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1 Introduction

Factor models see widespread and increasing use in various areas of econometrics. This type of

structure has been employed in a variety of settings in cross sectional, panel and time series models,

and have proven to be a flexible way to model the behavior of and relationship between unobserved

components of econometric models. The basic idea behind factor models is to assume that the

dependence across the unobservables is generated by a low-dimensional set of mutually independent

random factors. The applied and theoretical research employing factor structures in econometrics

is extensive. In particular, these models are often used in the treatment effect literature as a

way to identify the joint distribution of potential outcomes from the marginal distributions, and

then recover the distribution of treatment effects from this joint distribution.1 Factor models have

been used in a number of different contexts in applied microeconomics. These include, among

others, earnings dynamics (Abowd and Card, 1989; Bonhomme and Robin, 2010), estimation of

returns to schooling and work experiences (Ashworth, Hotz, Maurel, and Ransom, 2020), as well as

cognitive and non-cognitive skill production technology (Cunha, Heckman, and Schennach, 2010).

Heckman and Vytlacil (2007a,b) provide various additional references. All of these papers, with

the notable exception of Cunha, Heckman, and Schennach (2010), rely on linear factor models

where the unobservables are assumed to be written as the sum of a linear combination of mutually

independent factors and an idiosyncratic shock.

In this paper we bring together the literature on factor models with the literature on the

identification and estimation of triangular binary choice models (Chesher (2005); Vytlacil and

Yildiz (2007); Shaikh and Vytlacil (2011); Han and Vytlacil (2017)) by exploring the informational

content of factor structures in this class of models.2 Focusing on this class can be well motivated

from both an empirical and theoretical perspective. From the former, many treatment effect models

fit into this framework as treatment is typically a binary and endogenous variable in the system,

whose effect on outcomes is often a parameter the econometrician wishes to conduct inference

on. From a theoretical perspective, inference on this type of system can be complicated, if not

impossible without strong parametric assumptions, which may not be reflected in the observed

data. Imposing no restriction on the structure of endogeneity often fails to achieve identification

of parameter, or at best only do so in sparse regions of the data, thus making inference impractical

in practice. In this context, modeling the endogeneity between the selection and the outcome by

a factor structure may be a useful “in-between” setting, which, at the very least, can be used to

gauge the sensitivity of the parametric approach to their stringent assumptions.

We start our analysis by imposing a particular factor structure to the two unobservables in this

system and explore the informational content of this assumption. We assume that the unobservables

1See also Abbring and Heckman (2007) for an extensive discussion of factor structures and prior studies using
these models in the context of treatment effect estimation.

2See also recent work by Lewbel, Schennach, and Zhang (2020), who study the identification of a triangular linear
model assuming that the disturbances are related through a factor model.
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from the treatment equation (V ) and the outcome equation (U) are related through the following

factor model:

U = γ0V + Π (1.1)

where Π is an unobserved random variable assumed to be distributed independently of V and γ0 is a

scalar parameter. This structure generalizes the canonical case where the unobservables (U, V ) are

jointly normally distributed, for which this relationship always holds. Our main finding is that there

is indeed informational content of factor structures in the sense that, in contrast to prior literature -

notably Vytlacil and Yildiz (2007) - one no longer requires an additional “non-standard” exclusion

restriction, nor the strong support conditions on the covariates entering the outcome equation that

are generally needed for identification in these models. Our identification results are constructive

and translate directly into a rank based estimator of the coefficient associated with the binary

endogenous variable, which we provide and study in a supplement to this paper.

While an appealing feature of the structure considered in Equation (1.1) is that it is a natural

extension of the bivariate Probit specification that has often been considered in the literature, this

model does impose significant restrictions on the nature of the dependence between the unobserv-

ables U and V . In the paper we extend this baseline specification by considering a linear factor

structure of the form:

U = γ0W + η1 (1.2)

V = W + η2 (1.3)

where (W, η1, η2) are mutually independent unobserved random variables. We study the informa-

tional content of this extended factor structure in the context of triangular binary choice models

and establish identification, assuming access to at least two continuous noisy measurements of the

unobserved factor W . This setup has been used in a number of applications, in particular in labor

economics. In these applications, the unobserved factor is typically interpreted as latent individual

ability, about which several continuous noisy measurements are available from the data. This is

the case of, for instance, Carneiro, Hansen, and Heckman (2003), Cunha, Heckman, and Schennach

(2010), Heckman, Humphries, and Veramendi (2018) and Ashworth, Hotz, Maurel, and Ransom

(2020), who use components of the Armed Services Vocational Aptitude Battery test as measure-

ments of cognitive ability. At a high level, it is interesting to note that these results complement

Bai and Ng (2010), who show that, in the context of a linear regression model with endogenous

regressors, factor models have identifying power, in that they can be used to create instrumental

variables even when none of the observed variables are valid instruments.

The rest of the paper is organized as follows. In Section 2 we formally describe the triangular

system with our factor structure, and discuss our main identification results for the parameters of
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interest in this model. Section 3 explores identification in more general factor structure models

which involve multiple idiosyncratic errors, in a context where one has access to two continuous

noisy measurements of the common unobserved factor. Finally, Section 4 concludes. The Supple-

mentary Material collects the proofs of our results, derives and studies the asymptotic properties

of a rank-based estimator for α0, explores its finite sample properties through some Monte Carlo

simulation exercises, and shows the non-identification of the two-factor model with a compact-

supported common factor and no continuous repeated measurements. Finally, we also establish the

sharp identified set of α0 when the support condition for point-identification is violated.

Notation: throughout the paper we write 1{A} to denote the usual indicator function that takes

value 1 if event A happens, and 0 otherwise. We also denote by d(U) and d(U |V ) the lengths of

the support of random variable U , and the conditional support of U given V , respectively.

2 Triangular Binary Model with Factor Structure

2.1 Set-up and Main Identification Result

In this section we consider the identification of the following triangular binary model:

Y1 = 1{Z ′1λ0 + Z ′3β0 + α0Y2 − U > 0} (2.4)

Y2 = 1{Z ′δ0 − V > 0} (2.5)

where Z ≡ (Z1, Z2) and (U, V ) is a pair of random shocks. Z2 and Z3 provide the exclusion

restrictions in the model, and the distribution of (Z2, Z3) is required to be nondegenerate conditional

on Z ′1λ0 + Z ′3β0. We further assume that the error terms U and V are jointly independent of

(Z1, Z2, Z3). The endogeneity of Y2 in (2.4) arises when U and V are not independent.

The above model, or minor variations of it, have often been considered in the recent literature.

See for example, Vytlacil and Yildiz (2007), Abrevaya, Hausman, and Khan (2010), Klein, Shan,

and Vella (2015), Vuong and Xu (2017), Khan and Nekipelov (2018) and references therein. A

key parameter of interest in our paper and in the rest of the literature is α0. In this paper we

provide conditions under which the parameters of interest are point-identified. As such, our analysis

complements alternative partial-identification approaches that have been proposed in the context

of triangular binary models. See, in particular, Chiburis (2010), Shaikh and Vytlacil (2011), and

Mourifié (2015).3 As discussed in the aforementioned papers, the parameter α0 is difficult, if not

impossible to identify and estimate without imposing parametric restrictions on the unobserved

3In Section E in the supplement, we establish the sharp identified set of α0 when the support condition for
point-identification is violated. This result highlights that, except for the fact that the sign of α0 is identified, we
generally cannot say much about the value of |α0|. Related work by Shaikh and Vytlacil (2011) also provides partial
identification results for a triangular binary model. That the bounds for α0 are generally tighter in their analysis
reflects the identifying power of the additional support restrictions that they impose.
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variables in the model, (U, V ).

The difficulty of identifying α0 in semi-parametric “distribution-free” models, and the sensitivity

of its identification to misspecification in parametric models is what motivates the factor structure

we add in this paper to the above model. Specifically, to allow for endogeneity in the form of possible

non-zero correlation between U and V , we augment the model with the following equation:

U = γ0V + Π (2.6)

where Π is an unobserved random variable, assumed to be distributed independently of (V,Z1, Z2, Z3),

and γ0 is an additional unknown scalar parameter. Importantly, this type of factor structure al-

ways holds when the residuals of both equations are jointly normally distributed. Furthermore, this

specification corresponds to the type of structure used in Independent Component Analysis (ICA),

where V and Π are two mutually independent factors. This method has found many applications in

various fields, including signal processing and image extraction; applications in economics include

e.g., Hyvärinen and Oja (2000), Moneta, Hoyer, and Coad (2013) and Gourieroux, Monfort, and

Renne (2017). While, in contrast to the ICA literature, the factors and the factor loadings are not

the main objects of interest in our analysis, this dimension-reducing structure plays a key role in

our identification results.

Our aim is to first explore identification of the parameters (α0, δ0, γ0, β0, λ0) under standard

nonparametric regularity conditions on (V,Π). Note that the parameter δ0 in the selection equation

can be identified up to scale in various ways. See, for example, Klein and Spady (1993) and Han

(1987), among others. We then impose the usual condition that one of δ0’s coordinates is equal to

one to fix the scale. For simplicity, for the rest of the paper, we denote X ≡ Z ′δ0 and assume X is

observed. We further define X1 ≡ Z ′1λ0 +Z ′3β0. However, we cannot identify λ0 and β0 beforehand.

We propose instead to identify them along with α0.

Our main identification result is based on the Assumptions A1-A4 we state below:

A1 The first coefficient of λ0 is normalized to one so that λ0 = (1, λT0,−1)T . The parameter

θ0 ≡ (α0, γ0, λ0,−1, β0) is an element of a compact subset of <d1+d3+1, where d1 and d3 are

the dimensions of Z1 and Z3, respectively.

A2 The vector of unobserved variables, (U, V,Π) is continuously distributed with support on a

subset of <3 and independently distributed of the vector (Z1, Z2, Z3). Furthermore, we assume

that the unobserved random variables Π, V are distributed independently of each other.

A3 X is continuously distributed with absolute continuous density w.r.t. Lebesgue measure. Its

density is bounded and bounded away from zero on any compact subset of its support.

A4 Let Z1,−1 be all the coordinates of Z1 except the first one, and d = d1 + d3 + 1. There exist 2d
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vectors {z(l)
1 , z

(l)
3 , x(l)}dl=1 and {z̃(l)

1 , z̃
(l)
3 , x̃(l)}dl=1 in the joint support of (Z1, Z3, X) such that

α0 + (z
(l)
1,−1 − z̃

(l)
1,−1)′λ0,−1 + (z

(l)
3 − z̃

(l)
3 )′β0 − γ0(x(l) − x̃(l)) = z̃

(l)
1,1 − z

(l)
1,1, l = 1, · · · , d

and rank(M) = d, where

M =


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

x(1) − x̃(1) · · · x(d) − x̃(d)

 .

Before turning to our main identification result, a couple of remarks are in order.

Remark 2.1. The first part of Assumption A1 is a standard scale normalization. Assumption

A2 is also standard in this literature. The assumption that the instruments are independent of the

unobservables can also be found in, among others, Abrevaya, Hausman, and Khan (2010), Vytlacil

and Yildiz (2007), Klein, Shan, and Vella (2015), and Khan and Nekipelov (2018). The assumption

of independence between Π and V is also made in Bai and Ng (2002) and Carneiro, Hansen, and

Heckman (2003).

