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1.0 Introduction

Risk averse agents require compensation for holding risky assets. In a simple two asset world, where
one asset is risky with normally distributed returns while the other is riskless. the nondiversifiable risk
is simply the anticipated variance of the excess return above the riskless rate. If the excess return has a
constant variance then the risk premium is constant.

The normal return/constant variance model of asset prices does not provide an adequate explanation
of the behavior of asset markets such as the stock markel. The returns from many assets, including an asset
consisting of a portfolio of stocks from any of the common stock market indices, appear to be drawn from
non-norinal unconditional distributions (Fama, 1961). In particular the empirical disiributions of returns
from these assets tend lo have a pronounced peaks and heavy tails. (Gallant 1988; Schwert, 1987, 1988).
This is demonstrated for returns from a portfolio consisting of stocks from Standard and Poor’s index
by the histogram shown in Figure (1). In this distribution 38% of the probability mass of the empirical
density lies within one-half of a standard deviation from the mean, 30% more than in the normal density.

This shape is typical of unconditional densities of normal observations subject to heteroskedasticity.
The sample variance of the densily will be a weighted average of the variances of the individual observations.
It will be larger than the smallest variance and smaller than the largest variance. As a result, some
observations are drawn from densities with smaller variances than the sample variance, these will be more
peaked than a normal density with the sample variance. Likewise, some observations will be drawn from
densities with larger variances than the sample variance, these will have more mass in their tails then does”
a normal with the sample variance. As the unconditional density of the data is a linear combination of
these normal densities. it will have more mass in its peak and tails than the simple normal.

A large literature suggesis that the variance of asset prices is nol only heterogenous but also is
predictable, c.f. Bollerslev, et. al. (1987), Mandlebroit (1963), Engle, el al. (1987), Schwert (1987, 1988).
Engle and Bollerslev demonstrate the predictabilily of these variances with an autoregressive conditional
heteroskedasticity model and a generalization. Schwert explores this aspect with an autoregression on
squared errors and a Markov model on nominal returns. Their conclusions imply that a properly specified

model of the risk premium must allow a time dependent variance with a predictable element. This in turn



implies that the risk premium will be time dependent, since future risk moves in a predictable fashion.

We introduce a model of the stock market in which the excess return is drawn from a mixture of itwo
normal densities. ln our model the stock market is assumed to switch belween two stafes, The state of
the market in each period determines which of two normal distributions is used to generate the excess
return for that period. The states are characterized by the variances of their densities. There is a “high
variance” state and a “low variance” state. The state itsell is assumed {o be generated by a first~order
Markov process. This approach was first proposed by Hamilton (1987A, 1987B) in a diflerent context.
Like Bollerslev (1987), this model leads to a variance which is a function of the variance of prior periods.
However, our model will allow the conditional variance to be a stochastic function of the prior period’s
variance. This model will allow us to examine both the heteroskedasticity of excess returns, and tleir time

dependence.

We use the model to explore the relationship between the time dependent variance and the risk
premium in the stock market. We will develop two models based on the heteroskedastic structure discussed
above. Each model will be based on a diflerent assumption on agents’ information sets. We will estimate
each model using postwar data from excess returns based on a portfolio of stocks in Standard and Poor’s

index.

In the first model we will simply assume that economic agents know the realization of the Markov
process underlying the generation of states, even though the econometrician does not observe the state.
There are two risk premia in this specification. The first is simply the difference between the mean of the
distribution of the low variance state and the riskless return. Agents will require an increase in return over
the riskless asset to hold an asset with a random return. The second premium is given by the difference
between the mean of the distribution of the high variance state and that of the low variance state. This
is the added return necessary to compensate for increased risk in the high variance state. Note that this
is the standard model where agents know the variance extended to the case when the return on the risky

asset has a heterogenous variance.

We will assume that neither economic agents nor the econometrician observe the states directly in the
second model. Each period they form probabilities of each possible state in the following period conditional
on current and past excess returns. They use these probabilities in making their portfolio choices in those

periods. The parameter of interest is the increase in return necessary to compensate the agents for a given



percentage increase in the prior probability of the ligh variance state.

In Section 2.2 we explore the two simple models of the risk premium discussed above. In Section 2.3
we develop the statistical specification of the model. Section 2.4 discusses maximum likelilood estimation
of the specification. This is further developed in Appendir A. In Section 2.5 we report estimates of the
parameters and interprete thent. lere we report the full sample posterior distribution of the state in each

period.
2.0 An cconomic model of excess veturns in a {wo stalc world

Consider a two asset economy. The first asset is riskless, yielding a sure return 7. The second asset
vields a norinally distributed return per dollar invested g, with time dependent expectation #; and variance
ve, ifS¢=0
" {u,, S =1 )
where Sy is an index of the state and where 1 > vg. The excess return of the risky asset at time t is then
simply y = g — ry. The expected value of excess returns is then ¢ = 8; — ry. while its variance is o7 = v,.
The states, Sy, are generated by a realization of a first order Markov process with transition probabilities
P(Si=1iStiaa=1)=p
P(Si=0|Si1=1)=1-p
P(§ =051 =0)=¢
P(Si=15§_1=0)=1-4.
The expected value of excess returns, py, is the premium agents require at time ¢ for accepting the
variance in returns associated with the risky asset. In general. yy is thought to be positive and to be”
positively related to the variance o?. The nature of this relationship, however, depends on the information

agenis acquire.
2.1 Agents know the stales

Assume agents know the realization of the Markov process generating the states, thus they know the

extent of risk in each period. In this case the excess return will be given by

w=p+G (o~ N(0.o]) (3)



where j¢ is the risk premimn in time £ 1t s expected to be positively related to a?. Note that alis a
determinstic function of the state Iience the risk premium gy will also be a deterministic function of the
state. Thus, the risk premium in each period is simply the mean of the normal distribution deteriined by
that period’s state. That is, py = E(y|$ =), 1= 0,1. Letting,

