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GRWAER1.BJ

We reexamine several bodies of data on the growth of output, labor, and capi-
tal, within the context of a model that admits the possibility of an ex-
ternality to the capital input. The model is an augmented version of Paul
Romer's (1987) reformulation of the Solow model. Unlike Romer, however, we
find no evidence of an externality to capital. This finding implies nothing
about the size of possible spillovers in the creation of knowledge because in

our model, causality runs exclusively from knowledge to capital.

There seems, on first consideration, to be little reason to expect a firm's
investment in capital to have substantial beneficial spillover effects in
reducing production costs of other firms. But if firms with more capital
also have more productive knowledge, and if this knowledge spreads to other
firms, then unless one can somehow measure knowledge and control for it, an
increase in the capital stock of one firm will appear to léwer the produc-
tion costs of other firms. In the same vein, if the economy's capital stock
in positively rela ed to the availability of specialized intermediate inputs
and if these inputs are not measured, the growth of capital will appear to
increase aggregate output by more than its private marginal product.

In a pioneering article, Romer (1987) argues that a large positive ex-

ternality in capital formation is needed to explain the strong positive as-



socilation in aggregate data (over countries and over epochs) between the
"Solow residual” and the growth of the capital stock. Moreover, the size of
his externality estimate is staggering: the social marginal product of capi-
tal, suggests Romer, is perhaps twice or even three times its private
marginal product, and, by implication, the equilibrium level of investment
falls far short of its socially optimal level.!

Romer'’'s argument implicitly assumes that growth in capital causes a
growth in knowledge or a growth in the availability specialized inputs, or
both.? It is convenient to begin our inquiry by assuming that this assump-
tion is correct. While hard evidence in the external benefits of special-
ization seems hard to come by, there is, in contrast, a huge body of
evidence on the magnitude of spillovers in the process of creation of knowl-
edge. So let us assume that an increase in a firm's capital stock causes
the firm’s productive knowledge to go up in the same proportion. Under this
assumption, one can use estimates from micro data on externalities in R&D as
an estimate of the size of the capital externality,

No firm conclusions on this question emerge from the micro data, how-
ever, perhaps because of the severe problems of measurement; Griliches
(1979) discusses some of these problems. Griliches and Lichtenberg (1982)
find only tenuous support for the conjecture that there are beneficial R&D
spillovers across industries: Process R&D performed in the industry in ques-
tion is far more significant than R&D embodied in the products of other in-
dustries. On the other hand, Jaffe (1986) identifies a firm's "technologi-
cal neighbors” and finds that while neighbors’ R&D lowers the firm’'s profits
and market value, it does tend to raise the firm's patents per R&D dollar

and sales; he interprets the later finding as arising from the presence of



spillovers. A handful of studies, however, have found evidence of large
spillovers. Mansfield et al. (1977) find very large spiliovets in a dozen
or so selected innovations, and Bernstein and Nadiri (1988) find that in
four industries, the social returns to intraindustry spillovers of R&D are
very high, ranging from 30% to 123% of the private returns to R&D.® Such
large estimates of the knowledge externality are, however, an exception: In
a summary of the literature on the elasticity of output with respect to the
R&D input, Griliches (1988) reports that "while the presence of spillovers
would make one expect the industry-level coefficients to be higher than
those estimated at the firm level, the econometric estimates do not show

i s st : 4
this in any convincing fashion."

So, if aggregating up to the industry-
level makes little difference to the estimates of the R&D coefficient, it
would be quite surprising if aggregating to the whole economy would produce
a large upward revision (specifically, a tripling) of the R&D coefficient.
Yet this is exactly what Romer’s (1987) argument implies, and the micro data
do not seem to support it.

Our model is a variant of that described by Prescott (1986). In con-
trast to Romer, causality runs entirely from knowledge to capital. Knowl-
edge evolves exogenously; we do not estimate its external effects, and, in-
deed, under our assumption about causality, micro evidence in spillovers of
knowledge says nothing about spillovers to the capital input. 'The popular
view that some capital investment is needed for the implementation of new
ideas favors our caisality assumption, since it is natural (as in Shleifer
(1986), for instance) to imagine new ideas as proceeding the installation of
the capital equipment needed to implement them. Moreover, at the level of

the individual firm at least, the data indicate that R&D Granger-causes in-



vestment, but that investment does not Granger-cause R& (lLach and
Schankerman (1988)).

While it reverses the assumption about causality between capital and
knowledge, our model still admits the possibility of an externality to the
capital input, and is in fact almost the same as Romer’'s. Our conclusions,
however, are quite different: we examine a variety of bodies of data, and
find no evidence to support the hypothesis that there are beneficial spil-
lovers arising from the capital input. The reason why our conclusions dif-
fer from Romer’s is roughly this: Romer faces simultaneity problems when
he estimates a production function in which capital and labor are endogenous
and correlated with the disturbance to the production function. One source
of disturbances to the production function is the business cycle, and Romer
tries to remove it by filtering out the high frequencies with long run aver-
ages. He further recognizes that even in the long-run data, low-frequency
movements in technology might create a correlation between the inputs and
the production function disturbance, but he argues5 that the extent of this
correlation could not plausibly be so large as to reverse his conclusions.
This, however, is where we disagree with his argument. We make explicit as-
sumptions about the way in which the capital and labor inputs evolve in
response to changes in the state of technology. These assumptions enable us
to calculate the correlation between the inputs and the disturbance. We
find that even in the long run data this correlation is plausibly high
enough to explain the high empirical elasticity of output with respect to
the capital input. No externalities are needed.

The next section presents our model which consists of five structural

equations. In Section 2, we present maximum likelihood and least squares



estimates for the model using post-war quarterly and annual U.S. data and
find no evidence of an externality. In Section 3 we then discuss some of
the model’s implications about the convergence of GNP among different coun-
tries, and interpret the apparent empirical validity of "Gibrat's Law" in
the behavior of countries’ GNP series over extended periods. 1In Section 4,
we reinterpret Romer’'s regression results (that use data on growth of inputs
and output over long epochs) in terms of the simultaneity biases that we
calculate, and we conclude that even those data offer no evidence for the
conjectured positive externality to the capital input.

After the empirical evidence discussed in Sections 2, 3, and 4, Sec-
tion 5 presents two models that give rise to the structural equations first
introduced in Section 1. The first is a stochastic Diamond-type of overlap-
ping generations model, the second a Brock-Mirman type of infinite-horizon
model. The sixth and final section offers some concluding remarks; some of

the computations are included in three appendices.

1. The Augmented Solow Model

In Romer’s model, the representative firm produces output Y, with

hired inputs K, and L., taking as given the economy-wide capital stock

ib per firm, and the state of knowledge Z,. The production function is:
(1) Y, = KILI*R!z,.

The parameter §# measures the external effect of capital, an effect that

the firm ignores when making its decisions. Since all firms are the same,

K, = K Letting lower-case symbols denote logarithms, (1) reads

t v
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2) Ve = (atb)k, + (l-a)2, + z,

If the firm is a price-taker in its product and factor markets, a 1is capi-
tal’s share in output, and l-a 1is labor's share. This is Romer's
reformulation of Solow's model.®

To this, we now add assumptions about how knowledge grows, and about

how the equilibrium k, and £ evolve. Knowledge evolves exogenously, as

follows:
(3) Zeer ™ Bt opz tow, |p| =1
and
(C) wy =g+ djeg )+ A,
Thus the 2z  process is an ARMA(1,2). Three features of (3) and (4)

deserve mention. First, u 1is the rate of exogenous technical change; one
expects it to be positive since some knowledge comes for free from abroad,
and in addition, some knowledge is generated for free domestically as a
byproduct of everyday economic activity. Second, the parameter p, or rath-
er 1l-p, measures the rate at which knowledge depreciates.7 From the work on
business cycles by Prescott and his coworkers, we expect p to be about .99
in the quarterly U.S. data, and .96 in the annual data. Third, the MA(2)
specification for w, was entirely arbitrary -- it took two moving average
terms to remove the autocorrelation from the residuals in the quarterly U.S.

data.



Next we specify the behavior of the capital and labor inputs. In Sec-
tion 6 we shall present two separate micro models® that imply the following

two equations as governing competitive equilibrium allocations:

(5) Kiyp = 7+ Y

s 9
where v 1is a constant, and

(6) (2,) a stochastic process independent of (z,).

Equations (2)-(6) make up the model. In sum, it is Romer’s model with the
added assumptions of exogenous knowledge and endogenous capital and labor.
The next three sections describe how we have estimated its parameters. Sec-
tion 2 uses post-war US data, Section 3 uses the Summers-Heston data, and
Section 4 uses the longer-run data that Romer compiled from Maddison and
elsewhere. None of these bodies of data supports the hypothesis that ¢ is

positive.

2. Estimates From Post-War U.S. Data.

We begin our empirical inquiry by looking at the post-war US data.
The reader will not be surprised, however, to learn that the post-war US
data offer no support for a positive §, since (a) Romer himself did not
cite these data as supportive of capital externalities, and (b) Prescott
(1986) has, with some success, used a model quite similar to ours but with ¢

set equal to zero to fit de-trended post-war US data.