Remark 2.2. Assumptions A3 and A4 impose some restrictions on the distributions of the co-

variates entering the selection and outcome equations, respectively. Specifically, Assumption A3

requires one component of the covariates Z entering the selection equation to be continuously dis-

tributed, which is often required in models with discrete outcomes. In contrast, Assumption A4 only

requires some variation of (Z1, Z3). In particular, the distribution of (Z1, Z3) cannot be degenerate

but is allowed to be discrete. This assumption can be interpreted as a full rank condition, which

ensures that the system of linear equations that delivers point identification has a unique solution.

We now turn to our main identification result, Theorem 2.1, which concludes that under our

stated conditions and our factor structure we can attain point identification of the vector of pa-

rameters θ0.

Theorem 2.1. Under Assumptions A1-A4, θ0 is point identified.

An important takeaway from this result, which we discuss further in Subsection 2.2 below, is

that imposing the factor structure (2.6) yields point-identification under weaker support conditions

when compared to the existing literature, and does not require a second exclusion restriction either.

In particular, our model delivers point-identification of the parameters of interest even in situations

where all of the regressors from the outcome equation are discrete. This indicates that, from the

selection equation combined with the factor structure that we impose here, we can overturn the

non-identification result of Bierens and Hartog (1988) which would apply to the outcome equation

alone.
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The proof of Theorem 2.1, which is reported in Section H in the Supplementary Appendix,

relies on the fact that, for two observations (Z1, Z3, X) and (Z̃1, Z̃3, X̃),

∂xP
11(Z1, Z3, X)/fV (X) + ∂xP

10(Z̃1, Z̃3, X̃)/fV (X̃) = 0

⇐⇒ α0 + (Z1 − Z̃1)′λ0 + (Z3 − Z̃3)′β0 − γ0(X − X̃) = 0, (2.7)

where fV (·) is the pdf. of V , which is identified over the support of X, and P ij(z1, z3, x) ≡
Prob(Y1 = i, Y2 = j|Z1 = z1, Z3 = z3, X = x) (∂xP

ij(z1, z3, x)) denote the choice probability

(partial derivative of the ij-choice probability with respect to the third argument), which are both

identified from the data.

Remark 1. This identification result can be extended to the case of a separable nonparametric

factor model. Namely, consider the following relationship between unobserved components:

U = g0(V ) + Π̃ (2.8)

where Π̃ is an unobserved random variable assumed to be distributed independently of V and all

instruments. g0(·) is an unknown function assumed to satisfy standard smoothness conditions. The

parameter of interest is (α0, λ0, β0), but now the unknown nuisance parameter in the factor equation

is infinite dimensional. By replacing γ0X by g0(X) in (2.7), we have

∂xP
11(Z1, Z3, X)/fV (X) + ∂xP

10(Z̃1, Z̃3, X̃)/fV (X̃) = 0

⇐⇒ α0 + (Z1 − Z̃1)′λ0 + (Z3 − Z̃3)′β0 − (g0(X)− g0(X̃)) = 0. (2.9)

One can then establish identification after modifying the rank condition A4 by replacing γ0(x(l)−x̃(l))

by g0(x(l))− g0(x̃(l)).

2.2 Connection with Prior Literature

We now discuss in detail how our setup and main identification result relates to the existing liter-

ature.

In a related work, Han and Vytlacil (2017) consider the identification of a generalized bivariate

Probit model.4 Our linear factor structure and the one-parameter copula model considered in Han

and Vytlacil (2017) are not nested by each other. First, note that based on the factor structure,

we can recover FΠ, the distribution of Π, as a function of (FU , FV , γ0) by deconvolution. We can

then write the copula of (U, V ) as

FU,V (F−1
U (u), F−1

V (v)) =

∫ F−1
V (v)

−∞
FΠ(F−1

U (u)− γ0w;FU , FV , γ0)fV (w)dw = C(u, v;FU , FV , γ0).

4See also recent work by Han and Lee (2019) who study semiparametric estimation and inference in the framework
considered by Han and Vytlacil (2017).
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The copula depends not only on γ0 but also on two infinite dimensional parameters (FU , FV ). Thus,

unlike Han and Vytlacil (2017), our factor structure cannot be characterized by a one-parameter

copula. In addition, in order to achieve identification, Han and Vytlacil (2017) first nonparametri-

cally identify the two marginals by assuming the existence of a full support regressor that is common

to both equations.5 In contrast, our approach does not rely on the existence of such a regressor.

Under the factor structure assumed in our analysis, we bypass the nonparametric identification of

the marginals as a whole and directly consider the identification of the structural parameters. It

follows that our model cannot be nested by the one-parameter copula model considered by Han

and Vytlacil (2017). On the other hand, there exist one-parameter copula models that cannot be

decomposed into linear factor structures.6 This implies that our model does not nest Han and

Vytlacil (2017) either.

Our analysis also relates to Vytlacil and Yildiz (2007) and Vuong and Xu (2017), who consider

the identification of α0 in a triangular binary model. Our identification result, however, differs

from theirs in important ways. Namely, denote X = Z ′δ0 = Z ′1δ1,0 +Z ′2δ2,0. Then, Assumption A4

implies that we can find a pair of observations (z1, z2, z3) and (z̃1, z̃2, z̃3) such that

z′1λ0 + z′3β0 + α0 − γ0(z′1δ1,0 + z′2δ2,0) = z̃′1λ0 + z̃′3β0 − γ0(z̃′1δ1,0 + z̃′2δ2,0). (2.10)

In contrast, using our notation, Vytlacil and Yildiz (2007) require that one can find a pair of

observations (z1, z2, z3) and (z̃1, z̃2, z̃3) such that z′δ0 = z̃′δ0 and

z′1λ0 + z′3β0 + α0 = z̃′1λ0 + z̃′3β0. (2.11)

Vuong and Xu (2017) do not assume the existence of Z3. In our binary outcome setup, the

functions h(0, x, τ) and h(1, x, τ) defined in Vuong and Xu (2017) are equal to 1{x+ F−1
−U (τ) ≥ 0}

and 1{x+α+F−1
−U (τ) ≥ 0}, respectively, where x = z′1λ0 and F−U is the CDF of −U . Then, Vuong

and Xu (2017, Assumption C’(ii)) requires that we can find z1 and z̃1 in the support of Z1 so that

for any τ1, τ2, if 1{z̃′1λ0 + F−1
−U (τ1) ≥ 0} = 1{z̃1λ0 + F−1

−U (τ2) ≥ 0}, then 1{z′1λ0 + α0 + F−1
−U (τ1) ≥

0} = 1{z1λ0 + α0 + F−1
−U (τ2) ≥ 0}. Provided that the support of U nests the supports of Z ′1λ0 and

5Han and Vytlacil (2017) establish their identification of the coefficient on the endogeneous regressor (Theorems
4.2 and 5.1) under the assumption that the marginal distributions Fε and Fν are known. Then, they verify this
condition by showing the identification of these two marginal distributions using large support common regressors.

6For instance, suppose that (U, V ) has a Gaussian copula with correlation ρ, and that the marginal distributions
of U and V are uniform [0, 1]. It then follows that, denoting by Φ(.) the standard normal cdf.,

(
Φ−1(U),Φ−1(V )

)
is bivariate normal with correlation ρ, which in turn yields the following non-linear relationship between U and V :
U = Φ

(
ρΦ−1(V ) +W

)
, where W is normally distributed and independent from V .
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Z ′1λ0 + α0, Vuong and Xu (2017, Assumption C’(ii)) is then equivalent to:7

z′1λ0 + α0 = z̃′1λ0. (2.12)

Several remarks are in order. First, note that sufficient support conditions for the restrictions

(2.10)–(2.12) are d(Z ′1λ0 +Z ′3β0 −Z ′δ0γ0) ≥ |α0|, d(Z ′1λ0 +Z ′3β0|Z ′δ0) ≥ |α0|, and d(Z ′1λ0|Z ′δ0) ≥
|α0| with a positive probability, respectively. These three support conditions are such that

d(Z ′1λ0 + Z ′3β0 − Z ′δ0γ0) ≥ d(Z ′1λ0 + Z ′3β0|Z ′δ0) ≥ d(Z ′1λ0|Z ′δ0),

where the first and second inequalities are strict if Z2 and Z3 have at least one continuous com-

ponent, respectively. Importantly, we show in Section E of the Supplement that for a version of

the triangular binary model with univariate Z2 and Z3 and no common regressor Z1, the support

condition d(Z ′1λ0 + Z ′3β0|Z ′δ0) ≥ |α0| is actually also necessary to the identification of the model

without factor structure. This implies that by imposing our factor structure, one can identify values

of α0 in a region that cannot be identified in the model considered by Vytlacil and Yildiz (2007).

Such region is characterized in Section E of the Supplement.

Second, it directly follows from these support conditions that, in the presence of a factor model

and in contrast to both Vytlacil and Yildiz (2007) and Vuong and Xu (2017), variation in Z2

helps in the identification of α0. In that sense, the factor model allows to restore the intuition

from standard IV approaches in linear models that variation in the instrument Z2 is critical to the

identification of the parameters of the outcome equation. Related to this, the support of Z2 plays

an important role in our identification analysis. In particular, if Z2 is discrete, our identification

strategy requires sufficient variation in the variables in the outcome equation, namely Z1 and Z3.

In this case, our support requirement is equivalent to that assumed by Vytlacil and Yildiz (2007).

Third, another important aspect of Assumption A4 is that it does not impose any constraint on

the variables from the outcome equation. Specifically, consider a case where the outcome equation

does not contain a variable that is excluded from the selection equation (i.e., β0 = 0), the regressor

that is common to both equations, Z1, is scalar and binary, and where λ0 = 1. In this case, one can

show that the identifying support conditions associated with Vytlacil and Yildiz (2007) (2.11) and

Vuong and Xu (2017) (2.12) generally fail to hold, except for a finite set of values α0 ∈ {−1, 0, 1}. In

contrast, our support restriction (2.10) holds under more general conditions: without any restriction

on α0 if one element of Z2 is continuous with large support, and on a continuum of possible values

for α0 if one element of Z2 is continuous with bounded support. In that sense, the factor structure

replaces the need for a continuous component in (Z1, Z3) in the outcome equation.

7To see this, note that if, say, z′1λ0 +α0 > z̃′1λ0, then we can find τ1, τ2 such that −z′1λ0−α0 ≤ F−1
−U (τ1) < −z̃′1λ0

and F−1
−U (τ2) < −z′1λ−α0 < −z̃′1λ0. This violates the above requirement, and thus, shows that Vuong and Xu (2017,

Assumption C’(ii)) implies (2.12). On the other hand, if z′1λ0 + α0 = z̃′1λ0, then Vuong and Xu (2017, Assumption
C’(ii)) holds trivially.

