
SlIER WORKING PAPER SERIES 

EXCHANGE RATE DYNAMICS UNDER STOCHASTIC REGIME SHIFTS: 
A UNIFIED APPROACH 

Kenneth A. Froot 

Maurice Obstfeld 

Working Paper No. 2835 

NATIONAL BUREAU OF ECONOMTC RESEARCH 
1050 Massachuaetts Avenue 

Cambridge, MA 02138 
February 1989 

The authors are grateful to the John M. Olin Foundation and the National 
Science Foundation for generous financial support. This paper is part of 
NBER's research program in International Studies. Any opinions expressed are 
those of the authors not those of the National Bureau of Economic Research. 



NBER Working I'aper #2835 
Fehruary 1989 

EXCHANGE-RATE DYNAMICS UNDER STOChASTIC REGIME ShIFTS 
A UNIFIED APPROACh! 

ABSTRACT 

Techniques of regulated Brownian motion are used to analyze the behavior of 

the exchange rate when official policy reaction functions are subject to 

future stochastic changes. We examine exchange-rate dynamics in alternative 

cases where the authorities promise (i) to confine a floating rate within a 

predetermined range and (ii) to peg the currency once it reaches a predeter- 

mined future level. Similarities between these and several related examples 

of regime switching are stressed. 

Kenneth A. Froot Maurice Obstfeld 
Sloan School of Management International Monetary Fund 
ES2-436 Research Department, Room 9-518 
MIT 700 19th Street, NW 

Cambridge, MA 02139 Washington, DC 20431 



Exchange—Rate Dynamics under Stochastic Reglisie Shifts: 

A Unified Approach 

Kenneth A. Froot 
Massachusetts Institute of Technology and 

National Bureau of Economic Research 

Maurice Obstfeld 
University of Pennsylvania and 

National Bureau of Economic Research 

1. Introduction 

The typical forward-looking variable in an economist's model is driven by an exogenous forcing 

process whose form is fixed for all time. Yet in the real world, there are many examples in which 

the forcing process is subject to change once a certain event occurs. When variables such as interest 

rates, current accounts, inflation or exchange rates reach extreme values, authorities may not only 

change their policies — they may also change their policy reaction functions. 

A number of papers examine the behavior of forward-looking variables when an otherwise 

passive policy maker intervenes to keep the variables from moving out of a predetermined range. 

In this spirit, Krugman (1988a) and Miller and Weller (1988) study exchange rate target zones, 

and Dixit (1988, 1987), Dumas (1988) and Krugman (1988b) study the allocation of capital. In 

all these models, the authority acts in a way to keep the forward-looking variable within a desired 

range or band. These papers also share a useful technical approach to these problems, that of 

regulated Brownian motion, which often gives simple and intuitive answers. 

A related literature studies the effects on forward-looking variables of once-and-for-all changes 

in regime. Flood and Garber (1983), for example, study a case in which the exchange rate floats 

freely until it reaches a pre-announced level, at which time the government intervenes to keep the 

exchange rate (Ixed thereafter. Because rational investors anticipate the transition to the peg, the 

level and dynamics of the rate will be different than under a permanent float. Flood and Garber 



(1983) apply a first-stopping-time methodology to this regicoe-switcliing problem. Unfortunately, 

they are uoable to derive a closed-form solution using that noatheinatically cumbersome approach. 

In this paper we apply techniques of regulated lirowniao motion to (i) clarify the relationship 

between the newer target-zone results nf Krugman (1988a) and Miller and Weller (1988), and the 

process-switching model of Flood and Garber (1983); aod (ii) present simple and intuitive results to 

a number of interesting cases in stochastic process switching including the one posed (but not solved 

in closed form) by Flood and Garher (1983). In section 2 below, we lay out the general exchange 

rate model. Section 3 contains the solutions to several specific process-switching examples. Section 

4 concludes. 

2. The Model 

To keep the analysis simple, we use the standard flexible-price monetary model of the exchange 

rate.1 In this framework, the (log) spot exchange rate at time I, z(t), is the sum of a set of 

macroeconomic fundamentals, k(t), plus a speculative term proportional to the expected percentage 

change in the exchange rate: 

x(t) = k(t) + rxE(dx(t)/dt I (t)). (1) 

Above, the parameter a can be interpreted as the semi-elasticity of domestic money demand with 

respect to the interest rate, E is the expectations operator, and (t) is the time-t information set, 

which includes the current value of fundamentals, k(t), as well as any explicit or implicit restrictions 

the authorities have placed on the future evolution of fundamentals. (For example, the authorities 

may have announced that they intend to keep the exchange rate from moving outside certain 

limits, or that they will fix the exchange rate once it reaches a certain level. This information 

about future policies would be incorporated into (t).) Included among the fundamental factors 

that affect k(t) is a variahle measuring relative national money supplies, which are assumed to be 

controlled directly by monetary authorities. Included as well are other, exogenous determinants of 