A problem presented by the capital input is that it is likely to be
poorly measured. Our estimation procedure in this subsection begins by
treating k, as an unobservable. This assumption underlies the calculation
of the estimates in the first four tables. Tables 5-8, on the other hand,
do use capital data.

Substitution of (5) into (2) yields
(7) Yo = (atf)y + (atf)y,, + (l-a)2, + z,.

This is the equation that formed the basis for the estimation, which used

annual data on logGNP for y, and loghours worked for £ The data are

.
not detrended.

We present two sets of estimates. Table 1 reports the unconstrained
ML estimates,!® for the annual and the quarterly data separately. Table 2
reports estimates for the remaining parameters when o is constrained to
equal one third, i.e., capital’'s post-war share in income.

Several points are noteworthy. For the quarterly data, the un-
constrained estimates are virtually the same as the constrained estimates,
and the likelihood ratio does not significantly differ from one. The
estimate of p 1is about the same as Prescott’s ((1986), p.15). The
estimate of 4 1is close to zero, and does not significantly differ from
zero. When a is freed up, its estimate does not significantly differ from
1/3. All in all, then, the model does pretty well with the quarterly data.

Such is not the case with the annual data. The unconstrained
estimated of a is negative, but not significantly different from zero. And,
6 is positive, but quite small and insignificant. Thus, the social marginal

product of capital appears to be low in these data. This is especially clear



in the first panel of Table 2 in which, when a is constrained to 1/3, ¢ is
large but negative, and highly significant. The likelihood ratio test
resoundingly rejects the restriction that a = 1/3. These results with an-
nual data are quite similar to the regfession results that Romer gets in
line 2 of his Table 2; in this regression he allows, as we do, for exogenous
technical change, and measures, as we do, the labor input by hours worked.

An important source of downward bias on § deserves mention, however.
While our specification (4) does allow for transitory components in y, there
may nevertheless be measurement error in y that will cause the coefficient
of lagged y in (7), namely (a+f), to be underestimated because of errors in
variables bias. In Table 2 this will cause # to be underestimated, while in
Table 1, where a is freed, both a and # may be underestimated. Put differ-
ently, measurement error in y will lead to a spurious negative dependence
between the quasi-first differences in footnote 10. Such a negative bias
could hide a positive 4.

A second set of problems arises because it takes time to build capi-
tal, and time for the external benefits of capital accumulation to be felt.
That is, it is possible that not only are there significant building-time
delays, but externalities affect output with a lag. To test for the
presence of such delays, we considered a production function Y, - K*_LI"K

t-pt t-

Z

Z, where p and s represented lags. Presumably O < p < s. We derived the

corresponding reduced form (the analogue of (7)) for the infinite horizon,

representative agent model where y on the right hand side appeared with lags
s and p. We estimated this model using quarterly data for various values of
s and p and found that the best fits, in terms of likelihood, were for s = p

= 0. For all values that we checked for s > 0 (up to s = 12) and p = O, the



externality coefficient § was zero and for values s = p > 0, it tended to be
negative.

A third set of problems surround our assumption in eq. (5) about the
way in which capital evolves. Distinct from the issues (discussed in the
previous paragraph) concerning the length of time that it takes to build
capital, there is the issue of how long capital remains productive after it
has been built; that is, how fast it depreciates. If y, is measured by GNP,
as we have done, then eq. (5) implies that there is 100% depreciation. On
the other hand, if Y, is interpreted as wealth, then we have not measured
wealth correctly -- instead we ought to have used net national product plus
the entire existing capital stock. But then it is not clear that (1) is the
correct production function, and empirical implementation demands an ac-
curate K, series. For these reasons we did not pursue this route. Instead
we took the following alternative. In place of eq. (5) (for which a micro-
based justification exists -- see section 3), we posited the ad-hoc Solow-
type constant savings rule out of income, along with the conventional as-
sumption that capital depreciates at a constant rate §. This leads to the

following equation for the growth of capital:

(5) K.y = Y, + (1-6)K,

Tables 3 and 4 report, respectively, the unconstrained and constrained (by
a = 1/3) estimates of the parameters when (5)' is used in place of (5).
Only annual data are used since, at the depreciation rates that are commonly

11

used, we did not have a long enough quarterly time series. The first set

of estimates in Tables 3 and 4 sets 6§ at 10%, the second sets it at 8%. The
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parameter C is the same as before (see note 11) with v = Ins. Further
details are in Appendix 3.

All of the estimates imply a significantly pegative marginal social
product of capital, at magnitudes that are simply incredible. Evidently,
(5)' lends even less support than does (5) to the idea that there are posi-
tive externalities to the capital input, or to the notion that in the ag-
gregate production function returns to scale are increasing. The first four
tables relied on (5) or (5)' to eliminate the capital input from the produc-
tion function. The next four tables present estimates that use the capital
series directly. In Table 5, the low estimate of a is probably due to the
high short-run elasticity of output with respect to labor, which is higher
than labor’'s share l-a. Given that a is set at zero, § becomes the output
elasticity with respect to capital. Thus Table 5 cannot really be inter-
preted as supporting the hypothesis that # is positive. The estimates in
Table 6 are more favorable to the hypothesis; a is now constrained to a
third, yet # is still positive and significant. This is the only solid
piece of evidence in favor of Romer’s hypothesis that we can find in the
post-war data. At the same time, the estimate of p is surprisingly low.
Tables 7 and 8 present OLS estimates of the aggregate production function.
If p is close to one, and if (S) is appropriate for annual (as opposed to
quarterly) data, then according to the model in equations (2)-(6), the OLS
estimates of the coefficients in the growth-rates equation (Table 8) are un-
biased. On the otter hand, the levels equation involves upward bias on the
capital coefficient and downward bias on the labor ccefficient.

Given the wide diversity of the estimates for #, a and p reported by

the eight tables in this section, it seems that the assumptions that we have
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added to Romer's model do not appear to have substantially improved the
ability of his model to rationalize high frequency data. Ve therefore agree
with Romer's view (1987, p. 186) that data from more countries and larger
epochs should provide additional and perhaps better information on the
model’s parameters, and in particular, on §. We look at cross-country data

next.

3. Cross-Country Evidence on the Univariate Representation for y

Under certain assumptions, the Summers-Heston panel data on countries’
GNP's will provide additional information on the parameters of the model.
This is what we examine next. We assume that all countries have the same
production functions and tastes and that the only difference among them is
in their initial values for k., 2, and z,. Because we shall be looking only
at the vy, process,lz and because £, (in addition to k, and z,) will also
be treated as an unobservable, some further assumptions will now be added.
First, we shall assume that A, = i, = 0, so that w, = ¢,. This is done for
analytical convenience, and it ought not to make much quantitative dif-
ference in this subsection because it looks at growth-rates over a period of
25 years, and not at annual or quarterly growth rates, as was done in the
previous subsection, so that the two-year moving average induced by the X’'s
should not matter much, if at all. Second, we shall assume a particular
stochastic process for the £ sequence; in each country £, is assumed to

t

follow the stochastic process

2, = m+rl g+ W, jr] =1,

-12-



where w, is iid, and independent of ¢,. We estimated this equation using

U.S. annual data and OLS, and obtained:

2, = -.22 +1.03%,, R - .98

(.18) (.02) DW = 1.85

Our ML results together with this one suggest that at least in the U.S.,
both p and r are quite close to unity. We shall then take the bold step
of assuming that this is true in all the countries in the Summers-Heston
sample.13

Although, even under these additional assumptions, a study of the y,
process on its own will not identify ¢, it will nevertheless rule out a
great many possible values that the pair of crucial parameters (p,f) can
assume. One source of information about the behavior of y, 1in 115 coun-
tries comes from the Summers-Heston sample (which is now updated to 1985).
The regression below represents the relationship between the average 1960-
1985 rate in GNP-growth of a country on the one hand, and its 1960 GNP on

the other.

That is, the growth of countries is regressed on their initial
size. The regression results reveal no significant relation between the

two !

(8) Ay, = .047 - .0004y,; i=1,...,115.
(.015) (.001) Residual variance = .0004

where y, 1is the Yogarithm of 1960 GNP for country i, and 4y, 1its growth

per year over the 1960-85 period. Standard errors are in parentheses. Thus

the updated sample roughly confirms the insignificant relation between
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growth and initial size, that Romer and others have found,15 a (non!) rela-
tion that is in other contexts often referred to as "Gibrat'’s Law."

To find out what the seeming absence of a relation between size and
growth means for our structural parameters, combine equations (2) and (5) to

get
(9 Yo = (°+9)(7+}’;.1)' + 1

where n, = (l-a)#, + z,. Repeated substitution for lagged y’'s leads to the

following predicted relation between growth and initial size:
T T-1 3
(10) Yesr - Yo = [(at§)"-1ly, +j)._1°(a+9) [Catf)y + nyq ;]

Equation (10) cannot, without further work, be used to interpret the regres-
sion results reported in eq. (8), because ¥y, will be correlated with the
disturbance in eq. (10). One can see this by assuming that r = p, so that
N, =~ (l-a)m + p + pn,;, + ¢, + (l-a)w,, and by recursively substituting for
lagged n's in eq. (7) to obtain

- . T-1-§
(A1) agpy = A7+ (T + Leedm] + 27 v,

where v, = ¢, + (l-a)w,. As long as p > 0, innovations in 1n tend to
persist and 15, and y, will, for each country, be positively correlated.
Substituting from (11) into (10) then implies that the least-squares

estimate of b in the regression Ay, = a + by, 1is identically:
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A 1-1 i oTes
(12) b = (a+&)T -1+ [Cov‘b(r]“‘,y“‘)/V'ari(y.u')]E0 (a+&)JpT 3

The subscript i on Cov, and Var; is there to emphasize that it is i that
varies while t is held fixed at t = 1960.