9



Finally, at a high level, our identification strategy shares similarities with the Local Instrumen-

tal Variable (LIV) approach that has been proposed by Heckman and Vytlacil (2005) and further

discussed by Carneiro and Lee (2009). In particular, our identifying restriction (2.7) can be al-

ternatively derived from a local IV strategy applied to a potential outcomes model characterized

by Y1(y2) = 1{Z ′1λ0 + Z ′3β0 + α0y2 − U > 0}, with treatment given by Y2 = 1{Z ′δ0 − V > 0}.
In contrast to the LIV literature though, we focus in our analysis on the structural parameter α0

rather than on the marginal treatment effects. Our identification result shows that, by leveraging

the identifying power of the factor structure, one can identify α0 under weaker support restric-

tions than in the prior literature. In particular, our strategy makes it possible to use variation in

X = Z ′δ0 to identify α0, even when all the components of Z1 and Z3 are discrete.8

3 Extended Factor Structure in the presence of Continuous Mea-

surements

Up until now we have proposed identification and estimation results for a triangular system with a

particular factor structure. A disadvantage of this structure is that it only includes one idiosyncratic

shock (Π). We consider below an extension that addresses this limitation.

Namely, we consider the following model:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0},
(3.1)

where X1 = Z ′1λ0 + Z ′3β0, X = Z ′δ0, U = γ0W + η1, V = W + η2, and (W, η1, η2) are mutually

independent. Recall that, following the arguments in Section 2.1 above, we assume that X is

observed. In addition, we assume two auxiliary continuous measurements

Y3 = ν0W + η3 (3.2)

Y4 = σ0W + η4, (3.3)

where (W, η1, η2, η3, η4) are mutually independent, and ν0 6= 0.

Our identification result is based on the following assumptions:

B0 The first coefficient of λ0 is normalized to one so that λ0 = (1, λT0,−1)T . The parameter

θ0 ≡ (α0, γ0, λ0,−1, β0, ν0, σ0) is an element of a compact subset of <d1+d3+3, where d1 and d3

are the dimensions of Z1 and Z3, respectively. The vector of unobservables in the outcome

8An alternative approach to identifying this parameter can be found in Lewbel (2000). In his approach a second
equation to model the endogenous variable is not needed, nor is the factor structure we impose. However, he imposes
a strong support condition on a variable like Z3 requiring that it exceeds the length of the unobservable U .
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and selection equations (W, η1, η2, η3) are independently distributed of the vector (Z1, Z2, Z3).

Both η1 and η2 are continuously distributed.

B1 γ0 6= 0. X is continuously distributed with absolute continuous density w.r.t. Lebesgue

measure over the whole real line, conditionally on Z1 and Z3. The unconditional density of

X is bounded and bounded away from zero on any compact subset of its support.

B2 W is not normally distributed or both η3 and η4 do not have a Gaussian component.

B3 E(η3) = E(η4) = 0, E(|η3|) <∞, and E(|η4|) <∞.

B4 E(exp(iζη2)), E(exp(iζη3)), and E(exp(iζη4)) do not vanish for any ζ ∈ <, where i =
√
−1.

B5 E(exp(iζW )) 6= 0 for all ζ in a dense subset of <.

B6 The distributions of W , η2, and η3 admit uniformly bounded densities fW (·), fη2(·), and fη3(·)
with respect to the Lebesgue measure that are supported on an interval (which may be

infinite), respectively.

B7 Let Z1,−1 be all the coordinates of Z1 except the first one, and d = d1 + d3 + 1. There exist 2d

vectors {z(l)
1 , z

(l)
3 }dl=1 and {z̃(l)

1 , z̃
(l)
3 }dl=1 in the joint support of (Z1, Z3) and {w(l)}dl=1, {w̃(l)}dl=1

such that

α0 + (z
(l)
1,−1 − z̃

(l)
1,−1)′λ0,−1 + (z

(l)
3 − z̃

(l)
3 )′β0 − γ0(w(l) − w̃(l)) = z̃

(l)
1,1 − z

(l)
1,1, l = 1, · · · , d

and rank(M) = d, where

M =


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

w(1) − w̃(1) · · · w(d) − w̃(d)

 .

We now discuss these assumptions, before turning to the identification result. First, Assumption

B0 is similar to Assumptions A1 and A2. We only need one of the idiosyncratic errors in the

continuous measurements to be independent of the covariates because the other one is used to

identify the distribution of the common factor W only. Second, as we assume in Assumption B1

that γ0 6= 0 and X has full support, the support condition

d(Z ′1λ0 + Z ′3β0 − γ0X) ≥ |α0|.

holds automatically. The full support condition of X is necessary to identify the density of V ,

which is further used to identify the distribution of η2. Assumption B1 reinforces this condition

by supposing that X has full support conditional on Z1 and Z3, which is needed to identify the

parameters from the outcome equation in a second step. Since X = Z ′δ0 with Z = (Z1, Z2), this is
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in turn equivalent to Z2 having full support conditional on Z1 and Z3. Third, Assumptions B2–B6

imply Assumptions 1 to 4 in Hu and Schennach (2013). In practice we add the condition that the

characteristic function of η2 does not vanish, which is used for the deconvolution arguments in the

proof of Theorem 3.1. We refer the reader to Hu and Schennach (2013) for more discussions of

these assumptions.9

Theorem 3.1. If (K.31)–(3.3) and Assumptions B0–B7 hold, then θ0 are identified.

The proof of Theorem 3.1 can be found in Section I of the Supplement. Several remarks

are in order. First, while we allow for a more general factor structure on the unobservables U

and V , we also depart from our baseline specification by supposing that we have access to two

continuous noisy measurements of the common factor W . This is a standard requirement in the

nonparametric measurement error literature (Hu and Schennach, 2008). Besides, assuming access

to a set of (selection-free) noisy measurements of the unobserved factors is also very standard in the

evaluation literature. See, among many others, Carneiro, Hansen, and Heckman (2003), Heckman

and Navarro (2007), Heckman and Vytlacil (2007a), and Cunha, Heckman, and Schennach (2010).

For instance, in applications in labor economics, the unobserved factor W often captures individual

ability. This would apply, for example, to the evaluation of the effect of college employment (Y2)

on college graduation (Y1). In these cases, cognitive skill measurements, such as the ASVAB test

components that are available in the NLSY79 and NLSY97 surveys, are natural and often used

candidates for these types of continuous measurements (Ashworth, Hotz, Maurel, and Ransom,

2020).

Second, as is clear from the proof of Theorem 3.1, the key purpose of the continuous measure-

ments is to identify the distribution of the common factor W . While we assume in this section

that the measurement equations are linear, it is possible to identify θ0 with a more general nonlin-

ear system of continuous measurements, provided that the researcher has access to at least three

such measurements. One can then combine Theorem 2 in Cunha, Heckman, and Schennach (2010)

(Section 3.3, pp. 894-895), that yields identification of the distribution of W , with the proof of

Theorem 3.1 in order to show identification of θ0 for the case of nonlinear auxiliary measurements.

Assuming access to a set of at least three measurements also makes it possible to relax the non-

normality requirement imposed in Assumption B2.

Third, similar to the earlier discussions in Remark 2.2 and Section 2.2, Assumption B7 may

still hold even when Z3 is an empty set and Z1 is discrete, since W is assumed to have full

support. In such a case, identification primarily relies on the factor structure and the variation

of the covariates in the selection equation, rather than that in the outcome equation. In this

respect, this identification result is similar in spirit to Theorem 2.1 and different from the existing

identification results in the literature for triangular binary models, e.g., Vytlacil and Yildiz (2007)

and Vuong and Xu (2017). More generally, in Section E.2 in the supplement we establish that the

9Note that Hu and Schennach (2013, Assumptions 5 and 6) hold automatically in our model with ν0 6= 0.
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factor model provides identification restrictions that are not otherwise available.10

4 Conclusion

In this paper, we explore the identifying power of linear factor structures in the context of si-

multaneous binary response models. We impose two alternative types of factor structures on the

unobservables of the model. The first setup is a natural distribution-free extension of the bivariate

Probit model, while the second model corresponds to a standard linear factor model with one com-

mon factor and two equation-specific idiosyncratic shocks. We establish that both factor models

have identifying power in that they make it possible to relax some of the exclusion and support

conditions typically required for identification in this class of models (Vytlacil and Yildiz, 2007).

Overall, our analysis complements results obtained by Bai and Ng (2010) in the context of a linear

regression model with endogenous regressors, and, more generally, adds to our understanding of

the identifying power of factor models, beyond their well known usefulness to recover the joint

distribution of potential outcomes from the marginal distributions.

The work here opens areas for future research. The factor structure we assume could prove

useful in more general nonlinear models. For instance, non-triangular discrete systems have shown

to be an effective way to model entry games in the empirical industrial organization literature- see,

for example, Tamer (2003). However, as shown in Khan and Nekipelov (2018), identification of

structural parameters in these models can be even more challenging than for the triangular model

considered in this paper. It would be useful to determine if factor structures on the unobservables

could alleviate this problem. We leave this open question to future work.
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Abstract

This paper gathers the supplementary material to the original paper. In Section E, we discuss

the identification power of the factor structure. In Section F, we propose an estimator based

on our constructive identification strategy and establish its asymptotic properties. Section G

contains a simulation study. In Sections H and I, we prove Theorems 2.1 and 3.1, respectively.

In Section J, we establish the asymptotic distribution for the rank estimator. In Section K,

we consider the identification of the model with two idiosyncratic shocks but no continuous

repeated measurements of the common factor. In Sections L, M, N and O, we prove Theorems

E.1, E.2, K.1 and K.2, respectively.
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E Identification with and without Factor Structure

E.1 Identification Without Auxiliary Measurements

In this section, we discuss the information content of factor structure. For illustration purpose, we

focus on the “condensed” model:

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0}.
(E.4)
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Assumption 1.

1. (X1, X) ⊥ (U, V ).

2. (X1, X) are continuously distributed with absolute continuous joint density w.r.t. Lebesgue

measure. The conditional support of X1 given X is [a, b].

3. V is continuously distributed over < and its density w.r.t. Lebesgue measure exist.

Theorem E.1. If Assumption 1 holds, then |α0| ≤ b − a is necessary and sufficient for α0 to be

identified.

We note that under Assumption 1, |α0| ≤ b − a is equivalent to the fact that we can find x1

and x̃1 in the support of X1 such that α0 = x1 − x̃1.

Next, we assume, in addition to Assumption 1, the factor structure, i.e., (2.6) in Section 2. Our

rank estimator can be written as an M-estimator

θ̂ = arg max
θ
Qn(θ) ≡

∑
i6=j

ĝi,j(θ)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).

We will study the asymptotic properties of this estimator in Section F.

The information content explored by the M-estimator can be summarized as follows:

A2(θ) = {(X1, X̃1, X, X̃),Φ(X1, X, X̃1, X̃; θ0) ≥ 0 > Φ(X1, X, X̃1, X̃; θ)

or Φ(X1, X, X̃1, X̃; θ0) < 0 ≤ Φ(X1, X, X̃1, X̃; θ)}.

Then we cannot distinguish, from the true parameter θ0, all impostors in

A2 = {θ : P (A2(θ)) = 0}.

