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1. Introduction

If exchange rate variability is reduced, where does the variability go? If exchange rate
variability is reduced all the way to a completely fixed exchange rate regime, the
traditional answer is that the variability goes into the money supply, and into price and
output levels in more general models. But what about intermediate cases? This paper
examines such an intermediate situation where an exchange rate target zone in a small
open economy is narrowed, without going all the way to a completely fixed exchange rate
regime. In particular, the paper focuses on the extent to which the exchange rate
variability goes into interest rate variability during such an experiment. Consequently,
the paper examines how the the instantaneous (conditional) as well as asymptotic
{unconditional) probability distributions of the interest rate differential and the exchange
rate depend on the width of the target zone.!

Is a narrow target zone decisively different from a completely fixed exchange rate
regime? This paper also attempts to answer that question as well. To some extent, this
is in response to Krugman's (1989) provocative suggestions that the theory of fixed
exchange rate regimes may need to be reconsidered in terms of very narrow bands rather
than completely fixed exchange rates.2

The model used is the increasingly popular model of a nominal exchange rate target
zone based on regulated Brownian motion. This model was first formulated by

Krugman (1988), and has later been extended by Miller and Weller (1988, 1989a, b),

! My interest in this problem was stimulated by illuminating and most helpful
discussions with Thomas Franzén and Lars Horngren, Bank of Sweden, on the possible
trade-off between the width of the Swedish exchange rate band and the variability of the
Swedish interest rate. (Sweden has a unilateral target zone with a band equal to
+].5 percent around a central exchange rate specified in terms of a trade-weighted basket
of foreign currencies, with double weight for the dollar.)

2 Krugman's (1989) conjecture is in the context of understanding speculative attacks on
a gold standard. Buiter and Grilli (1989) argue, however, that for the purpose of
understanding such speculative attacks there is no need to abandon the assumption of a
perfectly fixed exchange rate.



Flood and Garber (1989), Froot and Obstfeld (1989a, b), Klein (1989a, b} and Krugman
(1989).3 This model allows a convenient derivation of both the instantaneous and
asymptotic properties of the exchange rate and the interest rate differential. Nevertheless,
the variability of the interest rate differential seems not to have been examined yet. The
only exception seems to be an observation by Flood and Garber (1989) (and in an
unpublished note from 1988 by Flood) that there will be more variability in the interest
rate with a target zone than with either completely fixed exchange rates or a free float.

This paper also extends the target zone model by including an endogenous risk
premium, and by incorporating a devaluation risk.

The paper is made up of 10 brief sections. Section 2 restates Krugman's (1988) model
for the exchange rate, specifies the exchange rate equation and derives its solution for a
free float and a target zone. Section 3 discusses the asymptotic exchange rate
distribution. Section 4 derives the interest rate differential, and section 5 discusses its
asymptotic variability. Sections 6 and 7 derive the instantaneous variability of the
exchange rate and the interest rate differential. Section 7 also briefly discusses whether a
narrow target zone is different from a completely fixed exchange rate. Section 8 examines
the model with an endogenous risk premium, and section 9 incorporates a devaluation

risk. Section 10 summarizes and concludes.

2. The Exchange Rate

We use the basic loglinear model of the exchange rate. The log of the exchange rate

3  Dumas (1989a) specifies a two-country general equilibrium model with physical
capital movements where the real exchange rate behavior is similar to the nominal
exchange rate behavior in the Krugman model.

Solution techniques for problems with regulated Brownian motion are discussed in
Harrison (1985), Dixit (1989b) and Dumas (1988b). The latter two papers also give
references to the rapidly growing literature in which the techniques of regulated Brownian
motion are applied to economic problems other than target zones, notably problems of
irreversible investment and hysteresis.



at time ¢, e(t), is equal to a 'fundamental,’ f(¢), plus a term proportional to the expected
percentage change in the exchange rate:

(2.1) e() = f(t) + aElde(t)]/dt, >0,

where F is the expectations operator.

This exchange rate equation can be seen as the result of a simple monetary exchange
rate theory for a small open economy. In this case the fundamental is the sum of two
components,

(2.2) f(8) = m(t) + o),

(the log of) the home money supply, m, and the (log of the negative of) a composite
money demand shock, v, called velocity. Velocity is given by

(2.3) wt) = - Yy(t) + q(t) - p*(8) + ai*(t) + ap(t) - €(t).

Here v is the elasticity of money demand with respect to output, y is the log of home
output, ¢ is the log the real exchange rate, p* is the foreign price level, a is (the absolute
value of) the semi-elasticity of money demand with respect to the home nominal interest
rate, 7* is the foreign nominal interest rate, p is an exogenous risk premium which equals
the interest rate differ(;ntial less the expected exchange rate depreciation, and ¢ is a money
demand disturbance.4

In what follows, velocity will be an exogenous stochastic process whereas money
supply will be a stochastic process under direct control by a monetary authority.
Together these stochastic processes will determine the endogenous stochastic process of
the exchange rate via equation (2.1).

The saddle- path solution to (2.1) can be written
(2.4) o) = EJ%_ fexpl-(r-0)/ ) f(7)/a}dr,

4 The model consists of the money demand function, m - p = ¢y - ai + ¢, the definition
of the real exchange rate, ¢ = e + p* - p, and the definition of the risk premium, p = i -
* —)E{de]/dt. Elimination of p and 7, assumed to be endogenous and flexible, gives (2.1) -
(2.3). '

See Froot and Obstfeld (1989a) for an interpretation in terms of a two-country model.
See also Miller and Weller (1988) for an interpretation in terms of Dornbusch's
overshooting model.




the expected present value of the path of future fundamentals, discounted by 1/a, where
E’t denote expectations conditional upon information available at time ¢ The saddle-path
solution excludes bubbles. The expected value of a bubble would grow exponentially in
the present model. Since we are going to discuss exchange rates which are restricted to a
target zone, it makes particular sense to exclude bubbles. Therefore, we will only discuss

saddle-path solutions to (2.1).5 6

2.1 Free Float

First we specify what the exchange rate is under a free float. We assume that under a
free float the money supply m is held constant at, for simplicity, a zero level,
(2.5a) m=0.
Then the fundamental is simply equal to velocity, f = v. Velocity and hence the
fundamental is assumed to follow a Brownian motion with drift g and instantaneous
standard deviation o,
(2.5b) dv = pdt + odz,
where z is a Wiener process with Eldz] = 0 and E-‘[(d:)g] = dt. This implies that the
probability distribution of f(¢) at time ¢, conditional upon f(0) = f0 at time 0, is normal
with mean f) + pt and variance o%t. In particular, £ [ )= f{t)+ ulr-t)for vt

By integrating (2.4) we see directly that the solution to the exchange rate equation (2.1)

and produce another solution. Such a bubble must obviously fulfill B(f) = aFE[dB}/dt,
that is, it has an expected growth rate equal to 1/a. Any stochastic process of the form
B, = ( t/a )dt + o,dz,, where ¢, could be a function of By, will do. A special case is the

5 A bubble to (2.1) is a stochastic process B(f) that can be added to the solution j’ 4)

o
determmlsmc exponential B, = Boexp(t/a). Since « > 0 in the present model, the

expected value of a bubble would grow indefinitely.