To compute the expected value of g, we invoke our assumption that the
parameters of the y, process are identical for all countries, in which
case the empirical bivariate distribution of (ynnﬂit) over countries i at
t approximates the stationary distribution of (y,,n,) for a given country
when this distribution exists. When either p -+ 1, or (a+§) - 1, this dis-
tribution blows up,15 but Appendix 1 shows that the ratio Cov(y,n)/Var(y)

still converges:
(13) }%21 Cov(n,,y,)/Var(y,) = 1 - (atd).

Substituting from (13) into (12) and noting (once more from Appendix 1) that

LTt j T- T .
lim T (at8)'p’? = (1 - (a-8)')/(1l-(a+8)), yields
1 3=0
(14) 1 E(B) = (a+8)T - 1+ [1 - (a+0)][1 - (a+8)T]/(1-(a+6)) = O.

So, if p and r are roughly one, Gibrat’s Law will hold regardless of the
value of §. This means that the failure of GNP-levels to converge does not
identify 4.

And now, a c-veat: Our analysis treats countries as closed economies
and looks for scale effects or spillover effects within but pot across coun-
tries. Yet, geographical borders are in some respects an arbitrary division

of geographical space and are therefore "noisy" measures of market areas
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within which, according to our analysis (and Romer's), these scale or spil-
lover effects are assumed to be confined. Nevertheless, in some instances,
differences in culture and language, and the presence of trade barriers do
support the use of geographical borders to delineate the extent of the
market. Of course, if significant cross-country spillovers in knowledge do
exist, they surely run mainly from the rich nations toward the poor ones,
and if so, they represent a force in support of convergence.17

A second set of questions emerges from our assumption that the
bivariate distribution of (y, n) among countries at a point in time is the
same as the stationary distribution of (y,n) for a given country over time.
The first point to note here is that the truth of this hypothesis is com-
pletely independent of the length of the epochs (T,.); it instead has to do
with how long the stochastic processes y, have followed the law of motion
(9), and with the speed of convergence to the stationary distribution im-
plied by the parameters (a+f), p and r.

The assumption that the cross-section distribution coincides with the
stationary distribution can also be tested. Let g, be the growth-rate of
GNP in country i between periods t and t+l. If the hypothesis is true, the
distribution of g, (t = 1960,..., 1984) should, for each fixed i, be rough-
ly the same as the distribution of g, (i = 1, ., 115) for each fixed t.
In particular, if af and ai be the variances of the two respective distribu-
tions, we should have af = ai, at least for most i and most t. In fact, af
and ai both vary considerably as i and t vary, although on average they are

roughly the same:

(1/115) 12'1}5 2 0035 d 1/25) 19}3:4 2 0034
Z 9 . , an 1/ ceiBse’t . .
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The variability of ai is documented in Table 9, while the variability of af
is described in the histogram in Figure 1 (in which Iraq, whose afxlOOO -
30, was omitted).18 A comparison of Table 9 and Figure 1 reveals that the
variability of af is greater than that of ai, which is what one would expect
(if in truth they were equal) on sampling grounds since (a) ai averages the
variance of g,, over 115 countries while af averages it over 25 years only,
and (b) the observations g,, are, for fixed i, autocorrelated.

While the variability of growth rates among countries does not seem to
differ from the growth-rates’ variability within countries, one might still
wonder if differences in growth rates among countries are too persistent to
be consistent with our model. The model asserts that except for initial
conditions, the n, process is the same over countries. One way to pose the
question about persistence is to ask about the cross-country variance of the
mean-growth rates over the 25-year periods. That is, does the model allow
for a reasonable chance that some countries will grow much faster than
others over a period as long as 25 years, or is this possibility a remote
one?

Since Ak, = Ay,.,, the steady-state variance of Ay coincides with that
of Ak, and this expression is provided in Table A.1. If we hypothesize the
truth of the Solow neoclassical model and insert T = 25, § = 0 and a = 1/3
in this expression, it reads a, = 2403 + (48.5)03. Now this expression,
when divided by (25)2, should be equated to the empirical value of the
cross-country variance of the 25-year averaged growth rates. This turns out
to be equal to slightly less than the variance of the residual in equation

(8), namely .000355. Thus, setting (25)_23kk equal to this number yields a
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linear restriction on 05 and af. If we take 05 - of, this yields of = ,003.
If, on the other hand, we take the least favorable case (for us) where 05 =
0, we come up with af = .0045.

A striking feature of both of these estimates of af (.003 or .0045)
that are obtained from looking at the distribution over countries of 25-year
rates of growth, is that they are much larger than the estimates we obtained
from the US post-war annual time series, which were equal to .00023 and
.00015 for the constrained and unconstrained, respectively. Recall, how-
ever, that in this subsection we had assumed that Ay = X, = 03 had we as-
sumed this in the estimates reported in Tables 1 and 2, the resulting
estimate of of would have been higher. The relevant comparison is with 05 =
[1 + 2% + AZ]o?, the estimates of which are .00034 and .00017 for the con-
strained and unconstrained cases; respectively.

Even after this adjustment, the estimate of af from the cross-country
data is at least 10 times as large as the US estimate. This should not be
altogether surprising since af is identified essentially from the
variability over time in the US growth rate, which is far smaller than that
of the median country.lg Nevertheless, the cross-country variability in 25-
year growth rates may be up to twice as large as one would have expected if
the cross-section distribution coincided with the stationary distribution
for a given country. To account for this discrepancy, one or more of the
parameters that we have assumed to be the same for all countries, might have
to be made country-specific.ZD

While the above discussion leaves some unanswered questions about our

model’'s ability to explain (a) the lack of convergence of GNP levels, and

(b) the existence of of persisting differentials in growth rates, we should
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in all fairness point out that an alternative explanation for (a) and (b)
simultaneously, is as yet unavailable. For instance, in Romer’s model with a
constant savings propensity tacked on, a+f > 1 (a+f < 1) implies that the
growth rate will be positively (negatively) correlated with the size of the
capital stock, while a+f = 1 implies independence. In the latter case,
which seems supported by data, differences in growth rates among countries
must be due either to differences in technology and savings rates or to
shocks. The mere presence of externalities (4 > 0) does not by itself ac-

count for differences in growth rates.

4. The Relation Between Inputs and Qutput Over longer FEpochs.

Consider a regression such as the one that Romer (1987) reports in his
eq. (18). 1In country i, over a period length T,,, differences in the
growth of inputs and outputs are calculated, so that for instance, Ay, =
That is, the regression is:

Yiwry, 7 Yine

(15)  Tiiay,, = b + bTilak,, + byT AL, + u,,.
Romer uses 18 observations that span seven countries (subscript i), and four
epochs (subscript t) of at least thirty years in length; the measure of the
labor input is hours worked. The least squares regression results that he
reports in his eq. (18) are: gk = .87 with a standard error of .08, and

by = .04 with a standard error of .18. Our aim here is to calculate the ex-

pectations of gk and gl in light of the added assumptions that we have
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imposed on the evolution of k, £, and z. The least-squares estimates of the

coefficients, denoted by hats, are identically equal to?!

b 0 n k z a
gk - a+f + k a.y a;p a .,
by l-a T agy ey 2,

from which one can show that since Eap, = 0 by eq. (6),

f)k a+f 1 agyp -89 ay .,
o] - [l 1]
- b l-a A x8pp 8k "3 3y 0

(16)
a+f 1 agpa, .
[ e

2
axdgpp 3y "8y pagy

Since the a;; are all positive, ﬁk will be biased upwards while ﬁj will
be biased downwards, with the bias on gk equalling -agy/a,p times the
bias on ﬁj, Appendix 2 calculates the a,; on the assumption that all
countries are subject to the same stochastic process but that they face dif-
ferent realizations of the ¢€'s and w's as well as different initial con

ditions. The resulting expressions for the a;;’s are quite messy, but the

following limiting results are worth noting:22
a7n %hgl(lﬁg[E(bk)]) - 1,

(18) 1lim (1imE(bp)) = 0.
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These results are of relevance if the epochs (which are of length T) are
long, and if z and £ are roughly random walks, as appears to be the case
empirically. So, E(by) is zero regardless of the relative values of af and

ai, while E(gk) =1 1if ai = 0. These expected values are of course not

~

far from Romer’s actual estimates, b, = .87 and 62 - .04.

Table A.1 of the Appendix reports the expressions for the a, that omne
can use to calculate the bias in the least squares estimates Sk and 62
for the cases where a) T remains finite but p and r tend to unity, and
b) for p and r less than unity but T going to infinity. 1In both those cases
the bias remains positive, but difficult to represent analytically in a com-
pact way. The main point is that the limiting values expressed in equations
(17) and (18) are good approximations for the values that gk and 62
would be expected to take for large T and for r and p reasonably close to
one.