In the condensed model, if Supp(X1, X) = [a, b]×[c, d], then θ0 is identified if |α0| < b−a+|γ0|(d−c).
Recall Theorem E.1, without imposing factor structure, the necessary and sufficient condition for

achieving identification is |α0| ≤ b−a. Therefore, the blue area in the Figure below is the additional

parts of parameter space that are identified with factor structure but not otherwise.
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α0

γ0

|α0| = b− a+ |γ0|(d− c)

|α0| = b− a

Figure 1: Identifying Power of Factor Structure

Theorem E.2. Assumption 1 holds. When |α0| > b− a, the sharp identified set for α0 is

A∗ = {α : α > b− a if α0 > 0 and α < a− b if α0 < 0}.

Theorem E.2 highlights that, in the case without the factor structure and α0 does not satisfy

the parameter restriction, except for the fact that the sign of α0 is identified, we actually cannot

say much about the value of |α0|. When we assume the factor structure, the parameter is still not

identified if |α0| > b−a+ |γ0|(d− c). In addition, suppose α0 > 0. In this case, if we do not impose

factor structure, by Theorem E.2, the sharp identified set is {α : α > b− a} while with the factor

structure, the identified set (not necessarily sharp) is α > b − a + |γ|(d − c). This implies, when

identification fails in both cases, the blue area is also the extra identifying power on the identified

set given by the factor structure.

E.2 Identification with two auxiliary measurements

Next, we expand our condensed model to include two continuous measurements. We show in this

case, without the factor structure, α0 is not identified. This is in contrast with the identification

result established in Theorem 3.1.

Suppose in addition to (E.4), we also observe two continuous measurements denoted as Y3 and

Y4.

Assumption 2.

1. (X1, X) ⊥ (U, V, Y3, Y4).

2. (X1, X) are continuously distributed with absolute continuous joint density w.r.t. Lebesgue
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measure. The conditional support of X1 given X is [a, b].

3. V is continuously distributed over < and its density w.r.t. Lebesgue measure exist.

Theorem E.3. If Assumption 2 holds, then |α0| ≤ b − a is necessary and sufficient for α0 to be

identified.

The proof of Theorem E.3 is similar to that of Theorem E.1, and thus, is omitted. In the proof

of Theorem E.1, we show that when |α0| > b− a, we can find an impostor α 6= α0 and Ũ such that

for any x1 ∈ [a, b] and any v ∈ Supp(V ), we have

P (Ũ ≤ x1 + α|V = v) = P (U ≤ x1 + α0|V = v)

P (Ũ ≤ x1|V = v) = P (U ≤ x1|V = v).

This implies the conditional CDF of (Y1, Y2) given (X1, X) under the DGPs (U, V, α0) and (Ũ , V, α)

are the same, and thus, α0 is observationally equivalent to the impostor α. Similarly, with the two

continuous measurements, we can use the exact same construction of Ũ and α to show that, for

any x1 ∈ [a, b] and (v, y3, y4) ∈ Supp(V, Y3, Y4), we have

P (Ũ ≤ x1 + α|V = v, Y3 = y3, Y4 = y4) = P (U ≤ x1 + α0|V = v, Y3 = y3, Y4 = y4)

P (Ũ ≤ x1|V = v, Y3 = y3, Y4 = y4) = P (U ≤ x1|V = v, Y3 = y3, Y4 = y4).

This implies the conditional CDF of (Y1, Y2, Y3, Y4) given (X1, X) under the DGPs (U, V, Y3, Y4, α0)

and (Ũ , V, Y3, Y4, α) are the same too. Such non-identification result holds even when X has full

support.

F Estimation and Asymptotic Properties

Our identification result is constructive in the sense that it motivates an estimator for the param-

eters of interest which we describe in detail here.

As we did in Section E, to simplify exposition, in the following we focus exclusively on the

parameters α0, γ0. Recall the choice probabilities P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x)

and its second derivative ∂2P
ij(x1, x), which can be estimated as we describe below. Another

function needed for our identification result is the density function of the unobserved term V ,

denoted by fV (·). This is also unknown, but from the structure of our model can be recovered

from the derivative with respect to the instrument X of E[Y2|X], and hence is estimable from

the data. Note that the proof of Theorem 2.1 shows that the sign of the index evaluated at two

different regressor values, which we denote here by (X1, X) and (X̃1, X̃) is determined by the choice

probabilities via

∂2P
11(X1, X)/fV (X) + ∂2P

10(X̃1, X̃)/fV (X̃) ≥ 0 ⇐⇒ X1 + α− γX − (X̃1 − γX̃) ≥ 0.
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This motivates us to use the maximum rank correlation estimator proposed by Han (1987).

Implementation requires further details to pay attention to. The unknown choice probabilities,

their derivatives, and the density of V will be estimated using nonparametric methods, and for this

we adopt locally linear methods as they are particularly well suited for estimating derivatives of

functions.

With functions and their derivatives estimated in the first stage of our procedure, the second

stage plugs in these estimated values into an objective function to be optimized. Specifically, letting

θ̂ denote (α̂, γ̂), our estimator is of the form:

θ̂ = arg max
θ
Qn(θ), Qn(θ) ≡

∑
i6=j

ĝi,j(θ) (F.5)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃).

We note that this estimator falls into the class of those which optimize a nonsmooth U-process

involving components estimated nonparametrically in a preliminary stage.1 Examples of other

estimators in this class can be found in Khan (2001), Abrevaya, Hausman, and Khan (2010),

Jochmans (2013), Chen, Khan, and Tang (2016), and our approach to deriving the limiting dis-

tribution theory of our estimator will follow along the steps used in those papers. Our limiting

distribution theory for this estimator is based on the following regularity conditions:

RK1 θ0 lies in the interior of Θ, a compact subset of R2.

RK2 The index X is continuously distributed with support on the real line, and has a density

function which is twice continuously differentiable.

RK3 (Order of smoothness of probability functions and regressor density functions) The functions

P i,j(·) and fX1,X(·.·) (the density function of the random vector (X1, X)) are continuously

1An alternative estimation procedure could be based on the exact relationship in (2.7). Note the equality on the
left-hand side of (2.7) is a function of the data alone and not the unknown parameters. The right-hand side equality
can then be regarded as a moment condition to estimate the unknown parameters. We describe this estimator and
derive its asymptotic properties in the Online Supplement to the paper. While the two estimation approaches will
have similar asymptotic properties (root-n consistent, asymptotically normal), we prefer the rank estimator in (F.5)
which involves fewer tuning parameters. Furthermore rank type estimators in general are more robust to certain
types of misspecification, as pointed out in Khan and Tamer (2018).
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differentiable of order p2.

RK4 (First stage kernel function conditions) K(·), used to estimate the choice probabilities and

their derivatives is an even function, integrating to 1 and is of order p2.

RK5 (Rate condition on first stage bandwidth sequence) The first stage bandwidth sequence Hn

used in the nonparametric estimator of the choice probability functions and their derivatives

satisfies
√
nHp2−1

n → 0 and n−1/4H−1
n → 0.

The smoothness condition in Assumption RK4 and Assumption RK5 is due to the fact that we

need to nonparametrically estimate ∂2P
ij(X1, X) with sufficiently faster convergence rate. This will

require a stronger smoothness condition than that required for standard nonparametric estimation.

Assumption RK5 ensures that the bias of the first stage estimator of the derivative function con-

verges at the parametric rate and the RMSE of this estimator (with two regressors) is fourth-root

consistent, so results for two step estimation in Newey and McFadden (1994) can be applied.

Based on these conditions, we have the following theorem, whose proof is in Section J of the

Supplementary Appendix which characterizes the rate of convergence and asymptotic distribution

of the proposed estimator:

Theorem F.1. Under Assumptions RK1-RK5,

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (F.6)

where the forms of the Hessian term V and outer score term ∆ are described in detail in Section J

of the Supplementary Appendix.

G Finite Sample Properties

In this section we explore the finite sample properties of the proposed estimation procedure via a

simulation study. We will also see how sensitive the performance of the proposed estimator is to the

factor structure assumption. As a base comparison, we also report results for the estimator proposed

in Vytlacil and Yildiz (2007) to see how sensitive it is to their second instrument restriction.

Our data are simulated from base models of the form

Y1 = 1{X1 + α0Y2 − U ≥ 0} (G.1)

Y2 = 1{X − V > 0}, (G.2)

where X1 is binary with success probability 0.6, X has marginal distribution N (0, 1), X1 and

X are mutually independent, (X1, X) ⊥ (V,Π), U = γ0V +Π. (V,Π) are distributed independently
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of each other, where Π is distributed following a standard normal distribution, and V is distributed

either standard normal, Laplace, or T (3). The parameters (α0, γ0) = (−0.25, 1.2) or (0.5, 1.2).

SinceX1 is discrete, Vytlacil and Yildiz’s (2007) identification condition does not hold. However,

the identification condition in this paper becomes

|α| ≤ length of the support of X,

which holds.

For each choice of sample size n = 100, 200, 400, 800, 1, 600, we simulate 280 samples and report

the bias, standard deviation (std), root mean squared error (RMSE), and median absolute deviation

(MAD) for both Vytlacil and Yildiz’s (2007) estimator (VY) and ours (KMZ). For implementation,

we use the second order local polynomial along with Gaussian kernels to nonparametrically estimate

the ∂2P
11(x1, x) and ∂2P

10(x1, x). The bandwidth we use is h1 = σxN
−1/7 where σx is the standard

deviation of X. fV (x) is nonparametrically estimated using a local linear estimator with the tuning

parameter h2 = σxN
−1/6.

As results from the table indicate, the finite sample performance of our estimator generally

agrees with the asymptotic theory. The RMSE for the estimator proposed here is decreasing as the

sample size increases, as one could expect given the consistency property of our estimator. Besides,

the decay rate of the RMSE and MAD is about
√

2 when n ≥ 400 as sample sizes doubles, in line

with the parametric rate of convergence of our estimator.

