments (typically from the weak part of the band before the realignment to the

strong part of the band after the realignment). Therefore, actual devaluations are less

than actual realignments (usually by about half). For some overlapping realignments,

there is no clear devaluation at all. When the size of devaluations differ from the size of

realignments, the Bertola-Svensson model applies to devaluations rather than

realignments. Therefore we also examine a variant of (5.2) where the left-hand variable is

replaced by the actual rate of devaluation where s1 is defined to be constant

except at each date of realignment where it jumps by the actual jump of the exchange rate

that date.

Results

Estimates of (5.2) with and are reported in Table 3. The coefficients

have the right signs, although the coefficients on the expected rate of depreciation within

the band are not significantly different from zero. The magnitude of the coefficient for the

interest rate differential is too large with the regressand c1/t and about right with the

regressand stft. The magnitude of the coefficient for the expected rate of depreciation

within the band is too small with the regressand 1.ct/At and even lower with the

regressand s/tt. The constants are large and negative but imprecisely estimated. The

estimates and the standard errors with the regressand Ist/t are about half of the

estimates with the regressand ct/t (since the the actual devaluations are about half the

realignments).

A number of chi-square hypothesis tests are also reported in Table 3. Consider first

tests with the regressand c1/zt. The most important hypothesis, (1), = 0, =

= 1 (the overall model), is rejected only at the relative low marginal significance level
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of 9 percent (this is unusual for any model that involves exchange rates.) Hypothesis (2),

that the expected rate of devaluation enters with the right sign and value, is only rejected

at a marginal significance level of 20 percent. In contrast, hypothesis (3), that only the

expected rate of devaluation matters, is rejected at a lower marginal significance level of 7

percent. Hypothesis (4), that only the interest rate differential matters, is rejected at a

marginal significance level of 22 percent. Hypothesis (5), that the interest rate of

differential enters with a unit coefficient, is rejected at marginal significance level of 19

percent. Finally, hypothesis (6), that the expected rate of depreciation within the band

enters with a coefficient of minus one, is rejected at a marginal significance level of 26

percent. This is obviously a mixed result. We are pleased by a rather high marginal

significance level for the overall model, but it is disturbing that the hypothesis that only

the interest rate differential matters cannot be rejected except at a very high marginal

significance level. 19 20

As mentioned, the estimates and the standard deviations with the regressand L'xs/L

19 Andrews (1991) and Andrews and Monahan (1990) report Monte Carlo simulations
according to which the Newey-West estimator (which uses a Bartlett kernel) of the
covariance matrix is biased downwards. They propose an alternative estimator with a
Quadratic Spectral kernel with an optimally chosen lag truncation parameter. This
estimator is less downward biased in their simulations. We have found that estimates
with both kernels are insensitive to the lag length,.so the choice of an optimal lag
truncation parameter does not seem important for oui sample. If the covariance matrix is
estimated with a Quadratic Spectral kernel, its elements are about 10 percent larger in
magnitude than with the Bartlett kernel. Use of the Quadratic Spectral estimates in
Table 3 would therefore improve our results somewhat. For instance, hypothesis (1) in
column (1) (the complete model) would be rejected at a marginal significance level of 12
percent rather than 9 percent.
20 We have also predicted realignments with two alternative techniques. First, we have
estimated probit regressions where the dependent variables is an indicator variable
marking actual realignments. Both the interest rate differential and the expected
depreciation within the band (estimated in any of a variety of ways) enter these
regressions significantly, as does the expected rate of devaluation on its own; the equations
fit well, although relatively few realignments are predicted successfully. Second, there is a
significant positive relationship between realized devaluations (either central parity
realinments or the actual jump in the exchange rate) and the expected rate of
devaluation during episodes of actual realignments. These encouraging results reinforce
the potential value of our measure of expected devaluations.
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are about half of those with the regressand c1/A1. As a consequence most of the

hypotheses are clearly rejected, except that hypothesis (3), that only the expected rate of

devaluation matters, is rejected at about the same marginal significance level as with the

regressand c1/t (7 percent). Hypothesis (4), that only the interest rate differential

matters, is rejected at about the same marginal significance as with the regressand

/c1[At. Hypothesis (5), that the interest rate differential enters with a unit coefficient is

now rejected at a marginal significance level of 51 percent.

VI. Summary and Conclusions

In this paper we demonstrate and use a simple and operational method, suggested by

Bertola and Svensson, to extract implicit expected rates of devaluation from FF/DM data

during the ERM. The method relies on uncovered interest rate parity; for a variety of

theoretical and empirical reasons we believe this is a reasonable assumption.

The method to extract expected rates of devaluation consists of adjusting the interest

rate differential by the expected rate of depreciation within the band. Estimating the

adjustment term is equivalent to forecasting the future exchange rate within the band.

We find strong evidence of statistically and economically significant mean reversion of

the exchange rate within the band. The current exchange rate is the dominant

determinant of the expected rate of depreciation. The adjustment term is of the same

order of magnitude as typical interest rate differentials.