Equations (17) and (18) are the same as what Christiano (1987) gets
under a different but related set of assumptions. He allows for country-
specific fixed effects 4, in (3) and m, in the equation governing the
evolution of £, while assuming p = r = 1 and ai = 0. His theoretical
results also assume ai =~ 0, while his simulations allow for ai > 0; both
yield the analogues of (17) and (18), and he argues, as we do, that the
results that Romer reports in his equation (18) were consistent with # being
zero.

Several addi.ional insights follow from our analysis, however. In ex-
plaining these it is worthwhile to elaborate on the differences between our
model and Christiano’s fixed effects model. These differences are best ex-

plained under the assumption that a: =0 -- i.e., that labor supply is non-
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random. In the fixed effects model a country’s long-run growth rate is u,.
In our model, it is
1 u if p=1
g T E G 20 -
0 if p < 1.
Since u is the same over countries, countries must, in the long run, all
grow at the same rate regardless of the vdlue of ». Thus, a fixed effects
model delivers a positive variance of long-run growth-rates among countries
while ours does not.?
In our model the upward bias on the capital coefficient is positively
related to p. Staying with the case in which labor input is non-random (af -
0), we find from the second column of Table A.l that as T - =, the bias on

the capital coefficient approaches

pll - (a+6)?)

1 + platd)

As p goes to unity, so that (18) obtains, the bias becomes 1 - (a+§), while
as p goes to zero, the bias becomes zero.

The conclusion we draw from this exercise is the same as the one
Christiano draws: The regression results that use data on long-run movements
of output and both inputs also provide no support for the hypothesis that 4

is significantly positive.
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5. Microfoundations of the Model.

Our remaining task is to provide a firmer analytic foundation for the
equations used in our estimation process. The key element driving the
results that stem from the structural equations (2)-(6) is the dependence of
the capital stock, through savings behavior, on the stochastic shock to pro-
duction in the previous period. If this shock is serially correlated, cur-
rent output will also depend on the shock in the previous period. There-
fore, the correlation of contemporaneous output and capital does not only
reflect the internal and external impact of contemporaneous capital on out-
put but contains an additional component through the joint dependence of
output and capital on the previous productivity shock. The ignoring of this
element results in exaggeration of the importance of capital in production.
In this section we spell out a stochastic overlapping generations (OLG)
model as well as a stochastic Brock-Mirman type of growth model to justify
the equations of the preceding section, especially equations (5) and (6).

We start with a special OLG model where the representative agent in
generation t faces a wage w, and a stochastic rate of return on his
savings, r,,,. Therefore, his consumption in the second period of his life
is ¢, = (W,-¢,)r,,,. We assume that the agent has a logarithmic utility

function

Binc, + (1-B)Edn(w -c )r,;,

that he maximizes by choosing c¢,. The production function is assumed to be
of Cobb-Douglas form with a multiplicative productivity shock, and is given

by (1).
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Population growth is stochastic, so that L, = L, ;(1+N.), where N
is IID with mean zero. The wage rate and interest rate are equal to the
marginal products of labor and capital, respectively. Since the agent bases
his saving decision on the marginal product of capital in the next period,
he faces a stochastic interest rate (on account both of the stochastic pro-
ductivity shock and the stochastic growth of labor).

The agent’'s optimal savings do not depend on the interest rate so that
s, = (w,-c,) = (1-f)w,. Thus, the total savings which determine next peri-

od’'s capital stock are

sely = Ky = (1) (1-a)Z, KT L™ = (1-8) (1-a)Y,,

since the share of labor is the fraction (l-a) of output. Taking logarithms
immediately yields equations (5) and (6) of the previous section.

Before moving on the infinite horizon model, we should discuss the
role of specific functional forms and assumptions. The logarithmic utility
function simplifies matters considerably by eliminating the dependence of
savings on the next period rate of return. But its use in this context goes
beyond algebraic convenience. Slightly altering the utility function, say
to one with a constant relative risk aversion, may yield a savings function
that either increases or decreases with the rate of interest, depending on
whether the risk aversion coefficient is less than or greater than unity in
absolute value. Since an increase in the productivity shock leads to an ex-
pected increase in the shock next period and raises the expected interest
rate, productivity shocks may, if the direct wealth effect through wages is

dominated, in fact decrease savings and next period’s capital stock, result-
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ing in a pegative correlation between K,,, and Z,,, and contradicting equa-
tion (5) in the previous section. (This issue will also arise in the in-
finite horizon model considered below.) In drawing generalizations from the
example, therefore, we should keep in mind that we may need a preference
specification for which savings are a non-decreasing function of the inter-
est rate.u

We now turn to the specification with an infinitely lived representa-
tive agent. Before exploiting specific functional forms we present a gener-
al version to again pinpoint the role of the assumptions embodied in our
specific functional forms.

The representative agent has an instantaneous, twice differentiable
utility function U(c,,a,-L,), defined on feasible consumption and leisure
sets, where a, is a stochastic labor endowment and L, is the labor supply.

a, may be specified as a multiplicative Markov process to reflect popula-
tion growth, since the actual supply of labor will be endogenously chosen.
The twice differentiable production function is given by Y, = an(Kn'Eann)

where Z is the stochastic shock to the production function and Eb (-Kb)

3
enters the production function to reflect an externality. Let § be the
depreciation rate of capital. The agent, facing constraints K, =
Z,£(K,,K,, L)) + (1-6)K, - ¢, and a given K,, maximizes

E % ﬂLU(cb, a,-L,) by choosing each ¢, and L, after observing Z, and

a, at every t. In dynamic programming form, the problem can be expressed as

t

VKgiZg.8,) = Max U(Z,£(K,,K,, L)) + (1-86)K-K;, ag-Ly) + PEV(K,, Z,, a;).
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To simplify matters, we assume the value function V 1is twice differentia-
ble in (K,Z). (The twice differentiability of V 1in certain stochastic
cases can be established by the methods of Blume and Easley (1982).) Let
the derivatives of V(K,Z,a) with respect to K and Z be denoted as Vy

and V,, and let second order derivatives be denoted in the usual way as

\Y

kk * v,

wz and V__. Similarly, let U, and U, be the derivatives of the
utility function with respect to consumption and leisure, with second

derivatives U, U, and U;. Again, for simplicity, we will assume that U,
= 0. Finally, let the derivatives of the production function be denoted by
f,, ff and f;. Standard methodology establishes the first order conditions

for the representative agent’s problem with the usual interpretation:

(19) U(Z,E(Ky, Ky Ly) + (1-6)Ko-K,, a5-Lg) = BV, (K,, Z,, a,),

and

(20) U (Zo£(Ky, Ky, Ly) + (1-86)K,-K,y, ag-Lo)Zyf, (Kg, Ky, Ly)

= U (ZE(K, Ky, Ly) + (1-6)Ks-K,, ag-Ly)

From equation (20) we can obtain the optimal labor supply function as
L, = L(Kl,Ko,Eo, a;, Z5). Let L; and Lt indicate the derivative of L, with
respect to to Z, and K,.

As discussed earlier, we want to investigate the effect of Z, on K.,
so as to establish the nature of the covariance between K,

,and Z,,,. Using

(19) and (20),

-26-



&K, /dKy = ((Uyy + UZef) (Ve ZoFy) - U, Zof U Zof) /D > O
and

aK,/az, = ((Uy + UZefy,) (U £ - BEV,,d2,/dZ;) - U, Z2E2BEV, ,dZ,/dZ, ) /D

where D = (U, + UZf) (U, + BEVy) + BEU.V,,Zoff > O, where F, =
£.(Ky, Ky, L) + £5(K,, Ky, L) + (1-8), and where V,, and V,, are evaluated at

(K, Z;, a;). The policy function K, = h(K,, Z;) is therefore increasing in

Ko.z5 Also dK,/dZ;, > 0 if V,, > 0. To evaluate V,, we first compute
V, (Kg, Zg, 3p) = UZy(fi+f + (1-6)),
so as to obtain

Yy, Ky, Zg,89) = U ((Uy/U,) (8c0/320)Zy+1) (£ +E+(1-6)) + U Zofy (AL(Ky Ky, Zg,80)/dZ,) .

The sign of V,, and therefore of dK,/dZ, is ambiguous for the same rea-
sons as in the OLG case. First it depends on the degree of relative risk
aversion in the term [(U"/U')(8c/3Zy)Zy+1]: If this term is sufficiently
negative, 9K,/3Z, may become negative. Furthermore, unlike our specifica- .
tion in the OLG model, the labor supply is endogenous. An increase in Z,,
through its effect on Z;, leads to an increase in the expected interest rate
and may produce not only lower savings but also a lower labor supply; that
is, we may have dL/dZ < 0. This also tends to make V . negative, and, if
sufficiently strong, may result in dK,/dZ, < 0. 1In the special case of a
logarithmic utility function, coupled with a Cobb-Douglas production func-

tion and full depreciation (6=1), V,, is identically zero, as can be easily

z
computed using the solution of this special case reported below. Therefore,

for our purposes, it seems that the main restrictions imposed by a

"logarithmic utility, Cobb-Douglas production with full depreciation" model
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is to eliminate the possibility of a saving policy and a labor supply which
decrease in response to increases in tlie rate of return. To see this con-
sider the policy function for the general case given by K; = h(K,, Z;) and

assume that 8h/8Z;, > 0. We than have

Lemma 1. Let K., = £(K,,Z,), where f is strictly increasing. If Z, follows
the process described by equations (3) and (4) with Ay 20, (i =1, 2), then
k, is stochastically strictly increasing in z,.