'discussion adopt. a osntinssus-time approach, which allows a neater choracteriaatioa of the esistion, thss compsrahle 

discrete-time methods. No essentials of the results, however, depend on the oonttnooos-time assomption. 
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exchange rates that the authorities cannot influence.2 

The monetary authorities may intervene to influence exchange rates by altering the stochastic 

process governing (relative) money-supply growth. This in turn will alter the process driving the 

fundamentals, k(t). A regime of freely floating exchange rates is said to be in effect when the 

authorities refrain from intervening to offset shocks to fundamentals. Under a free float, we assume 

the fundamentals to evolve according to the process: 

dk(t) = t7dt + cdz(t), (2) 

where s is the (constant) expected change in k, dz is a standard Wiener process, and e is a constant. 

Equation (2) is just the continuous-time version of a random walk with trend.3 As noted above, 

the authorities can control k through intervention, so k need not follow (2) under regimes other 

than a free float. 

In a rational-expectations equilibrium with no speculative bubbles, there is a unique exchange- 

rate path that satisfies (1). This path has the integral representation: 

x(t) = 
E(&1 j e(t_Vok(B)ds I (t)) = a1j e(t—°)1°E(ic(s) 4(t))ds, (3) 

the monetary modei of exchange rate., see, for example, Frenkei (1978) sod Muosa (1978). The model consists of four 
equations. First, there is a domestic money demand equation for the country we study 

— p(t) = °o + cnjy(t) — oi(t) + c(l), aix> 0, (i) 

where x ii the log of the domestic money .upply, p is the log of the domestic price level, v is the log of reo.l income, i is the 
nomine.l interest rate, snd v isa random money-demand shock. Money demand by the rest of the world is given by 

— p(i) w wo + 'siV (t) — si(i) + r(t), (is) 

where the asterisks denote the rest.of-ths..world counterpart. to the variable, in (1). The model assumes that purchasing power 
parity hold, up to an exogenously ve.rying reel exchange rate .hock g, so the log of the nominal exchange rate, s, is 

s(t) = p(t) — p(t) + q(t). (iii) 
The model also assumes that domestic and foreign asset. See perfect substitute, up to as, esogenously varying risk premium 
on domestic-cuerency assets, p. Expected depreciation i, thus the sum of the nominal interest-rate differential and the risk 

E(dc(t)Idl I #(i)) 
= 1(t) 

— i(l) — p(l). (Ic) 

Subtracting (ii) from (i), and using (iii) and (iv) give, equation (1) in the text with 

k(t) = ss,(V(t) — v(t)) + mCi) — m(i) + q(t) + op(l) + c(t) — r(l). (c) 

°The propositions belo ran be rederivsd using more complex forcing processes, such as the mean-reverticg procesr 

dls(l) = (,i — Sk(t))di + ode. 

Se Section 3.5 below. 
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a representation valid under any policy regime or sequence of policy regimes. In words, (3) equates 

the current exchange rate to the present discounted value of expected future fundamoentats (the 

discount rate is 1/n). Below, the equilibrium exchange-rate value given by the present-value formula 

(3) is called the exchange rate's sadd/epath value. 

Other solutions to (1) exist, of course, but these involve extraneous bubble terms, which are 

driven by self-fulfilling expectations. In the present model, a bubble /3(t) is a random variable that 

can be added to the saddlepath solution in (3) to produce a new solution. The bubble, j3(t), is 

expected to grow over time at rate 1/cs because it necessarily satisfies the homogeneous part of (1): 

1/cs = E(dfl(t)/dt I (t))/fi(t). 

We sssume that sucb bubble solutions are ruled out by market forces, so that the exchange rate is 

on the saddlepath defined by equation (3) in equilibrium.4 

Given (2) and the types of regime changes we will consider, it is reasonable to suppose that 

the saddlepath solution for the exchange rate can be written as a twice continuously differentiable 

function of a single variable, the current fundamental: 

z(t) = S(k(t)). (4) 

Naturally, the precise form of the function 5(k) depends (as is demonstrated below) on the types of 

regime shifts (if any) that the market thinks are possible.5 A well-known special case is the one in 

which the authorities are committed to a permanent exchange-rate float, so that fundamentals are 

expected to follow process (2) forever. In this case, the conditional expectations in (3) are easy to 

evaluate, since they depend exclusively on current fundamentals, and not on possible future regime 

shifts: 

z(t) = S(k(t)) 

