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1 Introduction

A popular model of asset pricing, developed by Lucas (1978) and Breeden (1979) as-

sumes that a single, infinitely-lived, "representative" consumer-investor chooses her

consumption plan and portfolio composition to maximize expected utility. Equilib-

rium returns on individual assets are determined by the covariance of those assets'

payoffs with the marginal rate of substitution in consumption, a function of con-

sumption growth and a taste parameter. The poor empirical performance of this

model' has led researchers to question a number of its assumptions, and—as a

result—to develop a number of alternative theories.

The specification of preferences is a crucial building block of the representative-

consumer asset pricing model. Typically, preferences are assumed to be of the

time-separable, isoelastic family, characterized by a single parameter. This speci-

fication has been recently criticized mainly on two grounds. First, the property of

time-separability makes the marginal rate of substitution in consumption indepen-

dent of past consumption experiences. By contrast, non-separable utility functions

can induce, in equilibrium, smooth consumption paths that might resemble the

data more closely. Bergman (1985), Sundaresan (1989) and Constantinides (1989)

explore the effects of allowing for non-separable preferences on equilibrium asset

returns.

A second type of criticism regards the interpretation of the elasticity parameter

in the utility function. In the absence of uncertainty, that parameter represents the

elasticity of intertemporal substitution in consumption, while in a static, stochas-

tic setting it measures Arrow-Pratt's coefficient of relative risk aversion. In the

1See, for a recent comprehensive study, Breeden, Gibbons and Litenberger (1989).
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stochastic and dynamic asset pricing model that parameter is, however, difficult

to interpret: it has been interchangeably labelled risk aversion and intertemporal

substitution. A number of recent papers have helped clarifying this problem. Ep-

stein and Zin (1989a), Farmer (1988) and Well (1988) have developed isoelastic

preferences that separate attitudes towards risk from attitudes towards allocation

of consumption over time, by relaxing the expected-utility restriction. These prefer-

ences generalize the time-separable expected utility functionals originally postulated

in dynamic asset pricing models.

The purpose of this paper is to test alternative specifications of an asset pricing

model that relies on the isoelastic non-expected-utility preferences developed by

the above-mentioned authors. Since these preferences subsume the standard time-

separable expected utility function applied in earlier statistical tests, we are able to

compare the empirical performance of both specifications of preferences. We apply

the model to monthly US data on consumption and stock returns.

Our results are directly comparable with two other tests of asset pricing models.

Like Hansen and Singleton (1983) we test the restrictions imposed by the model

on the relation between (conditional) expected returns on individual assets and

their (conditional) covariance with consumption growth, and, given the preference

we postulate, the rate of return on the market portfolio. This test is based on a

time-series extension of the cross-section tests performed by Giovannini and Weil

(1989). We generalize Hansen and Singleton's tests by allowing time variation in

conditional second moments, which we assume follow an Autoregressive Condition-

ally Heteroskedastjc (ARCH) scheme, developed by Engle (1982). In addition, we

also study the general—and less restricted—specification used by Epstein and Zin

(1989b), which exploits the orthogonality restrictions implicit in the first-order con-
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ditions of the investor's optimal plan.2 In both cases, we are interested to verify

whether the more general specification of non-expected-utility preferences results

in any appreciable improvement in the statistical performance of the asset pricing

model.

The paper is organized as follows. Sections 2 and 3 describe the model and the

data set, respectively. Sections 4 and 5 discuss the results, while section 6 contains

a few concluding remarks.

2 Asset Pricing with Non-Expected-Utility Pref-
erences

We consider an infinitely-lived consumer-investor, who chooses her consumption and

portfolio composition to maximize utility. There is only one good in the economy,

but N nonreproducible and nondepreciable assets which generate the consump-

tion good stochastically. The shares of the N assets in the investor's portfolio are

a4, i = 1,. . . ,N and are arranged in the vector a. We assume that preferences are

represented by the isoelastic utility function independently proposed by Epstein

and Zin (1989a) and Well (1988). Formally the investor problem is:

maxU[Cg, EV(w,+i,sg+i)J =

{ (1 — + 8 (E,V(w+j,8÷l))+}'', (1)

211a11 (1988), Zin (1987) and Attanaeio and Weber (1989) study a similar model, the two-period
'Ordinal Certainty Equivalent' model of Selden (1978).