Proof: Recursive substitution for lagged capital shocks in f yields k, =
¢(z“), where z° = (zyqs Z,_,, ...), and where ¢ is strictly increasing. Ap-
plying Bayes’ rule along with eq. (2) yields that for any vector z € R,
Prob(z" < Elzt) is stochastically strictly increasing in z,, and the claim

follows. Q.E.D.

A corollary of the lemma is that the steady-state covariance between
k, and z, is strictly positive, and this is all that is required for an up-
ward bias on the capital coefficient in an OLS context.

The advantage of the specifications with "log utility, and with Cobb-
Douglas production with full depreciation", is that we can solve explicitly
for the optimal consumption, savings and labor supply policies. Using (10)

and (l1) and adopting the logarithmic instantaneous utility function

Adn ¢ + (l-A)in(a-L),

together with the Cobb-Douglass production function ZXK* B L, it can

easily be verified that savings, or next period's capital stock, will be
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(13) K, = apZ KT L™

and that labor supply 1is given by

(14) L, = 28 - a/[(1-0)(L-af) + A8].

If the random endowment follows a multiplicative first order Markov process,
(13) and (14), after taking logarithms, correspond exactly to equations (5)
and (6). Note that to make labor supply stochastic we could have made the
taste parameter stochastic rather than assume a stochastic endowment.
Alternatively, if a, A and other relevant parameters in (l4) were constant,
labor supply would be as well, and we would run into identification problems
in the previous section. (Note that in the general specification of
the model, labor would be stochastic even if a and A were fixed.)

We conclude therefore that the specifications represented by equations
(5) and (6) that drive our results in the previous section, and underlie our
empirical conclusions, can be obtained under reasonable assumptions in ei-

ther the OLG or the infinitely-lived agent models of stochastic growth.
6. Conclusions

Given the assumption that knowledge causes capital but not the other
way around, our failure to find a positive 4 implies nothing whatsoever

about externalities in the generation of knowledge. The Solow model with no

externalities to either labor or capital but with stochastic shocks to
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knowledge does not appear to be contradicted by long run data on output and
the two inputs, and what is more, it is also consistent with micro evidence
on knowledge spillovers. The apparent validity of Gibrat’s law in coun-
tries’ GNP series does not contradict it, nor do the seemingly sizable
medium-run differentials in growth rates over countries. The model fits in
with the recent business cycle literature that explains properties of cycles
with productivity shocks. We have asked if this model can rationalize data
other than the post-war US business-cycle, and our findings favor the model.
The realizations of our technology shocks, the z’s, are allowed to
differ over countries, but the stochastic process forming them is assumed to
be the same over all countries, as indeed are all the parameters of our
model. That the technology shocks can assume different values in different
countries seems reasonable if one interprets these shocks broadly, to also
include shifts in institutional and organizational structures, like shifts
in the corporate, legal, or bureaucratic structures, or even in attitudes
towards work. These elements can greatly enhance or retard the effective
use and operation of factors of production. While such changes in institu-
tional or organizational structures may not be permanent, they tend to be
quite persistent, so that productivity in different economics can diverge

for extended periods of time.
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APPENDICES

Appendix 1: The Derivation of eq. (13).

Note first that

T @™ = S [arn)/p) /(e (@r0)/0) ]

If (a+d) = p, this expression is equal to TpT

Next, note from egs. (2) and
(5) that Keyy = 7 + (a+0)kt + n,, vwhere n, = (l-a)d, + z,. Then,

Cov(n,,k,) = Cov(n,,(atf)k, 3 + n, ;) = (a+8) Cov(n,,Ke.q) + Coving,my.y)-

Expanding further, we obtain:

(A.1) Cov(n, k) = T, (a+8) " Cov(ny,n,-5) -

But, since (l-a) £, = (l-a) m + (l-a)£,_, + (l-a)w,, then if p =1,

Ny = (l-a) m + p + pn,y + (Ef. + (l-a) wt)'

so that COV(an"nq) - pjai, where ai - (af + (l-a)zai)/(l-pz)

Then using (A.1),

(a.2) Cov(n, k) = o él Pt = pol/(L-p(arh)).
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But from eq. (2), Cov(n,,y,) = (a+§)Cov(n,, k) + ai. Substituting into this

expression from (A.2) yields

(8.3)  Cov(n,,y,) = o[l + p(a+8)/(1-p(a+8))] = 62/(1-p(a+)).

Next, we need to compute Var(y).' Since y, = (a+d)k, + n.,

(A.4) Var(y,) = (a+8)*Var(k,) + o2

s + 2(at)Covin,, k).

Now, since k,,, = v + Yo, Var(y,) = Var(k,). Using this in (A.4), and sub-

stituting from (A.3) into (A.4) for Cov(nc,kc) ylelds

(a.5) Var(y,) = [o3/(1- (a+8)")][1 + 2(a+6) /(1 - p(a+8))]

The expressions in (A.4) and (A.5) both explode when p -+ 1 because 05 goes

to infinity, but their ratio does not:

lim [Cov(n,y)/Var(y)} =1 - a - 4.
1

This is eq. (13) of the text, since, by assumption, p = r.

Appendix 2.
This appendix derives expressions for the a;; in eq. (16) under var-

ious assumptions. Deterministic components of z and £ are ignored. We
assume A; = X, = 0, so that ¢, = w,, and so that the w, are also iid.

Repeated substitution in (3) leads to
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T T-1 T-2
Zyyr =-pz, +p €, tp €ppl e + €

t+T-10
or
T T-1 -2
Az, = Zy4p 2, = (p-Dzy + p e +p €re1 t €paror-
But
J+1 3 §-1 -2
zZ, = p zt’_j_1 + p EL-J-I + p ec_j + p ec_jﬂ PR 2 €po1s
so that
T T i+l j T-1 T-2
Az = (p-1)(P Tz gy F Py e F Eg) Fp e+ p Tey o ¥ €,
and also
T T T-1 T-2 T-3
Bz, = (p Dz +p Te s P Te o T 6y et g

Note that subscripts on ATzL for the €'s run from t-j-1 to t-1+T, and
that subscripts on Arzc_j_1 for the ¢’s run from t-j-1 to t-1+4T-j-1. We
shall consider two separate cases: (i) T-j-1 >0, and (ii) T-j-1 < 0, both
for j = 0.

Case (i):

Cov(a'z, ATz, 1) = (a2/(1-p")) ((p*-1)% p*™)

T-j-1 i
2 T-1 t-j-1-1
£,

2, T 31 se1-4 T-d
+ 0 -1) 2 ’ + 0
c(p )1-1 P [4 3

- Y -pP) T DF AT 4 2T T (1T /(1497
. afpzr1-3[(l-p-z(rﬁ-l))/(l-p-z)]A
As a check on the algebra, note that 1}2 Cov(ATzL,ATzcd_l) - af(T-j-l), be-

cause first term goes to zero by L'Hopital’s rule and second term is zero.

This result is exactly as expected.
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Case (ii). (T-j-1) = 0.

j*1-i
P

T-iy 2
3 Yog.

T
Cov(a’z,, ATz, ;) = (a2/(1-p%)) (p7-1)%" + (-1 ( 2 I

Again, as a check on the algebra, not that linlx Cov(Ath, ATZc-Jq) = 0, as it
=
should be. As a further check, note that when j = 0, we have
var(a'z,) = (a2/(1-p"))(p"-1)% + (72 - p A /(-7
so that linlx Var(ATzh) - a‘:'T, as it should be. Moreover, for p <1,
o~

m Var(a’z)) = 0%/(1-p") + (o 7Y/ (L1-p7))0] = 205/(1-p7).

Now we shall compute Cov(ATkt,ATzh), first for arbitrary p and T,

and then we shall take limits. Combining cases (i) and (ii),

«© : -
Cov(Arzh,Arkt) - _5‘_,0 (a+E)JCoV(ATZL,A‘ZL_J._1)
=

2 3 T T - 3 T T
- 5;0 (o+8)°Cov(a'z, ,A'Z,_y_ 1) +jE‘T_l(a+€) Cov(a’z,,A zh_j_l)

-2 . | . j*1 iae s T-3-1 . Cil1_s
= Z, () [l (1-pM) (T D% P+ Gl B ST o B T 0T

© 5 5 T A -
BRGNSV RIS N A KR N A

If we now let T - o« so that the second summation on the right goes to zero, we

obtain
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J§° (@+8)3 [0/ (12N [(PT-1)2 o7 + (- 1o 0% ((1- o729 /(1-p7)) 0
+ 02T ((1-p 2T /(14 07H))
- (T2 (63 (-5 (L (a+)p) T+ (62 (1-pD)) (pT-1)p (L (atd)p)

- AL - (asB)p DM+ P (a+)p-1)7 - pTH/(L- (a+8)p) 1ot/ (1-p7H).
Now we note that as T » «, the second term above also goes to zero.
The first goes to o%p/(1-p°)(1 - p(a+§)), while the third goes to

p i/ (1-p7) (1 - plath)). Therefore,

(a.5a)  lim Cov(a'k,,aTz,) = [07/(1- p(a+6))1(p/(1-p") - p /(L7

- 26%/(1-pH) (1 - pla+h)).
Next we calculate the limit as p - 1, for fixed T.
. T b 2 122 3 .
(A.5b) 11}111 Cov(a'z,,0°ky) = o, _Ec (a+8)(T-j-1)
~ =
= oX(T-1 + (a+6)(T-2) ... (a+8) 7%

2 -1 T -2
= o [T(1 - (a+6)) " - (L1- (a+8)")(1- (a+8)) ]
= o2 [T(1- (a+8)) - (1- (a+8)T)I1(L- (a+8))72.