,10, ifS(ZO
e = . (4)
. i S =1

If agents are risk averse, we expect that yy > po >0 as 8¢ = 1is the high variance state.
2.2 Agents arc unsure of the states

If agents are unsure of the state, Sy, then the process by which agents form their expectations must
be specified. Here we will assume that agenls are unsure of the prevailing state in the past, present, and
future. We assunie agents know the structure generating the states, i.e. they know equations (2) and the
parameters of the normal densities from which the excess returns are drawn. Agents base their buying
and selling decisions in period t on a prior distribution of the state in that period. Each period they
update their beliefs about that period’s state with current information using Bayes’ rule. Agents’ prior
distribution of the state in period t will be based on information through ¢t — 1.

Let &, be the information sei through period ¢, then agents’ prior distribution of the state is P(5; =
i|®,_y), i = 0.1. In period t they observe &, and update their prior distribulion using Bayes theorem

P(5¢ = 1]®e-1) X f(Pe|Se = 1,%e-1)

P(5; =1|®) = F(8:|3 1)

(5)

for i = 0,1. Here f(®4|S; = i,®:_1) is the distribution of the information set conditional on the state of-
the system, f(®; ®;_1) is the unconditional distribution of the information set, and P(S; = i{®;),7=0.1
is the posterior distribution of the state conditional on all the information through period t. The Markov
struclure underlying the stale ensures that the prior distribution for the state in the following period is
simply a linear transformation of the posterior

1
P(Spr = il®d) = Y P(Sear = ilS¢ = §)P(Se = 71%) (6)

=0

for i = 0,1. P(S§;-1 = i|S¢ = j) is given by the appropriate transition probabilities in equations (2).



The prior distribution may he sunimarized by the probability of the high variance state, P(S, = 1[®e1)
without loss of information, since the model has only two states. Agents’ portfolio choice may be specified
as a simple function of this probability. That is, agents require an increase in the excess return in period {
when faced with an increase in their prior probability that the state in that period will be the high variance

state. We model the risk premium, when agents are unsure of the state, as simply

pe = a+ 3P(S = 1d) {

~1

where 3 is positive. The constaut, a, represents agents’ required excess return for holding an asset in the

low variance state.
3.0 Specification

We will estimate three specifications based on the models discussed above. The models will be
estimated on postwar monthly returns from a portfolio consisting of the stocks in Standard and Poor’s
index. The first two specifications will be direct translations from the economic models discussed previously.
The third will take into account agents behavior during the period.

In the model where the states are known with certainty, no change is necessary for estimation. Equa-

tions (3) and (4) may be rewritten as

yr = (1 — St)po + Syr + 4, & ~ N(0,07)
(8

ol =(1- Se)og + Sta;"
where jig and jp, are the risk premia in the low and high variance states, respectively. Sy is given by the
first—order Markov process with equations (2) as the transition probabilities. Again, since agents are risk'
averse we expect both yio and ji; to be non—negative and po > pg.
The model in which agents are unsure of the state, equation (7) may specified as
y=a+8P(S =1 1)+, &~ N00}) )

S)ed + Siof.

Il
|

2

94

The risk premium in period ¢ is agents’ expectation of the excess return conditional on information through
period t — 1. As hefore it is a + BP(S; = 1|®;_;1). It should always be positive and increasing in the

anlicipated variance, so that we expect both a and g to be positive.



The above specification of the model assume that agents are only able to trade assets once each period.
With mouthly data this assumption should be questioned, as agents may make many trades within each
period. At the beginning of period {, agents value their assets based on their prior distribution of the state
in that period, P(S, = 11¢,_;). During the period agents continue to observe trades. Agents’ posterior
distribution of the state based on this data will effect the price and return of the asset. Since all we observe
is the posterior distribution at the end of the period ¢, and this is a function of y, we cannot include the
posterior in our specification of 4, (Pagan and Ullah, 1988). Since agents know the structure of the system,
we can model their behavior using the true value of the stale as a proxy for agents’ posterior distribution.
This leads to the specification

g = (1 = S)ag + Siar +4P(S¢ = 1Pe1) + =44 £y ~ ]\'(0,0,2)
Y 5 , (10)
a; = (1 — Si)og + Sio7
where S is gencrated by the first-order Markov process with equations (2) as the transition probabilities.