6 The exchange rate equation can also be seen as representing a more general asset
pricing equation. The equivalence to a standard asset prlcm relat1onsh1p has been noted
by Smith (1989): Set 1/a = § and f (r)/a = § /U o(t)). Then the

saddle-path solution (2.4) is e(t) = Et[";:t{exp[—&(r-t)] Uc(c(r) (r)/Uc(c(t))}dr, the

usual present value at time ¢ of an asset with dividends D(7) in a representative-consumer
economy with instantaneous utility U{¢(7)) and discount rate &.



is simply

(2.6) e(t) = f(2) + o

2.2 Target Zone

Next we model a target zone for the exchange rate. We like to specify a situation
where interventions are undertaken by the monetary authority to prevent the exchange
rate to move outside a specified exchange rate band. As Flood and Garber (1989) and
Froot and Obstfeld (1989a) have emphasized, it is not sufficient to just specify that
interventions will occur when the exchange rate reaches the edges of the band. This is
because there are several different ways to intervene to defend a given exchange rate band.
In order to have a determinate equilibrium it is indeed necessary to specify exactly how
the interventions are undertaken.

More precisely, we assume that interventions in the foreign exchange market, which
directly affect the money supply, are made to prevent the fundamental from moving
outside a specified band jor the fundamental. As we shall see this will imply a
well-defined band for the exchange rate.

Hence we assume that there are lower and upper bounds for the fundamental,
f and f, such that the fundamental fulfills
(2.7) IRSCXSE
With interventions affecting the money supply, the stochastic process for the fundamental
obeys
(2.8) df = dm + dv,
where we now let dm represent the foreign exchange market interventions. Velocity is
assumed to follow the Brownian motion (2.5b). Inside the band, there are no
interventions, dm = 0, and the fundamental follows
(2.9) df= dv= pdt+ odz

At the edges of the band, there are infinitesimal interventions to prevent the fundamental




from moving outside the band.? These interventions can be represented by a lower and an
upper 'regulator,’ L and U, such that

(2.10) dm=dL - dU,

where dL and dU are nonnegative, dL represents increases in money supply and is positive
only if f= f, and dU represents reductions in money supply and is positive only if
f=[. Once the fundamental moves inside the band, the interventions cease. This
implies that the fundamental is a regulated Brownian motion.8

In order to find a solution to the differential equation (2.1) under these circumstances,
we postulate that the exchange rate will be a sufficiently differentiable function of the
fundamental,

(2.11) e(t) = e(f(1).

Application of Ito's lemma on e( f) to express E[de]/dt = E[de(f)]/dt and substitution into
(2.1) results in the second-order ordinary differential equation

(2.12) €f) =] + ope (/) + ac’e(1)/2,

where e and e denote the first- and second-order derivatives of e(f). The general
solution to this function is given by

(2.13) efy=f+au+ Alexp(/\zf) + Agexp(A,f),

where /\1 and A2 are the roots to the characteristic equation in A,

(2.14) (a0®/2)A + aur - 1= 0.

The last two terms in (2.13) are obviously the terms by which the target zone
exchange rate deviates from the free float exchange rate (2.6). The constants A; and Ay
in these terms are determined from the much discussed "smooth pasting" conditions,
(2.15a) e(f) = el =0,
that the function e(f) should be flat at the bounds of the fundamental and, as we shall

see, tangent to the edges to the exchange rate band. We shall give some intuition for the

7 Flood and Garber (1989) extend the target zone model to include finite interventions.
8  See Harrison (1985) for the theory of regulated Brownian motion.



smooth pasting conditions below.® The smooth pasting conditions and (2.13) then implies
(2.15b) 1+ Al/\lexp(z\lf) + AQAQexp(AQf) =0 and
(2.15¢) 1+ Al’\lexP(’\lf) + AQ/\Qexp(/\Qf) =0,
from which the constants A, and A2 can be solved.10
The function e(f) thus derived can be shown to be increasing, and the exchange rate

will have lower and upper bounds given by

(2.16) e=e(f)and e=e(f).
For the case with zero fundamental drift and a symmetric fundamental band,
(2.17) £ =0 and f:—f’

there is a neat symmetric solution. Then the roots /\1 and /\.2 can be written /\1 =-\<0

and A, = A > 0, where

(2.18a) A=2]a /0.
The constants A1 and A, fulfill A1 =A>0 and A2 =-A <0, with
(2.18b) A = 1/[2Acosh(Af)].

The target zone exchange rate can then be written asi!
(2.18¢) e(f) = f - sinh(Af)/fAcosh(Af)].

The now familiar S-shape of the target zone exchange rate, and the straight-line free
float rate, are plotted as functions of the fundamental in Figure 1. They are denoted e

and e, respectively, in the Figure. (Disregard the curve through YXZ at the moment.) The

9 See Krugman (1988), Dixit (1989b) and Dumas (1988b) for further discussion of the
smooth pasting conditions.

10 The general solution (2.13) is also the general solution to the free float case without
any bounds on the fundamental. Then the smooth pasting conditions do not apply, and
the constants A1 and A, must the be determined in some other way. One can then

exploit that the roots A, and A, of the characteristic equation have different signs. Let us
1 2 &

impose the requirement that the free float exchange rate shall not deviate arbitrarily far
from the fundamental, when the fundamental takes arbitrarily large negative or positive
values. It follows that the constants A1 and A2 must both be zero. This provides a

motivation for the simple solution (2.6), which we obtained by directly integrating (2.4).

11 We recall that the hyperbolic sine and cosine fulfill sinh(z) = [exp(z) - exp(-1)]/2 and
cosh(z) = [exp(z) + exp(-1)]/2.



parameters are x4 = 0, no fundamental drift; ¢ = .1, which corresponds to a standard
deviation of the exchange rate of 10 percent per year under free float; and « = 3, which
corresponds to a money demand interest rate elasticity of .3 with a 10 percent nominal
interest rate. Unless explicitly stated otherwise, this is the standard set of parameters for
which all diagrams will be constructed. The bounds for the fundamental in Figure | are
+9.4 percent (f = -f = .094), which under zero fundamental drift corresponds to
symmetric bounds for the exchange rate equal to 1.5 percent (e = - ¢ = .015), the width
of the Swedish exchange rate band.