4A deep issue set aside here is whether the eaddlepath solution is the unique equilihrism solstion in the absenee at some 

gsvemnment contingency plas tsr intervening in ease of an extreme deviation between the exehange rate asd its saddlepath 

level. The analysis in Ohstteld aed ftsgsff (1983) suggests a eegative answer. Such contingent istervention aerangementa 

would, hswever, have exchange-rate effects similar to those of the target-eanas analysed helsw. In particular, the relevant 

saddlepath would hecetne nsnlinear. 
5w5 witl show later that C(s) is meeslenically increasing in kin the asses analysed in this paper. 
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= co jso e0'°E(k(s) I k(t))ds = a e°(k(i) + (s — t)ei)ds = k(t) + on. (5) 

If, however, the market expects the authorities to intervene iii the fut.urc, fundaineiitals will 

not always follow (2), so the exchange rate will not follow (5), even while floating freely. In such 

cases, direct computation of the sequence of conditional expectations in the present-value formula 

(3) that defines S(k) is likely to be burdensome. We therefore follow an alternative, two-step 

approach to determine S(k) when a regime switch from (2) to some other process is possible. First, 

we characterize the family of functions of form z = G(k) that satisfy the equilibrium condition 

(1) so long as fundamentals evolve according to (2). Second, we find the member of this family 

that satisfies boundary conditions appropriate to the stochastic regime switch under consideration. 

This last function is the saddlepath solution, S(k). 

A more detailed justification for this two-step procedure is offered in context below. The 

method is, however, analogous to one commonly used for diagrammajically analyzing a one-time 

step change in fundamentals in deterministic asset-price models. In those models, one first observes 

that before the disturbance occurs, the asset price is given by some member of the class of general 

solutions to the differential equation defining asset-market equilibrium. (This general solution 

corresponds to the solution G(k) mentioned in the previous paragraph.) Next, one pins down 

the economically relevant pre-disturbance solution, which generally differs from the saddlepath, by 

two boundary conditions: one of these forces the asset price to be continuous at the moment the 

disturbance occurs, and the other forces the asset price to be on the saddlepath afterward.° 

To implement step one of the procedure outlined above — finding the general solution z G(k) 

— use Ito's lemma and equation (1) to express expected depreciation during the float as:7 

E(dz/dt I = E(dG(k)/dt = ,1G'(k) + -G"(k), (6) 

where we have assumed G(k) is twice continuously differentiable. Combining (1) and (6) yields a 

'For an exposition, see Obstfeld and Stockman (1985). 
'Where it doe, not create confosion, xc drop the time-dependence notation. It is worth noting that while we refer to C(k) 
a gener.1 solution, it i. general only if attontion I. restricted to solution, that depend on current fundamentxl, alone. In 

fed, (1) ha. even more general solution., for example, solution. that are function, not only of current fundamentals, but also 
of v.ri.b1 extraneous to the model. Such solutioss, di,cus,ed by Froot and Obatfeld (1988), er. not con.idered in this paper. 
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second-order differential equation that the exchange rate in (I) arid (3) must satisfy: 

G(k) = k + aqG'(k) + G"(k). (7) 

The general solution to (7) is: 

C(k) = .k + aq + A5e + A2e)2h, (8) 

where A1 > 0 and A2 < 0 are the roots to the qnadratic equation in A, 

+ Aceq — 1 = 0, (9) 

and At, A2 are constants of integration.8 Equation (8) forms the basis of our analysis below; as 

just discussed, a single member of the family that (8) defines will turn out to be equivalent to the 

present-discounted-value formula for x in (3). This is just the function S(k). 

Notice that there are two parts to the general solution (8): one linear, and the other nonlinear, 

in k. The linear portion, k + arj, would he the standard linear saddlepath solution if no change 

in the fundamentals process (2) were possible, so that a free float were permanently in effect (see 

equation (5)). This part of the solution would be expected to grow linearly with time under a 

permanent free float. 

The nonlinear part of (8) defines additional solutions to (1), all of which depend only on 

current fundamentals. When the market expects the exchange rate to float freely forever, these 

solutions can be viewed as bubble paths, since along them, the exchange rate differs from the 

present discounted value of expected future fundamentals, k + aq. The nonlinear term in (8), like 

any other bubble, is expected to grow exponentially at the rate 1/a if a switch from the free-float 

regime is a probability-sero event. To see why, consider how the term A5eMt in (8) affects the 

exchange rate's behavior. Under a permanent free float, the time-t expected value of this term at 

time r > relative to its value at t is: 

I (t)) E(eAtT_iA10f(e) I k(t)) 
= eAt r_l)e a'frtl/2 (10) 

tFor a dinosoiton of the teohniqun used to solve olonely related eoaooples, see Oioit (isss). Equation (5) 000 ho shown to 
he the unique general notation to (l using the method of Wronkeian dotorminonto, providod that At A nod a ie Snito. 



