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it) Is! iislstioo 

Risk averse agents require compensation for lioldiiig risky assets. In a simple tsi'o asset world, where 

one asset is risky with norilially distributed returns while tie oilier is riskless. t lie nondiversiflable risk 

is simply t lie ant icipateil variance of I lie excess ret sirn above the riskiess rate. If the excess return has a 

constant variance t lien the risk 1ire!noiio is constant. 

The iioriiial return/constant variance nioilel of asset prices does not provide an adequate explanation 

of the behavior of asset niarkets such a.s the stock market. The returns [win iiiany assets, including an asset 

consisting of a portfolio of stocks from any of the coiiiinon stock market indices, appear so he drawn from 

non —nornsal unconditional distributions ( Faioa, 1961). In particular the empirical dial rihutions of retursss 

froni these assets tend to have a pronounced peaks and heavy tails- (Gallant 1988; Schwert, 1987, 1988). 

TIns is demonstrated for ret urns froni a portfolio consisting of stocks froni Standard and Poor's index 

by the histograni shown in Figure (1)- In tlsis distribution 39Z of the prohabihity mass of the empirical 

density lies witlon one—half of a standard deviation from the niean, 30% more than in the norosal density. 

This shape is typical of unconditional densities of normal observations subject to heteroskedasticit.y. 

The sample variance of the density will be a weighted average of the variances of the individual observations. 

It will he larger than the smallest variance and smaller than the largest variance. As a resolt, some 

observations are drawn from densities with smaller variances than the sample variance, these will be more 

peaked than a normal density with the sample variance. Likewise, some observations will be drawn from 

densities with larger variances than the sample variance, these will have more mass in their tails then does 

a normal with the sansple variance. As the unconditional density of the data is a linear combination of 

these normmial densities, it will have niore mass in its peak and tails than the simsmple nornsal. 

A large literature suggests that the variance of asset prices is not only heterogenous but also is 

predictable, c.f. Bollerslev, vi. at (1987), Mandlebroit (1963), Engle, ct. at (1987), Sehwert (1987, 1988). 

Engle and Bohierslev demonstrate the predictability of these variances with an autoregressive conditional 

heteroskedasticity model and a generalization. Schwert explores this aspect with an autoregression on 

squared errors and a Markov niodel on n000nal returns. Their conclusions imply that a properly specified 

model of the risk prensiuns must allow a time dependent variance with a predictable element. This in torn 



intilies that the risk preniiuni will lit tinu' detienileut. si ice future risk moves in a predictable fashion. 

We introduce a nioilel of I lii sI tick tijarket- in which tie excess ret urn is drawn from a uiixt tire of two 
normal densities. In snir nioilcl t lie stork market is assumed to ssritcli between two states. The stale of 
the market in each period deternitnes seliicli of two normal dist ribut ions is used to generate t lie excess 

return for that period. The states are cliaract erized by the variances of their densities. There is a "high 
variance" state and a. "low variance" state. The state itself is assumed to be generated b a first—order 
Markov process. TIns approach was first tirotiosed by Haniiltoti (I ttt7A, 198713) in a dilferent context. 

Like Bollerslev (1987), I his model leads to a variance srlucli is a function of the variance of prior periods. 
however, our model will allow the conditional variance to be a stochastic function of the prior period's 
variance, Thus model will allow its to exauiine bol Ii the lieteroskedasticit.v of excess ret urns, and their time 

dependence. 

We use the model to explore the relationship between the timmie dependent variance and the risk 

premium in the stork market. We will develop two models based on the heteroskedastic structure discussed 

above. Each model will be based on a different assuniption on agent.s' information sets. We will estimate 
each nsodel using postwar data from excess returns based on a portfolio of stocks iii Standard and Poor's 

index. 

In the first nsodel we will simimply assunse that economic agents know the realization of the Markov 

process underlying the generation of states, even though the econommietrician does not observe the state. 

There are two risk prensia in this sperification. The first is sinsply the difference between the iiiean of the 
distribution of the low variance state and the riskless return. Agents will require an increase in return over 

the riskiess asset to hold an asset with a randons retsmrn. The second premium is given by the difference 

between the niean of the distribution of the high variance state and that of the low variance state. This 

is the added return necessary to compensate for increased risk in the high variance state. Note that this 
is the standard nsodel where agents know the variance extended to the case when the return on the risky 
asset has a beterogenous variance. 

We will assunme that neither economic agents nor the economnetrician observe the states directly in the 
second model. Each period they formms probabilities of each possible state in the following period conditional 
on current and past excess returns. They use these probabilities in nsaking their portfolio choices in thuse 

periods. The paranseter of interest is the increase in return necessary to coospensate the agents for a given 



percentage increase ii tie prior probability i,f the high variance state. 

In Srctw;i 9.9 we explore t IIC WO Si III pie 1110(1(15 iii (lie risk prelili UI!, iii sciissed above. In Section 2.3 

we develop the statistical specitication of the model. Sclzou 2. discusses ilaximuni likelihood estimation 

of the specification. 'Ils is furl her developed in Appenlu .4. In Section 9.5 ive report estimates of the 

parameters anil interpret e hem . I lere we report (lie full saniple posterior tlist ribution of the slate in each 

priod. 

9.1) In tea ma o,mi,c mmioIel of e.mcess met semis in i Iso slob u'o,ld 

(onsider a two asset economy. The first asset is riskiess. ieldiig a sure return r1. 'Jim second asset 

yields a normally distributed return per dollar invested q with time dependent expectation , and variance 

('o if Si = 0 
= (1) 

I'm' if 3, = I 
where 5, is an index of the state and where r1 > i,. The excess return of the risky asset at time t is then 

simply y, = — rj. Time expected value of excess returns is then Jit = — r1. while its variance is = Vt. 

The states, S,, are generated by a realization of a first order Markov process wit.!, transition probabilities 

P(S, = 1S_, = 1) = 

P(S, = OIS(_] = I) = 1— P 

(2) 
P(S, = 01St_i = 0) = q 

P(S, = 1S,_m = 0) = I — q. 