3This is a tractable parametrization of the preferences originally developed by Kreps and Porteus
(1979).
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subject to:

= Rmg+i(t — C,) (2)
N

=
aj,,R1,,i (3)

= 1 (4)

where the indirect utility function, V is defined as follows:

V(w,, 3*) = max U[C,, E,V(w,+i, s,+i)J
C, ,,

with w, representing the investor's total wealth at the beginning of time t, and s,

the state of the economy at t. C, is consumption at t and R are (1 plus) the rates of

return on the assets. Equation (2) describes the evolution of the investor's wealth,

equation (3) defines the rate of return on the portfolio and equation (4) defines the

portfolio shares.

The parameter 'y � 0 ( 1) can be interpreted as the Arrow-Pratt coefficient of

relative risk aversion, while the parameter 1/p � 0 (p $ 1) represents the elasticity

of intertemporal substitution, and 6 E (0,1) is the subjective discount factor.4

The first-order conditions for the problem (1)-(4) are, together with (2)-(4):

I ui.,+i 1
1 = E, 1U2,, , z = 1,. ..,N. (5)

I "l,t
where U1,, and U2, represent the partial derivatives of the "aggregator" function

U at time I with respect to its first and second argument, respectively. To solve

for U1 and U2 in terms of the preference parameters we postulate, and verify, that
V(w,,a) = (s,)w1 and c, = p(8,)w,. The result is:

(r J..i
1 = E, io (!±!) 1-P [!

]

i— '+ , (6)t C, R,,+i
)

4See Weil (1988) for a good illustration of the properties of the functional form adopted here.
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Equation (6) has been extensively discussed in the papers we cited above, where

it is stressed that both the rate of growth of consumption and the market rate

of return determine the equilibrium returns on individual assets. We just note,

following Giovannini and Weil (1989), that in this model myopia in consumption-

savings decisions—that is a consumption function that does not depend on expec-

tations of future variables, but is simply a constant times current wealth—is the

result of a unit-elastic intertemporal substitution but that myopia in portfolio al-

location decisions—portfolio allocation rules that depend only on asset returns at

the current time—arises when the coefficient of relative risk aversion is unity, for

any values of p. In other words, the static CAPM arises from unit risk aversion,

and not from offsetting income and substitution effects in the consumption-savings

problem.5 Equations (6) can be exploited in the empirical analysis, once market

equilibrium conditions are solved jointly with the optimal decision rules of the in-

vestor. These conditions state that the representative investor has to consume all

output produced (since the utility functions we adopt displays non-satiation, and

output is perishable) and hold all available assets. Then R,,1, represents the return

on the market portfolio, and the vector a, represents the shares of all assets in

the market portfolio. Hence equations (6) have to be satisfied in equilibrium, and

represent a testable constraint in the joint stochastic process of consumption and

asset returns. These equations have been estimated and tested by Epstein and Zin

(1989b).

intertemporal substitution equals 1 and asset returns are lognormal, however, equation
(6) becomes:

LI rD o—(i—'i)l — r' fD D1—(1—'I)1,t+11L,ntf.L J — £t 1 t+11',,i,t+1

with 'p = (1 — p)w6/(1 — f6) where s is the autoregressive coefficient for the process followed by the
log of R,,1.See Giovannini and Weil (1989) and Giovannini and .lorion (1989).
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As Giovannini and Well (1989) show, additional assumptions allow to solve out

explicitly for equilibrium excess returns. Consider the case where the logarithm

of the return on on the market and Individual assets, as well as the growth of

consumption are—conditionally on information available at time t—jointly normal,

with mean
e I— ir,,g, rm,g, Ce)

and variance-covariance matrix

( a,,,,8

= J
0s,,i,t mc.t , (8)
aie1e a,,, 0' J

where c denotes the logarithm of (1 plus) the rate of growth of consumption, and

the subscript t indicates that the moments are conditional on time t information,

while returns are realized at time t + 1. Of course, given the definition of the market

return (3), the assumption of joint log-normality is, strictly speaking, not correct: a

linear combination of log-normal variables is not log-normal. Yet joint log-normality

of returns can hold exactly in continuous time, and might be approximately correct

in discrete time, since returns are numbers that do not deviate much from 1. In

addition, the appropriateness of this approximation can be tested, and we do so in

section 4.