Vytlacil and Yildiz’s (2007) estimator, which does not exploit the factor structure, demonstrates

inconsistency for certain parameter values, as indicated by the bias and median bias not shrinking

with the sample size. In addition, the RMSE and MAD do not appear to decline at all, which also

suggests that Vytlacil and Yildiz’s (2007) estimator is inconsistent in these designs.2

Table 1: Normal V , α = 0.5

Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.026 0.665 0.660 -0.246 0.658 0.500 0.032 0.634 0.560 -0.293 0.658 0.500 0.010 0.676 0.665 -0.225 0.662 0.500
200 0.004 0.591 0.475 -0.329 0.633 0.500 -0.015 0.568 0.400 -0.336 0.612 0.500 -0.003 0.616 0.495 -0.279 0.629 0.500
400 0.005 0.483 0.365 -0.341 0.573 0.500 0.030 0.459 0.310 -0.323 0.559 0.500 0.018 0.542 0.405 -0.314 0.589 0.500
800 0.065 0.456 0.300 -0.348 0.544 0.500 0.096 0.391 0.250 -0.357 0.511 0.500 0.046 0.462 0.295 -0.346 0.552 0.500

1,600 0.040 0.321 0.195 -0.413 0.503 0.500 0.017 0.294 0.190 -0.450 0.506 0.500 0.034 0.371 0.240 -0.368 0.506 0.500

2Because X1 is binary, Vytlacil and Yildiz’s (2007) estimator can only take 3 possible values: 0, -1 or 1. In
particular, when α = 0.5, in most of the replications, the estimator takes values 0 or 1. When α = −0.25, in most of
the replications, the estimator takes value -1. In both of these cases, the MAD remains constant over the different
sample sizes.
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Table 2: Normal V , α = −0.25

Π Normal Laplace T(3)

kmz vy kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.088 0.650 0.555 -0.466 0.710 0.750 0.092 0.614 0.530 -0.358 0.650 0.750 0.004 0.619 0.505 -0.430 0.681 0.750
200 -0.035 0.599 0.420 -0.446 0.681 0.750 0.012 0.552 0.385 -0.485 0.689 0.750 -0.008 0.583 0.425 -0.463 0.687 0.750
400 -0.016 0.467 0.325 -0.487 0.668 0.750 -0.010 0.388 0.200 -0.552 0.686 0.750 -0.003 0.496 0.340 -0.489 0.675 0.750
800 -0.028 0.324 0.165 -0.591 0.697 0.750 0.006 0.279 0.180 -0.599 0.701 0.750 0.032 0.399 0.230 -0.533 0.682 0.750

1,600 -0.006 0.244 0.150 -0.654 0.718 0.750 -0.028 0.204 0.130 -0.714 0.738 0.750 -0.021 0.279 0.190 -0.629 0.710 0.750

In the following, we also consider three DGPs (DGPs 1–3) such that the one-factor model does

not hold but the identification assumption in Vytlacil and Yildiz (2007) does. In this case, our

simulation results show that while, as expected, the estimator VY is still valid, our estimator still

performs reasonably well. Interestingly, this offers suggestive evidence that our estimator is robust

to some degree of misspecification. As such, these results complement previous work highlighting

the robustness of rank type estimators to misspecification Khan and Tamer (2018). In DGP 4, the

identification assumptions in both Vytlacil and Yildiz (2007) and our paper hold. In this case, we

found that our estimator has similar performance as that proposed by Vytlacil and Yildiz (2007).

The outcome and selection equations are the same as (G.1) and (G.2), respectively. Then,

DGP 1 : (X1, X) is jointly standard normally distributed. Let (e1, e2) jointly Laplace distributed

with mean zero and variance-covariance matrix Σ =

(
1 −0.5

−0.5 1

)
, e3 and e4 are uniformly

distributed on (0, 1), independent of each other, and independent of (e1, e2), V = e1 +e3−0.5,

U = e2 + e4 − 0.5, and α = −0.25.

DGP 2 : (X1, X) are the same as above, U = e1 + e2 − 0.5, and V = e1 + e3 − 0.5, where e1

is standard normally distributed, (e2, e3) are uniformly distributed on (0, 1), (e1, e2, e3) are

mutually independent, and α = −0.25.

DGP 3 : (X1, X) are the same as above, V = exp(e1+e2−0.5)−1
4 , U = exp(e1+e3−0.5)−1

4 , (e1, e2, e3) are

defined as above, and α = −0.5.

DGP 4 : (X1, X) are the same as above, V is Laplace distributed with mean zero and standard

derivation 0.5, U = V +V ′−0.5, where V ′ is uniform distributed on (0, 1) and is independent

of V , and α = −0.25.

For DGPs 1, 2, and 4, when computing ∂2P
11(x1, x) and ∂2P

10(x1, x), we use bandwidths h1 =

σx1N
−1/7 and h = σxN

−1/7 for variables X1 and X, respectively, where σx1 and σx are the standard

errors of X1 and X, respectively. To estimate the density fV (x), we use bandwidth h2 = σxN
−1/6.

For DGP 3, we use h1 = h2 = h = σx1N
−1/5. In all simulations, we use 280 replications.
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Table 3: Alternative DGPs

DGP 1 DGP 2

kmz vy kmz vy

N Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

100 -0.065 0.678 0.600 -0.055 0.666 0.535 -0.058 0.621 0.505 -0.05 0.621 0.470
200 -0.118 0.543 0.370 -0.080 0.497 0.320 -0.122 0.523 0.350 -0.097 0.495 0.350
400 -0.117 0.413 0.280 -0.071 0.378 0.245 -0.062 0.335 0.215 -0.033 0.316 0.220
800 -0.102 0.287 0.170 -0.062 0.243 0.160 -0.031 0.242 0.150 -0.008 0.215 0.150

1,600 -0.071 0.193 0.140 -0.035 0.155 0.100 -0.038 0.167 0.100 -0.031 0.158 0.100

DGP 3 DGP 4

100 -0.012 0.583 0.480 -0.015 0.565 0.430 -0.057 0.401 0.240 -0.066 0.422 0.240
200 -0.061 0.425 0.275 -0.068 0.399 0.270 -0.041 0.282 0.180 -0.049 0.263 0.145
400 -0.041 0.259 0.170 -0.042 0.237 0.155 -0.062 0.184 0.135 -0.047 0.186 0.120
800 -0.061 0.219 0.140 -0.047 0.182 0.120 -0.029 0.119 0.080 -0.034 0.115 0.070

1,600 -0.038 0.130 0.080 -0.035 0.119 0.080 -0.024 0.090 0.060 -0.022 0.086 0.070

In the first three DGPs, we see that VY’s estimator has better performance in terms of both bias

and MSE. On the other hand, although the models do not have a factor structure, our estimator

still performs reasonably well. In the last DGP, support conditions in both Vytlacil and Yildiz

(2007) and our paper hold. Table 3 shows that our and Vytlacil and Yildiz’s (2007) estimators

have similar performance in terms of bias and MSE. Although our estimator is expected to be more

efficient as we use the factor structure in estimation, it is not. We conjecture that it is because our

estimator does not necessarily use all the information, or in other words, achieve the semiparametric

efficiency bound. To establish the semiparametric efficient estimator in the model with and without

the factor structure is an interesting yet challenging task. We leave it as a topic for future research.

H Proof of Theorem 2.1

Proof: Note that

P 11(z1, z3, x) =

∫ x

−∞
FΠ(z′1λ0 + z′3β0 + α0 − γ0v)fV (v)dv

P 10(z̃1, z̃3, x̃) =

∫ +∞

x̃
FΠ(z̃′1λ0 + z̃′3β0 − γ0v)fV (v)dv.

Taking derivatives w.r.t. the third argument of the LHS function, we obtain

∂xP
11(z1, z3, x)/fV (x) = FΠ(z′1λ0 + z′3β0 + α0 − γ0x)

−∂xP 10(z̃1, z̃3, x̃)/fV (x̃) = FΠ(z̃′1λ0 + z̃′3β0 − γ0x̃).

By Assumption A4, we know that there exists pairs such that

Z ′1λ0 + Z ′3β0 + α0 − γ0X = Z̃ ′1λ0 + Z̃ ′3β0 − γ0X̃.
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Because FΠ(·) is monotone increasing, we have

∂xP
11(Z1, Z3, X)/fV (X) + ∂xP

10(Z̃1, Z̃3, X̃)/fV (X̃) = 0

⇐⇒ α0 + (Z1 − Z̃1)′λ0 + (Z3 − Z̃3)′β0 − γ0(X − X̃) = 0

Note the LHS of the above display is identified from data. Denote Z1,1 as the first element of Z1,

whose coefficient is set to one. The rest of Z1 is denoted as Z1,−1, whose coefficient is denoted as

λ0,−1. Then, we have

α0 + (Z1,−1 − Z̃1,−1)′λ0,−1 + (Z3 − Z̃3)′β0 − γ0(X − X̃) = Z̃1,1 − Z1,1.

Then, by Assumption A4, we can find (z
(l)
1 , z

(l)
3 , x(l))dl=1 and (z̃

(l)
1 , z̃

(l)
3 , x̃(l))dl=1 such that

rank


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

x(1) − x̃(1) · · · x(d) − x̃(d)

 = d.

Then, we can identify (α0, λ0, β0, γ0) by solving the linear system that

α0 + (z
(1)
1,−1 − z̃

(1)
1,−1)′λ0,−1 + (z

(1)
3 − z̃

(1)
3 )′β0 − γ0(x(1) − x̃(1)) =z̃

(1)
1,1 − z

(1)
1,1 ,

...

α0 + (z
(d)
1,−1 − z̃

(d)
1,−1)′λ0,−1 + (z

(d)
3 − z̃(d)

3 )′β0 − γ0(x(d) − x̃(d)) =z̃
(d)
1,1 − z

(d)
1,1 .

This concludes the proof.

I Proof of Theorem 3.1

For notation simplicity, we write W̃ = ν0W , σ̃0 = σ0/ν0, ν̃0 = 1/ν0, and

Y2 = 1{X ≥ ν̃0W̃ + η2}

Y3 = W̃ + η3

Y4 = σ̃0W̃ + η4.

Because Assumptions B2–B6 hold, by applying Hu and Schennach (2013, Theorem 1) to Y3 and

Y4, we can identify the densities for ν0W = W̃ , η3, and η4 as well as σ0/ν0 = σ̃0.
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Then, we have

∂y3P(Y2 = 1, Y3 ≤ y3|X = x) =∂y3

∫
Fη2(x− ν̃0w)Fη3(y3 − w)fW̃ (w)dw

=

∫
Fη2(x− ν̃0w)fη3(y3 − w)fW̃ (w)dw.

Applying Fourier transform w.r.t. y3 on both sides, we have

F(∂y3P(Y2 = 1, Y3 ≤ ·|X = x))(t) = F(Fη2(x− ν̃0·)fW̃ (·))(t)F(fη3(·))(t),

where for a generic function g(w),

F(g(·))(t) =
1√
2π

∫
exp(−2πitw)g(w)dw.

Therefore,

F−1
(
F(∂y3P(Y2=1,Y3≤·|X=x))(·)

F(fη3 (·))(·)

)
(w)

fW̃ (w)
= Fη2(x− ν̃0w), (I.1)

where for a generic function g(w),

F−1(g(·))(t) =
1√
2π

∫
exp(2πitw)g(w)dw.

Note the LHS of (I.1) can be identified from data. We choose two pairs (x,w) and (x′, w′) such

that w 6= w′ and

F−1
(
F(∂y3P(Y2=1,Y3≤·|X=x))(·)

F(fη3 (·))(·)

)
(w)

fW̃ (w)
=
F−1

(
F(∂y3P(Y2=1,Y3≤·|X=x′))(·)

F(fη3 (·))(·)

)
(w′)

fW̃ (w′)
.

Then, given the monotonicity of Fη2 , we have

x− ν̃0w = x′ − ν̃0w
′,

or

ν̃0 = (x− x′)/(w − w′),

which is identified. Given the identification of ν̃0 and the distribution of W̃ , we can identify the

distribution of W = ν̃0W̃ . Recall Fη1(·) and fη2(·) are the CDF and PDF of η1 and η2, respectively.