The expected value of excess returns, p,, is the premium agents require at time I for accepting the 

variance in returns associated with the risky asset. In general. p, is thought to be positive and to be 

positively related to the variance o. The nature of this relationship, however, depends on the inforniation 

agents acquire. 

2.1 Agents Luau, the states 

Assume agents know the realization of the Markov process generating the states, thus they know (lie 

extent of risk in each period. In this case the excess return will he given by 

Pt = pm + Cm, ( N(0.o) (3) 



where p, is the risk pretionin in time t. It is expected to be positively related to a. Note that ,t, is a 

,letern,instic function of the state hence the risk preunuin Js will also he a detertin ,istic function of the 

st ate. 'I'lnis, t he risk premium ii, each period is simply the iitean of the normal distribut ion (let ertitined by 

that period's state. That , y, E(,lS, = i), = 0,1. Letting, 

Ii's ifS,0 
(4) 

p,, if S = 1. 

If agents are risk averse, we expect that t'' > i's ? 0 as Sj = 1 is the high variance state. 

2.9 .4geots arc s;s sic of tire states 

If agents are unsure of the state, 5,, tlteit the process by which agents form their expectations must 

he specified. here we will assnme that agents are unsure of the prevailing state in the past, present, and 

future. We assonie agents know the structure generating the states, i.e. they know equations (2) and the 

parameters of the normal densities front which the excess returns are drawn. Agents base their buying 

and selling decisions in period I on a prior distribution of the state in that period. Each period they 

update their beliefs about that period's state with current information using Bayes' rule. .kgents' prior 

distribution of the state in period I will be based on information through I — 1. 

Let 4', be the information set through period t, then agents' prior distribution of the state is P(5, = 

iI4',.'), i = 0.1. In period I they observe 4', and update their prior distribution using Bayes theorem 

P(S, = l4't—') x f(4"ISt = i, 4'_t ) — 

P(S, = '14'') = (.)) 
f('F,I4',_t) 

for i = 0,1. Here 1(4', 1St = i, 4',—,) is the distribution of the information set conditional on the state of 

the systens, f(4', 4',_') is the unconditional distribution of the information set, and P(S, = il4',), i = 0.1 

is the posterior distribution of the state conditional on all the information through period I. The Markov 

structure underlying the state ensures that the prior distribution for the state in the following period is 

sinsply a linear transformation of the posterior 

P(St+, = I4't) = +t = iS, = j)P(S, = iI4") (6) 

for i = 0,1. P(S,_, = iISt = j) is given by the appropriate transition probabilities in equations (2). 



Ilie prior distriloition may be snitonarized by the probability oltiw high variance st-ate, I(S,= 1t_ 
without loss of infiirniat ion, since I lie model has only two stales. Agents' port folio choice may lie specified 

as a shuttle function of I his prohalnhit'. That is, agents require an increase in I lie excess ret urn in period I 

when faced wit-h an increase iii I lair prior prohatsi ity that the state in that period will be the high variance 

state. We model the risk 1ireiiii 11111, whieii agents are uiiisiire of the state, as si iii ply 

+ jlP(5' = lIti ) (7) 

where is positive. The constant, 0, represents agents' required excess return for holding an asset in the 

low variance state. 

3.0 Specification 

We scill estimate three specifications based on the models discussed above. The models will he 

estimated on postwar nsonthly returns front a portfolio consisting of the stocks in Standard and Poor's 

index. The first tsro specifications will he direct translations from the econonsic models discussed previously. 

The third svill take into account agents behavior during the period. 

in the model where the states are known with certainty, no change is necessary for estinsation. Equa- 

tions (3) and (4) may he rewritten as 

= (i — Sihi-o + 5(01 + e1, e N(O,c7) 
(8) 

ui. = ) — 5fr + Sic-I 

where /15 and pt are the risk preniia in the low and high variance states, respectively. S is given by the 

first—order Markov process with equations (2) as the transition probabilities. Again, since agents are risk 

averse we expect both /ts and ji to be nnn—uegative and /10 � JII. 

The model in which agents are unsure of the state, equation (7) may specified as - - 

= a + P)S5 = it1_1(+ e, ri N)O,c?) - 

(9) 
= (1 — 

S1)c-5 + Sc-j. 

The risk preosinni in period (is agents' expectation of the excess return conditional on information through 

period I — 1. As before it is a —I- /3P(S5 = I I4ii_m). It should always be posit-ive and increasing in the 

anticipated variance, so that we expect both a and jd to be positive. 



'Else above stsecificat ion oft lie iiioilel assuisse t hat agents are only alile to t rasle assets once earls period. 

Wills uioutlsly data this assnusptiou shsoulsl be questioned, as agents may make niany trades witlou each 

period. At t lie hegi suing of period I, agents value their assets based on their prior distribution of the state 

its that period, P( S5 = 1 4's- ). During the period agents continue to observe trades Agents' posterior 

distribution of the state based on this data will effect the price and return of the asset. Since all we observe 

is I lie post erior dist ri but ion at the cud of the period I, and t Ii is is a function of pi, we can not include t lie 

posterior iii our speci Heat ion of ys ( Pagaii and Ullals , 1988). Since agents know t lie struct ure of t lie syst ens, 

we can issodel their behavior using the trne value of the state as a Isroxy for agents' posterior distrilsution. 

Thus leads to the specification 

= (1 — Ss)os + Ssos + 7P)Ss = fl4'i_s) en 
)lO) 

a? = (I — Sda + S5e 

where 5, is generated by the first—order Markov process with equations (2) as the transition probabilities. 