The first-order condition (6) can now be rewritten, using our distributional

assumption, for any asset I and for the return (at time t + 1) on a riskfree bond,

rf) whose value is known with certainty at time t. The result is:

',s + o,/2 = T,g + P1 — 0ig,e +
1

— (9)

where:

1—'y -i—p 1—u—p=

___ ___ ______
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1 21'1\ 2

f\2
2— " i—p) (10)

Equation (9) is just a generalization of the one originally estimated by Hansen and

Singleton (1983). If preferences are like those assumed by Hansen and Singleton

the coefficient of relative risk aversion 'y equals the inverse of the elasticity of in-

tertemporal substitution p, and the equilibrium return on an asset depends only on

the riskfree rate, and its covariance with the rate of growth of consumption:

f,, + o-,/2 — r1g = Pic,t

If the coefficient of relative risk aversion equals unity, equation (9) implies

fj,g + a,/2 — rj,g =

the standard static asset pricing equation with logarithmic utility. In the more

general model we estimate, both the covariance with the market rate of return and

the covariance with the rate of growth of consumption affect equilibrium returns on

individual assets.

3 The Data

One strong prediction of the model is that first-order conditions and asset pricing

equations hold for any assets available to the consumer-investor. We carry out our

tests on five industry indices computed from stocks listed on the New York Stock

Exchange (NYSE), jointly with the value-weighted NYSE market index. These data

are obtained from the Center for Research in Security Prices of the University of

Chicago (CRSP).
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The data are monthly and cover the period from January 1953 to December

1987. The value-weighted industry indices are constructed from an exhaustive clas-

sification of the market into five industry groups: primary, manufacturing, tranpor-

tation, trade, finance and services.8 Real returns are measured using the nodurables

consumption price deflator.

The consumption measure is real per capita consumer expenditure in non-

durables and services (measured in terms of nondurables) from the US National

Income Accounts. Because some of the instruments consist of lagged values, the

estimation starts in April 1953.

Table I contains summary statistics for our data set. The table reports means,

standard deviations, and autocorrelation coefficients at lags 1 to 12 months of all

series used in the empirical tests. The standard error of the autocorrelation co-

efficients is approximately 0.054 under the null hypothesis of no autocorrelation.

Notice that the first-order autocorrelation coefficient for consumption is negative

and significantly different from zero. This result is similar, but not identical due to

our longer sample, to that reported by Breeden, Gibbons and Litzenberger (1989).

As these authors point out, this evidence is, prima fade, inconsistent with the

presence of time-aggregation biases in the data, and is perhaps suggestive of the

presence of errors in measurement of consumption. Other noteworthy features of

the data include the difference in the standard deviations of consumption and as-

set returns (the standard errors of asset returns are about 10 times the standard

error of consumption growth) and the significantly positive autocorrelation coeffi-

cient of two indices of returns (trade and finance and services). The low volatility

6These were obtained by aggregating according to the firet two digit. of the SIC number 1-19,
20-39, 40.49, 50-59, 60.79).
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of consumption growth relative to the market rate of return, and relative to the re-

turns of individual portfolios, suggests that the covariance of individual asst returns

with the market could contain valuable information in predicting asset returns, and

hence that models aimed at explaining fluctuations in asset returns in terms of

their covariation with both a market index and consumption could perform better

than models relying exclusively on the covariance with consumption growth. This

conjecture is tested in the following sections.