We see in Figure 1 that the target zone exchange rate differs considerably from the
free float rate, and that it is bent away from the free float rate. The target zone exchange
rate function is tangent to the edges of the band, in accordance with the smooth pasting
conditions (2.15a). The target zone rate is less responsive to the fundamental than the
free float rate,

(2.19) ef(f) <1,
and the band for the target zone rate is less than the band for the fundamental,
(2.20) e<f.

In order to understand this intuitively, let us start by understanding the smooth
pasting conditions. In the zero drift case, we know that the solution can be written
e(f) = f- Alexp(Af) - exp(-Af)], and it remains to determine the constant 4. Varying
A we get a family of curves in Figure 1, each corresponding to a particular value of 4.
For a zero A we get the free float line, for a negative A we get curves through the origin
which are steeper than the free float line, and for a positive, not too large, A we get a
curve like the one through the point X, that is, a curve through the origin which is flatter
than the free float line, concave to the right of the origin, and eventually rises to a
maximum and then falls. Consider the curve through X, which is rising at the upper edge
of the fundamental band. Can that curve be a solution to the target zone exchange rate?

We know that the curve fulfills (2.1), so it is a mathematical (although from the argument



in footnote 10, not an economically meaningful) solution to the free float case without any
fundamental bounds. In the free float case, if the fundamental and the exchange rate are
at a level corresponding to X, a moment later the fundamental and the exchange rate may
have moved to the left, corresponding to Y, or to the right, corresponding to Z. Since the
curve is concave, the corresponding expected change in the exchange rate is negative.
That is, the second term on the right hand side in (2.1) is negative, and the exchange rate
is less than the fundamental. Now, consider the case with a target zone. If the
fundamental and the exchange rate are at X, they can still move left to Y. If the velocity
shocks in the absence of intervention move the fundamental to a level corresponding to Z.
interventions will reduce the money supply and shift the fundamental back to the upper
edge, and the fundamental and exchange rate will stay at X. Clearly, the expected
exchange rate change associated with either moving to Y or staying at X is more negative
than that associated with either moving to Y or moving to Z. Hence, the expected
exchange rate change is more negative with a target zone and the second term in (2.1} is
more negative. Then X cannot be an equilibrium with a target zone, and the exchange
rate must be somewhere vertically below X. The curve through X cannot be a solution to
the target zone case. The only situation when the same curve can be both the
(mathematical) solution to the free float case and the (economic and mathematical)
solution to the target zone case is when the curve is horizontal at the upper edge, that is,
when the smooth pasting condition holds. A symmetric argument explains why the
smooth pasting condition must hold also at the lower edge.

Thus, at the upper edge the exchange rate can only fall or stay constant, and the
expected change in the exchange rate is negative, and the exchange rate must be less than
the fundamental and the free float rate. Equivalently, expectations of interventions that
will reduce the money supply imply that the home currency is expected to appreciate.
That the exchange rate is less than the fundamental at the upper edge of the band affects

the exchange rate inside the band and makes the exchange rate less than the fundamental
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throughout the upper half of the band (although strictly speaking the expected
interventions in the next instant drop to zero in the interior of the band, because of the
continuity of Brownian motions). The reverse is true in the lower half of the band, where
expectations of a rise in the exchange rate make the exchange rate greater than the
fundamental. (A similar argument also holds in the case with nonzero velocity drift when
the fundamental and the free float exchange rate differ.)

The exchange rate band is increasing in the fundamental band, as is shown in
Figures 2a and b, with o ranging from 1 to 5.

Figure 3 shows the target zone and free float exchange rate band for a much wider
fundamental band, +100 (log) percent, which corresponds to an exchange rate band of £88
{log) percent (which for such large bands corresponds to about +140 and -60 'level'
percent).12

We note that the target zone exchange rate in this case is approximately equal to the
free float exchange rate except at the very edges of the band. We can also easily see this
in the special case with zero fundamental drift. For a large symmetric band, we have the
approximate relation
(2.21) ef) % f - [exp(Af) - exp(-Af)]/[Aexp(Af )],
since for large f cosh(Af) » exp(Af)/2. We see that for f far from the edges, the second
term on the right-hand side of (2.21) is small relative to the first, that is, e(f) » f. We
also see that at the edge of the band, the exchange rate fulfills e ~ f - /A =
f-a /2.

Intuitively, with a large band the possibility of interventions affects the exchange rate
only close to the edges of the band, where interventions can be shortly expected. Away

from the edges, any interventions are much more remote in time, the expected change in

12 Since the product of the root A and the fundamental enters in (2.18c), and X according
to (2.18a) is inversely proportional to the standard deviation of the fundamental ¢, it

is f in relation to ¢ that actually decides whether a band is small or large.
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the exchange rate is roughly zero, and the exchange rate coincides with the fundamental
and the free float rate.

Finally let us briefly return to the issue of the necessity to specify the band for the
fundamental. Above we argued that in order to avoid multiple equilibria it was necessary
to specify exactly how the interventions are done, and in particular to explicitly specify
the fundamental bounds f and f. If only the exchange rate bounds e and e are
announced, there are multiple equilibria, as Flood and Garber (1989) and Froot and
Obstfeld (1989) have shown. However, all the examples given of multiple equilibria
involve finite as opposed to infinitesimal interventions. Suppose now that the monetary
authority announces only the exchange rate band together with the rule that only
infinitesimal interventions will be undertaken, perhaps specifying that reductions
(increases) in the money supply will only occur when the exchange rate is at its upper
{(lower) bhound, that is, when the currency is weak (strong). It seems that such an
announcement could only result in one unique equilibrium, the one we have discussed
above, and that the corresponding fundamental bounds can be inferred even though they

are not announced.