We cais sign all the parauseters in equations (10). Ageists react to au increase in the anticipated 

variance in tiose I by decreasing the asset's value at the beginning of the period. Since °? is the high 

variance, and the anticipated variance is given by 

E(afl4'st) = P(Ss = h!s_flc? + P(Ss = 014's—i)4 (11) 

we expect to be positive. Equivalently we may note that -y expresses the increase in excess return risk 

averse agents require to hold the risky asset for a given increase in their prior probability 
that this period's 

state will be the high variance state. If in period I the true state is the low variance state, the return of the 

asset will rise as agents realize this is the case and 
alter their portfolios, its favor of the risky asset. This 

behavior drives its price up at the end oft relative to the asset's price 
at the beginning of the period. We 

expect Ca to be positive. Likewise, if the true state is the high variance state, 
the return of the asset will 

fall as agents beconse convinced this is the ease 
and revalue it downwards. Thus, 0 should be be negative. 

We nsay also sign a linear combination of the parameters. Note that the risk presniuut in I, ;t, is given 

by the expected value of ys conditional 
on the current information set 4'st Thus, the risk premium is 

= aaP(Ss = 014's_i) + (at + )P(Ss = 14's_i) (12) 

If agents are risk averse, this equation should always be positive and increase with P)55 = ll+s_i). The 

expectation will always be positive as long as os > 0 and + os � 0. Finally, if both of these conditions 



hold iii t Ii i neitualit I lien 

dI')__i', > (I, (13) 

the risk pcenooni will increase with agents' prior jiroliahihity 01 the high variance stat.e. 

'ho conitilete t lie model, ageots' inforniation set joust lie specifier!. In thus case, ilii = (91,92 Ui) 

for I t, 2 'I'. We assunie agents oniy observe past realizations of the excess ret urn of the stock market 

when fornong their prior distribution of the state. This assunitition is siinily niade for convenience. 

I loicever, it is t eiiahile—t lie stock niarket. lia.s often been modeled as a crap gaoie, independent of t lie 

real econoi iv. An ext ension of t lie niorle! in whi ich agents nse ot her variables in forming tliei r prior is in 

hireliera lion 

4.1) Estniiol on 

Models iii which observations are chiosen froni a small set of distribntions are not new. In statistics 

they are caller! Jinit.c ;iicc/src distribntions and their estimation is one of the ohrhest applied problems. 

Pearson derived the first solnt ion: an application of thie niet hod of oionient s ivliicb involved finding the 

roots of a nonic pohynonsia!. In Pearson's problem and in the statistics literature in general, the distribution 

governing the state is generally binoniial (Everitt and Hand, 1981). 

In econojoetrics the use of finite nsixture distributions was discnssed in Coldfeld and Quandt (1973), 

who called them switching regressions. They suggested that a Markov process could be osed to generate 

the states. More recently Hanmilton (1987A, 1987B) modeled the growth rate of nonstationary tinse series, 

such as gross national product, subject to occasional discrete shifts in rate of growth or in variance using 

a Markov process. Specifically he considered niodels of the sanse foros as equations (8), though with 

autoregressive terms connnon to both states. Schwert (1988) uses Hanolton's nsodel to study the instability 

of nonunal stock niarket returns. 

Cosslett and Lee (1985) derived the likelihood function for this model. They use the rule of elinmination 

to derive the joint density of the data from the density of the data conditional on the state vector and uncon- 

ditional distribution of the state vector. In our case, the likelihood is given by f(ym,92,...,yTkm,x2,...,xr). 

In the nsodel where agents are certain of the state, ri is the null vector for I = 1,2 T. In the model 

where agents are uncertain of the state ri is their prior probability of the high variance state, i.e. 

Zr = P(S = lFyt.yz Ui—I). (14) 



for I 2.1.., 7. With this notation, the likelihood is given by an enumeration of all possible stales weighted 

b their probabilities. 

f(y1,p2 ,...,YTIrI,r2,..., IT) = 

?1=5N5,=5 {ft 
l,...,PTISI = ,...,ST = 1T,.rl, :7') (15) 

x P(S1 = 11,St = 12 = IT)} 

The teriiis in tIns equal ion are easy to describe. Since pm conditional on xj is serially nneorrelat.ed except 

for the stale, I lte density of the dat a vector, Si, 52 conditional on the slate vector is given by 

fly' yy(Si = ,...,5T = LT,XI J!T) = flfL3I83 = ij,:m) (IS) 

for i = 0, 1, k = 1.2 T. Given the Markov structure underlying the probability model, the uncondi- 

tional distribution of the state vector is given by 

P(S, = i1,S2 = 12 
= 'T) = flP(S1 = = 1,)P(S, = ii) (17) 

forit=0,l.k=1,....T. 
Direct maxinsizalion of the log of the likelihood function requires the evaluation of 2T terms in every 

iteration of mnaxiosization routine. It is comnputationally intractable for any reasonable sample size. We 

adopt the EM.algorithm to snsaxinsize equation (15). For this problem, it eoosists of three nteps: (1) the 

nonmination of starting values; (2) the evaluation of the expectation of the likelihood function, conditional 

on tise current parameter estimates; and (3) the inaxinsization of the log likelihood's expectation. Tue 

algorithm is discussed in detail, an it relates to thin problem, in Appcndm.r A. 

5.0 Rcsslts 

The analysis was carried out for monthly data from Standard and Poor's index of 500 stock prices. 

The series analyzed was the percentage nominal total return lens the three muonth T-bill rate of return, 

i.e. the monthly excess return of the portfolio times 100. The period of estimation was fronm January 1946 

through December 1987. The results of the estimation for the suodel in which agents know the state are 

presented in Tables (1) and (2). Estimates from the models in which agents are uncertain of the states 



Model o o p lit P q I' ' 
I I 7.(i65 0.5983 -1138.73 

(1.1118) (0.1871) 
II 13.3101 43.968! 0.8451 -1.0762 0.8641 0.977! -1423.69 0.0377 

(1.1515) (9.8076) (0.2075) (0.3987) (0.3359) (0.0552) 

Model 1: Con ant Mean, Constant Variance 

Model I!: Markov Mean, Markov Variance 

Sample Period: January 194C—Dcceniher 1987 

Observations: 501 

Table 1 

Estittiation results for model in which agents know the stale in each period. Asymptotic standard 
errors in parantheses. 

are presented in Table (3). In Section 2.5.1 we will assess the implications the estimated model has for 

heteroskedasticity in excess returns. In the following section we will examine the models' implications for 

the risk premium. 