4 Empirical Tests: Log-Normal Model

Equation (9) implies the following expression for the conditional expectation of the

log of the real return on an asset i:

= — o/2 + I øic,t +
1

"aii,n.g, (11)

Substituting on the left-hand side of (ii) the realized value of the log of asset

i's return, amounts to adding a disturbance term on the right-hand side. Since the

disturbance term represents rate-of-return innovations at time t +1, it is orthogonal

to all variables on the right-hand side. We estimate equilibrium returns equations

jointly with a reduced-form equation explaining consumption growth. The general

form of our system is:

= f + Eg÷i, I = 1,..., N, (12)

= f,ng + E,,÷i (13)

= + €÷i, (14)

The expected returns i, and r,,,, are given by equation (9), which we estimate under

different assumptions on conditional moments. Notice that we impose the same
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model on the five industry indices together with the market index which at every
time t is just a weighted average of the industry indices. Since however the weights

vary substantially over time (the market index is value-weighted), it turns out that
the covariance matrix of r•,i = 1,. . . , N,m does not suffer from multicollinearity.

The condition number of the 6 x 6 unconditional covariance matrix computed over

the period from April 1953 to December 1987 is only 4745. As a reference, the
condition number of the 5 x 5 matrix obtained from dropping the first industry is

equal to 3006, which is of the same order of magnitude.

In order to achieve consistency and maximum efficiency, we apply the maximum

likelihood procedure, and, in particular, we impose that the conditional variances

and covariances in equation (11) are precisely the elements of the covariance matrix

of the estimated residuals in the system (12)—(14).

Given the above distributional assumptions, the conditional log-likelihood func-

tion for the residuals is

t(O) =
TrN+2 1 1 1= _ J —ln(2ir) + —In E I +—EE'EgI (15)g1L 2 2 2

The parameters of interest are found by maximizing £ over the parameter space e.
At the maximum, an estimate of the covariance matrix of the estimated parameters

is obtained from the inverse of the sum of the outer product of the score vectors.

4.1 Constant Conditional Second Moments

If second moments are assumed constant over time, the model reduces to

rg+i = rfg — o/2 + p1 — + — a" + €,i (16)
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for I = 1, ..., N, m and

c4.1 = + ct+1, (17)

where:

'{ o+acg (18)

Equation (18) displays the stochastic processes we postulate for . The first as-

sumes that consumption growth is serially uncorrelated, and hence is a constant;

however, given the evidence reported in Table I—showing significant negative au-

tocorrelation in consumption growth—we also assume that consumption growth

follows a first-order autoregressive process. Notice, using equation (10), that with

constant conditional second moments the fluctuations in expected returns are due

exclusively to fluctuations in the riskfree rate, which in turn fluctuates with the con-

ditional expectation of consumption growth. The implication is that with constant

conditional second moments risk premia are constant and all ex-ante rates of return

are perfectly correlated. When consumption growth is assumed to be uncorrelated

both first and second conditional moments of asset returns are constant.

When consumption growth is uncorrelated, the parameters to be estimated are

o (or, equivalently, r1), p,-y, plus the (N + 2) ((N + 2) + 1)/2 elements of the

covariance matrix of innovations—28 elements with N = 5—for a total of 32 pa-

rameters When consumption growth follows a first-order autoregressive process

the parameters to be estimated are 6,p,i,ao,ai plus the (N + 2) * ((N + 2) + 1)/2

covariance matrix elements, for a total of 33 parameters.

The estimation results are reported in Table H. The point estimates of both

the reciprocal of the elasticity of intertemporal substitution and of the coefficient

of relative risk aversion are positive. The reciprocal of the elasticity of intertem-
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poral substitution is equal to 5.7 and 4.9 under the two alternative specifications

for consumption growth, while the coefficient of relative risk aversion is 8.3 and

14.1 in the two different specifications. In all cases the standard errors of the esti-

mates are very high, especially when consumption growth is assumed to be a white

noise process. The inclusion of lagged consumption improves the efficiency of the

estimates dramatically, without much affecting their values. Yet both parameters

are still not significantly different from anything of interest. Not surprisingly, then,

the hypothesis that p = 'y, i.e. the Von-Neumann Morgenstern restriction, is not

rejected in either case: the t statistic for the p — y is in both cases well below 1.