Notice that (10) is the product of two components. 'l'lie first component, grows with r at. 

a rate dependent on the deterministic trend growth rate of fundamentals, v; the second component, 

e"" grows with r because of the uncertainty in the growth in fundamentals, measured by 

If k were a completely deterministic process, with a = 0, then from (9), = 1/or,', and the 

second component of (10) would remain constant at 1 forever. Under these circumstances, it is 

easy to see that (10) would grow at rate 1/cs, the rate at which the conditional means of all bubble 

solutions to (1) grow. When o > 0, however, (10) still must grow at rate 1/cs (because )' is a 

root of the quadratic equation (9)); but if a > 0, then A1 < 1/csii. This implies that the variance 

of fundamentals (through Jensen's inequality) contribute more and the deterministic growth of 

fundamentals contributes less to the overall growth rate of (10). The same reasoning applies to the 

second nonlinear term in (8). 

Although the nonlinear terms in (8) can be viewed as defining bubble solutions to (1) under a 

permanent free float, we do not want to throw them away in solving for the saddlepath exchange rate 

under a free float that could terminate. When there is some type of regime-switching, fundamentals 

may not remain permanently a random walk, and the present-value formula (3) therefore is not 

equal to the simple linear expression (5). Under the possibility of a regime switch, the exchange 

rate'a saddlepath value prior to the switch will necessarily depend on the nonlinear term in (8). Just 

which initial conditions A1 and A2 are appropriate depends on the boundary conditions associated 

with the regime switch, conditions to be determined in step two of the two-step solution procedure 

outlined above. 

Before proceeding to this second step -in the next section, however, we introduce a diagram 

that will aid in visualizing the various boundary conditions that are derived there. Figure 1 shows 

the family of paths given by (8) for the symmetric case in which A1 = —A2, and where ii > 0. On 

the horizontal axis is the value of the fundamental, Ic, and on the vertical axis is the value of the 

exchange rate, x. The line labelled FF indicates the linear solution given by (5), which corresponds 

to the case Aj = A2 = 0. (FF is also the saddlepath under a permanent free-float regime. It has 

a 45-degree slope and passes through the point Ic = 0, z = csm.) As described above, the curvature 
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of each path is supported by the expected growth rate of fundamentals and Jensen's inequality. 

The apparent asymmetry in the paths reflects the trend in the growth of fundamentals, ej: as k 

increases, the paths converge more quickly toward the saddlepatli and diverge more slowly away 

from it than they would in the symmetric case without trend growth, tj — o. 

3. Examples 

This section carries out the second step of the solution method outlined in section 2. The dis- 

cussion takes up sequentially the boundary conditions implied by several possible regime-switching 

scenarios. In terms of the mathematics, all that is involved is the appropriate choice of the two 

arbitrary constants in (8), A1 and A2. A key implication of the discussion is that the same unifying 

principle leads to solutions for all of the problems considered. 

3.1. Exchange Rate Target Zones 

Suppose the authorities want to keep the exchange rate from penetrating the upper and lower 

levels, x and E. When the exchange rate reaches one of these boundaries, the authorities do to 

fundamentals what is necessary to keep x from moving outside of its target zone. However, they 

do not prevent a movement of z back into the interior of the zone. Exchange-rate behavior within 

a target zone wss studied originally by Krugman (1988a), whose analysis has been extended by 

Miller and Weller (1988). 

One way for the authorities to enforce the target zone is to place lower and upper limits, k and 

on the fundamentals. If the fundamentals are prevented from moving outside the range [k, 1, 
and if (as turns out to be true in equilibrium) S(k) is monotonically increasing in k, the exchange 

rate will be confined between the lower and upper values g = S(k) and i = S(). (As usual, S(k) 

is the saddlepath value of the exchange rate within the target zone.) For the exchange rate to be 

free to move back within the zone after it has touched one of its edges, the bounds 1k' 1 must be 

reflecting barriers on the fundamentals process. Clearly, the authorities can enforce any desired 

exchange-rate target zone by choosing appropriate reflecting barriers on the fundamentals. 

5Fsr present purposes, it does nst matter whether it is the home or foreign government thet masuges the eachasge rate 

lsr a committee represasting both governmental. The term "aothoritief shoold be understood as eocompuaiog all of these 

possible controllers. 