5.1 Basic characlcrist.ics of the two state varmancc model 

The basic hypothesis upon which this paper is founded is that there are two states in the volatility of 

stock market returns, i.e. the density of excess returns is a mixture of two normals with different variances. 

Fsmrther, the distribution of the state has a time dependent element. In t.his section we will test the 

hypotheses of two states and time dependence. 

IJnfortunatelv, the test of the hypothesis of only one stale forces p and q to the edge of their parameter 

space: under the null one must be zero and the other unity. Under these conditions, the likelihood ratio 

test is not asymptotically distributed k However, Wolfe (1971) suggests a modified likelihood ratio 

statistic for testing tile hypothesis of a mixed mnultivariate normal distribution against the null of simple 
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stitiltivariate storusality. Is our sil uatsost the storistals are not sossltivariate, so the statistic simplifies to 

A' = ;(T- 3X( - f0) (18) 

where ( is the log likelihood of the one state model, Model 1, iii Table (1), and is the log likelihood of the 

full two stale model, Model 11. This statistic is asymptotically distributed 2 with two degrees of freedom. 

The valne of this statistic is 29.9010. This value is significant at any reasonable level of signficance. 

Unfortunately, simulat.ious Isv Eventt (1981) show that this test has low power unless liii — psi > 2. 

Further, the jsower of the test has also been questioned for lieteroskedastic models such as ours. 

Figure (2) plots the probability of the high variance states conditional on all the data, J'(S, = 

lips, y2 PT), for the full and sub—samples respectively. These posterior probabilities provide a visual 

test of the mixture hypothesis. In general if the null hypothesis of simple normality is true, then the plots 

of these probabilities should indicate uncertainty of the stale in usost periods. They should be relatively 

flat and centered at 0.5. There are few l)eniOds in the sausples in which the probability hover around 0.5. 

The full sausple posterior is between 0.20 and 0.80 in only 18% of tbe sausple. 

Statistically, the mixture usodel, Model II, requires that the two states be characterized by different 

ssseans and/or different variances. The variances in the two states are very well defined. The high variance 

state is suore than three times that in the low variance state. As will be discussed below, the standard 

error of this parauseter and all the high state parassseters are quite large. We may test the hupothesis 

= o, while letting p $ ie Despite the relatively large standard error of d? we usay reject the null at 

a reasonable level of confidence, the t-statistic is 3.2024. Though not as widely seperated as the variances, 

the iueaus of the distributions are distinct. A test of the hypothesis that i's = Os against the alternative, 

while letting a? ag, yields a t.statistic of -4.6375. 

The estimates of the transition probabilities suggest the low variance state will predosuinate. The 

estimates of the transition probabilities, p and q, of the Markov process suggest that the stationary, or 

unconditional, probabilities of the states for the full sample will be 0.8557 and 0.1443 for for the low and 

high variance states, respectively. Thus, for any given sample only about 14% of the observations will be 

expected to fall into the high variance state. 

* We may test the hypotheses c C, and p, !ss however, we easisot test thesis Jointly as this is equivalent to a test 
of the hypothesis that I — p = q = 0. 



lEigh I ariall c l.cngtli iii Length (1 

L;,siodes high Iarialtce Low I 'anti lice 

P( 5' I ) > 0.5 Lpisodes Episode.c 

7 mont Its 

A ugust- —September 11146 2 months 186 

April ---July 1962 1 88 

I)ecemiiber 111611 .1mw 11)70 7 10 

Novemither 1117t--—F'eliruary 1075 10 137 

Atigu sI 1986 - -.J unitary 1987 (i 7 

Septeitiber-— l)ecemiiher 1987 4 

eami (1.5 mont Its 77.5 muon) Im 

5.0 64.0 

Table 2 

This table describes time posi crior (IiStflhUtiOii oft he state conditional on all the data in the 
full sample. The first column lists the dates of the periods in which the probability of the high 
variance state exeeded one half. The second columumi lists the length of these periods. The last 
column lists the lengths of intervening periods in which t lie probability of the low state exceeded 
one half. 

The improbability of the high variance state niakes inference on high variance state parameters dif- 

ficult. The sample size in estimating the high variance state parameters is, of course, dependent on the 

number of observations that fall into the high variance state. Figure (2) show that there are relatively few 

of these periods. More formally, Appcndcr A, shows that the sansple size in estimating these parameters- 

is effectively P(S1 = I y ,..-, yr) 64.7385 in this case. Thus, due to the relatively few periods in which 

the high variance state is likely, we will not be able to estimate any of the parameters associated with it 

precisely. 

The point estimates of the probabilities p and q suggest a strong time dependence iii the Markov process 

generating the states. However, the large standard error of suggests that p can lie almost anywhere 

between 0 and 1. This possibility makes a formal test of time dependence in the model particularly 

interesting. Recall that a binomial process is simply a Markov process wit-h p = 1 — q. A binomial process 

removes the dependence of the probability distribution of the current- state on past states. Fortunately, 



the null hypothesis of a hinonual is nested within the Markor and does not reijilire p and q to lie near the 

boundaries of their possible values. We may reject t los liypot liesis, the t-statistic is 2.5603. 

The point estimate of p suggests that once in the high variance state, the state is expected to persist. 

Since j is greater then 0.5, in hot Ii 'lahle (1) and (2), the high variance state is expected to persist for at 

least tss'o periods. More specifically, we wish to find the smallest value off for which 

= i.Si+ji = i,...,Ss+i = = i) < 0.5, (19) 

i.e. the probability of remaining in t lie state i for j cossecutive periods is less then one half. For our sun pie 

first—order Markov process the number of periods, following lisuolton (1987A). j is given by 1/)1 — F) S i = 
iS1 = ifl. For the logli variance state, s = I so t list j = 11)1 — p), or 7.3586 months That is, once iii the 

high variance state, the stock market is expected to stay in that state for about seven months. The loss 

variance state is osnrh more persistent, setting i = 0, we then calculate j = 17(1 — q), or 43.6205 mouths. 