The restrictions imposed by the model can be tested against an alternative

hypothesis that conditional expectations of returns are unrelated to the elements

of the covariance matrix of disturbances. Under the assumption that conditional

first moments are constant, the unrestricted regressions are just projections on a

constant. The total number of parameters estimated with maximum likelihood is

(N + 2) + (N + 2) * ((N + 2) + 1)/2 = 35 with N = 5. Under the assumption

that expected returns are time varying, the unrestricted regressions project actual

returns on a constant and the lagged growth rate of consumption. A total of (N +
2) * 2 + (N + 2) * ((N + 2) ÷ 1)/2 = 42 parameters are estimated. The results of

the tests are also reported also in Table II. The cross equation constraints from the

model are in both cases rejected at the 5 percent level, but not at the 1 percent
level.

The results in Table II are comparable to those obtained by Hansen and Single-

ton (1983) who apply maximum likelihood estimation to a lognormal model which is

a restricted version of ours, with -y = p. They also use monthly data (from February

1959 to December 1978) on consumption of nondurables and services, although they
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apply their model to individual stock returns, rather than industry indices. Their

estimate of-y = p ranges from .507 to 4.106, two values which are of the same order

of magnitude as those we report in Table H. They also reject the cross-equation

restrictions of the model at any conventional significance level.7

4.2 Time-Varying Conditional Second Moments

Given the widespread evidence that conditional variances of asset returns change

over time, the assumption of constant second moments may lead to unwarranted re-

jections of the model. It is therefore important to extend the model to time-varying

second moments. A tractable specification is the Autoregressive Conditional Het-

eroskedastic (ARCH) proposed by Engle (1982), where conditional second moments

are written as a deterministic function of lagged squared innovations and previous

conditional covariances:

= = r + A • + B • E,_1, (19)

where • indicates element-by-element matrix multiplication. In practice the ma-

trices r, A, B are constrained to be positive definite by estimating their Choleski

factors.

The model then reduces to:

= tf,g — a/2 + p _ + + cg+i (20)

fori=1...,N,m. And
= + (21)

7The cross-sectional regressions of Giovannini-Weil (1989), who use average returns and standard
errors on 379 individual stocks over the period January 1959 to May 1987, also yield quite unprecise
estimates of the relative risk aversion coefficient, but lead to a strong rejection of the Von Neumann-
Morgenstern restriction.
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where:

={o+aic, (22)

The riskfree rate of interest, defined in equation (10), is now time-varying both

through the variation of expected consumption growth and the expected return

on the market, and through the variation of conditional variances and covariances.

Furthermore, in this case the variation of conditional second moment induces time-

varying risk premia across all assets.

When consumption growth is assumed to follow a white noise process, the model

involves a total of 4 + 3 * [(N + 2) * (N + 2 + 1)/2j = 88 parameters (5, p, , plus the

elements of the three matrices in equation (19), r, A and B). When consumption

growth is assumed to follow a first-order autoregressive process, the number of

parameters to estimate increases to 89.

Table III reports the results from the estimation and test of this model. The

point estimates of the two parameters are of the same order of magnitude as those

obtained assuming conditional homoskedasticity, and here also the Von Neumann-

Morgenstern restriction that the relative risk aversion coefficient equals the recipro-

cal of the elasticity of intertemporal substitution is not rejected. Even though the

estimates of the taste parameters are very unprecise,8 the standard errors of the

coefficients are lower than in the case where conditional second moments, indicating

that the assumption of conditionally heteroakedastic returns improves the fit of the

model. This is confirmed by the test of homoskedasticity (a test of the restriction

that the matrices A and B are jointly equal to zero), which shows a strong rejections

under both assumptions for the consumption-growth process.