3. The Asvmptotic Exchange Rate Distribution

The asymptotic (unconditional) probability distribution of a regulated Brownian
motion with both upper and lower bounds is derived in Harrison (1985). With zero drift
the asymptotic distribution is uniform; with nonzero drift it is truncated exponential.
More precisely, the asymptotic density function gaf(f) for the fundamental is, for
[ <f< f givenby
(3.1a) ) =1/(f - f), for p=10, and
(3.1b) o) = 0exp(0r)/lexp(6) - exp(6]), for u#0,

where § = 2u/a2.
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It follows that the target zone exchange rate has the asymptotic density function
(3.2) o0 = ole(@nse e e,
for e < e < e, where e'l(-) denotes the inverse of e(f).13

Since the density function of the fundamental is exponential or uniform, and the
exchange rate is a sum of a linear and exponential terms, it is possible to compute its
exact asymptotic mean and variance as a function of the width of the fundamental band.
also for nonzero drift of the fundamental.

The density function for the exchange rate is shown in Figures {a and b for a small
and a large band, respectively, and for a zero fundamental drift. (Note that the scale of
the figures are different.) The distribution is bimodal, with more mass towards the edges
of the band than the uniform distribution.l¢ This is also apparent from the S-shape in
Figures 1 and 3. With the fundamental being uniformly distributed, the S-shape implies
that the exchange rate will have more probability mass near the edges of the band than
the uniform distribution. The derivative ¢ in the denominator of (3.2) is smaller close to
the edges of the band, making the density larger. Consequently the standard deviation of
the exchange rate will exceed the standard deviation of a uniformly distributed random
variable with the same band. Figures 5a¢ and b show the asymptotic standard deviation of
the exchange rate, stdle], together with the standard deviation, std[u], of a random
variable u uniformly distributed on the interval e<u<'e. We see that the exchange
rate's asymptotic standard deviation exceeds the uniform random variable's standard
deviation by around 15 percent, roughly independent of the size of the band and the
semi-elasticity of money demand. This prediction should provide one testable hypothesis

of the target zone model.

3 Since the exchange rate function is strictly increasing and invertible only on the
interior of the band (recall that its derivative is zero at the edges of the band), the density
function for the exchange rate is defined only on the interior of the exchange rate band.

14 Froot and Obstfeld (1989a) concluded in a verbal discussion of the exchange rate's
asymptotic distribution that it should be bimodal.
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4. The Interest Rate Differential

We assume that there is an exogenous risk premium, p(t), that links the interest rate
differential and the expected depreciation of the exchange rate, that is,
(4.1) i(t) = *(¢) + Elde(t)]/dt + p(t).
In section & below we shall examine the case with an endogenous risk premium. [For
convenience we set here the risk premium equal to zero. Letting &(¢) = i(t) - (¢) denote
the interest rate differential, we then have

(1.2) 8(t) = Elde(t))/ dt.

4.1 Free Float
Under a free float it follows directly from (4.2), (2.6) and (2.5b) that the free float
interest rate differential, ‘5( £), is simply given by the constant drift of the fundamental,

(4.3) 58 = p.

4.2_Target Zone

Under a target zone, we know that the exchange rate is given by the function e(f ).
We can then directly see from (4.2) and (2.1) that the interest rate differential will simply
be given by
(4.4) 8f) =[elf) - fl]
the difference between the target zone exchange rate and the fundamental divided by .15

It follows from (4.4) that the derivatives of the exchange rate and the interest rate
differential are related according to
{4.5) §f=(ef-1)/a.

Since the exchange rate is less responsive to the fundamental than the free float exchange

15 The interest differential by Ito's lemma of course also fulfills § = pe g + o eff/Q, but
by (2.12) this is identical to (4.4).
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rate (ef < 1), if follows that the interest rate differential will be decreasing in the
fundamental.

(4.6) ] 7 < 0.

It follows that the interest rate differential will move within a band, with lower and upper
bounds given by

(4.7) §=6(f)and 6= 4f).

It follows from (4.4) and (2.13) that the target zone interest rate differential rate can
be written
(48) 61) = 1+ [Ayexp(A, /) + Agexp(Ayf)] /e

In the case with zero fundamental drift and a symmetric fundamental band, the
interest rate differential is given by
(4.9) 8(f) = - sinh(Af)/[aAcosh(Af)].

Figure 6a shows the interest rate differential together with the target zone exchange
rate and the free float rate, for a small band. It is easy to see that the interest rate
differential is the difference between the target zone exchange rate and the fundamental,
divided by o which here is equal to 3. As we noted in the discussion of Figure 1, in the
upper half of the fundamental band the exchange rate is expected to fall, and hence the
interest rate differential is negative. The reverse is the case in the lower half of the band,
and in the middle of the band the interest rate differential is zero.

Figure 6b blows up the interest rate differential and the target zone exchange rate.
We note that for this small band, the interest rate differential appears to be
approximately linear in the fundamental, whereas the exchange rate, as we have noted
above, appears to be rather non-linear in the fundamental. This circumstance will be
important in order for the results of the interest rate differential's variability to follow, so
we should make sure that we understand it correctly. Let us, therefore, consider the case
with no fundamental drift and a symmetric fundamental band:

The derivative of the exchange rate (2.18¢) will be
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(4.10) e = 1= lexp(\) + exp(-Af)}/lexp(Af ) + exp(-\[)].

For a small band, the second term on the right-hand side is less than one, but close to
one. This means that ef is positive, but small and much less than one. Then, it follows
from (4.5) that the derivative 5}’ is approximately constant and given by

(4.11) bpr-1/a

The interest rate differential's responsiveness to the fundamental is almost constant.
That is why the interest rate differential appears approximately linear for a small band.

Figure 7a shows the three variables for a large band. In Figure 7b the interest rate
differential is blown up. We see that here the interest rate differential, rather than the
target zone exchange rate, appears to be rather non-linear in the fundamental, whereas the
target zone rate appears to be approximately linear. This again can be understood from
(4.10). With a large band, the second term on the right-hand side of (4.10) is small,
except at the edges of the band. Therefore, for most of the band the derivative e is
approximately equal to unity, and therefore, by (4.5) the derivative 5f is approximately
zero. Towards the edge of the band, the derivative ef falls to zero, and the derivative 6]'
falls to -1/ a.

Intuitively, for a large band the expected change in the exchange rate and hence the
interest rate differential is about zero and almost constant for the middle part of the band,
except near the edges where shortly expected interventions make the expected change
negative at the upper edge, and positive at the lower edge. The responsiveness of the
interest to the fundamental is therefore about zero except near the edges. That is why the
interest rate differential appears to be more nonlinear for a large band.

The interest rate differential band is increasing in the fundamental band, as is shown
in Figure 8. The interest rate differential bands are themselves bounded. From (4.9) we
can see that the interest rate differential bounds are bounded by 1/(eA) = o/y2a. For
smaller values of @, the semi-elasticity of money demand with respect to the nominal

interest rate, the interest rate differential band is wider. We note that for small bands tle
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interest rate differential's band is relatively large. For the Swedish exchange rate band of
+1.5 percent, the interest rate differential’s band is almost 3 percent.