We can sign all the paramelers in equations (10). Agents react to an increase in the anticipated

variance in time { by decreasing the asset’s value at the beginning of the period. Since o} is the high

variance, and the anticipated variance is given by
E(a?[®:-3) = P(S¢ = 1|@4_1)0] + P(Se = 0|1 )eg (11)

we expect 7 to be positive. Equivalently we may note that v expresses the increase in excess return risk
averse agents require to hold the risky asset for a given increase in their prior probability that this period’s
state will be the high variance state. If in period ¢ the true stale is the low variance state, the return of the
asset will rise as agents realize this is the case and alter their portfolios, in favor of the risky asset. This
behavior drives its price up at the end of ¢ relative to the asset’s price at the beginning of the period. We )
expect ag to be positive. Likewise, if the true state is the high variance state, the return of the asset will
fall as agents become convinced this is the case and revalue it downwards. Thus, aj should be be negative. .
We may also sign a linear combination of the parameters. Note that the risk premiumin ¢, gy, is given

by the expected value of ; conditional on the current information set ®;_;. Thus, the risk premium is
E(y/®:-1) = aoP(Sy = 0]®:_1) + (a1 + 7)P(St = 1}Pe1) (12)

If agents are risk averse, this equation should always be positive and increase with P(§; = 1{#4-1). The

expectation will always be positive as long as ap > 0 and v + aj > 0. Finally, if both of these conditions



hold with inequality then

o )
ln:zlsfyj[qn ;4:)’.') L (13)
the risk preminm will increase with ageats’ prior probability of the high variance state.

To complete the model, agents’ information set must be specified. In this case, €1 = (y1,¥2, ..., 91 ),
forf — 1,2,...,T. We assume agents only observe past realizations of the excess return of the stock market
when forming their prior distribution of the state. This assumption is simply made for convenience.
However, il is tenable—the stock market has often been modeled as a crap game, independent of the

real cconomy. An extension of the model in which agents use other variables in forming their prior is in

preperation.
4.0 Estimation

Models in which observations are chosen from a small set of distributions arc not new. In statistics
they are called finite murture distributions and their estimation is one of the oldest applied problems.
Pearson derived the first solution: an application of the method of monments which involved finding the
roots of a nonic polynomial. In Pearson’s problem and in the statistics literature in general, the distribution
governing the state is generally binomial (Everitt and Hand, 1981).

In econometrics the use of finite mixture distributions was discussed in Goldfeld and Quandt (1973),
who called them switching regressions. They suggested that a Markov process could be used to generate
the states. More recently Hamilton (1987A, 1987B) modeled the growth rate of nonstationary time series,
such as gross national product, subject to occasional discrete shifts in rate of growth or in variance using
a Markov process. Specifically he considered models of the same form as equations (8), though with-
auioregressive terms comnion to both states. Schwert (1988) uses Hamilton’s model to study the instability
of nominal stock market returns.

Cosslett and Lee (1985) derived the likelihood function for this model. They use the rule of elimination
to derive the joint density of the data from the density of the data conditional on the state vector and uncon-
ditional distribution of the state vector. In our case, the likelihood is given by f(y1,y2.....,y7|T1, 72, .00 TT)-
In the model where agents are certain of the state, z; is the null vector for ¢ = 1,2,...,T. In the model

where agenls are uncertain of the state zy is their prior probability of the high variance state, i.e.

;= P(5 = Uy, 92y 11). (14)



for t = 2,%..,T. With this notation, the likelillood is given by an enumeration of all possible states weighted
by their probabilities.

flys w2y eyrlen, ooy ) =
1 i

1
DI IR {f(yh---sy'rlsl = ALy ST =70 00500 2T) (15)

1 =012=0 ir=0
x P(Sy = i1, 81 = i2eon ST = iqu)}
The terms in this equation are casy to describe. Since y, conditional on #; is serially uncorrelated except

for the state, the density of the data vector, y1,y2, ..., y7, conditional on the state vector is given by

;
J(¥1, 97181 = ity ST = iy 21, r) = [ S(0518, = dj0e) (16)
3=1

for i = 0,1, k = 1,2,...,T. Given the Markov structure underlying the probability model, the uncondi-
tional distribution of the state vector is given by

T

for i = 0,1, k=1,....T.

Direct maximization of the log of the likelihood function requires the evaluation of 27 terms in every
iteration of maximization routine. It is computationally intractable for any reasonable sample size. We
adopt the EM-algorithm to maximize equation (15). For this problem, it consists of three steps: (1) the
nontination of starting values; (2) the evaluation of the expectation of the likelihood function, conditional
on the current parameter estimates; and (3) the maximization of the log likelihood's expectation. The

algorithm is discussed in detail, as it relates to this problem, in Appendiz A.
5.0 Results

The analysis was carried out for monthly data from Standard and Poor’s index of 500 stock prices.
The series analyzed was the percentage nominal total return less the three month T-bill rate of return,
i.e. the monthly excess return of the portfolio times 100. The period of estimation was from January 1946
through December 1987. The results of the estimation for the model in which agents know the state are

presented in Tables (1) and (2). Estimates from the models in which agents are uncertain of the states



Model nﬁ n'," Ho Ja p q 4 R?

1 L7.6965 0.5983 1438.73
(1.1148) (0.18474)
1 133101 43.9681 0.8451 -1.0762 0.8641 09771  -1423.69 0.0377

(1.4545) (9.8076) (0.2075) (0.3987) (0.3354) (0.0552)

Model I:  Constuant Mean, Constant Variance
ModelII: Markov Mean, Markov Variance

Sample Period: January 1946—December 1987
Observations: 504

Table 1

Estimation results for model in which agents know the state in cach period. Asymptotic standard
errors in parantheses.

are presented in Table (3). In Section 2.5.1 we will assess the implications the estimated model has for
heteroskedasticity in excess returns. In the following section we will examine the models’ implications for

the risk premium.