5This is consistent with the finding in Giovannini and Jorion (1989), who cannot obtain precise
estimates of the risk aversion parameter in a asset pricing model estimated assuming conditionally-
heteroekedastic returns using weekly data on stock returns and foreign exchange returns.
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As above, the model can be tested against a more general alternative. In this

case the alternative allows different cross-sectional means but preserves the type of

time-variation in expected returns induced by second moments specified above:

r,g+i = k0 + — + kia. + k2a,, + k3o',1 + k4oimg + E,+i, (23)

fori=1,...,N,m. And
cg÷i = + E+i, (24)

where:

=
{ o+aicg (25)

Given our specification of the alternative, the model can be directly tested using a

chi-square statistic. In both cases, the restrictions are rejected strongly.

4.3 Tests of Joint Log-Normality

Finally, we verify the assumption that returns and consumption growth are jointly

(conditionally) log-normally distributed, by performing tests on the estimated resid-

uals of the equations in the models. Table IV reports the results. The table contains

the values of the Kolmogorov-Smirnov statistic, which provides a test of the hypoth-

esis that the data are a random sample from a normal distribution, by computing

the largest absolute deviation between the sample and the theoretical cumulative

distributions. The probability of obtaining the observed value under the null is

computed under the Kolmogorov-Smirnov limiting distribution.

Alternatively, a chi-square goodness-of-fit statistic is obtained as follows. First

the observations are sorted in order of increasing magnitude, and classified into n20

equally sized groups. Knowing the lognormal density function allows to compute

the theoretical number of observations for each group. The goodness of fit between
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the actual and theoretical distributions is tested by summing the squares of the

differences between the observed and theoretical number of outcomes in each group.

Asymptotically, this test statistic has a x_1 distribution.

Using both test statistics, and under both the homoskedastic and heteroskedas-

tic specifications of the model, we find that the hypothesis of log-normal residual is

not rejected. This result, consistently with the early findings by Faxna (1976), sug-

gests that with monthly data the log-normality assumption might be a satisfactory

approximation.

5 Empirical Tests: Euler Equations

The maximum-likelihood-based tests reported in the previous section are the most

powerful tests, since they fully exploit all the restrictions the model imposes on the

data, given the maintained hypotheses on the process followed by the forcing vari-

ables (consumption, in our case) and the assumed dynamic structure of conditional

second moments. A less powerful set of tests was recently performed by Epstein

and Zin (1989b). These tests rely on the orthogonality restrictions implicit in the

first-order, necessary conditions for optimization expressed in equation (6).

In this section we follow the same procedures as Epstein and Zin (1989b) to

verify whether relaxing the assumptions about the time variation of consumption

growth and conditional variances improves the empirical performace of the model

relative to the more restrictive Von Neumann Morgenstern setup. The system

of equations in (6) is estimated jointly using the generalized method of moments

(GMM) developed by Hansen (1982) and Cumby, Huizinga and Obstfeld (1983).

The model is tested by verifying the orthogonality of the instruments in excess of the
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parameters to be estimated with the estimated residuals from the equations. The
test statistic, proposed by Hansen (1982) is c'DE, where D = ZflZ, Z is a matrix
of instruments, and O is a consistent estimate of fl = Iimr.0,,(l/T)E(Z'u'Z),
obtained from sample moments. It is distributed as chi-square with degrees of

freedom equal to the difference between the total number of instruments9 and the

number of parameters to be estimated.

The results are reported in Table V. We use four different sets of instruments,

including:

• a constant;

• a constant plus lagged consumption growth and lagged return on the market;

• a constant plus lagged returns on industry 1 and 2;

• a constant plus lagged returns on industry 1 to 5.

Our point estimates of risk aversion and intertemporal substitution are similar to

those reported by Epstein and Zin (1989b). They differ, but not significantly,

from those obtained with maximum-likelihood under the log-normality assumption,

where p was generally a lower number, while y was much larger.

Another interesting difference with the maximum-likelihood estimates is that
the Von Neuma.nn-Morgenstern restriction is rejected in all cases, except when only

a constant is used as an instrument (a case where also the parameter estimates are

very unprecise).