Next we turn to the computation of Var(ATkt). We have
var(a'k,) = Z ch (a+8) [ (1-a)2Cov(aTh,_;,878,.,) + Cov(s” z,_;, &7 z,.)].
A~ L L]
Let A -Eo EO (a+g)" (1'°)ZC°V(ATI:-.1-ATI:—1)'

We will compute A later. If we let p - 1 for a given T, remembering that

linll Cov(Arzt, ATZ:-3-1) =0 for t-j-1 < 0, we obtain:
~
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) T o T+j i m s iy a2 2 T 43 m_os s 2 2 2k 2 N
Var(a'k,) _jz-:o ,-§¢1(°+6) (T-(i-3)>o, +iz-:c 5-§¢1(a+6) (T-(j-1))o; +k2_:0(a+9) To, + A
- (20%(a+8) [T/(1- (a+8)) - (1- (a+8)T)/(1- (a+6))?]

+ Tok(1- (a+8) H7/(L- (ar)®) + A,

We also compute Var(Aka_) for p <1 at T -+ =: WUe have

o o . s = v
var(ahk,) = (L-a)? E Z, coviale, ,,aT2, ) (ats)™ + 5 5 Cov(aTz, A%z, ) (atd)™.

A
Let A again denote the first of these expression. We shall compute it

later. Next, observe that for i >j and T - (i-j) > 0,

~ T T
Cov{Ad'z, ;,A z,__j)

= G2L-pP (P12 PP+ QBT TR - gy (17

N L S W T

I1f we let T -+ «, note that T - (i-j) > 0 and T - (j-i) > 0 for all
fixed i,j. Now, break the summation for Var(Aka) into three parts: i > j,

i< j, and i = j. But the expressions for i > j and i < j are symmetric.

“s

o compute twice the value for i > j:

s T s o Lgyitio 2 2 T 2 i3
lin var(s®,) - lim 22 E (@) e/ 1G" 1 5
+ (T (02 (-0 0 (10T M)+ (0l/(L-p7) (pFTR TN (110

+2 B(at6) [/ (168 (P13 (0} (107901 6201+ (6%/ (1-p™) (pT2 (15 2)) + &

= 1m (2020 (1% (@40)P07 (@r0) 5 (L (D) (L0 p)
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+ 0T (1) (ak8)? P B0 (@)L - () )
- PP (a+8) (1 (a+t)p D]

+(1-572) %2 (at8)? [ (a+) o V(1 (at)p™H

- p'zfp'ZJ (a+8)* 103 (1- (a+8)p) Y]

(2(1-p D)1 + o2(1-p™H) 2% - A(1-p D) (L (a)P) + )

+

= lim [2[(af/(l-p2>>(pT-1>Zp<a+o)(1- (a+8)2) (1~ (a+8)p) ™"

PT-1) a7 0/ (1-p72) ) platd) (1= (a+)P)TH(1- (a+)p) ™

+

(0%/(1-p"2)) (PT-1)pT 2 (a48) p 7 (L - (a+8)D)7H(L- (a+d)p ™)™

(0%/(1-p"2)) 672 (a+8)p H(1- (a+8)P) (1= (a+d)p )7

+

- (@2 (1-p"2)) (a+)p (1~ (ar)P)TH(L- (a+8)p ™)
b (1 (ar0)D) [B(1-pD (T2 + o2(1-p™p 52 - aR(1-p e + A

= in (0@ A @) 20D (L)) o (are)

2(p7-1)pTp(a+8) (1- (a+8)p) ™ + 2(pT-1)p"(a+8)p ™ (1- (a+6)p™h)

- 207 (a+8)p7H(1- (a+8)p ) + 2(a+8)p(l - (a+8)p)

+

(PT-1)% - o2 4 1) + 2(1-67) + &)

= 1 (2031 (1= (@)D (Do) (1 (a+)p)
+ GT-DAT N (a+8)pH T - p(1- (a+8)p) M) (at8)

Hat8) [p(1- (at0)p)™ - p7H(1- (a+8)p™H)p%) + (1-pT) + A



Therefore,

A

(a.6) iim Var(a®k,) = 2(c%/(1-6%) (1- (@) [2(a+)p(1- (a+8)p)™" + 1] + Lim A

Finally, we need to compute A. Since £, = r £.,_, + w,, the process £,
behaves like the z, process, with r replacing p and w replacing ¢. There-
fore, using earlier formulas for z,

(A.73 Cov(a®g, ,aT8, ) = (T - (i-5))e? for r -1

(BT t-i t-§ 3 “ !
o AT 2

s that Var{a® £,) -+ To, and,

Cov(aTe, a7, )~ 2(a%/(1-t" N for T =, r<1,

se that Var(Arﬁt) - 205/(1-1’2).

B A , e @ r T "
Now, for r =1, A~ (1-0)" % _Eo Cov(a'gy 074, ) (at+g)™™

= [(1-a)?/{1- (a+8)%)1[20%(a+8)[T/(1- (a+8)) - (1- (a+8)T)(1- (a+8))% + To2].
On the other hand, for r < 1,

i A - un (@ § E, Cov(aTh, 8%, ) (at0)™)

- inm {(1-a)2[(2a§/<1-r2))(1— (a+6)?) [(r’-l)zr(aw)(l- (a+8)r)
F T DTN (e T - r(1-(at8)r) Hat+s)
+ (e+6) [r{l- (e+6)r)™t - r’N(1- (a+d)r Hr?T] + (1-7:5]]}.

Therefore

(A.8) Lin A= 2002/t (@)D [2(a+d)r(1- (atd)r) ™t + 1]
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Finally

(4.9)  Cov(aTk,,8"2,) = (l-a) Z, Cov(a’a,, o 2,., ;) (a+6)’

= (1-a)o? [T(1- (a+8)) - (1- (a+8)T)]/(1- (a+8))?, for r = 1.
In general, for arbitrary r,
Lin Cov(a™,,872) = Un { (1-a)e?/(1-r) [T-DPrA- (ats)r)”
+ (-1 3 (a+)HTT - (1 - (at8)T) 7Y
- TN (@) )T w21 e+ ]}
Taking the limit, for r <1,
(A.10)  lim Cov(a™,,8%k) = (l-@)20%/(l-r%) (1- (a+d)r) .
The following table summarizes the results of the appendix relevant for the

bias described in equation (16) of the text.

Combined cases: r.p + 1, T -+ =». We shall how use the expression in the

second column, and we shall send r? and pz to unity at the same rate. The
resulting expressions are then used in eqs. (16) and (17) of the text. The

Landau symbol "0" refers to order of the expression.

1 24 2(a+8) 1 202(1-e)%  2(a+8)

. +1] + O . E + 1)
1-p% 1-(a+8)? “1-(a+d) 1-r? 1-(a+8)? - (at+8)

a, = 0
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1 202 1+(a+d) 1 20%(1-a)? l+(a+d)

=- 0 + 0
1-

1-p% 1-(a+8)? 1-(a+8) r? 1-(a+6)? 1-(a+d)

ak£ - o;

1
agg = O 202
1-r2
AndG
1 2t
a}fu = 0—‘_ e
1-p% 1-(at+8)

Therefore, letting A, be the constant in the expression for a,,,

1 1
0 Ag 0——-a,
aﬁfaku ].'I.‘z ].-pz :
2
ENEY T RE:NY) 1 1 1
[ O——-aL + 0 -A:k]O Ay, - [0 ]ZAQ
1-5% 1-r? 1-r? 1-r2

vhere Aik and Aik are the first and second terms in the expression for a.

Now send 1—p2 and 1-r? - 0 at the same rate, to get

app8yy Apphyy
—_————— ——
2 1 2 2
8008 g (A + AgdAgp - A
haiaf
1-(a+d)
2062 le(a+f)  202(L-a)?  1+(atd) , 4oi(1-a)?
. + . 262 -
1-(a+8)? 1-(a+8)  1-(at)?  L1-(atd) ° [1-(a+8)]?
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Observing that 1-(a+8)? = [l-(a+f)](l+a+§) and making that substitu-
tion on the bottom line of the above expression leads to [l-(a+0)}2 entering
everywhere on the bottom of the denominator. Then multiplying top and bot-

tom by [1-(a+8)]%/4o® leaves us with

o2l - (a+8)]

- 1 - (a+h)
o + (1-a)o% - (l-a)d?