In conclusion, a band on the fundamental gives rise to both an exchange rate band
and an interest rate differential band. Interventions occur only when the fundamental
reaches the edges of its band, which coincides with the exchange rate and the interest rate
differential reaching the edges of their band. The interventions that prevent the
fundamental and the exchange rate from moving outside their bands at the same time
prevent the interest rate differential from moving outside its band. An exchange rate
target zone as we have described it is, therefore, equivalent to an interest rate differential
target zone. Defending the exchange rate at the edges of its band is here the same thing

as defending the interest rate differential at the edges of its band.

5. _The Asvmptotic Interest Rate Differential Distribution

Given the interest rate differential function 6(f) and the asymptotic density function
¢-f(f) of the fundamental, it follows that the interest rate differential has the asymptotic
density function
(5.1) 218 = ol @y, ),
for §< 6 < 3, where 6'1(-) denotes the inverse of §(f).16 The asymptotic mean and variance
of the interest rate differential can be computed exactly.

The density function is plotted in Figure 9a for different fundamental bands. The
fundamental bands are 6.3, 9.4, £11, 21, and +50 (log) percent, which (for « equal to 3)
corresponds to exchange rate bands equal to £.5, £1.5 (Sweden), £2.25 (EMS except Italy),
+10, and +38 (log) percent. For small bands, the density function is nearly uniform, which

is consistent with the interest rate differential's responsiveness to the uniformly

16 Since the interest rate differential is strictly decreasing in the fundamental, it is
invertible.
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distributed fundamental being approximately constant (cf. (4.11) and Figure 6b). For
larger fundamental bands, the interest band is larger, but the interest rate differential's
probability mass is concentrated more around the mean and the density function is more
peaked. This is consistent with the interest rate differential being about zero for the
middle portion of a large band, and hence its Being unresponsive to the fundamental
except towards the edges of the band. (The figure does not show the density function for
the £100 percent fundamental band since the density function is then too peaked to fit the
scale of the figure.)

It follows that the asymptotic variability of the interest rate differential will be
increasing in the fundamental band for small bands, but decreasing for large bands. This
result is shown in Figure 9b, which plots the asymptotic standard deviation of the interest
rate differential against the fundamental band, for different values of the semi-elasticity of
money. A zero band implies a completely fixed exchange rate, a zero interest rate
differential, and zero variability of the interest rate differential. A very large band is
similar to a free float, which gives a constant interest rate differential equal to the
constant drift of the fundamental and again a zero variability. In between there is
positive variability of the interest rate differential.

Figures 10a and 10b plot the asymptotic standard deviation against the exchange rate
bounds. We can see in Figure 10a that for the Swedish band, #1.5 percent, for a wide
range of semi-elasticities of money demand the standard deviation increases in the band.
We can also see in Figure 10b that for semi-elasticities around 3 and above, the standard
deviation becomes rather flat for bands between +5 and *15 percent, and then decreases

very slowly for larger bands.

6. Instantaneous Exchange Rate Variability

Having discussed the asymptotic (unconditional) variability of the exchange rate and
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the interest rate differential, we will now go on to the instantanecus (conditional)
variability of the two variables. We start with the exchange rate.

Since the exchange rate is a function e(f) of the fundamental, it will be an Ito process
(6.1) de = p(f)dt + o%(f)dz,
with drift ue(f) and instantaneous standard deviation oe(f) that both depend on the
fundamental. The drift is from (4.2) identical to the interest rate differential,

(6.2) () =8(1).

The instantaneous standard deviation is by Ito's lemma simply the product of the
derivative e f and the instantaneous standard deviation of the fundamental

(6.3) o“(f) = ¢;(f)o.

Figure 11 plots the instantaneous standard deviation against the fundamental, for
different fundamental bands. We note that the instantaneous standard deviation
decreases to zero at the edges of the bands. This is consistent with the exchange rate's
responsiveness to the fundamental decreasing towards the edges of the band, as shown in
Figure 1 and discussed above.

We can also see in Figure 11 that for each level of the fundamental, the instantaneous
standard deviation is increasing in the fundamental band. This reflects that the exchange
rate becomes increasingly responsive to the fundamental when the band increases. When
there is no fundamental drift, we can see in (4.10) that £ for each f, is increasing in the
fundamental bound f .

In sum, the exchange rate is a stochastic process which is both nonlinear, having a
variable drift, and heteroscedastic, having a variable instantaneous standard deviation.
Dumas (1989a) thoroughly analyzes a somewhat similar stochastic process for the real
exchange rate, derived in a real two-country general equilibrium model with physical
capital mobility under hysteresis. That real exchange rate process is also nonlinear and
heteroscedastic, and Dumas shows that the process implies persistent deviations from the

law of one price.
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7. Instantaneous Interest Rate Differential Variability

The interest rate differential will be an Ito process
(1.1) a5 = u(pydt - o1z,
with drift ué(f) and instantaneous standard deviation aé(f) that both depend on the
fundamental (since the interest rate differential is decreasing in the fundamental, we
write the second term on the right-hand side of (7.1) with a negative sign in order to
make sure that aa(f) is positive).

In order to find the interest rtate differential's drift we note that by (4.4)
d6 = (de -df)/a. Taking expected values, and using (6.2) and (2.5b), gives
W) = (800 - W/

The instantaneous standard deviation is the product of the negative of the derivative

(1.2

=

&f and the standard deviation of the fundamental,

(73) ) = -840
Using (4.5) and (6.3), we can then write
(7.4) o4(f) + ad’(f) = 0.

The exchange rate's instantaneous standard deviation and a times the interest rate
differential's instantaneous standard deviation sum to the fundamental's instantaneous
standard deviation. Hence, there is a linear negative trade-off between the exchange
rate's and the interest rate differential's instantaneous variability, in contrast to the
non-monotonic relation between the the two variables' asymptotic variabilities.

We can easily understand this by substituting § = E{de]/dt into the exchange rate
equation (2.1) and writing the latter as
(7.5) e(f) - af(f) = f.

Since the exchange rate and the interest rate differential are perfectly negatively
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correlated, (7.4) follows.17

Figure 12a plots the interest rate differential's instantaneous standard deviation
against the fundamental, for different levels of the fundamental band. Because of (7.4).
the figure is simply the mirror image of Figure 11. When the instantaneous standard
deviation of the exchange rate is large, the instantaneous standard deviation of the
interest rate differential is small, and the other way around. For a given level of the
fundamental the interest rate differential's instantaneous standard deviation is decreasing
in the size of the band, since the exchange rate's instantaneous standard deviation is
increasing.