The method used to extract expected rates of devaluation is general and does not rely

on the specific Bertola-Svensson target zone model, or any other particular exchange rate

model. Nevertheless, a remarkable consistency is observed between the data and many

assumptions and predictions of the Bertola-Svensson model. These include the mean

reversion of the exchange rate within the band, the sign pattern of nonlinear terms, the

shape of the exchange rate function, and a unit-root in estimated expected rates of

devaluation.
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The performance of expected rates of devaluations to predict actual realignments is

also examined, with mixed success. The prediction model performs relatively well both

absolutely and relative to other exchange rate models.

One reason why the prediction model does not perform even better may be that

private agents actually mispredicted actual realignments. Another might be that the

interest rate differentials in some instances take extreme values immediately before

realignments, in which case the adjustment term does not matter. The adjustment term

may be more important for assessing the expected rate of devaluation in normal times

with smaller interest rate differentials.

Further research can be undertaken in several directions. The extracted expected

rates of devaluation can be compared with other information about devaluation

expectations and economic or political events. One can also test for dependence of

expected rates of devaluation on macroeconomic variables such as inflation differentials,

real exchange rates, unemployment, and reserves. Some of those extension are being

pursued on data on the Swedish target zone exchange rate regime by Lindberg, Svensson

and Soderlind (1991). It would also be interesting to use measures of devaluation risk to

test the Bertola-Svensson model more rigorously, perhaps using the techniques of Flood,

Rose and Mathieson (1990).



23

Table 1. Regimes between Effective Realignments of the FF/DM Exchange Rate

Regime Start Date End Date

1 79:03: 13 79:09:23

2 79:09:24 81:10:04

3 81:10:05 82:06:13

4 82:06:14 83:03:20

5 83:03:21 86:04:06

6 86:04:07 87:01:11

7 87:01:12 90:05:16
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Table 2. Estimation of Expected Exchange Rate Depreaation within the Band (3.1)

(1) (2) (3) (4)
Intercepts (s.e.) (se.) (s.e.) (s.e.)
Regime 1 3.72 (.88) 3.59 (.90) 3.08 (.89) -.22 (2.54)
Regime 2 -.18 (1.45) .69 (1.62) .30 (1.87) 4.03 (2.26)
Regime 3 5.55 (2.51) 6.68 (2.78) 7.39 (3.38) 5.27 (4.27)
Regime 4 2.83 (1.37) 3.24 (1.47) 3.03 (1.59) .98 (2.18)
Regime 5 -.06 (.55) .29 (.59) .22 (.66) -2.65 (1.76)
Regime 6 3.95 (2.06) 3.77 (2.27) 4.36 (2.48) .65 (2.62)
Regime 7 1.62 (.89) 1.92 (1.03) 2.06 (1.22) —.38 (1.57)

Coeffi dents

FF -1.98 (.49) —.35 (1.03) —2.48 (1.75) —5.58 (2.16)
FF2 —.45 (.33) —.32 (.39) —.10 (.43)
FF3 -.59 (.28) —.61 (.33) -.47 (.33)

p-value (FF2=FF3=0) .05 .13 .35

FF_1 1.07 (.56) 1.25 (.63)

FF2 1.11 (.51) 1.15 (.56)

FF_3 .46 (.55) 1.14 (.58)

FF4 —.51 (.57) -.79 (.64)

FF5 —.27 (.88) -.36 (.83)

p-value (FF1=...=FF5=0) .10 .03

BF 2.36 (1.27)
DK .28 (.61)

.16 (.82)
IL .30 (.34)
NG .46 (1.17)
p-value (BF=...=NG=0) .08

Pignosti cs
N 2426 2426 1878 1799
R-squared .15 .17 .19 .23

c 6.2 6.1 6.4 6.3

OLS; regressand is (zi+22_xt)IAI (%/yr); t=1/12 yr; z = log(FF/DM) (%); regressors

are x, x2, z3, log(BF/DM),..., log(NG/DM), where BF,..., NC denote,

respectively, Belgian Franc, Danish Krone, Irish Pound, Italian Lire and Netherlands
Guilder; Newey—West standard errors (22 lags); Chi-Square hypothesis tests.
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Table 3. Prediction of Realignments (5.1)

Regressand

Coefficient Estimates
Constant —4.41 -2.52

(s.e.) (2.01) (1.08)

1.58 .84

(s.e.) (.43) (.24)

E[ix1]/it -.52 —.28

(s.e.) (.43) (.22)

Diagnostics
N 2102 2102
0 14.7 7.9
R-squared .30 .29

Chi-Spuare Hypothesis Test

(1) 1_21 6.6 32.6

p-value .086 .000

(2) 1_32_1 3.2 10.9

p-value .20 .004

() 3.2 3.2

p-value .074 .073

(4) 2=0 1.5 1.6

p-value .22 .21

(5) =1 1.7 .43

p-value .19 .51

(6) 2_1 1.2 10.6

p—value .26 .001

Regressand and regressors in percent per year. Coefficients are OLS estimates;
Newey-West standard errors (22 lags) from instrumental variables estimation;
instrumental variables are regressors in Table 2, column (3).
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