5.1 Basic characteristics of the two state variancc model

The basic hypothesis upon which this paper is founded is that there are {wo states in the volatility of
stock market returns, i.e. the density of excess returns is a mixture of two normals with different variances.
Further, the distribution of the state has a time dependent element. In this section we will test the

hypotheses of two states and time dependence.

Unfortunately, the test of the hypothesis of only one state forces p and ¢ to the edge of their parameter
space: under the null one must be zero and the other unity. Under these conditions, the likelihood ratio
test is not asymptotically distributed x2. However, Wolfe (1971) suggests a modified likelihood ratio

statistic for testing the hypothesis of a mixed multivariate normal distribution against the null of simple



multivariate normality. In our sifuation the normals are not nulfivariate, so the statistic stmplifies to

X = (T 3 - ta) (1)
where {_, is the log likelihood of the one state model, Model 1, in Table (1), and {g is the log likelihood of the
full two state model, Model 1. This statistic is asymptotically distributed y? with two degrees of freedom.
The value of this statistic is 29.9010. This value is significant at any reasonable level of signficance.
Unfortanately, simulations by Everitt (1981) show that this test has low power unless [p; — po| > 2.
Further, the power of the test has also been questioned for heteroskedastic models suchi as ours.

Figure (2) plots the probability of the ligh variance states conditional on all the data, P(S, =
1|y, y2,----. y7), for the full and sub-samples respectively. These posterior probabilities provide a visual
test of the mixture hypotlesis. In general if the null hypothesis of simple normality is true, then the plots
of these probabilities should indicate uncertainty of the state in most periods. They should be relatively
flat and centered at 0.5. There are few periods in the samples in which the probability hover around 0.5.
The full sample posterior is between 0.20 and 0.80 in only 18% of the sample.

Statistically, the mixture model, Model 11, requires that the two states be characterized by different
means and /or different variances. The variances in the two states are very well defined. The high variance
state is more than three times that in the low variance state. As will be discussed below, the standard
error of this parameter and all the high state parameters are quite large. We may test the hupothesis
tr;" = o3, while letting s1; # 110.* Despite the relatively large standard error of 3;" we may reject the null at
a reasonable level of confidence, the t-statistic is 3.2024. Though not as widely seperated as the variances,
the means of the distributions are distinct. A test of the hypothesis that y; = pg against the alternative,
while letting o # o2, yields a t-statistic of -4.6375.

The estimates of the transition probabilities suggest the low variance state will predominate. The
estimates of the transition probabilities, p and g, of the Markov process suggest that the stationary, or
unconditional, probabilities of the states for the full sample will be 0.8557 and 0.1443 for for the low and
high variance states, respectively. Thus, for any given sample only about 14% of the observations will be

expected to fall into the high variance state.

# We may test the hypotheses a? # a2, and y; # po however, we cannot test them jointly as this is equivalent to a test
of the hypothesis that 1 —p=¢=0.



High Variance Length of Length of
Epsiodes High Variance Low Variance

P(S = 1}> 05

Episodes Episodes

7 months

August- -September 1946 2 months 186

April = July 1962 1 88
December 1969-—June 1970 N 10
November 1973-—February 1975 16 137

August 1986 --January 1987 (§ 7
September— December 1987 4

Mean 6.5 months  77.5 months
Median 5.0 64.0

Table 2

This table describes the posierior distribution of the state conditional on all the data in the
full sample. The first column lists the dates of the periods in which the probability of the high
variance state exeeded one half. The second column lists the length of these periods. The last
column lists the lengths of intervening periods in which the probability of the low state exceeded
one half.

The improbability of the high variance state makes inference on high variance state parameters dif-
ficult. The sample size in estimating the high variance state parameters is, of course, dependent on the
number of observations that fall into the high variance state. Figure (2) show that there are relatively few
of these periods. More formally, Appendir A, shows that the sample size in estimating these parameters
is effectively Y=, P(S¢ = lly1,..., y7), 64.7385 in this case. Thus, due to the relatively few periods in which
the high variance state is likely, we will not be able to estimate any of the parameters associated with it
precisely.

The point estimates of the probabilities p and ¢ suggest a strong time dependence in the Markov process
generating the states. However, the large standard error of 7 suggests that p can lie almost anywhere
between 0 and 1. This possibility makes a formal test of time dependence in the model particularly
interesting. Recall that a binomial process is simply a Markov process with p = 1 - ¢. A binomial process

removes the depehdence of the probability distribution of the current state on past states. Fortunately,
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the null hypothesis of a binomial is nested within the Markov and does not require p and ¢ to lie near the
boundaries of their possible values. We nay reject this hypothesis, the t-statistic is -2.5603.

The point estimate of p, suggests that once in the Ligh variance state, the state is expected to persist.
Since p is greater then 0.5, in both Table (1) and (2), the high variance state is expected to persist for at

least two periods. More specifically, we wish to find the smallest value of j for which
P(SH‘j = ‘i.5'1+j-) = l’, ...,SH.) = llS{_ = l) < 0.5, (]9)

i.e. the probability of remaining in the state i for j consecutive periods is less then one half. For our siple
first-order Markov process the number of periods. following Hamilton (1987A), j is given by 1/(1-P(S¢4) =

i|Sy = 7)). For the high variance state, i = 1 so that j = 1/(1 — p), or 7.3586 months That is, once in the

high variance state, the stock market is expected to stay in that state for about seven months. The low
variance state is much more persistent, setting i = 0, we then calculate j = 1/(1 — ¢}, or 43.6205 months.
Note that as @ is near unity, small changes in it imply large changes in the minimum value of j satislying
(19).