Note that as is near unity, small changes in it iosply large changes in the nsininiuisi value off satisviug 

(19). 

The persistence of the states and general behavior of the stock nsarket is described in a non—parametric 

way in Figure (2) and Table (2). They summarize the posterior distribution of the state in each period. 

conditional on the entire sample used in estimation. Generally, these plots and tables indicate that both 

states are persistent, and that the low variance state is very persistent. It persisted, in expectation, without 

break frons October 1946 until November 1962. fifteen and half years. Further, the probability of the high 

variance state does not exceed 0.2 during the 1950's. This period heavily influences the estimates of p and 

q. 

5.2 Imphcalions for ihc risk prcnsiuni 

Estimates of Model II, where agents are assunsed to know the state do not support an increasing risk 

prensium. The parameter estimates indicate that agents require an increase in annual return over T-bills 

of approximately 11% to hold the risky asset in low variance periods. However, the estimates also suggest 

the premium declines as the level of risk increases, i.e. ii c j?s. Further not only is Th significantly less 

then s, it is also significantly negative. We can reject the hypothesis of a risk prensiumn increasing in the 

variance. These parameter estimates are in agreement with those found by Schwert (1988) in his analysis 
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Aide] 5% 5% q I' V2 

III l3.0458 52.996:! 0.33643032! 0.8072 0.9728 1423.26 0.0056 

1.3023) (13.8229) (0.0097) (0.0261) (0.3048) (0.0370) 

AIodl r no °i P q ' I?.- 

IV 12.7085 19.9850 0.528 - 1.19:19 2.3802 0.8248 0.97211 -1421.41 0.0454 

(1.5247) (16.2129) (0.2356) (0.5:140) (1.0119) (0.3142) (0.0618) 

A lode] fl] 5 gj(ç arc us sure ol tie state 
Model il: r\g(llt s learn about lie st(.e during the period 

Suiiiple Period: .l au nary 1946—- December 1 !I$( 

Ol,seria (ions: 504 

Table 1 

Estimation results for the models in svhids agents are unsure of the states. In Mode! III agents 
make trades based on a prior distribution of the state using last period's excess return. In Model 
IV they make trades based on this prior and on a posterior distribution using trades during the 
perod - 

of nominal returns from stocks using Hamilton's (1987B) autoregressive model. 

Mis—specification is a likely explanation for this result. If agents are uncertaits of the state, so that 

Model III is the correct model, then estimates based on Model II will be inconsistent. Agents' expectation. 

or forecast, of the state is P(S1 = 1 4'j ). If agents are uncertain of the state, then this model suffers. 

from the usual error in variables problem since the forecast error, S5 — P(S1 = 1Ij._.i), is included on the 

right, hand side in equations (8). 

The parameter estimates for Model III, equations (9). are described in Table (3). They provide support 

for a risk premium rising as the anticipated level of risk rises. In this nsodel, the level of risk is measured 

by the probability of tile high variance state. This model predicts agents will require an annual return of 

approxiniately 4%, if certain next. period's return will be drawn from the low variance density. For a one 

percent increase in the probability of the high variance slate, agents require an increase in monthly return 

Schwert's analysis was based on a different dataset. lie used stock prices beginning tn the mid—nineteenth century. 
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of 0.03%. Agents perceive tire stock market in the high variance state to ire very risky. if certain of tIre 

high variance state, they require an annual ret urn of about 49%. However, I lie urrcorrdit ioaal probability 

of tire high variance state is oniy 0.1236. 'I'his suggests tire risk preiniarri will average approximately 9(3 

on air annual basis. 

Tlrorrglr tire estimates of Model Ill are consistent with tireory, tire estimated model explains very little 

of tire variance iii excess returns. Tire model always predicts a positive return, this its R2 is less tlren 0.6%. 

Tbe reasorr wiry it caurrot predict a negative return is that tire specification ignores tIre news effect . Agents 

acquire inrfornratiorr by observing trades during tire period. II agenrts don't krrow period I is drawn from tIre 

high variance density, tiren this isi of information is bad news. As agent s observe trades within period 

I they sciH adjust their prior distribution of tire state arid revalue stocks dowuwarris. Likewise, if agent 

don't know period t is drawn from the low variance density it is good news. They ucill adjust tireir prior 

distribution of tire state and revalue their stocks upwards. Model IV gerreralizes the case where agents are 

unsure of tire state to allow learning during the period. 

Note that Model IV also suggests tire direction of bias of the estimate of the risk prenrinur when agents 

are assunrred to know the state. Estimnatiug Modei ii under tisis reginre would yield paraureter estimates 

which smear the risk prensium and this news effect together. Since an increasing risk prenniuur and the 

news effect have opposite effects on excess returns, we would expect to be an upwardly biased estimate 

of the risk premium and jij to he a downwardly biased estimate. 

The estimated results indicate that we have sorted out the risk premium and the news effect. In 

general, tire signs on the parameters are as predicted in Section 2.3 and suggested above. The paranreters 

3 and no are significantly greater than zero, while a is signficantiy negative. The latter two paranreters 

are aiso significantly different from each other, the t-atatistic is -2.9737. They capture the effect of the state 

on the return of the stock during the period—the high variance state is bad news and the low variance 

state is good news. The high variance state is very bad news. All else constant, the estimates predict that 

the retsmrns from the stock market will drop by more then 15% on annual basis relative to the market for 

T-bilis. Allowing for a news effeci, os or, greatly improves the fit. The fl2 rises to 4.5%. 

In the mrrodel agents are assunsed to know the parameters, thus we should expect that no matter how 

large the fall in the market, a perfectly forseen high variance period should lead to a positive expectation 

of the excess return. That is, we should expect + am > 0. The estimates indicate that such a period 
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leads o alt expected annual excess ret urn of 1 5'/i. Note however, due to the large standard errors of the 

high variance paraniets'rs this increase is not statistically significant. 

Recall froflt equation (12) that I tie risk prenhlilIti is given by the expectation of the excess return. 