Substituting this into (16) leads to (17). We now calculate the bias on by:

1 1
O A0 A,
-akfaku l-r l.p
agagp-aly 1 1 , 1 .
0 Z‘Akk + 0 Z'Akk]o z'A“ - [0 2] Akl
l-p l-r l-r l-r
- AppByy
(Agg + ALAgg - Ay
-403 of(l-a)
[1 - (a+8)]?
202 1+(a+8)  20%(l-a)? l+(a+d) 4ol(l-a)?
[ € A J 2 2 w
. + . o . —
1-(a+6)% 1- (a+6) 1-(a+8)% 1-(at+d) T [1-(a+8)]?

But
[l—(a+9)21(1-(a+0)) - (l+a+9)(l-(a+9))2. Therefore, the above equals
- 4o%0%(1-a) - o3(l-a)

202(20% + (1-@)?20%) - 4oi(l-a)? of + (1-a)2 62 - o%(1-a)?

= -(l-a).

When substituted into (16) this leads to (18).
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Appendix 3.

In this appendix, we briefly describe our analysis of the equation
Keoq = sY, + (1-6)K,. This analysis led to the estimation reported in Tables
3 and 4. Under this hypothesis,

Veer + (l-a)f + (a+8)in(sY, + (1-8)K)

t+l t+l

-2z ¥ (l-a)l,, + (at8)in(eY, + (1-6)(sY,., + (1-83K, )}

=2y + (l-a)l,,, + (x+d)ins + (a+9)2n({§0(l-6)dYVJ).
Therefore, the analogue of the equation in footnote 1l is:

(A.11) Yo - AYy ™ wp + (l-a)(Bcﬂ-pic) + (a+§)(l-p)2ins

+ (a+9)[j_0(l-&)j‘{t_j - pBr\JEO(l-.S)th_j_l].

The w, process was once again assumed to follow eq. (4). The infinite sums
in (A.1l) were truncated at j = 20. This was possible because only yearly
aata are used in Tables 3 and 4. Since at least about 20 years of data are
needed to construct a reasonable approximation to the infinite sum of past
1's, we could not use quarterly data, as these are available only for the

post-war years. See footnote 12, however.
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Christianc (1987) challenges these conclusions, claiming that a
balanced-path outcome for the Solow model is consistent with the data, and
that no capital externality is required. Indeed, in the deterministic case,
along the balanced-growth path, the externality cannot be identified. Baily
(1987) and others have made the same point.

See especially his reference to evidence from Schmookler (1966) to the
effect that in various industries patenting tends to follow investment.

Their results must, however, be viewed with caution. Mansfield et al,
look only at successful innovations, so that their sample of innovations
does not accurately represent the outcome of investments in R&D. On the
other hand, while the absolute value of the private and social rates of
return is clearly biased upward in their sample, their relative magnitudes
are perhaps not biased. Among their 18 innovations, the social rate of
return averaged 77%, while that of the private rate averaged 33%. These
results do support Romer's claim that the social returns might exceed the
private rate by a factor of more than two to one. Bernstein and Nadiri’'s

results are based on a deterministic model, and simultaneity biases are
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likely to be present because of left-out time effects and unobservable in-
dustry effects. In essence, they evaluate the spillover from the partial
correlation between a firm’s investment in physical capital and R&D on the
one hand, and the industry investment in R&D on the other. These variables
will usually be positively correlated because they both will respond to in-
dustry shocks, time effects, and so on, and this response will cause an up-
ward bias on any estimate of R&D spillovers that relies on this partial cor-
relation.

4 Pakes and Schankerman (1984b) find a much stronger correlation between
industry-wide R&D and lagged industry growth than they do between firm R&D
and firm growth. However, they interpret the causality as running from in-
dustry growth to R&D, in the spirit of Schmookler’'s argument that the incen-
tive to do R&D increases as market size grows. It seems crucial, at the in-
dustry level, for assumptions be imposed that allow ome to distinguish
shifts in product-demand from shifts in technological opportunity. A dif-
ferent, and more questionable, source of evidence on spillovers is that on
the rate at which the economic value of private knowledge decays. The
faster a piece of knowledge spills over to other firms, the faster,
presumably, is the loss of economic rent that the firm can extract from that
piece of knowledge. Pakes and Schankerman (1984a) find that knowledge
depreciates much faster than physical capital, although they do not inter-
pret this as implying a high spillover-rate for knowledge. Unfortunately,
the value of private knowledge may, as Griliches (1979) points out, decay
not just because it "leaks" to other firms but also because it is superseded
by new knowledge generated by other firms. In other words, the economic
value of knowledge would depreciate even in a world with no spillovers, and

its depreciation rate is thus an unreliable indicator of the extent and

. -47-



speed of spillovers.
3 Especially on p. 194 with reference to evidence on the persistence of
cross-country differentials in growth rates.
6 At least a part of this model is in Griliches (1979, p. 102) who there
asttributes it to an unpublished note by Grunfeld and Levhari.

Either because it is superseded by other knowledge, or because some of
the people who possess it die off.
8 One of these is in many respects similar to the model that Prescott
(1986) proposes for business-cycle analysis.
8 Equation (5) is an exact specification for the infinite horizon, repre-
sentative agent model with logarithmic utility, Cobb-Douglas production and
100% depreciation of capital. The details are in section 5. At this stage
s3 should point out, however, that for a model with less than 100% deprecia-
tion and general functional forms, the qualitative features of this rela-
tionship, that is the positive covariance of k,,, with k, as well as z,, that
are the critical elements driving our results in the following section, will
be preserved under very reasonable assumptions. This issue is explicitly
discussed in section 5 (especially see lemma 1 and the surrounding discus-
sion). Moreover, in section 2 we shall also present the estimates for the
model’s parameters when instead of (5), the evolution of the capital stock
obeys K., = sY, + (1-6)K;. See Tables 3 and 4. We shall also present
estimates in Tables 5-8 that use capital data and hence bypass (5) and (5)'.
0 The 1likelihood was derived as follows. Multiplying (7) through by »p,
lagging one period and subtracting the result from (7) yields

Vo v ¥y = C 4 (a8) (Fyymh¥eg) + (1m@) (Zy-plyy) + oy,

where C = (l-p)[{a+§)y+u]. The ¢, are assumed to be normally distributed.

Since w contains two moving average terms, we used the Box-Jenkins proce-
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dure, setting the two pre-sample error terms to their zero mean.
1 ye did experiment with post-war quarterly data, using a 10 year
weighted average of past Y /'s to construct the capital stock. The estimate
of 8 (with « not constrained) was -1.52 and significantly different from
zero. Thus, when (5)' is used in place of (5), the annual and quarterly
data both yield estimates of # far below these in Table 1.

12 The Summers-Heston data set has information on population but not on
the labor input. It also has no information on the capital input.

13 Barro’'s (1988)cross-country study of the univariate process for log un-
employment (again, with annual data) revealed some significant cross-country
differences in the degree of persistence in that variable. Nevertheless, at
least in the post-war samples, the AR(1l) coefficient estimate typically does
not differ significantly from unity. There are, however, good reasons to
suspect the truth of our assumptions about £,. First, human capital should
respond positively to ¢, in much the same way as physical capital. This
would tend to induce a positive correlation between £, and ¢,. On the other
hand, fertility responds negatively to income, and this would tend to induce
a negative correlation between £, and longer lags of e,.

14 ; : R R
Kuwait was excluded from the regression, as it is an extreme outlier.

15 But this finding is for countries as a group, most of whom are small
and have little R&D investment. For industrialized countries, the result is
somewhat different -- see Baumol and Wolff (1988), and Delong (1988).

16 Because y, acquires a permanent component if either p =1, or if

(a+8) = 1. The findings of Nelson and Plosser (1982), Campbell and Mankiw
(1987) and Cochrane (1988) that one cannot reject the hypothesis that in the

univariate ARMA representation of GNP, innovations to GNP have a permanent

component do not, therefore, by themselves tell us whether a+f = 1, or
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whether p or r are equal to unity.
B In our model, the parameter u presumably depends inversely on what is
known domestically relative to what is known abroad. Two models of learning
in situations where different agents know different things are Jovanovic and
Rob {1989) and Jovanovic and MacDonald (1988). In both these theoretical
models, those who are farther behind learn more (through imitation) than
those a who are closer to the leaders, simply because they have more to
learn. This argues for a higher u for the poorer nations. But, such a per-
spective ignores the constraints on the capacity of people in a developing
country to absorb and apply the technologies that the more advanced coun-
tries had already created and put in place. See Vernon (1989) for a view-
point that emphasizes these constraints.

18 af turns out to be significantly negatively correlated to Yi,1850- That
is, initially larger countries have less variable growth-rates. For in-
stance, for the US, af = ,0006.

19 For the US, af is .0006, whereas the median country (see Figure 1) has
a cf that is three or four times that.

0 For instance, the parameter u. Country-specific fixed effects are, in
this context at least, simply a label for one'’s ignorance, and the calcula-
tions about varisances reported in the above paragraph are too rough and
tentative to convince us that the country-specific fixed effect is needed
here. Our z, g are, we submit, less objectionable because they at least are
stochastically equal among countries, although their particular realizations
can vary. Moreover, even if p and r are unity, the long-run growth rate of
z is just u for each country, and there can be no long-run differences in
growth. We discuss this in greater detail in the next subsection.