Then, we have

P (Y2 = 1|X = x) = P (W + η2 ≤ x).
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Because X has full support, we can identify the distribution of W + η2. Then, it follows from

standard deconvolution argument and the fact that the distribution of W is identified that we can

identify the distribution of η2. In addition, note that

P 11(z1, z3, x) =P (Y1 = 1, Y2 = 1|Z1 = z1, Z3 = z3, X = x)

=

∫
Fη1(z′1λ0 + z′3β0 + α0 − γ0w)Fη2(x− w)fW (w)dw

and

P 10(z1, z3, x) =P (Y1 = 1, Y2 = 0|Z1 = z1, Z3 = z3, X = x)

=

∫
Fη1(z′1λ0 + z′3β0 − γ0w)(1− Fη2(x− w))fW (w)dw.

Taking derivatives of P 11(z1, z3, x) and P 10(z1, z3, x) w.r.t. x, we have

∂xP
11(z1, z3, x) =

∫
Fη1(z′1λ0 + z′3β0 + α0 − w)fη2(x− w)fW (w)dw (I.2)

and

−∂xP 10(z1, z3, x) =

∫
Fη1(z′1λ0 + z′3β0 − γ0w)fη2(x− w)fW (w)dw. (I.3)

Applying Fourier transform on both sides of (I.2) and (I.3), we have

F(∂xP
11(z1, z3, ·)) = F(Fη1(z′1λ0 + z′3β0 + α0 − ·)fW (·))F(fη2(·)) (I.4)

and

F(−∂xP 10(z1, z3, ·)) = F(Fη1(z′1λ0 + z′3β0 − ·)fW (·))F(fη2(·)).

Then, by (I.4), we can identify Fη1(z′1λ0 + z′3β0 + α0 − ·) by

Fη1(z′1λ0 + z′3β0 + α0 − γ0·) = F−1

(
F(∂xP

11(z1, z3, ·))
F(fη2(·))

)
(·)/fW (·).

Similarly, we can identify

Fη1(z′1λ0 + z′3β0 − γ0·) = F−1

(
F(−∂xP 10(z1, z3, ·))

F(fη2(·))

)
(·)/fW (·).
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Because Fη1(·) is monotone increasing, we have

F−1

(
F(∂xP

11(z1, z3, ·))
F(fη2(·))

)
(w)/fW (w) = F−1

(
F(−∂xP 10(z̃1, z̃3, ·))

F(fη2(·))

)
(w̃)/fW (w̃)

⇐⇒ α0 + (z1 − z̃1)′λ0 + (z3 − z̃3)′β0 − γ0(w − w̃) = 0

Then, by Assumption B7, we can find (z
(l)
1 , z

(l)
3 , w(l))dl=1 and (z̃

(l)
1 , z̃

(l)
3 , w̃(l))dl=1 such that

rank


1 · · · 1

z
(1)
1,−1 − z̃

(1)
1,−1 · · · z

(d)
1,−1 − z̃

(d)
1,−1

z
(1)
3 − z̃

(1)
3 · · · z

(d)
3 − z̃(d)

3

w(1) − w̃(1) · · · w(d) − w̃(d)

 = d.

Then, we can identify (α0, λ0, β0, γ0) by solving the linear system that

α0 + (z
(1)
1,−1 − z̃

(1)
1,−1)′λ0,−1 + (z

(1)
3 − z̃

(1)
3 )′β0 − γ0(w(1) − w̃(1)) =z̃

(1)
1,1 − z

(1)
1,1 ,

...

α0 + (z
(d)
1,−1 − z̃

(d)
1,−1)′λ0,−1 + (z

(d)
3 − z̃(d)

3 )′β0 − γ0(w(d) − w̃(d)) =z̃
(d)
1,1 − z

(d)
1,1 .

This concludes the proof.

J Proof of Theorem F.1

Recall we defined our two step rank estimator as follows: Letting θ̂ denote (α̂, γ̂), our estimator is

of the form:

θ̂ = arg max
θ
Q̂n(θ) ≡

∑
i6=j

ĝi,j(θ)

in which

ĝi,j(θ) = [1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P̂
11(X1,i, Xi)/f̂V (Xi) + ∂2P̂

10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

with

Φ(x1, x, x̃1, x̃; θ) = x1 + α− γx− (x̃1 − γx̃)
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We first show consistency of the rank estimator. To do so we first define the objective function

Qifn,2(θ), defined as

Qifn,2(θ) ≡
∑
i6=j

gi,j(θ)

where

gi,j(θ) = [1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0}

+ 1{∂2P
11(X1,i, Xi)/fV (Xi) + ∂2P

10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0}],

Since gi,j is bounded by 1 ∀i, j, and our random sampling assumption, we have for each θ,

Qifn,2(θ)
p→ E[gi,j(θ)] ≡ Γ0(θ)

Furthermore, by Assumptions RK2, RK3 we can extend this result to converging uniformly over

θ ∈ Θ (see, e.g. Sherman (1994a), Sherman (1993).) Γ0(θ) is continuous in θ by Assumptions

RK2,RK3, and uniquely maximized at θ = θ0 by our identification result in Theorem 2.1. Along

with Assumption RK1, the infeasible estimator, defined as the maximizer of Qifn,2(θ) converges in

probability to θ0 by, for example Theorem 2.1 in Newey and McFadden (1994). To show consis-

tency of the feasible estimator, where we first estimate the choice probability functions and their

derivatives nonparametrically, we only now need to show the two objective functions converged to

each other uniformly in θ ∈ Θ. Consistency of the first stage estimators follows from Assumptions

RK3-RK5, see for example Henderson, Li, Parmeter, and Yao (2015). However, this does not

immediately imply convergence of the difference in feasible and infeasible objective functions since

the nonparametric estimators are inside indicator functions so the continuous mapping theorem

does immediately not apply. Nonetheless the desired result can still be attained in one of two ways.

One would be to replace indicator functions with smooth distribution functions in a fashion analo-

gous to Horowitz (1992). This would have the disadvantage of introducing tuning parameters, but

another approach would be to replace the indicator functions with their conditional expectations,

and note that the conditional expectations are smooth functions using Assumption RK2, RK3.

To see why, let m̂(xi) be a nonparametric estimator of a function m(xi), which is assumed to be

smooth. We evaluate the plim of

I[m̂(xi) > 0]− I[m(xi) > 0] = I[m̂(xi) > 0,m(xi) < 0]− I[m̂(xi) < 0,m(xi) > 0]

we show that the first term converges in probability to 0 as identical arguments can be used for the

second term. Let ε > 0 be given; P (I[m̂(xi) > 0,m(xi) < 0] > ε) ≤ E[I[m̂(xi) > 0,m(xi) < 0]/ε
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by Markov’s inequality. But the expectation in the numerator on the right hand side is

P (m̂(xi) > 0,m(xi) < 0) = P (m̂(xi) > 0,m(xi) ≤ −δn) + P (m̂(xi) > 0,m(xi) ∈ (−δn, 0))

where δn is a sequence of positive numbers converging to 0, at a slow rate, e.g.(log n−1). The first

term on the right hand side is bounded above by

P (|m̂(xi)−m(xi)| > δn) ≤ P (‖m̂(·)−m(·)‖ > δn)

where the notation ‖m̂(·) − m(·)‖ above denotes the sup norm over xi. The right hand side

probability above will be sufficiently small for n large enough by the rate of convergence of the

nonparametric estimator. The second term, P (m̂(xi) > 0,m(xi) ∈ (−δn, 0)), is bounded above by

P (m(xi) ∈ (−δn, 0)) which by the smoothness of m(xi) converges to 0, and hence can be made

arbitrarily small. �

To derive the rate of convergence and limiting distribution theory for the feasible estimator

where we first estimate choice probability functions and their derivatives nonparametrically, we

expand the nonparametric estimators around true functions that are inside the indicator function in

Qn2. Then we can follow the approach in Sherman (1994b). Having already established consistency

of the estimator, we will first establish root-n consistency and then asymptotic normality. For

root-n consistency we will apply Theorem 1 of Sherman (1994b) and so here we change notation

to deliberately stay as close as possible to his. We will actually apply this theorem twice, first

establishing a slower than root-n consistency result and then root-n consistency. Keeping our

notation deliberately as close as possible to Sherman(1994b), here replacing our second stage rank

objective function Q̂2,n(θ) with Ĝn(θ), our infeasible objective function Qifn,2(θ) with Gn(θ), and

denoting our limiting objective function, previously denoted by Γ0(θ), by G(θ). We have the

following theorem:

Theorem J.1. (From Theorem 1 in Sherman (1994b)).

If δn and εn are sequences of positive numbers converging to 0, and

1. θ̂ − θ0 = op(δn)

2. There exists a neighborhood of θ0 and a constant κ > 0 such that G(θ)− G(θ0) ≥ κ‖θ − θ0‖2

for all θ in this neighborhood.

3. Uniformly over Op(δn) neighborhoods of θ0

Ĝn(θ) = G(θ) +Op(‖θ − θ0‖/
√
n) + op(‖θ − θ0‖2) +Op(εn)

then θ̂ − θ0 = Op(max(ε1/2, n−1/2)).
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Once we use this theorem to establish the rate of convergence of our rank estimator, we can

attain limiting distribution theory, which will follow from the following theorem:

Theorem J.2. (From Theorem 2 in Sherman (1994b)). Suppose θ̂ is
√
n-consistent for θ0, an

interior point of Θ. Suppose also that uniformly over Op(n
−1/2) neighborhoods of θ0,

Ĝn(θ) =
1

2
(θ − θ0)′V (θ − θ0) +

1√
n

(θ − θ0)′Wn + op(1/n) (J.1)

where V is a negative definite matrix, and Wn converges in distribution to a N(0,∆) random vector.

Then

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (J.2)

We first turn attention to applying Theorem J.1 to derive the rate of convergence of our estima-

tor. Having already established consistency of our rank estimator, we turn attention to the second

condition in Theorem J.1. To show the second condition, we will first derive an expansion for

G(θ) around G(θ0). We denote that even though Gn(θ) is not differentiable in θ, G(θ) is sufficiently

smooth for Taylor expansions to apply as the expectation operator is a smoothing operator and

the smoothness conditions in Assumptions RK2, RK3. Taking a second order expansion of G(θ)

around G(θ0), we obtain

G(θ) = G(θ0) +∇βG(θ0)′(θ − θ0) +
1

2
(θ − θ0)′∇θθG(θ∗)(θ − θ0) (J.3)

where ∇θ and ∇θθ denote first and second derivative operators and θ∗ denotes an intermediate

value. We note that the first two terms of the right hand side of the above equation are 0, the first

by how we defined the objective function, and the second by our identification result in Theorem

2.1. Define

V ≡ ∇θθG(θ0) (J.4)

and V is positive definite by Assumption A3, so we have

(θ − θ0)′∇θθG(θ0)(θ − θ0) > 0 (J.5)

∇θθG(θ) is also continuous at θ = θ0 by Assumptions RK2 and RK3, so there exists a neighborhood

of θ0 such that for all θ in this neighborhood, we have

(θ − θ0)′∇θθG(θ)(θ − θ0) > 0 (J.6)

which suffices for the second condition to hold.