We also see that for a small band the interest rate differential's instantaneous
'standard deviation is large throughout its band. This is consistent with the interest rate
differential's responsiveness to the fundamental being large and almost constant (cf. (4.11)
and Figure 6b). For a large band, the instantaneous standard deviation is close to zero,
except towards the edges of the band where it rises rapidly. This is consistent with the
interest rate differential's responsiveness to the fundamental being close to zero except at
the edges of the band (cf. Figure 7b).

The interest rate differential's instantaneous standard deviation will also be
decreasing in the band for each level of the interest rate differential, as shown in
Figure 12b.

Let us finally consider the limit when the fundamental band approach zero. Then the
exchange rate, the interest rate differential, and the derivative of the exchange rate also
approach zero. The derivative of the interest rate differential, however, approaches the
finite limit -1/e.

It follows that the exchange rate's drift and the instantaneous standard deviation, and

17 The variance of the left-hand side of (7.4) is (ae)2 + a(06)2 - 2a Cov(ed) =

(o + 006)2, where we use that Cov(e,6) = -¢%", since e and & are perfectly negatively
correlated.
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the interest rate differential's drift, all approach zero. In contrast, the interest rate
differential's instantaneous standard deviation increases, and approaches the finite
limit ¢/@, the fundamental's instantaneous standard deviation divided by the
semi-elasticity of the money demand with respect to the interest rate.

It follows that the limit of a narrow target zone differs from an idealized completely
fixed exchange rate regime, since in the latter the interest rate differential would have
zero instantaneous standard deviation. However, although the interest rate differential's
instantaneous standard deviation approaches its supremum, the time intervals the interest
rate differential spends between hitting the edges of its band becomes arbitrarily short.
Therefore, the relevance of the instantaneous standard deviation is reduced, and any
nominal bond with a finite rather than instantaneous maturity will have the standard
deviation of its interest rate differential approach zero.

Therefore, we should be careful in interpreting the result about the limit. It does
hardly imply that a target zone with an arbitrarily small band is in any relevant sense
different from a completely fixed exchange rate regime. What it does imply, I believe, is
that realistically narrow target zones, say with an order of magnitude about 1 percent,
may very well behave quite differently from an idealized completely fixed exchange rate
regime. Indeed, real world fixed exchange rate regimes have in practice been target zones,
although possibly with rather narrow bands. As discussed in Yeager (1976, p. 19-21)),
even the gold standard had gold points, with a band in between. (The example given by
Yeager is actually a band of #1 percent.) The conventional analysis of a fixed exchange
rate regime may indeed, for some problems, have to be reconsidered in terms of explicit

target zones.

8. _An Endogenous Risk Premium

So far the risk premium p in (2.3) and (4.1) has been taken as exogenous and for
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simplicity even set equal to zero. In this section we shall examine the target zone model
with an endogenous risk premium. We shall see, however, that the incorporation of an
endogenous risk premium does hardly effect the results we have derived, since the risk
premium for reasonable parameter values will be so small as to matter very little.

First, let us redefine velocity (2.3) as not including the risk premium, so that we have

(8.1) wt) = - Py(t) + ot) - p*(8) + a*(¢) - (1),
instead of (2.3). We then write the exchange rate equation as
{8.2) e(t) = f(t) + aE[de(t)]/dt + ap, @ >0,

instead of (2.1).

Next, we would like to determine the risk premium endogenously. This can be done
in a variety of ways. We actually only need to establish a bound on the risk premium and
show that the bound is sufficiently small. Let us, therefore, choose a very simple setup.
Suppose there are only two assets (aside from money), namely short term domestic and
foreign bonds, paying instantaneous nominal interest rates, i and . Let us take the
foreign nominal interest rate, ¢, the foreign price level, p*, and the real exchange rate, ¢~
to be deterministic and even constant. Then the foreign bond has a riskless instantaneous
rate of return. The risk premium, fulfilling
(8.3) p =1+ Elde]/dt - &
is consequently the domestic bond's expected instantaneous excess real rate of return
return over the riskless rate. Furthermore, the variance of the instantaneous real rate of
return on the domestic bond is simply the instantaneous variance of the exchange rate.
(08)2. Let w denote the share of domestic bonds in a representative agent's portfolio, and
let 7 > 0 denote the representative agent's relative risk aversion. Then the simplest
portfolio theory says that the portfolio share of domestic bonds fulfills
(84) w=p/[1(o%.

It follows that the risk premium fulfills
(8.5a) p= ,B(ae)2 = ﬁazefQ, where
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(8.5b) g = yu.

The first equality in (8.5a) states that the risk premium will be proportional to the
instantaneous variance of the exchange rate. The second equality, where we have
exploited ¢f = ef o, states that the risk premium will be proportional to the product of
the instantaneous variance of the fundamental and the square of the first derivative of the
exchange rate. The factor £ includes a portfolio share and may be a somewhat
complicated function of accumulated interventions.

Let us for a moment contemplate what the differential equation for the exchange rate
will be. Using Ito's lemma on E[de]/dt and substituting (8.5a) in (8.2), the differential
equation that needs to be solved is
(3:6) A1) = [+ ape(f) + ac’e ()2 + ado®e
together with the smooth pasting conditions. This differential equation does not look too
promising. The term that has been added includes the square of a first derivative, so the
equation is no longer linear. Furthermore, as mentioned the {..ctor § is possibly a function
of previous interventions. For constant j, or for J given as a function of the fundamental,
the differential equation is easy to solve numerically, however. Indeed, if a constant
bound for 3 can be found, the equation can be solved numerically for that constant bound,
which should give an upper bound of the error from disregarding the risk premium.

Let us next try to construct a bound on the risk premium. The portfolio share of
home bonds w is bounded by unity if short sales of foreign bonds are not allowed. With
additional assets besides bonds the share is likely to be less. In a more elaborate portfolio
problem with other assets, where none of the bonds are riskless, and where the dependerce
of the exchange rate variability on the fundamental is taken into account {cf. Adler and
Dumas (1983) and Ingersoll (1987)) the total portfolio share of domestic bonds is given by
the sum of the so-called tangency portfolio, corresponding to the right-hand side of (8.4),
and so-called inflation-hedge and state-variable-hedge portfolios. In Frankel's (1982)

variant of CAPM the tangency portfolio share is equal to the difference between the total
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portfolio share of domestic bonds and the consumption share of domestic goods, which is
equal to the negative of the difference between the portfolio share of foreign bonds and the
consumption share of foreign goods. Let us now accept .5 as a generous upper bound of
that difference, that is, |w| < .5. Let us choose a risk aversion coefficient equal to two,
v = 2. It follows that 3 is bounded by unity,

(8.7) 18 < 1.