In the table we report also estimates and tests of the restricted version of the
model, where = p. Notice that whenever the overidentifying restrictions of the

9When the instruments used in each equation are the same, the number of instruments times the
number of equations. -
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model are rejected, they are also rejected in the restricted, Von Neumann Morgen-

stern specification.

Overall, the maximum likelihood estimation method, especially when allowing

for time-variation in second moments, led to much stronger rejections of the model

than the method of moments, using the same instruments. With the latter method,

rejections only occur with a much larger set of instruments.

6 Concluding Remarks

In this paper we presented two alternative procedures to estimate and test a class

of representative-agent asset pricing models which rely on a specification of pref-

erences that explicitly distinguishes attitudes towards risk from attitudes towards

intertemporal consumption smoothing, and subsumes the standard intertemporal

CAPM as a special case.

The most important finding was that the relaxation of the constraint that the

coefficient of relative risk aversion equals the inverse of the elasticity of intertemporal

substitution (a constraint imposed by the standard consumption CAPM) does not

improve th fit of the model. In the maximum-likelihood estimates we cannot reject

the hypothesis that the two parameters are equal, but the model is rejected. In the

generalized-method-of-moments estimates we find that whenever we reject the more

general model we also reject the constrained one.

In general, it appears once again that it is extremely difficult to obtain precise

estimates of the parameters: therefore the estimation of large-scale versions of the

model could be of significant interest.
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Table I

Data Description:

April 1959-December 1987

Series Mean S.Dev.

1 2 3 4

Autoc

5

orrel

6

ation:
7

Lags
8 9 10

0.13*

11

0.07

12

-.04
C 0207' 0.0053 -.11' 0.10 0.05 -.02 0.07 0.04 0.07 0.12* 0.05

NI 0.00502* 0.0450 0.08 -.05 0.04 0.04 0.12' -.05 -.08 -.07 0.00 -.01 -.01 0.04

md 1

md 2
md 3
md 4
md 5

0.00582*

0.00536'
0.00461'
0.00603'
0.00568'

0.0588
0.0467
0.0381
0.0565
0.0531

0.08
0.07
0.08
0.17'
0.14'

-.05
-.04
-.06
-.01
-.04

0.01
0.04
0.04
-.01
0.01

0.03
0.05
0.07
0.02
0.02

0.08
0.10
0.19'
0.12'
0.10

-.03
-.04
-.07
-.11
-.03

-.12
-.09
-.10
-.05
-.06

-.07
-.05
-.05
0.00
-.13

0.01
-.01
0.06
0.09
-.02

-.01
-.02
0.05
0.04
-.02

-.02
0.00
0.05
-.03
0.00

0.02
0.03
0.05
0.04
0.07

NOTES: Significance at the 5% level denoted by'. Under the null hypothesis of zero autocorrela-
tion, the standard error of the aurocorrelation coefficients is about 0.054.

Definitions:

• C (consumption ow,

• M (value-weighted market return),

• md 1 (Primary industries),

• md 2 (Manufacturing industries),

• md 3 (Transportation),

• md 4 (Trade),

• md 5 (Finance and Services).



Table II

Maximum-Likelihood Tests: Constant Second Momenth

= Et_i[rigJ + e,
= Eg_j[r,,14 + E,,.g

ct = E,...i[c,] + Ect,

Eg...1[rjgj = rFg — 0-1/2 + + I = 1,...,5,m,
= , or ao + OlCt_1

E =E_i[e] =E

April 1959-December 1987

Instruments Model
___________________________

Parameters Test of
VNM

Test of Model
Rsstrictions

p
(s.c.) (s.c.)

t-stat
p — = 0

Log-ilk. D.F. x P-value

Constant Unrestricted
Non-VNM

- -

5.7 8.3
(68.9) (116.6)

-

0.05
6750.63 35
6746.02 32 9.2 0.026

Constant, Unrestricted
C(-1) Non-VNM

- -

4.9 14.1
(6.0) (23.1)

-

0.51
6751.53 42
6746.81 33 19.4 0.022

NOTES: Asymptotic standard errors between parentheses.