Before solving the model under the arrangements just described, it is worth considering just 

how the authorities' policy should be conveyed to the market. One possibility is that the authorities 

announce, "We will let the exchange rate float freely within the range [, ], but when it roaches the 

band's edge we will intervene to keep it from going further." While this may be the most intuitive 

way to announce an exchange-rate target zone, it introduces a potential for multiple equilibria by 

not giving market participants enough information about the future behavior of fundamentals. For 

example, at the moment the authorities first announce that the exchange rate will be confined within 

bands, the market could set x = if the authorities respond by setting k = k immediately. An 

initial exchange rate of is an equilibrium when k = provided the authorities subsequently allow 

k to move downward according to (2), but not upward. Similar reasoning, but based on different 

market anticipations about the management of fundamentals, shows that an initial exchange rate 

of z = could also occur. The point is that multiple values of z can be supported as equilibria 

through accommodating adjustments of the fundamentals.10 

Because announcing exchange-rate objectives without specifying the accompanying policies 

may not be enough to determine a unique equilibrium exchange rate, we stay with the initial 

formulation offered above: Momentary intervention prevents fundamentals from rising above the 

upper bound k or below the lower bound , but no intervention occurs otherwise. As we will show in 

a moment, a policy of credibly announcing that and are reflecting barriers on the fundamentals 

accomplishes the objective of keeping the exchange rate within the range = S(k), = S()]. And 

because the policy does not allow market expectations to influence the evolution of fundamentals 

inside the band, problem of multiple equilibria does not arise. 

To determine exchange-rate behavior within a target zone, we therefore solve for the exchange. 

rate path that satisfies (1) given fundamentals evolving according to (2) within reflecting barriers 

k and . The solution can be expressed as a special case of (3): 

z(t) = S(k(t)) = E(a' f c('')Ik(a)ds I k(t),k(s) E fk,k,.J), (11) 

where the r subscript indicates that the barriers on fundamentals are reflecting. As noted in section 

Ob.tf.ld sad Stockmsn (1955, section 3.3) for. mo,. detisTed discussion of misted indetemminociss. 
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2, direct evaluation of the conditional expectation in (It) is much more difficult than in (5) (the 

case of a permanent free float): the bounds on fundamentals imply that the saddlepath exchange 

rate S(k) will no longer be a purely linear function of k. 

We have already taken the first step in solving the problem by deriving the general nonlinear 

solution x = G(k) given by (8). Some member of this family of solutions must characterize 

exchange-rate behavior when k is in the interior of[kr,.], where (1) and (2) simultaneously hold. 

A nontrivial logical gap must be bridged, however, before concluding that equation (8) is also 

relevant at the boundary of this interval, that is, at the barriers k = , and k = k,.. The needed 

bridge is supplied by the fact that the saddlepath solution S(k) is continuous on the entire interval 

[,k,j. Continuity ensures that if S(k) coincides with a function of form G(k) on the interior of 

that interval, S(k) coincides with the same function at the edges. 

All that remains, then, is to determine the boundary conditions on C(k) implied by the re- 

flecting barriers. These conditions deliver unique values for the undetermined coefficients A1 and 

A2 in (8), and therefore tie down uniquely the member of the class G(k) that coincides with S(k) 

when k lies between the reflecting barriers. 

The appropriate boundary conditions on G(k) are the "smooth-pasting' conditions discussed 

in Dixit (1987), Dumas (1988), and Krugman (1988a,b): 

G'L) = 0, . (12) 

G'() = 0. (13) 

The intuition behind these conditions is straightforward, as the following argument shows. Consider 

equation (12), for example. If (h,., ) is an equilibrium point under the target zone, equilibrium 

condition (1) must hold at that point. At the boundary, however, investors have a one-sided bet 

on fundamentals. Investors know that from k = Ic,, k can move only upward. Suppose (contrary 

to (12)) that the function G(k) describing the saddlepath under a zone passes through (k,, ) with 

a negative slope, that is, with G'(k,) < 0. Point I in Figure 2 shows a function G(k) for which 

this is the case. The inequality G'(k,.) < 0 states that under a hypothetical free float with the 

10 



exchange rate given by x = G(k), the positive-probability event that k falls below k, would cause 

x to rise above x. But then (k, x) cannot also be an equilibrium point (and thus satisfy (1)) when 

k, is a reflecting lower barrier: in the latter case, the downside risk is exactly the same as under 

a free float (the exchange rate can still move down along G(k) if k rises), but there is no longer 

any upside exchange-rate risk (from a fall in k). A similar argument disposes of the possibility 

that G'(k,) > 0 (imagine that point 2 in Figure 2 is vertically below k,, and repeat the line of 

reasoning just presented). The contradiction is avoided only if G'(k,) = 0, so that under the free 

float described by G(k), a small downward move in k from k, doesn't affect the exchange rate. At 

the lower barrier, the saddlepath must therefore look like 5(k) in the figure, that is, it must be at a 

local minimum. A parallel argument establishes the second smooth-pasting condition (13), which 

states that the saddlepath has a local maximum at k," 
Using (8), we can write the smooth-pasting conditions as: 