Then by (8.5a) the risk premium is simply bounded by the instantaneous standard
deviation of the exchange rate. In the free float case, with our standard set of parameters,
the risk premium will be bounded by 1 percent. This is roughly consistent with empirical
estimates (cf. Dooley and Isard (1983) and Frenkel (1982, 1986, 1988)).18

In a target zone the responsiveness of the target zone exchange rate to the
fundamental is bounded by unity. It decreases to zero at the edges of the band. Hence,
for large bands the risk premium would be bounded by 1 percent in the middle of the
band, and it would fall to zero towards the edges of the band. For small band, the
exchange rate's responsiveness is much less. For the Swedish band of +1.5 percent the
responsiveness is bounded by .24, its square bounded by .058. Then the risk premium is
bounded by only .058 percent in the middle of the band, and falls towards zero at the
edges of the band. These numbers are sufficiently small for the risk premium not to have
any significant effect on the exchange rate function for both small and large bands, as the
8 Dooley and Isard (1983), using a portfolio-balance approach, report a risk premium of
about 2.5 percent per year, but warn that their method may overestimate the risk
premium. Frankel (1982, 1986, 1988), using a mean-variance approach, estimate variance-
covariance matrices which, with relative risk aversion equal to two, imply risk premia
about 1 percent per year for six major currencies.

The assumptions made in deriving (8.4) imply that foreign bonds are riskless and
domestic bonds risky, in real terms. This implies a bias towards a positive risk premium,
but that does not matter since we only aim at establishing a bound for the absolute value
of the risk premium. A direct use of the basic CAPM makes the risk premium equal the
product of the excess return on the market portfolio and the 'exchange rate beta,' the
ratio of the covariance between the exchange rate and the rate of return on the market
portfolio to the variance of the rate of return on the market portfolio. Many different
assets in the market portfolio would seem to generally lead to lower risk premia than the

one derived via (8.4). Hodrick (1987) and Hérngren and Vredin (1988b) survey different
models for the risk premium.
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numerical solution of (8.6) has indeed confirmed. For large bands, however, the risk
premium in the middle of the band is significant relative to the interest rate differential.
For small bands, the risk premium is small also relative to the interest rate differential.
Consequently, we find that setting the risk premium equal to zero results in very
small relative errors for the exchange rate function regardless of the size of the band. For

small bands it also results in small errors for the interest rate differential.!®

9. Devaluation Risk

The target zone model presented here predicts relatively small interest rate
differentials for small bands. Actual interest rate differentials have often been larger, also
during periods of relatively free capital movements (for data for the EMS, see Giavazzi
and Giovannini (1989); for data for Sweden, seec Horngren and Vredin (19€8a)). It seems
likely that such high interest rate differentials may largely be explained by risks ut"
realignments and devaluations. Let us examine this possibility by extending the model 10
include the possibility of devaluations.

A devaluation can, of course, be seen as a special kind of regime shift. Several such
regime shifts have been studied in the literature using regulated Brownian motion.
Krugman (1988) has examined a once and for all shift from a target zone to a free float.
which occurs with a given probability once the exchange rate reaches the edge of its band.
Miller and Weller (1989a) have studied reoccurring given realignments which occur with
some probability when the exchange rate reaches one edge of its band. Froot and Obstfeld
(1989a) have studied a once-and-for-all peg of the exchange rate once it reaches a given

level, and a once-and-for-all unification of dual exchange rates once the fundamental

19 In Dumas (1989a) real model, an elegant expression for a real risk premium, defined
as the difference between the foreign and domestic real interest rates, is derived. That
risk premium behaves differently from the nominal risk premium here, being zero on the
midpoint of the band as well as at the edges of the band.
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reaches a given level. Krugman (1989) discusses once-and-for-all collapses of target zones
regime with limited reserves, including a target zone on a gold standard.

Here we choose to model devaluations as reoccurring with some given constant
probability, regardless of where in the band the exchange rate lies. This will allow a
simple analytic solution of the exchange rate equation. Also, some real world
realignments and devaluations seem indeed to occur when the exchange rate is in the
interior of the band.29 More precisely we model devaluations as occurring according to a
Poisson process ¢(t) with constant parameter v > 0, meaning that during the interval d¢
the process will take a jump of unity with probability »d¢ and remain unchanged with
probability {1 - vdt). Then ¢(¢), taking integer values, can be interpreted as the number
of devaluations that have cccurred up to and including time ¢.

The details of a devaluation in the present framework can obviously be modeled in
several different ways. Generally, in this framework we would associate a devaluation
with an announcement of a shift in the band. (We recall that the regime must he
specified in terms of a band for the fundamental rather than only a band for the exchange
rate, in order to ensure a unique equilibrium.) But we must also specify what
interventions are undertaken at the time of the announcement, at least when the old level
of the fundamental is outside the new fundamental band. Then the fundamental can be
moved either to the edge or the new band, or to somewhere inside the new band.

It turns out to be very convenient to model a devaluation as a simultaneous shift of
the seme magnitude ¢ in the lower and upper bounds for the fundamental as well as in the
money supply. Then a devaluation maintains the fundamental's position relative to the
fundamental band. More precisely, the lower and upper bounds for the fundamental are

functions f(g) and f(g) of the number of devaluations given by

(9.1) (9= fy+ggand f(g) = f; + g¢,

20 For instance, when Sweden devalued in Sweden in September 1981 and October 1982
the Krona's value was above previous minimum values.
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where fO and 16 are constants. After ¢ devaluations, the fundamental is restricted to

fulfill

(9:2) flg<f<fig).
The upper and lower bounds thus change according to
(9.3) df = gdqand df = gdg,

where dq is unity with probability vdt and zero with probability (1 - vdt).
Similarly, the money supply is now given by the process m = L - U + g¢q, that is,
{9.4) dm = dL - dU + gdg,

where L and U are the lower and upper regulators referred to in section 2.2.

A positive g corresponds to devaluations, a negative to revaluations. Let us think of ¢
as positive and continue to refer to devaluations.