To show the third condition in Theorem J.1, we next establish the form of the remainder term
when we replace nonparametric estimators with the true functions they are estimating. Specifically
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we wish to evaluate the difference between

[1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (J.7)

+ 1{∂2P̂ 11(X1,i, Xi)/f̂V (Xi) + ∂2P̂
10(X1,j , Xj)/f̂V (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (J.8)

and

[1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) ≥ 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) ≥ 0} (J.9)

+ 1{∂2P 11(X1,i, Xi)/fV (Xi) + ∂2P
10(X1,j , Xj)/fV (Xj) < 0}1{Φ(X1,i, Xi, X1,j , Xj ; θ) < 0} (J.10)

To establish a representation for this difference, we first simplify notation we write the expressions

as:

I[m̂1(xi) + m̂2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (J.11)

+ I[m̂1(xi) + m̂2(xj) < 0]I[∆x′ijθ < 0] (J.12)

and

I[m1(xi) +m2(xj) ≥ 0]I[∆x′ijθ ≥ 0] (J.13)

+ I[m1(xi) +m2(xj) < 0]I[∆x′ijθ < 0] (J.14)

respectively, where here xi denotes the separate components of x1i, xi, and analogous for xj . We

first explore

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0]

for each i, j inside the double summation:

1

n(n− 1)

∑
i6=j

(I[m̂1(xi) + m̂2(xj) ≥ 0]− I[m1(xi) +m2(xj) ≥ 0])I[∆x′ijθ ≥ 0] (J.15)

An immediate technical difficulty that arises with the above term is the presence of a nonpara-

metric estimator inside the indicator function above. A simple approach to deal with this would

be to replace the indicator function with a smoothed indicator function in a fashion analogous to

Horowitz (1992), under appropriate conditions on the kernel function and smoothing parameter.

Such an approach is not necessary as long as the nonparametric estimator m̂1(xi) is asymptotically

normal, and asymptotically centered at m1(xi), which will be the case with our proposed kernel

estimator of the probability function and its derivative. In either approach (smoothed indicator or
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not) we can show that (J.15) can be represented as:

1

n(n− 1)

∑
i6=j

φ(0)fmij (0) ((m̂1(xi)−m1(xi)) + (m̂2(xj)−m2(xj))) I[∆x′ijθ ≥ 0]+op(n
−1) (J.16)

where φ(0) denotes the standard normal pdf evaluated at 0, fmij (0) denotes the density function of

m1(xi) +m2(xj) evaluated at 0, and the op(n
−1) term is uniform in θ lying in op(1) neighborhoods

of θ0. Therefore, uniformly for θ in an op(1) neighborhood of θ0, this remainder term converges to

0 at the rate of convergence of the first stage nonparametric estimator, which under Assumptions

RK3, RK4, RK5, is op(n
−1/4). Thus by repeated application of Theorem J.1, we can conclude that

the estimator is root-n consistent. To show that the estimator is also asymptotically normal, we

will first derive a linear representation for the term:

1

n(n− 1)

∑
i6=j

φ(0)fmij (0)(m̂1(xi)−m1(xi))I[∆x′ijθ ≥ 0] (J.17)

As this term is linear in the nonparametric estimator m̂1(xi), the desired linear representation

follows from arguments used in Khan (2001). One slight difference here compared to Khan (2001)

is that here our nonparametric estimators and estimands are each ratios of derivatives. Nonetheless,

after linearizing these ratios as done in, e.g. Newey and McFadden (1994). Specifically, we have

that J.17 can be expressed as:

1

n(n− 1)

∑
i6=j

φ(0)fmij (0)
1

m1den(xi)
(m̂1num(xi)−m1num(xi))I[∆x′ijθ ≥ 0] (J.18)

− 1

n(n− 1)

∑
i6=j

φ(0)fmij (0)
m1num(xi)

m1den(xi)2
(m̂1den(xi)−m1den(xi))I[∆x′ijθ ≥ 0] (J.19)

where m̂1num(xi) denotes the numerator {∂2P̂
11(X1,i, Xi)}, the estimator of m1num(xi) which de-

notes {∂2P
11(X1,i, Xi)}, and m̂1den(xi) denotes the denominator f̂V (Xi), the estimator of m1den(xi)

which denotes fV (Xi).

Plugging in the definitions of the kernel estimators of m̂1num(xi), and m̂1den(xi), results in a

third order process. Using arguments in Khan (2001) and Powell, Stock, and Stoker (1989) we can

express the third order U process as a second order U process plus an asymptotically negligible

remainder term. This is of the form:

1

n

n∑
i=1

φ(0)
`(xi)

m1den(xi)
(y1i −m1num(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(J.20)

where `(xi) ≡
−f ′X(xi)

fX(xi)
. We note that the function E

[
fmij (0)I[∆x′ijθ ≥ 0]|xi

]
, which we denote

here by H(xi, θ) is a smooth function in θ. We will use this feature to expand H(xi, θ) around
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H(xi, θ0). Analogous arguments can be used to attain a linear representation of (J.19), which is of

the form:

1

n

n∑
i=1

φ(0)
`2(x1i)m1num(xi)

m1den(xi)2
(y2i −m1den(xi))E

[
I[fmij (0)∆x′ijθ ≥ 0]|xi

]
(J.21)

where `2(x1i) ≡
−f ′X1

(x1i)

fX(x1i)
. Grouping (J.20) and (J.21) we have

1

n

n∑
i=1

φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
H(xi, θ)

(J.22)

Note that by Assumptions RK2, RK3, H(xi, θ) is smooth in θ implying the expansion

H(xi, θ) = H(xi, θ0) +∇θH(xi, θ0)′(θ − θ0)

Thus we can express (J.22) as the which we note is a mean 0 sum

1

n

n∑
i=1

ψ1rnki(θ − θ0) (J.23)

where

ψ1rnki = φ(0)
1

m1den(xi)

{
`(xi)(y1i −m1num(xi))−

m1num(xi)

m1den(xi)
`2(x1i)(y2i −m1den(xi))

}
∇θH(xi, θ0)

(J.24)

We can use identical arguments to attain a linear representation for the U− process:

1

n(n− 1)

∑
i6=j

φ(0)fmij (0) (m̂2(xj)−m2(xj)) I[∆x′ijθ ≥ 0] (J.25)

where m̂2(xj) is also a ratio of nonparametric estimators where here the numerator is m̂2n(xj) de-

noting {∂2P̂
10(X1,j , Xj)}, the estimator of m2n(x2) which denotes {∂2P

10(X1,j , Xj)}, and m̂2d(xj)

denotes the denominator f̂V (Xj), the estimator of m1den(xj) which denotes fV (Xj).

and by using identical arguments it too can be represented as a mean 0 sum denoted here by

1

n

n∑
i=1

ψ2rnki (J.26)

where ψ2rnki is defined as:

Finally after grouping the two terms and expanding H(xi, θ) around H(xi, θ0) we get that (J.16)
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can be represented as:

1

n

n∑
i=1

(ψ1rnki + ψ2rnki)
′(θ − θ0) + op(n

−1) (J.27)

Combining our results, from Theorem J.2, we have that

√
n(θ̂ − θ0)⇒ N(0, V −1∆V −1) (J.28)

where

V = ∇θθG(θ0) (J.29)

and

∆ = E
[
(ψ1rnki + ψ2rnki)(ψ1rnki + ψ2rnki)

′] (J.30)

K Model with Two Idiosyncratic Shocks

In this section, we focus on the identification of (α0, γ0) in the “condensed” model that X1 =

Z ′1λ0 + Z ′3β0 is observed and

Y1 = 1{X1 + α0Y2 − U ≥ 0}

Y2 = 1{X − V ≥ 0}.
(K.31)

with the understanding that (λ0, β0) can be identified jointly with α0 and γ0, as shown in Theorems

2.1 and 3.1. We further impose U = γ0W + η1, V = W + η2, and (W, η1, η2) are mutually

independent. First we consider the case γ0 = 1 and X1 is binary, because even in this context,

for the baseline case with one idiosyncratic shock, we can identify α0. But identification of α0

becomes more difficult in this model without the help of repeated measurements, as established in

the following theorem.

Theorem K.1. Suppose (K.31) holds, γ0 is known to be one, X1 is binary, and W has a bounded

support [−b,−a] such that 0.5 > b− a and 1− (b− a) > α0 > b− a, then α0 is not point identified.

This nonidentification result motivates imposing additional structure on W , and we consider

the following model

C1 U = γ0W + η1 and V = σ0W + η2.

C2 W is standard normally distributed.
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C3 W , η1 and η2 are mutually independent.

C4 X has full support.

C5 Denote the density of η2 as fη2 , then fη2 does not have a Gaussian component in the sense

that

fη2 ∈ G = {g is a density on < s.t. : g = g′ ∗ φσ for some density g′ implies that σ = 0},

where φσ is the density for a normal distribution with zero mean and σ2 variance.

Assumption C5 effectively assumes that the distribution of η2 has tail properties different from

those of a normal distribution. This type of assumption is made in the deconvolution literature as

it is necessary for identification of the target density when the error distribution is not completely

known- see, e.g., Butucea and Matias (2005).3 The importance of non-normality in factor models

goes back to Geary (1942) and Reiersol (1950), who have shown that factor loadings are identified

in a linear measurement error model if the factor is not Gaussian. In our case, note V = σ0W + η2

where W is standard normal and the density of V is identified from data. Here we want to identify

σ0 and the density of η2. If η2 has a Gaussian component, then

η2 = η′2 + σ̃W̃ ,

where W̃ is a standard normal random variable that is independent of η′2 and W and σ̃ > 0. It

implies

V = (σ0W + σ̃W̃ ) + η′2,

where η′2 does not have a Gaussian component. In addition, note that (σ0W + σ̃W̃ ) =
√
σ2

0 + σ̃2G,

for some standard normal random variable G. Therefore, without Assumption B5, σ0 is not

identified.

Theorem K.2. If Assumptions C1–C5 hold, then σ0, γ0 and α0 are identified.

Note that this identification result does not require any variation from X1, which is in spirit

close to the one-factor model in our paper and is different from the identification result in Vytlacil

and Yildiz (2007). We also note that this result does not contradict the counterexample in the

paper. In the counterexample, we only assume that we know the support of W is bounded. Here

we assume that the full density of W , and thus, the support of W is known.

3In fact, based on the results in Butucea and Matias (2005), W can belong to a more general class of known
distributions. Furthermore, we note that if σ0 is known, then Assumption C5 is not necessary.
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L Proof of Theorem E.1

Denote P ij(x1, x) = Prob(Y1 = i, Y2 = j|X1 = x1, X = x). Then

P 11(x1, x) =

∫ x

−∞
FU (x1 + α0|V = v)f(v)dv

P 10(x̃1, x) =

∫ +∞

x
FU (x̃1|V = v)f(v)dv.

(L.32)

Taking derivatives w.r.t. the second argument of the the LHS function, we have

∂2P
11(x1, x) = FU (x1 + α0|V = x)f(x)

∂2P
10(x̃1, x) = −FU (x̃1|V = x)f(x).

If |α0| ≤ b− a, then there exists a pair (x1, x̃1) such that x1 + α0 = x̃1. This pair can be identified

by checking the equation below:

∂2P
11(x1, x)/f(x) + ∂2P

10(x̃1, x)/f(x) = 0.