The persistence of the states and general behavior of the stock market is described in a non-parametric
way in Figure (2) and Table (2). They summarize the posterior distribution of the state in each period,
conditional on the entire sample used in estimation. Generally, these plots and tables indicate that both
states are persistent, and that the low variance state is very persistent. It persisted, in expectation, without
break from October 1946 until November 1962. fifteen and half years. Further, the probability of the high

variance state does not exceed 0.2 during the 1950’s. This period heavily influences the estimates of p and

q.

5.2 Implications for the risk premium

Estimates of Model II, where agents are assumed to know the state do not support an increasing risk
premium. The parameter estimates indicate that agents require an increase in annual return over T-bills
of approximately 11% to hold the risky asset in low variance periods. However, the estimates also suggest
the premium declines as the level of risk increases, i.e. i1 < fio. Further not only is fi; significantly less
then fig, it is also significantly negative. We can reject the hypothesis of a risk premium increasing in the

variance. These parameter estimates are in agreement with those found by Schwert (1988) in his analysis



Model ol af a Il P q { h?

13,0458 52.9963 03364 3.0321  0.8072 09728 -1423.26  0.0056
(1.3023) (13.8229) (0.0097) (0.0261) (0.3048) (0.0370)

Bt

Model a3 ai ag ay 9 P q { R

IV 12,7085 40.9850  0.5218  -1.1939 23802 0.8248  0.9729  -1421.41 0.0454
(1.5247) (16.2129) (0.2356) (0.5340) (1.0119) (0.3142) (0.0618)

Model I11: Agents are unsure of the state
Model TV Agents learn about the state during the period
Sample Period: January 1946—December 1987
Observations: 504

Table 1

Estimation results for the models in which agents are unsure of the states. In Model 111 agents
make trades based on a prior distribution of the state using last period’s excess return. In Model
IV they make trades based on this prior and on a posterior distribution using trades during the
period.

of nominal returns from stocks using Hamilton’s (1987B) autoregressive model. *

Mis-specification is a likely explanation for this result. If agents are uncertain of the state, so that
Model 111 is the correct model, then estimates based on Model II will be inconsistent. Agents’ expectation,
or forecast, of the state is P(S; = 1i®;_;). If agents are uncertain of the state, then this model suffers
from the usual error in variables problem since the forecast error, S¢ — P(S; = 1|®;_1), is included on the
right hand side in equations (8).

The parameter estimates for Model 111, equations (9). are described in Table (3). They provide support
for a risk premium rising as the anticipated level of risk rises. In this model, the level of risk is measured
by the probability of the high variance state. This model predicts agents will require an annual return of
approximately 4%, if certain next period’s return will be drawn from the low variance density. For a one

percent increase in the probability of the high variance slate, agents require an increase in monthly return

* Schwert’s analysis was based on a different dataset. He used stock prices beginning in the mid-nineteenth century.
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of 0.03%. Agenls perceive the stock market in the high variance state to be very risky. If certain of the
high variance state, they require an annual return of about 49%. However, the unconditional probability
of the high variance state is only 0.1236. This suggests the risk premium will average approximately 9%

on an annual ])HSiS.

Though the estimates of Model 111 are consistent with theory, tlie estimated model explains very little
of the variance in excess returns. The model always predicts a positive return, thus its B2 is less then 0.6%.
The reason why it cannot predict a negative return is that the specification ignores the news effect. Agents
acquire information by observing trades during the period. If agents don’t know period £ is drawn from the
high variauce density, then this picce of information is bad news. As agents observe trades within period
{ they will adjust their prior distribution of the state and revalue stocks downwards. Likewise, if agents
don’t know period £ is drawn from the low variance density it is good news. They will adjust their prior
distribution of the state and revalue their stocks upwards. Model IV generalizes the case where agents are

unsure of the state to allow learning during the period.

Note thai Model IV also suggests the direction of bias of the estimate of the risk premium when agents
are assumed to know the state. Estimating Model I under this regime would yield parameter estimates
which smear the risk premium and this news effect together. Since an increasing risk premium and the
news effect have opposite effects on excess returns, we would expect fip to be an upwardly biased estimate

of the risk premium and fi; to be a downwardly biased estimate.

The estimated results indicate thal we have sorted oul the risk premium and the news effect. In
general, the signs on the parameters are as predicted in Section 2.3 and suggested above. The parameters
B and ag are significantly greater than zero, while ag is signficantly negative. The latter two parameters-
are also significantly different from each other, the t-statistic is -2.9737. They capture the effect of the state
on the return of the stock during the period—the high variance state is bad news and the low variance
state is good news. The high variance state is very bad news. All else constant, the estimates predict that
the returns from the stock market will drop by more then 15% on annual basis relative to the market for

T-bills. Allowing for a news effect, ap # aj, greatly improves the fit. The R? rises to 4.5%.