Seittoii 2. showed hat the risk preitliiiiit is increasing with lie anticipated variance if the derivative, (13) 

is jiosi t ice. 'this is trite if —f ill > ti5. 'Fite point estimates indicate that the risk prelniuni does increase 

with the anticipated variance. Again due to the large standard errors of the high variance parameters this 

increase is tot statistical! significant front zero. As with Model Ill, t lie nitcoitilittostal probability of the 

Idght variance state ittay be used to derive the average risk pretitiulil . lit t his case this probability is 0.1 ]38. 

Em plovi itg I his sal e a 11(1 equation (12) t lie risk preilti nut is predicted to a verage a pproxi match 7.5% per 

year for tie fit] I and sub—sani pIes, respect i velv. 

Ezaustining Figure (2) closely, it becomes appareuit that whenever the stock market enters the high 

variance state, it falls. In the next. period it generally recovers more then it has lost. The parameter 

est.itti ates suntutarize t his teutdancy. Our usiodel provides a basis for understanding this behavior: The 

probability of the higli variance state following a low variance state is quite small, so that agents are 

always surprised. Since is negative this leads to a big drop in the market. In the following period, 

the probability of the high variance state is quite large, so that agents anticipate it, and collect their risk 

preuiiiulfl. The estimates in Table (3) indicate the risk preuiuiuuut will nearly double in the period that is, 

ci post, high variance, rising to 13.6%. This fact is made clear by Figure (3). This figure compares agents' 

prior distribution with the posterior conditional on all the data. This econouuetrician's posterior leads the 

agent's prior. That is, most periods in which the agents' jtrior gives significant weight to the high variance 

state, follow periods in which the posterior gives weight to that state. In short, agents are often surprised 

by the move-from low variance to high variance. They are not surprised if (he system remains in the high 

variance state. 

6.0 Conclusion 

We have shown that an adequate model of the excess return from the stock market may be constructed 

with a nsixt ore of normal densities with different means and variances. The heteroskedasticity that. this 

mixture implies has a strong time dependence, suggesting that the conditional variance of the market can 

be forecasted. 



I U 

Ibis result suggesls t tat I lie risk preiti11111 will itiove over time lii resjmoiise to agents perception of 

I lie umarket 's riskiness. Agents forecast of t lie imiarket '5 van a mice is mutt always successful, so iii fonmimatiomi 

about tIme state gaued rlurimig periods is immiportamit to explaiuiug the overall return. 
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A ppenilix A 

MAXIMUM LIKELIHOOD ESTIMATION OF MARKOV MODELS 

WITH THE EM-ALGORITHM 

A. I hit cod action 

As noted iii the body of die paper, direct itiaxinozation of the likelihood function as defined in 

equation (2—15) requires the evaluation of 2 teriiis in every iteration, It is coiiipntstionaily jut ractalile 

for sn' reasonside sample size. We employ t lie EM—algorithm to uiaxiuiize t lie likelihood tnnct <iii. The 

algorit Inn was developed from an old ad hoc idea for handling nnssmg data. (1) replace t lie isnssing 

values by estimated values; (2) estimate the parameters; (3) re—estimate the missing values assuming the 

est iniat ed values are correct; (4) iterate over (2) and (3) until convergence. Missing data niet liods are 

relevant for our purposes because the states, Si, may be interpreted as flossing data. 

'[lie algorithm differs from this technique in that the usissing values are not filled in, rather they 

are replaced by sufficient statistics or, as in our case, the likelihood function is approximated in step (3). 

This is called the E—step, or expectation step, while step (2) is the Al—step, or maximization step. A 

good introduction to the algorithm is provided by Little and Rubin (1987). In general, if the underlying 

distrihution is from an exponential distribution, each iteration of the algorithm will yield a higher value 

of the likelihood, unless it is at a maximum. Denipster cL a!. (1977) show this for the general missing 

data problem. Baumo.ct. aL (1970), shows the EM.algorithns maximizes the likelihood function if such 

a muaximouns exists, when the data is a nsixture of exponential distributions and the underlying state is 

generated by a Markov process. A basic problem with the algorithns is that its rate of convergence is 

proportional to the usissiug information. As the missing state variable contains much information, the 

algorithm's convergence will be slow in our case. However, as will be denmonstrated below, the ease in 

interpretation and coding make—up for the lack of speed in computation. 

Scctmon A-2 presents the M—step for estinmation of the parameters of the Markov msiodel. We show that 

the expected value of the likelihood function nmay be maxinsized by the simultaneous solution of normal 

equations developed from the first—order conditions. The following section presents the E—step. \\'e derive 

the distribution of the state conditional on the parameters. The final section combines these steps and 

presents time formal EM—algorithm. 
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A. 2 lb Pit step: Itlaxiniriio likelilrisid estimates of the paraoreters when the rhistriloition of the state 

is k noun 

If the state were known in cacti period, t lien (lie likelihood function for each ohiservation Yi would 

si iii ny lie gi vim by t lo' ex p 

— Sr))cs,i/as) -i hir(ci,i/ei). (A—I) 

'1' lie error, ;,r, is given liv 
p Model Ii 

= yr -- ii — i&rr Model Ill (A—2) 

Yr — o — ri Model IV 

For i = 0. 1, and where r is a regressor coninroi to hot Ii states. M axi oization of the full likelihood with 

respect to the paranieters is trivial. 

However, we don't know the st ate. If we knew the probability distribution of the state of the systeoi 

lirior to observing the realization Yr. t lien tire expected value of tire likelihood for an observation is 

yr = P(Si = i)(c1,1/cj) (A-2) 

where P(81 = 1). i = 0,1. is the prior probability of the state in period 1. The log of the full expected 

likelihood is £ = in gi- 

The first order conditions for maximizing the likelihood for the model in which agents learn about the 

state are given by 

= P(Si = i)d(c,/cj)(yi — — ))—1) = 0, i = 0.1 
aa1 qrc' 

1=1 
(.4—3).. 

= I P(Sr = i)(eji/cj)(yi - o - 7X)(-r) = 0. 