1 + A,.A1eA + A2A2e" = 0, (14) 

1 + A,A1e"' + A2.A2e' = 0. (15) 

Equations (14) and (15) yield the following proposition:12 

Proposition 1. When fundamentals follow (2) within the reflecting barriers and k, the 

saddlepath solution (11) is: 

f2flAsk+ik — A2eA5k.fk + — A1e k+Ask\ 
-— 

— ). (16) 
.1A2es+Ak A1A2eAsk4.i 

If we let the lower barrier, k, go to minus infinity, (16) simplifies to: 

= S(k) k + q — .xj1e(k_i). (17) 

Rarri.on (1585) contain, a formal derivation of the .mooth-poutng condition. Omit (19s8) offer, a di.crete-time n,oliv.tion 
of those result.. 

'5Kn.gman (1988a) first derived this result. It. actually assume, that the aothontiee announce exchange-rate band., and then 
prevent movement, of the fundamental, that would push the equilibrium proc. outside those band.. The smooth-posting logic 
ondorlying his iolution implies, hmeever, that the .uthoritie. are enforcing a two-sided reflecting barriec on the fundamental.. As 
a result, hi. solution j, exactly the same a. the one given a the text. Miller and Weller (1588), who work with a mee..-r.verting 
proce.., alan assume that the authorities anosunce price band. and that the .mooth-pa.ting condition, hold. 
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If iii addition we let the upper barrier, 1, go to infinity, (17) becomes the linear saddlcpatb in 

(5): 

r=k+rstj. (18) 

Only when both boundaries are infinitely distant is the exchange rate a linear function of funda- 

mentals. 

Notice that the saddlepath solution given in (16) is of the form hypothesized earlier: it is a 

function of the current state k and the two barriers. It is also straightforward to verify that S(k) 

is monotonically increasing over its domain of definition, as claimed earlier. 

Figure 3 illustrates two possible exchange rate paths described by (16). Tbe paths share a 

common upper barrier, , but differ with respect to the lower barrier. Path 1 in the figure sbows 

the behavior of the exchange rate when there are finite reflecting barriers at k and L This path has 

several noteworthy features. First, its shape reflects the influence of expected policy changes at the 

fundamental barriers. In the oeighborhood of Ic, for example, the exchange rate is below FF, the 

saddlepath under a hypothetical free float. This bending away from FF near k reflects a greater 

expected fall in z compared with a situation without boundaries. Second, the equilibrium solution 

behaves much like the saddlepatb when the exchange rate is within the band but not close to either 

boundary. When the band is wider, the equilibrium solution is close to FF for a greater range of 

fundamentals. Path 2, for example, shows the case in which the lower boundary is infinitely distant 

(equation (17)). This graphical intuition is made precise in (18), which shows that the equilibrium 

solution converges to the saddlepath when both barriers are infinitely distant. The implication is 

that for a narrow band, the free-float solution FF will almost never be a good approximation to 

the true equilibrium path. 

3.2. Dual Absorbiug Barriers 

Suppose now that the authorities wish to let the exchange rate float until it reaches a lower 

or an upper level, x or , at which time they plan to fix x permanently. To keep the spot rate 

fixed at one of these levels, the authorities must hold the fundamentals constant at k = 5'Lr) 
12 



or k = S'(), respectively. This class of problems is a generalization of that posed by Flood 

and Garber (1983) who are concerned with the behavior of a tloattng exdiange rate when the 

authorities plan to switch to a fixed-rate regime at a single, predetermined level of the exchange 

rate, . We discuss the Flood and Garber example in more detail in the next section. 

Once again, there is the issue of how the authorities' intentions are conveyed to the public. In 

order to avoid potential multiple equilibria, we assume that the authorities inform investors that 

fundamentals will follow (2) until k reaches k or . At that time the authorities will fix k, thereby 

fixing the exchange rate at = S(/t) or = S(k), respectively. 

Given the boundaries, k and k, the saddlepath solution is: 

z(i) S(k(t)) = E(cs' f e(°k(s)ds I k(1), k(s) E , (19) 

where the a subscript denotes that the barriers on fundamentals are absorbing. As before, direct 

evaluation of (19) is very cumbersome. The methods used above apply directly, however, and lead 

to a simple answer. 