In the model agents are assumed to know the parameters, thus we should expect that no matter how
large the fall in the market, a perfectly forseen high variance period should lead to a positive expectation

of the excess return. That is, we should expect ¥ + a; > 0. The estimates indicate that such a period
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leads to au expected annual excess return of 15%. Note however. due to the large standard errors of the
high variance parameters this increase is not statistically significant.

Recall from equation (12) that the risk premium is given by the expectation of the excess return.
Section 2.3 showed that the risk premium is increasing with the anticipated variance if the derivative, (13)
is positive. This is true il 9 4 aj > ag. The point estimates indicate that the risk premium does increase
with the anticipated variance. Again due to the large standard errors of the high variance parameters this
increase is not statistically significant from zero. As with Model I, the unconditional probability of the
ligl variance state may be used to derive the average risk premium, In this case this probability is 0.1338.
Employing this value and equation (12) the risk premium is predicted to average approximately 7.5% per
year for the full and sub-samples, respectively.

Examining Figure (2) closely, it becomes apparent that whenever the stock market enters the high
variance state, it falls. In the next period it generally recovers more then it has lost. The parameter
estimates summarize this tendancy. Our model provides a basis for understanding this behavior: The
probability of the high variance state following a low variance state is quite small, so that agents are
always surprised. Since Qy is negative this leads to a big drop in the market. In the following period,
the probability of the high variance state is quite large, so that agents anticipate it, and collect their risk
premium. The estimates in Table (3) indicate the risk premium will nearly double in the period that is,
exr post, high variance, rising to 13.6%. This fact is made clear by Figure (3). This figure compares agents’
prior distribution with the posterior conditional on all the data. This econometrician’s posterior leads the
agent’s prior. That is, most. periods in which the agents’ prior gives significant weight to the high variance
state, follow periods in which the posterior gives weight to that state. In short. agents are often surprised
by the move from low variance to high variance. They are not surprised if the system remains in the high‘

variance state.
6.0 Conclusion

We have shown that an adequate model of the excess return from the stock market may be constructed
with a mixture of normal densities with different means and variances. The leteroskedasticily that this
mixture implies has a strong time dependence, suggesting that the conditional variance of the market can

be forecasted.



16

This result suggests that the risk premium will move over time in response to agents’ perception of
the market’s riskiness. Agents forecast of the market’s variance is not always successful, so information

about the state gained during periods is important to explaining the overall return.



| 8inbi4

Aisuaq [ewloN Buipuodselion yum

02 01 0 oL 0 0c-
- s
[ B m
l/ﬂ \ - S
N
- SA[ -2

01|0jH0d 00§ S.J00d 3 PJ/EPUE}S WO
uin}dy SS89xJ Jemisod

s|dwesg Jo Juaoiad se Aouanbaig



Angeqold

SL°0 050 STV 00

001

2 ainbi4
([OA[CIATLIA | 1=Dls)d

G861 086} G/64 0.61 G964 0961 G561

alelg eoueleA UBIH 8y} Jo uoinguisiq Joualsod
Xopu| S 004 3 PJEPUELS JO UIN}OY SS80X]

og-

0c-

0t-

ol

02

uInjay ss89X3



¢ ainbi4
(LA (1}l 1=RIs)d Joud

(LA '[1)Al1=D]S)d Housisod
0861 S.61 0.61 G961 0961 SS61 |

Joud

Joleisod

All1gqeqo.d 101181S04 S,Uelolawouoo ay} Yim
alels eouelieA YBIH au) jo Aliligeqold Joud siusby

S0 G20 00

0

S0

00

Ayiqeqord



BIBLIOGRAPHY

Bauw. Leonard E., Ted Petrie, Gieorge Soules, and Norman Weiss, (1970). “A Maximization Technique
Qccuring in the Statistical Analysis of Probabilistic Functions of Markov Chains,” The Annals of

Mathematical Statistics, 41, No. 1, pp. 164-171.

Bollerstev, Tim., Robert F. Engle, and Jeftrey M. Wooldridge. (1987). “A Capital Assct Model with
Time-varying Covariances,” Journal of Political Economy 96, Ne. 1, pp. 116-131.

Cosslett, Stephen R. and Lung-Fei Lee. (1985). “Serial Correlation in Latent Discrete Variable Models,”
Journal of Econometrics, 27, pp. 79-97.

Engle, Robert F., David M. Lilien, and Russel P. Robins. (1987). “Estimating Time Varying Risk
Premia in the Termm Structure: The ARCH-M Model,” Econometrica. 55, No. 2, pp. 391-407.

Everitt. B. S. (1981). “A Monte Carlo Investigation of the Likelihood Ratio Test for the Number of

Components in a Mixture of Normal Distributions,” Multiv. Behav. Res.

Hamilton, James D. (1987A). “A New Approach to the Economic Analysis of Nonstationary Time Series

and the Business Cycle,” Econometrica, fortlicoming.
, ,

— . (1988). “Analysis of Time Series Subject to Changes in Regime,” Unpublished Manuscripi,

. (1987B). “Rational-Expectations Econometric Analysis of Changes in Regime: An Investigation of

the Term Structure of Interest Rates,” Unpublished Manuscript,
Lindley. D. V. (1984). Bayesian Statistics, A Review. Society for Industrial and Applied Mathematics.

Little, Roderick J. A. and Donald B. Rubin. (1987). Stafistical Analysis with Missing Data. John Wiley
& Sons.