The exchange rate still fulfills the exchange rate equation (2.1) (we continue to
disregard the risk premium}, but it will now be a function ¢ f. ¢) of both the fundamental
and the number of devaluations. Ito's lemma applied on e{f, g) gives the expected changc
in the exchange rate as
(9.5)

Edelf, q)) = (1~ vit)lue (£, @) + Pepp(f, )/2dt+ vitle(f + 9, g+ 1) - elf, 9]
The first term on the right-hand side is the usual second-order expression, multiplied by
the probability that no devaluation occurs during the interval dt. The second term on the
right-hand side is the probability that a devaluation occurs times the total jump in the
exchange rate due to both the jump of ¢ in the fundamental (due to the jump in the
money supply) and the jump of unity in ¢, the number of devaluations.

Due to the symmetry of the setup, with a devaluation being the same jump g in both
the fundamental and its lower and upper bounds, we may postulate that the resulting
jump in the exchange rate is also equal to g, that is,

(9.6) ef +9q9+1)-ef, Q=9
Using (9.6), ignoring terms of order i in (9.5), and substituting into (2.1), we get



the differential equation

(9.5) of, = + avg + auef(f, g) + ac’e ([, o)
The smooth pasting conditions will now be

(9.9) e (110 9) = e;(f(0), 0 =0.

It is not difficult to find the solution to (9.8) and (9.9). It is
(9.10) ef, q) = [+ ap+ avg+ Apexp[A (f - g99)] + Agexp[Ay(S - 90,
where /\1 and /\2 are the roots of the characteristic equation (2.14) and the constants .41
and A2 are given by (2.15) with f() and j('J substituted for f and f. The solution
obviously fulfills (9.6).

Comparing (9.10) for ¢ = 0 with the solution without devaluation risk, (2.13). we
realize that the only modification of the exchange rate function is the addition of the
term avg, o times the rate of expected devaluation. In Figure 6a, for instance, the only
modification is that the curve corresponding to the target zone exchange rate is shifted up
by avg. When a devaluation occurs, the curve is each time shifted up and to the right by
the magnitude g, hence every point on the curve is shifted on a 45 degree line northeast in
the figure.

Ignoring rﬁe risk premium, the interest rate differential is given by (4.2) and {4.4).
that is,

(9.11) 8f, 9 =1(elf,q - f)]a=

= p+vg+ {Ajexp[A(f - g99)] + Agexp[Ag([ - 99)]}/ e

where the second equality follows from (9.10). We see from (9.11) that the interest rate
differential only depends on where the fundamental is relative to its lower and upper
bounds, and not on the number of devaluations. Comparing (9.11) for ¢ = 0 with the case
without devaluation risk, (4.8), we see that the only modification of the interest rate
differential is the addition of the term vg, the rate of expected devaluations. In terms of
Figure 6a, the curve corresponding to the interest rate differential is just shifted up by vg.

When a devaluation occurs, the curve is shifted to the right by g. A devaluation does not
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change the interest rate differential, since the probability of new devaluations by
assumptions remains the same.

In conclusion, with this simple way of modeling a devaluation risk, the only
consequence for the interest rate differential and the exchange rate is that the constant
expected rate of devaluation is added to the former, and the product of that rate and the
interest semi-elasticity of money demand is added to the latter. Hence, a nonzero rate of
expected devaluation shows up directly in the interest rate differential and can contribute
to explaining why the interest rate differential can sometimes be large for small bands and

free mobility of capital as well.

10. Summary and Conclusions

.

We have seen that for small exchange rate bands the interest rate differential's
asymptotic variability is increasing in the width of the band. For large bands, the interest
rate differential's asymptotic variability is slowly decreasing in width of the band. The
interest rate differential's instantaneous variability is always decreasing in the width of
the band.

The target zone model as presented results in rather complicated stochastic processes
for the exchange rate and the interest rate differential, processes which are nonlinear and
heteroscedastic (having both variable drift and variable instantaneous standard
deviation). Still, the model gives very precise predictions on both the asymptotic and
instantaneous probability distributions of these two vartables, predictions that should be
easy to test. One prediction is that the asymptotic variability of the exchange rate should
exceed that of a uniformly distributed random variable on the same band. Another is that
the asymptotic distribution of the interest rate differential should be flat for small bands,
and peaked for large bands. With regard to the instantaneous distributions, in the middle

of the band the exchange rate's instantaneous standard deviation should be at its
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maximum and the interest rate differential's instantaneous standard deviation should be
at its minimum. The reverse should be the case at the edges of the band.

A narrow target zone differs from a completely fixed exchange rate in that the interest
rate differential's instantaneous standard deviation is high and even increasing when the
zone narrows further. Hence there may be considerable uncertainty in the short-term
interest rate, whereas there will be much less uncertainty in longer term interest rate.
The precise implications of this for the term structure of interest rates in a target zone,
and the practical importance of the formal difference between a narrow target zone and a
completely fixed exchange rate will be the subject of further research.

The simplest model of the target zone assumes uncovered interest rate parity, that is,
a zero exchange rate risk premium. An endogenous risk premium can be incorporated, but
for small bands it ends up being too small to matter, and for large bands it only matters
for the interest rate differential, but hardly for the exchange rate function.

An imperfectly credible band in the form of a devaluation risk is easily incorporated,
and results in both a higher exchange rate and a higher interest rate differential.

"There are obvious problems and limitations with this target zone model, problems and
limitations that warrant extensions and modification. One problem is that the stochastic
process assumed for the fundamental is exceedingly simple, with constant drift and
standard deviation inside the band. The theory assumes that interventions occur only at
the margins of the band, whereas intramarginal interventions are quite common in real
world target zones. Such interventions would presumably lead to a fundamental process
with variable drift. A technical problem here is that it is difficult to solve for the
exchange rate with more complicated fundamental processes. Numerical solutions are
easy to compute, though.2!

%A fundamental following a simple linear autoregressive process gives rise to an
exchange rate which is described by the so called confluent hypergeometric function
(cf. Dumas (1988a) and Froot and Obstfeld (1989b)), but other cases do not have analytic

solutions, as far as I know. Miller and Weller (1989) show that some qualitative
properties of the exchange rate solution can be examined for more general fundamental
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The model presented also assumes that the interventions are infinitesimal. Flood and
Garber (1989) have extended the framework to include finite interventions. It is easy to
infer the instantaneous distributions of the exchange rate and interest rate differential in
their framework, but it remains to be seen what the implications for the asymptotic

distributions are.2?

processes, even if an explicit solution cannot be found.

22 Guiseppe Bertola has shown me some preliminary simulations of the exchange rate
distribution with finite interventions. The asymptotic distribution of a regulated
Brownian motion with jump controls has been derived in unpublished research notes by
Bertola and Ricardo Caballero.
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