The first step once again is to examine the exchange rate's value at the boundaries. Fortunately, 

the boundary values of integral (19) are easy to evaluate. They are: 

= S() = E(a' f ()I5k(8)d8 I k(t) = = ' f°° e'ds = , (20) 

= S() = E(' j e(t_k(a)ds I k(t) = = a1 f e(t'5ds = . (21) 

In words, once fundamentals are fixed permanently, the spot rate is just the capitalized value of 

current fundamentals, either L or 

At the boundaries, (8) and either (20) or (21) must hold. Together they imply: 

a' + A1e" + A2eA = 0, (22) 

at + A1e)k + A2e = 0. (23) 

These two equations lead to a unique solution for the two constants in (8), and to the following 

proposition: 
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Propositioss 2. When fundamentals follow (2) within the ahsorhing harriers k and k, the 

saddlepath solution (t9) is: 

A3k+A1k — A2ktAIk + — 

x=k+csq(I+ - - 1 (24) — 8A3k+A,k I 

If we let the lower bound, k, go to minus infinity, (24) simplifies to: 

z = k + oq (i — eAI_). (25) 

If in addition the upper bound, k, goes to infinity, we again get the familiar linear solution in (5). 

Figure 4 illustrates equation (24). It shows two exchange rate paths that share the same 

upper bound, but that have different lower bounds. Path 1 shows the behavior of a when the 

absorbing barriers are tbe points k and in the figure. Path 2 is drawn to correspond to the 

extreme case in (25), where the lower bound is at minus infinity. It is clear from the figure, as 

well as from (18), that the exchange rate must lie on the 45-degree line through the origin at both 

absorbing barriers. When both boundaries are infinitely distant, the saddlepath is just the free-float 

saddlepatb, FF. Notice also from the proposition that if there is no trend growth in fundamentals, 

= 0, all solutions correspond to the 45-degree line (which then coincides with FF), regardless of 

the boundary values. 

The intuition behind the saddlepath solution in Figure 4 is as follows. On the saddlepatb, the 

exchange rate is the present discounted value of fundamentals, and the evolution of fundamentals is 

governed in part by their deterministic trend growth rate, which depends on q. Suppose that q > ll 

(the case shown in the figure). As k approaches either or k, the probability that the exchange 

rate will still be floating on any given future date declines; and since mj is set permanently to zero 

at the moment of pegging, the expected rate of monetary growth on any future date also declines 

as either absorbing barrier is approached. As a result, there is a progressive currency appreciation 

relative to EF as k moves towards one of the barriers. For q < 0, FF would lie below the 45-degree 

line and the saddlepath solution would be the mirror image of the one in Figure 4. When mj = 0 

the bending effects are absent because absorption of I has no effect on the expected change in 
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fundamentals (which remains zero). 'l'hink of the saddlepath as being trapped between FF and 

the 45-degree line, which, as noted in the last paragraph, coincide when q = 0. 

3.3. Single Barrier Problems 

The path given by (25) has additional significance in the exchange rate literature: it is the 

unique path for the stochastic-process-switching problem posed by Flood and Garber (1983). Flood 

and Garber attempt to solve directly the integral representation for the exchange rate under a single 

absorbing barrier at k: 

x(t) = E(cr' f e(t_0k(s)ds I k(t), k(s) < ,). (26) 

Since they do not arrive at a closed-form solution, it is worth some additional discussion to see why 

the simple formula (25) is the solution to this problem. 

With a single absorbing barrier at k, we know from (8) and (21) that the exchange rate must 

satisfy: 

= k + ati(1 
— + Az(e2k 

— ee—fAk), (27) 

where A2 is an arbitrary constant to be determined. Clearly, there will be a unique value for A2 

which makes (27) equal to the integral representation in (26). 

Figure 5 shows the family of solutions given by (27). We graph six different paths by setting 

A2 in (27) to positive (paths 1-3) ar,d negative (paths 5 and 6) values. It is clear that for k < 

the spot rate can take on any value below !. (In keeping with the spirit of this model, we show 

in Figure 5 only paths along which the exchange rate and fundamentals strike the peg for the first 

time from below and the left: z(O) < and k(0) 

It is easy to see that the solution to (26) must be (27) with A2 = 0. Note first that as k 

becomes infinitely small, the presence of the barrier /c, has a negligible effect on the conditional 

expectation of future levels of k in (26). For such small k, the exchange rate should therefore be 

"Thi, translate. into a restriction os the free parameter A,. We conaider only those cases in which: 

1o,1A1 —. 
— As)r5L 

Flom (5), the right.hand-eide eepseeeicn is positive. 
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approximately linear in the fundamentals (as in the no-boundary solution, equation (5)). Next, 

note that (27) becomes linear in k as k —s —cc if and only if A2 = 0. 'l'hus, equation (26) and 

(27) can be equivalent only when A2 = 0; but setting A2 = 0 just gives solution (25), which was 

found by letting the lower bound on k go to minus infinity. Path 4 in Figure 5 thus gives the value 

of (26). 