Table III

Maximum-Likelihood Tests: Time-Varying Second Moments

= Ej_1[r1,J + egg,

= E,_i[r,,14 + e,,i

= E,_1[c] + e4,

Ee_i[rs,1 = rpg — or/2 ÷ pOg + iMt, I = 1, ...,5, m,
= , or ao + ajc._

= = r + A • E_1E_i ÷ B •

April 1959-December 1987

Instruments Model

Parameters Test of
VNM

Test of Model
Restrictions

p

(s.c.) (s.c.)
t-stat

p — = 0

Log-uk. D.F. x2 P-value

Constant Unrestricted
Non-VNM

- -

3.9 11.8
(19.5) (73.8)

Test of

- 6959.22 95
0.14 6945.39 88 27.7** 0.0002

Homoskedasticity: xLe=398.7*, p-val=0
Constant, Unrestricted
C(-1) Non-VNM

- - - 6961.22 102

3.1 10.6 0.38 6956.53 89 28.8** 0.007
(5.3) (25.2)

Test of Homoskedasticity: 4=419.4**, p-val=0

NOTES: Asymptotic standard errors between parentheses. Significance at the 1% level
denoted by .



Table IV

Tests of Lognormality:

Residuals from Maximum-Likelihood Estimation

April 1959-December 1987

Series
Homoskedastjc Model

Kolmogorov-Srnjrnov Chi-square
Heteroekedastic Model

Kolmogorov-Smjmov
Statistic P-value Statistic

—
P-value Statistic P-value

Chi-square
I Statistic P-value

C 0.0241 0.99 9.75 0.96
M 0.0569 0.21 26.30 0.07

0.0241 0.99 9.75 0.96

md 1 0.0667 0.09 34.84 0.01
0.0544 0.26 24.78 0.17

md 2 0.0554 0.24 28.73 0.07
0.07 39.86** 0.004

md 3 0.0592 0.18 23.77 0.21
0.0548 0.25 29.14 0.06

md 4 0.0623 0.14 25.58 0.14
0.0547 0.25 20.87 0.34

hid 5 0.0685 0.08 33.29 0.02
0.0583
0.0676

0.19
0.08

21.53 0.31

NOTE: ** Significant at the 1% level.
The Kolmogorov-Smjrnov statistic provides a test of the hypothesis that the data are a
random sample from a normal distribution, by computing the largest absolute deviation
between the sample and the theoretical cumulative distributions. The chi-square goodness6in
of fit statistic is obtained from sorting the observations into N = 20 equally sized groups, and
then computing the differences between the observed and theoretical number of outcomesin each group.



Table V

Euler Equations GMM Tests:

E {MRS1 R,,g1} = 1,

MRSt+i = [ (.'11 —' r 1 1 i—p

.1

I
,-j=CRRA,p=EIS

i,t+lj

April 1959-December 1987

Model Instruments p t-stat
(s.e.) (s.c.) (VNM)

x2 D.F. P-value

Non-VNM Constant

i,C(-1),M(-1)

1,I1(-1),12(-1)

1,11 to 15(-l)

9.7 -2.93 0.5
(196.7) (24.08)

26.7 1.13 30.3*

(765.6) (0.86)
5.2 0.58 8.5*

(1.6) (0.55)
13.5 0.79* 377*

(21.4) (0.33)

0.22 2 .897

13.36 12 .344

25.89* 12 .011

60.20* 27 .00025

VNM Constant

1,C(-1),M(-1)

1,I1(-1),12(-1)

1,11 to 15(-1)

38.4 - -

(72.7)
-2.17 - -

(2.20)
3.56 - -

(2.00)
2.28 - -

(1.70)

0.46 3 .927

13.10 13 .440

26.41* 13 .015

68.72 28 .00003

NOTES: Standard errors corrected for heteroekedasticity between parenthe-
ses. Significance at the 5% level denoted by . The t-statistic tests the
hypothesis that (1 — i)/(1 — p) = 1, which is implied by the VNM expected
utility model. The chi-square statistic tests the overidentifying restrictions
of the model.