2 This equation follows directly from the application of the least
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squares formula. The number of observations (i.e., the number of country-
epoch pairs) is n. The a,; are the raw moments. For instance, a, =
F‘ T:AkuAin and so on. The variables with a bar over them are the mean-
growth rates over the sample. For instance, k = l-.Y‘.I.‘T;iAk“, and so on.
22 ye present the results only for this particular limiting case because
the general expressions would be very lengthy. Table (A.l) at the end of
Appendix 2 presents results that make it possible to compute E(Gk) and
E(gp) for finite T, or for p and r less than unity.

2 Table A.1 contains information about the speed of convergence to zero
of magnitudes such as a,, the variance long-run growth rate of the capital
stock). The table shows that this and other variances and covariances go to
zero at the rate T ' when p = 1, while they go to zero at the rate T2 when p
< 1.
2 Another set of problems that plague the OLG model relates to the con-
tinuum of equilibria. While our special specification avoids these prob-
lems, multiplicities will arise gither if outside money is introduced as an
additional asset, or if the labor supply decision is endogenized and the
logarithmic specification of utility is dropped. (For a detailed analysis
see Benhabib and Laroque, JET 1988.)

25 This monotonicity property can be established rigorously without assum-
ing the differentiability of the value function. A proof is in Benhabib and

Nishimura {1989], in Lemma 1 of the Appendix. Although the model there is

slightly different, with very minor modifications the proof goes through.
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TABLE 1: Unconstrained ML Estimates (by a = 1/3), Based on (5).

Yearly Data

Observations: 37 Log Likelihood = 1C1.63 Degrees of freedom: 31

Parameter Estimate Std. Error t-Stat P-Value
) 0.92 0.02 38.84 0.000

g ‘0.0l 0.09 0.14 0.887

C -0.36 0.09 -3.72 0.000
X 0.32 0.09 3.24 0.002
Ay 0.17 0.09 1.80 0.080

a -0.12 0.09 -1.23 0.225
ot 0.00014

Quarterly Data

Observations: 166 Log Likelihood = 547.86 Degrees of freedom: 160

Parameter Estimate Std. Error t-Stat P-Value
P 0.98 0.002 397.21 0.000
6 -0.13 70.034 -3.87 0.000
C -0.01 0.004 -3.72 0.000
Ay -0.15 0.039 -3.99 0.000
A, 0.19 0.042 4.51 0.000
a 0.35 0.042 8.24 0.000

ot 0.00007




TABLE 2: Constrained ML Estimates (by a = 1/3), Based on (5).

Yearly Data

Observations: 37 Log Likelihood = 94.09 Degrees of freedom: 32

Parameter Estimate Std. Error t-Stat P-Value
p 0.94 0.02 43.34 0

4 -0.53 0.14 -3.66 0.000

[ 0.10 0.08 1.23 0.227
Ay 0.61 0.30 2.03 0.050
A, 0.38 0.26 1.45 0.155
ol 0.00023

Quarterly Data

Observations: 166 Log Likelihood = 547.82 Degrees of freedom: 161

Parameter Estimate Std. Error t-Stat P-Value
p 0.98 0.01 51.45 0.000
§ -0.11 0.04 -2.73 0.006
o -0.02 0.03 -0.54 0.585
Ay -0.16 0.04 -3.81 0.000
X 0.18 0.04 4.39 0.000

4 0.00007




TABLE 3: Unconstrained ML Estimates (by a = 1/3). Yearly Data Only.
Based on Ad-Hoc Savings Rule (5)'.
§ = .10

Observations: 37 Log Likelihood = 101.20 Degrees of freedom: 31

Parameter Estimate Std. Error t-Stat P-Value
P 0.98 0.00 159.52 0.000

8 -1.65 0.57 -2.89 0.005

C 0.29 0.08 3.52 0.000
Ay 0.31 0.17 1.83 0.072
A, .26 0.16 1.62 0.109
=4 0.02 0.10 0.23 0.818

§ = .08

Observations: 37 Log Likelihood =~ 101.81 Degrees of freedom: 31

Parameter Estimate Std. Error t-Stat P-Value
p 0.98 0.00 190.49 0.000
4 -1.84 0.55 -3.35 0.001
c 0.33 0.07 4.29 0.000
Ay 0.28 0.17 1.59 0.116
A, 0.25 0.16 1.51 0.137




TABLE 4: Constrained ML Estimates (by a = 1/3). Yearly Data Only.

Based on Ad-Hoc Savings Rule (5)°'.

§ = .10

Observations: 37 Log Likelihood = 96.88 Degrees of freedom: 31

Parameter Estimate Std. Error t-Stat P-Value
p 0.98 0.00 220.51 0.000

9 -2.62 0.57 -4.60 0.000

C 0.38 0.08 4.62 0.000
Ay 0.45 0.19 2.36 0.021
A, 0.40 0.18 2.19 0.032

§ = .08

Observations: 37 Log Likelihood = 97.42 Degrees of freedom: 31

Parameter Estimate Std. Error t-Stat P-Value
p 0.98 0.00 245.34 0.000
8 -2.84 0.60 -4.68 0.000
C 0.41 0.88 4.71 0.000
Ay 0.41 0.20 2.07 0.042
by 0.38 0.18 2.12 0.038




TABLE S5: ML Estimates Using (Annual) Capital Data: a unconstrained.

Cbservations: 37 Log Likelihood = 101.68 Degrees of freedom: 31

Parameter Estimate Std. Error t-Stat P-Value
6 0.31 0.10 2.93 0.006
a -0.04 0.12 -0.32 0.749
Const -1.16 0.58 -1.97 0.057
Ay G.31 0.18 1.70 0.099
A, 0.18 0.16 1.09 0.281




TABLE 6: ML Estimates Using (Annual) Capital Data: a = 1/3 constrained.

Observations: 37 Log Likelihood = 97.47 Degrees of freedom: 32

Parameter Estimate Std. Error t-Stat P-Value
p 0.73 0.07 9.66 0.000
8 0.23 0.05 4.17 0.000
Const. -1.44 0.52 -2.75 0.009
A 0.36 0.18 2.03 0.050

A 0.27 0.16 1.68 0.101




TABLE 7: OLS Estimates Using (Annual) Capital Data: Levels

Observations: 37 Dcgrees of freedom: 34
R-squared: 0.98 Rbar-squared: 0.98
Residual SS: 0.04 Std. error of est.: 0.03
Total SS: 4.14 F(3, 34): 1420.61
P-value: 0.00 Durbin-Watson Stat: 0.60
Parameter Coeff. Std. Error t-Stat P-Value
Const. -0.40 1.42 -0.28 0.777
l-a -0.13 0.18 -0.70 0.483

a+4 1.06 0.09 11.67 0.000




TABLE 8: OLS Estimates Using (Annual) Capital Data: Growth Rates

Observations: 36 Degrees of freedom: 33
R-squared: 0.54 Rbar-squared: 0.51
Residual SS: 0.01 Std. error of est.: 0.01
Total SS: 0.02 F(3, 33): 19.79
P-value: 0.00 Durbin-Watson Stat: 0.78
Parameter Coeff, Std. Error t-Stat P-Value
Const. 0.02 0.02 1.26 0.215
l-a 1.01 0.16 6.13 0.000
a+d -0.35 0.75 -0.47 0.641




Table 9: Mean and variance of the cross-country distribution of year-to-

year growth rates in GNp”

Year Mean Variance (05)
1961 0.0509 0.0034
1962 0.0528 0.0038
1963 0.0497 0.0023
1964 0.0527 0.0036
1965 0.0498 0.0032
1966 0.0487 0.0034
1967 0.0427 0.0023
1968 0.0536 0.0024
1969 0.0559 0.0030
1970 0.0543 0.0027
1971 0.0493 0.0027
1972 0.0511 0.0029
1973 0.0577 0.0036
1974 0.0429 0.0036
1975 0.0185 0.0059
1976 0.0526 0.0027
1977 0.0398 0.0028
1978 0.0453 0.0030
1979 0.0323 0.0052
1980 0.0327 0.0037
1981 0.0210 0.0061
1982 0.0023 0.0029
1983 0.0133 0.0033
1384 0.0362 0.0046
1985 0.0263 0.0020

The Summers-Heston sample. Kuwait excluded. Growth-rates are over the

previous year.



Table A1,

Case_1 Case 2
lim, 1lim; T finite p,r <1, lim
r~1 =1 T~a
T 1-(a+8)"7 203 2(a+b)p
203(a+€) - ] + Taf + 1{ +
1-(a+8)  (1-(a+§))? (1-p%)(1-(a+6)2) " 1-(a+8)p
Bk +
1 - (a+§)?
(1-a)?202 2(a+f)r
T 1-(a+8)" +1
202 (a+6) - ] 4102 (1-x%) (1-(a+8)?) " 1-(a+é)r
1-(a+8) (1-(a+d))?
(1-a)?
1 - (a+6)?
02
T(1-(a+8))) - (1-(a+8)T) 2(1-a)——(1 - (a+f)r)"*
a g (l-a)o? 1-r?
(1 - (a+8))?
agg To? 202/(1-x*)
gL [T(L-(a+8)) - (1 - (a+8)T)] 20%p
aku —_—
(1 - (a+8))? (1-9%) (1-p (a+6))

Note: To obtain the a;,, the expressions in the first column of the table should be

divided by T?. The second column reports %ig Tzaij
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