Pagan. Adrian and Aman Ullak (1988). “The Econometric Analysis of Models with Risk Terms,”
Journal of Applied Econometries, Vol. 3, pp. 87-105.

Schwert, G. William, (1988). “Business Cycles, Financial Crises, and Stock Volatility,” Unpublished

Manuscript

——. (1987). “Why Does Stock Market Volatility Change Over Time?” Unpublished Manuscript.



Romano. Joseph . and Andrew F. Siegal. (1985). Countercramples i Probalnlity and Statistics.
Wadsworth & Brooks/Cole.

Sundberg, Rolf. (1976). “An lterative Method for Solution of the Likelihood Equations for Incomplete
Data from Exponential Fawilies,” Communicaltons i Statisties, B5 No, |, pp. 55-64

Wolfe, J. 1. (1971). *A Monte Carlo Study of the Sampling Distribution of the Likelihood Ratio for
Mixtures of Multinorial Distributions,” Naval Personnel and Training Research Laboratory,

Technical Bulleting STB-72-2.



Appendix A

MAXIMUM LIKELIHOOD ESTIMATION OF MARKOV MODELS
WITH THE EM-ALGORITHM

A.1 Introduction

As noted in the body of the paper, direct maximization of the likelilood function as defined in
equation (2-15) requires the evaluation of 2T terms in every iteration. It is computationally intractable
for any reasonable sample size. We employ the EM-algorithm to maximize the likelihood function. The
algorithm was developed from an old ad hoc idea for handling missing data. (1) replace the missing
values by estimated values; (2) estimate the parameters; (3) re-estimate the missing values assuming the
estimated values are correcl; (4) iterale over (2) and {3) uniil convergence. Missing data methods are
relevant for our purposes because the states, Si, may be interpreted as missing data.

The algorithm differs from this technique in that the missing values are not filled in, rather they
are replaced by sufficient statislics or, as in our case, the likelihood function is approximated in step (3).
This is called the E-step, or expectation step, while step (2) is the M-step, or maximization step. A
good introduction to the algorithm is provided by Little and Rubin (1987). In general, if the underlying
distribution is {from an exponential distribution, each iteration of the algorithm will yield a higher value
of the likelihood, unless il is at a maximum. Dempster et. al. (1977) show this for the general missing
data problem. Baum,el. al. (1970), shows the EM-algorithm maximizes the likelihood function if such
a maximum exists, when the data is a mixture of exponential distributions and the underlying state is
generated by a Markov process. A basic problem with the algorithm is that its rate of convergence is’
proportional to the missing information. As the missing state variable contains much information, the
algorithm’s convergence will be slow in our case. However, as will be demonstrated below, the ease in
interpretation and coding make-up for the lack of speed in computation.

Section A-2 presents the M-step for estimation of the parameters of the Markov model. We show that
the expecied value of the likelihood function may be maximized by the simultaneous solution of normal
equations developed from the first—order conditions. The following section presents the E-step. We derive
the distribuiion of the state conditional on the parameters. The final section combines these steps and

presents the formal EM-algorithm.
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The M step: Maximum likelihood estimates of the parameters when the distribution of the state

A2
is known
(A-1)

If the state were known in eachi period, then the likelihood function for each observation y, would

simply be given by the expresston
(1 = Si)dleog/oo) 4 Siglere/ar)-

The error, ¢4, is given by
Yt Model 11
eir =< yo—a— ey Model Hl (A-2)
Model IV

Yt —ai =0
For i = 0.1, and where z; is a regressor common o both states. Maximization of the full likelihood with

respect to the parameters is trivial

However, we don’t know the state. If we knew the probabilily distribution of the state of the system
prior to observing the realization yy, then the expected value of the likelihood for an observation is
(A-2)

1
3PS = i)d(ein/ i)

=0
where P(§; = i), i = 0,1, is the prior probability of the state in period {. The log of the full expected

likelihood is £ = 3, Ings.
The first order conditions for maximizing the likelihood for the model in which agents learn about the

state are given by
T
at — 1 . .
= FP(Se = D)d(eigfoilyt —ai —7)}-1) =0, 1=0.1
da = a0
R (A-3).
1 1y
=3 =3 SP(S = Ddleid/oiy - ai - yz)(-z) = 0.
=1 gt 1=0 i
(A1)

t
Note thal the posterior distribution of the state in period { upon observing y; is simply
1=0,1.

. 1 X N
P(Si = ily) = g—P(St = 1)@(eir/0i),
1

This suggests that the solutions to equations (A-3) may be obtained by weighted least squares Defining
(A-5)

1=0,1

—
S

the weights
Cie=P( 9‘,-1|y1)

Dy = Coy+Cye
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the first order conditions suggest the normal equations

N Coy 0 N Copte Ny N Coeye
0 Et (7']‘1 S,}(']JJ" (23] S’ (',_,y, . (A"(.))
\_: Clory S [GWET! E, D,.T;l 9 \_: Dy
t ' t

Solving for the parameter estimates, ap, ay, and 7, is of course, trivial.