This concludes the sufficient part.

When α0 < a− b, for any α < α0, we can define

Ũ = U + α− α0 if U ≤ b+ α0

Ũ = U if U > b+ α0

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ b+ α0|V = v) + P (Ũ ≤ x1 + α,U > b+ α0|V = v)

= P (U ≤ x1 + α0|V = v)

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ b+ α0|V = v) + P (Ũ ≤ x1, U > b+ α0|V = v)

= P (U ≤ b+ α0, U ≤ x1 + α0 − α|V = v) + P (b+ α0 < U ≤ x1|V = v)

= P (U ≤ b+ α0|V = v) + P (b+ α0 < U ≤ x1|V = v)

= P (U ≤ x1|V = v),

where the third equality holds because, since α0 < a − b and α < α0, b + α0 ≤ x1 + α0 − α for

x1 ∈ [a, b]. Let GU,V and GŨ ,V be the joint distribution of (U, V ) and (Ũ , V ) respectively. Then

the above calculation with (L.32) imply that (α0, GU,V ) and (α,GŨ ,V ) produce the identical pair

(P 11(x1, x), P 10(x1, x)). In addition, the distribution of V is unchanged so that P (Y2 = 1|X = x)

is identified from data. Therefore, (α0, GU,V ) and (α,GŨ ,V ) are observationally equivalent.
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Similarly, when α0 > b− a, for any α > α0, we can define

Ũ = U + α− α0 if U > a+ α0

Ũ = U if U ≤ a+ α0

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ a+ α0|V = v) + P (Ũ ≤ x1 + α,U > a+ α0|V = v)

= P (U ≤ a+ α0|V = v) + P (a+ α0 < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α0|V = v) + P (Ũ ≤ x1, U > a+ α0|V = v)

= P (U ≤ x1|V = v),

where we use the facts that x1 ≤ a + α0 and x1 − a < α for x1 ∈ [a, b]. So again, (α0, GU,V ) and

(α,GŨ ,V ) are observationally equivalent.

M Proof of Theorem E.2

The sign of α0 is identified by the data. In the following, we focus on deriving the results when

α0 > b−a. By the proof of Theorem E.1, we have already shown that all α > α0 is in the identified

set. Now we consider b−a+α0
2 ≤ α < α0.

Ũ = U + α− α0 if U > a+ α

Ũ = U if U ≤ a+ α

Then for any x1 ∈ [a, b],

P (Ũ ≤ x1 + α|V = v) = P (Ũ ≤ x1 + α,U ≤ a+ α|V = v) + P (Ũ ≤ x1 + α,U > a+ α|V = v)

= P (U ≤ a+ α|V = v) + P (a+ α < U ≤ x1 + α0|V = v)

= P (U ≤ x1 + α0|V = v).

P (Ũ ≤ x1|V = v) = P (Ũ ≤ x1, U ≤ a+ α|V = v) + P (Ũ ≤ x1, U > a+ α|V = v)

= P (U ≤ x1|V = v) + P (U ≤ x1 + α0 − α,U > a+ α|V = v).

= P (U ≤ x1|V = v).

Here note that the last equality is because x1 +α0−α ≤ b+α0−α ≤ a+α if α ≥ b−a+α0
2 . Denote

α(1) = b−a+α0
2 . Then we have shown that there exists U (1)(α) which only depends on α such that
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for any x1 ∈ [a, b], any v and any α0 > α ≥ α(1)

P (U (1)(α) ≤ x1 + α|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α) ≤ x1|V = v) = P (U ≤ x1|V = v).

In particular, there exists U (1)(α(1)) such that

P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

Now repeating the above construction but replacing U with U (1) and α0 with α(1), we have for

any α(1) > α ≥ α(2) ≡ b−a+α(1)

2 , there exists U (2)(α) such that for any x1 ∈ [a, b], any v and any

α(1) > α ≥ α(2),

P (U (2)(α) ≤ x1 + α(2)|V = v) = P (U (1)(α(1)) ≤ x1 + α(1)|V = v) = P (U ≤ x1 + α0|V = v)

P (U (2)(α) ≤ x1|V = v) = P (U (1)(α(1)) ≤ x1|V = v) = P (U ≤ x1|V = v).

This concludes that any α such that α0 > α ≥ α(2) is in the identified set. In general, by repeating

the procedure k times, we have that any α such that

α0 > α ≥ α(k) = (1− 1

2k
)(b− a) +

α0

2k

is in the identified set. For any α > b−a, there exists some finite k such that α > (1− 1
2k

)(b−a)+ α0

2k
.

This concludes the result that α > b− a is in the identified set.

Finally, since if α > b−a, ∂2P
11(x1, x)+∂2P

10(x̃1, x) > 0 for all pairs of (x1, x) and (x̃1, x) while,

if α ≤ b−a, at least there exists one pair (x1, x) and (x̃1, x) such that ∂2P
11(x1, x)+∂2P

10(x̃1, x) ≤ 0.

This implies α ≤ b−a is not in the identified set. Therefore, the sharp identified set when α0 > b−a
is (b− a,∞).

When α0 < a− b, a symmetric argument implies that the identified set is (−∞, a− b).

N Proof of Theorem K.1

Our first result for this model illustrates how identification can become more difficult. In our first

result for this model, we show when −W has a bounded support, say [a, b], then α0 is not identified

if α0 > b− a. To establish this, consider an impostor α such that α < α0. In addition, we consider

the case where α0 − α + b < α0 + a and α + b < a + 1. Such α exists because of the fact that

1− (b− a) > α0 > b− a. Let ∆ = α0 − α and (W̃ , η̃1, η̃2) be mutually independent such that W̃ is
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distributed as W −∆, η̃2 is distributed as η2 −∆, and

Fη̃1(e) =



Fη1(e) on e ≤ a,

Fη1(a) on η1 ∈ (a, a+ ∆],

Fη1(e−∆) on e ∈ (a+ ∆, b+ ∆],

α0+a−e
α0+a−b−∆Fη1(b) + e−b−∆

α0+a−b−∆Fη1(α0 + a) on e ∈ (b+ ∆, α0 + a],

Fη1(e) on e ∈ (α0 + a, α0 + b),

Fη1(α0 + b) + e−α0−b
a+1+∆−α0−b(Fη1(a+ 1)− Fη1(α0 + b)) on e ∈ (α0 + b, a+ 1 + ∆],

Fη1(e−∆) on e ∈ (a+ ∆ + 1, b+ ∆ + 1],

Fη1(b+ 1) + e−(b+∆+1)
a+α0−b−∆ (Fη1(a+ α0 + 1)− Fη1(b+ 1)) on e ∈ (b+ ∆ + 1, a+ α0 + 1],

Fη1(e) on e > a+ α0 + 1.

Then, because −w̃ = ∆− w ∈ [a+ ∆, b+ ∆] and x1 = 0, 1,

P (Y1 = 1, Y2 = 0|X = x,X1 = x1) =

∫
Fη1(x1 − w)(1− Fη2(x− w))fW (w)dw

=

∫
Fη̃1(x1 − w̃)(1− Fη̃2(x− w̃))fw̃(w̃)dw̃.

Similarly, because α−w̃ = α0−w ∈ [α0+a, α0+b] and for e ∈ (α0+a, α0+b]∪(1+α0+a, 1+α0+b],

Fη̃1(e) = Fη1(e), we have

P (Y1 = 1, Y2 = 1|X = x,X1 = x1) =

∫
Fη1(x1 + α0 − w)Fη2(x− w)fW (w)dw

=

∫
Fη1(x1 + α− (w + α− α0))Fη2(x− w)fW (w)dw

=

∫
Fη̃1(x1 + α− w̃)Fη̃2(x− w̃)fw̃(w̃)dw̃.

This implies α0 is not identified from the impostor α.

O Proof of Theorem K.2

We first show that both σ0 and the density of η2 are identified. Note X has full support. This

implies the density of V denoted as fV (·) is identified via

fV (v) = ∂vE(Y2|X = v).
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In addition, we have

fV (·) = fη2 ∗ φσ0(·),

where ∗ denotes the convolution operator. Suppose fη2(·) and σ0 are not identified so that there

exist f ′η2(·) and σ′ such that

fV (·) = f ′η2 ∗ φσ′(·).

Without loss of generality, we assume σ′ ≥ σ0, otherwise, we can just relabel fη2(·) and f ′η2(·).
Then we have

fη2(·) = f ′η2 ∗ φ(σ′2−σ2
0).

By Assumption B5, we have σ
′

= σ0, which implies fη2(·) = f ′η2(·).

In the following, we proceed given that fη2(·) and σ0 are known. Recall Fη1(·) as the CDF of

η1. Then,

P 11(x1, x) =P (Y1 = 1, Y2 = 1|X1 = x1, X = x) =

∫
Fη1(x1 + α0 − γ0w)Fη2(x− σ0w)fW (w)dw

and

P 10(x1, x) =P (Y1 = 1, Y2 = 0|X1 = x1, X = x) =

∫
Fη1(x1 − γ0w)(1− Fη2(x− σ0w))fW (w)dw.

Taking derivatives of P 11(x1, x) and P 10(x1, x) w.r.t. x, we have

∂xP
11(x1, x) =

∫
Fη1(x1 + α0 − γ0w)fη2(x− σ0w)fW (w)dw (O.33)

and

−∂xP 10(x1, x) =

∫
Fη1(x1 − γ0w)fη2(x− σ0w)fW (w)dw. (O.34)

Applying Fourier transform on both sides of (O.33) and (O.34), we have

F(∂xP
11(x1, ·)) = Fσ0(Fη1(x1 + α0 − γ0·)fW (·))F(fη2(·)) (O.35)

and

F(−∂xP 10(x1, ·)) = Fσ0(Fη1(x1 − γ0·)fW (·))F(fη2(·)), (O.36)
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where for a generic function g(w),

Fσ0(g(·))(t) =
1√
2π

∫
exp(−2πitσ0w)g(w)dw.

Then, by (O.35), we can identify Fη1(x1 + α0 − ·) by

Fη1(x1 + α0 − γ0·) = F−1
σ0

(
F(∂xP

11(x1, ·))
F(fη2(·))

)
(·)/fW (·).

Similarly, we can identify

Fη1(x1 − γ0·) = F−1
σ0

(
F(−∂xP 10(x1, ·))
F(fη2(·))

)
(·)/fW (·),

where for a generic function g(w),

F−1
σ0 (g(·))(t) =

σ0√
2π

∫
exp(2πitσ0w)g(w)dw.

By finding the two pairs ((x1, w), (x′1, w
′)) and ((x̃1, w̃), (x̃′1, w̃

′)) such that w − w′ 6= w̃ − w̃′,

Fη1(x1 + α0 − γ0w) = Fη1(x′1 − γ0w
′), and Fη1(x̃1 + α0 − γ0w̃) = Fη1(x̃′1 − γ0w̃

′)

we can identify both α0 and γ0 as the solution of the following linear system:

α0 + γ0(w′ − w) = x′1 − x1 α0 + γ0(w̃′ − w̃) = x̃′1 − x̃1.
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