For finite values of , the price-fundamentals relationship must lie below path 4 in Figure 5. 

(This can he seen in Figure 4, where path 2 lies everywhere helow path 1.) Figure 6 shows that a 

path such as 5 corresponds to the equilibrium fork and k0. Some paths, such as 6, lie everywhere 

below the 45-degree line, and therefore cannot be solutions to (3) for any value of A,,. Similarly, 

the paths that lie above 4 in Figures 4 and 5 cannot be solutions for any A,,. 

The logic of this section can of course be applied directly to the case of a single reflecting 

barrier at L In that case it is straightforward to show that the exchange rate follows equation (17) 

above, so that: 

z(t) = E(cr' J e1''1'k(s)ds I k(t), k(s) � = k + csq 
— A11eA(k. (28) 

3.4. Mixed Barriers 

Suppose that the authorities expect eventually to peg the exchange rate at the depreciated 

value, , but that meanwhile they will not permit arbitrarily large appreciations. They might agree 

on a lower bound, a, at which they would intervene, selling domestic assets in order to prevent 

the exchange rate from appreciating further. They would not, however, peg the exchange rate at 

the appreciated level, a. This is a case where it is sensible to think of policy as providing a lower 

reflecting barrier, fr, as well as an upper absorbing barrier k,,. Using the techniques above, the 

solution to this more complex problem is immediate. 

With these mixed barriers, the exchange rate is given by the integral expression: 

z(t) = E(cs' J et'l/k(s)ds I k(t),k(s) Ikr,L]). (29) 

Using (8) and the boundary conditions (12) and (21), we have the proposition: 
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Proposition 3. When fundamentals follow (2) between a reflecting barrier arid an absorbing 

barrier k, the saddlepath solution (29) is: 

— o A2e t4A + alet+ - - (30) — .A1e' - 

Figure 7 shows that the paths satisfying (30) correspond to those above Path 4. Path 2, for 

example, traces out (30) with a lower reflecting barrier at k. Naturally, the path "pastes" at k and 

meets the upper absorbing barrier according to (21). A path such as I would be the equilibrium 

for a higher reflecting barrier, while a path such as 3 would be the equilibrium for a lower one. As 

the point of intervention k —p —, the exchange rate path converges to path 4 (given again by 

equation (25)). Paths such as 5 and 6 cannot satisfy these boundary conditions, since along them 

G'(k) is strictly positive at all k > . 
3.5. More Complex Forcing Processes 

The techniques above are practical only when the driving process in (2) is relatively simple; it 

is usually impossible to find closed-form general solutions to the analogues of (7) when k follows a 

more complicated forcing process. Nonetheless, some special cases do have solutions. Suppose, for 

example, that fundamentals are mean reverting: 

dk(t) = (t — Ok(t))dt + odz(t), (31) 

where s, 0 and are known constants. Use of (1) and application of Ltd's lemma lead to the 

differential equation: 

G(k) = k + (t — Gk)G'(k) + -G"(k). (32) 

The following proposition gives the general solution to (32): 

Proposition 4. When fundamentals follow (31), any solution to equation (1) must satisfy: 

= G(k) = .±!L + A1M(, , 2(rl_Ok)z) + A2M(j-, (33) 
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where 'ti and A2 are arbitrary constants and M( ) is the confluent hypergeoinetric function.'4 

Using the procedures discussed above, it is straightforward to rederive all the above proposi- 

tions when fundamentals evolve according to (31). Naturally, for values of Jr such that Ok q the 

mean-reversion component of (31) is unimportant, so that the solutions appear qualitatively very 

similar to those shown in the graphs. For values of Jr where mean reversion is important, the mean 

reversion introduces a new source of bending (toward the unconditional mean of k, ,j/O) into the 

paths above. 

4. Conclusions 

This paper has shown how techniques of regulated Brownian motion can be applied to models 

of exchange-rate determination under a variety of possible future regime switches. The techniques 

used above are far simpler and more intuitive than the "brute-force" method of calculating the 

exchange rate directly as the expected present discounted value of fundamentals. In particular, 

our techniques yield an explicit, closed-form solution to the Flood and Garher (1983) example; 

and despite the complexities of solving the relevant conditional expectations directly, the answer 

derived here is surprisingly transparent. With such solutions in hand, the next step is to turn the 

data to determine the empirical importance of stochastic regime switches. 

i4g Sister (sees) for the propertin of confluent hypergeometric functions. 
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