Note that the posterior distribution of the state in period I upon observing Pi is simply 

P)Si = iIyi) = = i)(c1,1/aj), i = 0,1. (A-4) 

This suggests that the solutions to equations (A—3) may be obtained by weighted least squares. Defining 

the weights 
= P(Sr = iIyi), i = 0,1 

cT (A-5) 
= Co + C1,i 



25 

the first order con ii it us suggest t lie norm al eqnat toils 

_j ('a,i 0 ('situ 1s t 5IYI 

° ('i, ('11r1 (1 : t'.yt (A—fl) 

11 (.r t ('11r, D1.r \ 
Solving for t lie paraniet er est i itat en, sis, at, and , is of course, trivial. 

Note that in the case when agents know the state, t lie appropriate normal equations are given by a 

subset the equations (A—ti). These tony be solved to yield the estimates 

h1) ilyñyt — 1 -' s—fl.. 
T= l, = ilyt) 

-2 >_J P(5 = lyt)(yt — Th)2 = —--—--—---—--—--, i = 0.1 
P(S1 = 

Note that the effectivesample size in equations (A—7) for state i is simply the sum of the weights, P(S1 = 

ijyi). Note also that lithe posterior distribution of the state variable is degenerate—if S1 is known with 

certainty——then the estimates take on the intnitively pleasing forms 

— - t=0l 
1V5,=i 

(A-fl) 
—2 ws,—(Yi — 

07 = , -s=0,1. 

The parameters where agents don't know the state uoay he estimated in the same way. 

For all three models the estimates of the parameters of the density in each state are not dependents 

on the transition probabilities, p and q. This implies that the maximum likelihood estimates of the 

probabilities conditional on the moaximnin likelihood estimates of the density parameters will be the same 

as the unconditional estinmates. Thus, a two—step technique may be ensployed to maximize the expectation 

of the likelihood function with respect to all of the parameters of the model. First, the appropriate nornmal 

equations are solved to estimate the parameters of the density of fit- Second, the expected value of the 

likelihood function is maximiuzed with respect top and q conditional on the estimates of density parameters. 

Hamilton )1988) extends this method by deriving normal equations for the transition probabilities. 
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A. :t 'Ike F' steji' 'l'lie ihsti-iliitii,ri of the statC when the parameters are known 

Wit ii real data, of course, tie tlmsi riliut iii oft lie state tilt he svstciti, , will (lever he known. However, 

Itayes t lieoretii niav lie eiiiployed to derive tie distribution cotiditmomiai oti a/I the parameters and t lie data. 

II ecall that Bayes t lieoremmi is given h' (lie Is ic of coma! I tonal expect at oiis. That is, if we are interested iii 

soiiie paraiiiet er f, (lien the deiisi t v of t Ii at part! iet er gi ccii an observation m is 

F(f');(91 f') 
P1 y) ——'- —---—, (A-9) 

9, 

where (lie uticoiiditional density ol 9 i given by 

1(9 = p(ytk)!i(f')df. ( A—b) 
4' 

Where '4' is the parameter space of f'. It is customary to refer to p(f') as the prior density, as it is held 

prior to t lie datuimi g,. Likewise, p(yt ) is the density posterior to yi. 

In time series, (lie posterior (lensit.y in period I becomes the prior density for period I + 1. Bayes' 

heorem for the (list ribnt ion of f' using bot I y and y + t is gi vets by 

x_p(y,yI') p(y!yi.-t.ys) = (A—il) 

but (his is just. 
x p(y') x p(ys+il',yt) 

p(f'Iym+i,yi) = 
p(ytiym) xp(y,) 

(A-12) 

= (v(R/) 
x P(Ytf')\ p(yi+ilf',yt) 

\ 't) I (t+sIi) 
The parantheses is just Bayes' theorem, so that 

p('J'Iyi) x p(yi+Ie',yt) 
p(yt+i.y,) = —- (A—13) 

p(ym+i yt) 

This equation is the basis for Bayesian sequential updating. When we have a posterior distribution of ', 
based on observations Yi,yz ,yt— and we observe y, we may update it simply by allowing the posterior 

distribution at time I to become the distribution prior to observing 

In Markov models, when the parameter of interest is the state, Bayes theorens takes on an especially 

tractable form. These iisodels are characterized by a finite number of states, in the case at hand two. 

This results in a discrete prior distribution. Furthermore, the distribution of the state is dependent 



ottlv ott t Ite rt'alizetl stale itt t lie 1trevttots periotl. i'lie prevtotts state is uitkitowtt, ltttwever, we have its 

pttstei-ior dot rilttttittit, I'(S t t]y< ). t - (tI, (yt.y Mt t), front the previous attttltcatioit of 

Bayes Ilteitreut. ilte prior tlistriltttttoit will sitttjtly be last periods pttstenor tt1ttlated witlt the appropriate 
ra ito ¶ ion jtrttlta Itilit its 

= ily-t) d5t_t = J)P(St =ii-i) (A-li) 
1=1< 

Nole that in tlte ittitial period, there is ito posterior front t lit' previous period. This ohservatioit is 

most easily liattdled liv a.ssittttittg t hat the !vharkttv process logart inlinitely far into the past. Thus, the 

prior distribution of tlte first oliservalion is siittttly the steady stale proltalithity distrihsition of the state. 

That is. t Its' Itrior for t lie first oltservat 1011, Mi, IS delised to be 

P(55 = 1) = 
2 — p — q 

P(So=0)= 2—p — q 

('onditiostal on the state, Mt is distributed iid Normal. Thus the likelihood of Mt is given by the set of 

equations defined by the normal densities 

pi(ytlSt = i.y5_1) = (ej s/srj). = 0,1. 

where as before e,1 is defined by equation (A—2). 

The Marhov structure also siittplifies the structure of the the unconditional density of Pr, p(y). Due 

to the discrete prior, the integral of equation (A—b) is replaced by the sutttntatiou 

p(yilyt_1) = P(51 = 0Yr_t) x = 0) P(51 = flr_1) x pi(ytlSt = 1). 

Note that weigltts ou the deusities sutrt to unity by definition, since P(St = up1..3), i = 0,1 is a well 

defined distribution function. Thus, p(yrlyg_j) is sinsply a rstixed density: it is a proper density furtction 

that integrates to one. 

Simple application of Bayes theorem gives the posterior distribution of the state conditional ott infor- 

utation through period t, 

P(S5 = iy1_1) x ps(yr r = i) =0,1 
p(yrIy_1) 



We itow scant to ittitlate tins (list rihutittu to titid the distribution of the state cotitlittoital Ott the data 

ltrttuglt tteriotl i 'litat i. we svislt to evaluate I itt prttttaltility It( St — I IYT) We now let. expression 

(A IS) be the prior tlist ri tittiott oft Ite state, and itptlate this tltstributioit fttr t —I I, t + 2 'I' using Bayes 

I lteoreitt. Suppose sve have terloruted the update tltcttuglt t —1- j --- 1. We wish to add observation Ott, to 

our 1tttsterior. 'l'lteit the cttittpotteuts of Bayes t lteoreitt are given by 

Prior: It) St = I )Yt ) ( A—19 

Likeliltood: f(yt+ 1St = 1, Yij—i ) (A—20) 

I) ncttitditiooal: Tht--lyt j—i) (A—21 

Note t hat. tlte ttncottditioital distrihttt ion, expression ( A—21 ) may be derived by integrating the state out 

of tlte likelihood. In general, the likelihood itself is difficult to evaluate. Recall that the data, Pt, is 

uncorrelated except for the state and tltat the state is generated by a first order Markov proces. Tltis 

implies that 
= ij-i ,..,St-Fi = 11,51 = 

(A-22( 
= f)y+,ISt+-t = 

for z = 0.1. Ve can tlteit obtaiit tlte likelihood using the rule of elinsination, 

= 1,y_) = 
I (A—23) 

> f)yt+St÷-i = i5_t)P(Ss+.1 = '—iP5t = 
'j_ 1=0 

The expression P(St,.jI = 1j—I55 = for i = 0,1 is readily evaluated using Bayes theoreiu. 

AU we need do is follow the algorithns for updating the probability P(S1t- = l1y5+t-), for It = 1,2 j—l, 

conditional on St = 1. That is, 

= liSt = l,y(+k) = 

= flS( = l.Ytt-) x f)yt+dSi = l,Si+t- = 1,y5.) (A-24( 

f(yt+kISs = 1,)'jt-t-) 

Each component on the right hand side of equation (A—24) may be easily evaluated. The likelihood is 

f(yt-i-t-ISt = I, Sst- = 1'YI+J—2) = (cIs+k/c1). (A—25) 

The "unconditional" density of the new datum. Pitt- IS 

f(yt÷tlSs = l,Yt+t-i) = P)S1+t-iS1 = l,y(+k_I)(eI,s÷kIct). (A-26) 
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Ii alit. the iri,ir 1iroltaliilitv of t lie state, i-—- I, contlit na! ott .5 anti tie that a, i.e. t lii expression 

- 11.5 - 1,Ytk ), is simply 

liSt: ) (1- q)lt(5Nk 01St: t'Ytk ) (A-27) 

Applying et1u at ion ( A - 2-I ), Bayes theorem for ni a king in fereuce ott the state repeatedly allows us to 

evaluate eitoa t.ion ( A 22), and (lois t lie Ii keliltood . C) nce we have t lie Ii keliltood it is easy to evaluate (lie 

unconditional dist riliut.ion of the state. Evaluating Bayes theorem is t lien just a matter of substitution. 

A. :TIie EM algorithm: Maxinoon Iikelihotul estiitisttes ut the parameters when the sltstrittstjou of kit, 

state is unknown 

So far we have derived a met hod of suit aining naxinoutn likelihood est iniat es of t lie paruoneters of 

the density function of each state and transition pruubabilities guru the probability slistrilout mu of I lie 

state. We have also found a method of obtaining the probability of each state quu'cuu the parameters of 

density functions and the transition probabilities. Conubining these two techniques auud iterating give us 

the EM-algoritluo. 

The combined algorithm is as follows: (1) Nominate estimates of the parameters. Denote the nouni- 

nated estimates, g[]. in Model Ii this is 

= 
(,u1. ,iç51. 

21s1 a°I,pi5i. q15]) (A—28) 

(2) Use Bayes theorem to derive the probability distribution of St, I = l,2....,T conditional on the 

parameter estimates i°1, P)S5 = iOhi,yT), i = 0,1: (3) Set the weights employed in the weighted least 

squares estimation, equations (A—6) equal to the probabilities associated with the distribntton derived 

by Bayes theorenu. Thns, we are asserting that the known prior distribution of the state in equation 

(A—2) is P(St = ulyt suuu, Its-ft ItT). Thus. the posterior distribution of equation )A—4) is simply 

= 1IYT). This is presented formally in Hamilton (1988). (4) Use the two-step estimation technique 

discussed in Section 3.4.1 to obtain new estimates of the paranieters. Set 911 equal to the resulting estimates 

of the parameters, 
= ii. g1ai, &i51,is1, E0]). (A—29) 

%\'here i, etc... represent the maximum likelihood estinuates of the parameters of Model II conditional 

on the posterior distribution F) S = 39171), j = 0, 1: (5) Iterate steps (2) through (4) until an appropriate 



:30 

(oiivergelicc criteria is iiiit . Iii iiiir iiiiji1iiiii'iit at iiiii iii t!ti' a!gs.irit !iiii the stiijijiiitg ctiiiilit oii was ioet when 

- N-• K 0.00!. (A-30) 

Fills tecliiiiqne fbi Univ yields iiiaxiiiiiiiii likelihood estijijates of tIe liaraineters hut application of 

Bayes theorem gives us lie posterior ilist riloitioii l(5 ijyfl, i =- 0,1. 'I'lus allows us to make inferences 

concerning t lie st ate of 1 lie sys! em, and to evalnate agents' prior distribution of the state. 