Note that in the case when agents know the state, the appropriate normal equations are given by a
subset the equations (A-6). These may be solved to yield the estimates
—T .\ .
Stz VLS iy

Bi= 2

EL
N POS = iy

r (A-7)
N PS8 = il Yy — Ji 2 )
52 = L= ; ' '1!/1)(.%, #i) ’ P01
E(:] P(St = 1];'11)

Note that the effective sample size in equations (A-T) for state 7 is simply the sum of the weights, }» P(S; =
ily). Note also that if the posterior distribution of the state variable is degenerate—if §; is known with

certainly—then the estimates take on the intuitively pleasing forms

- Evs,:,‘yt = 0.1
= 1’ =4
2vS =i
Sus =iy~ i) e
~ LS =i\t ™ -
o-?zv—-s'L_L’ i=0,1.

Yug=il

The parameters where agents don’t know the state may be estimated in the same way.

For all three models the estimates of the parameters of the density in each state are not dependent-
on the transition probabilities, p and g. This implies that the maximum likelihood estimates of the
probabilities conditional on the maximum likelihood estimates of the density parameters will be the same
as the unconditional estimates. Thus, a two-step technique may be employed to maximize the expectation
of the likelihood function with respect to all of the parameters of the model. First, the appropriate normal
equalions are solved to estimate the parameters of the density of y;. Second, the expected value of the
likelihood functien is maximized with respect to p and ¢ conditional on the estimates of densily parameters.

Hamilton {1988) exlends this method by deriving normal equations for the transition probabilities.
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A.3 The E step: The distribution of the state when the parameters are known

Wit real data, of course, the distribution of the state of the system, Sy, will never be known. However,
Bayes theorem may be employed to derive the distribution conditional on all the parameters and the data.
Recall that Bayes theorem is given by the law of conditional expectations. That is, if we are interested in

some parameter 4, then the density of that parameter given an observation yy is

Ay )p h
Do) < P, (A-9)
plye)

where the unconditional density of yg is given by
Py = / Pydu)p(y)dee. (A-10)
¥

Where ¥ is the parameter space of ¢. It is customary to refer to p(y') as the prior density, as it is held
prior to the datum y;. Likewise, p{dly,) is the density posierior to y,.
In time series, the posterior density in period ¢ becomes the prior density for period t + 1. Bayes’

theorem for the distribution of ¢ using both y; and yi4 is given by

h) > sl
A lytery) = p(¥) x plys, yesald) (A-11)
Plyes, ¥y y1)

but this is just
p(¥) x plydle) X plyesiled, ve)

Py w) = Plye1iye) x plye)
» (A-12)
_ (zv('«") x P(yzit.")) Pyl 9e)
Plyt) Plyevlye)
The parantheses is just Bayes’ theorem, so that
ptlyess.ye) = POEB) X Pyt ve) (A-13)

Plyeerly)
This equation is the basis for Bayesian sequential updating. When we have a posterior distribution of 4,
based on observations yy,y2, -.., yr—1 and we observe y;, we may update it simply by allowing the posterior
distribution at time £ to become the distribution prior to observing ye41.
In Markov models, when the parameter of interest is the state, Bayes theorem takes on an especially
tractable form. These models are characterized by a finite number of states, in the case at hand two.

This results in a discrete prior distribution. Furthermore, the distribution of the state is dependent



[
-1

only on the realized state in the previous period. The previous state is unknown, however, we have its
posterior distribution, P(S; 4 - dly, )i~ 0,1,y = (g1- 42y 1), from the previous application of
Bayes theorem. The prior distribution will simply be last period’s posterior updated with the appropriate

transition probabilities

P(Si = ilyyog) = Y P(Se = ilSiy = HP(Sicy = jly,y) (A-14)

=0

Note that in the initial period. there is no posterior from the previous period. This observation is

most easily handled by assuming that the Markov process began infinitely far into the past. Thus, the

prior distribution of the first observation is simply the steady state probability distribution of the state.
That is. the prior for the first observation, yy, is defined to be

P(So =

(A-15)

P(So =

Conditional on the state, y; is distributed iid Normal. Thus the likelihood of y, is given by the set of

equations defined by the normal densities
Pi(ylSe = iyy1) = @lei/ai). i=0,1. (A-16)

where as before €;4 is defined by equation (A-2).
The Markov structure also simplifies the structure of the the unconditional density of g, p(y;). Pue

to the discrete prior, the integral of equation (A-10) is replaced by the summation
P(yilye-1) = P(Se = Oy 1) x po(wel St = 0) + P(& = Uy, 1) % palwel S = 1). (A-17)

Note that weights on the densities sum to unity by definition, since P(S; = i|g—1), 7 = 0,1 is a well
defined distribution function. Thus, p(y:|y,_;) is simply a mixed density: it is a proper density function
that integrates to one.

Simple application of Bayes theorem gives the posterior distribution of the state conditional on infor-
mation through period ¢,

(St = dly,—1) X pilyr Se = i)
Pylye_r)

P
P(S; = ily,) = i=0,1 (A-18)
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We now want to update this distribution to find the distribution of the state conditional on the data
through period T That is, we wish 1o evaluate the probability P(87 - 1lyr). We now let expression
(A 18) be the prior distribution of the state, and update this distribution {or £ 4- 1,4 +2,..., T using Bayes
theorent. Suppose we have performed the update through  + 7 -- 1. We wish to add observation y.4; to

our posterior. Then the components of Bayes theorem are given hy

Prior: PS5 = Ny, ;-1) (A-19)
Likelihood: Syi45150= Lyyij-1) (A-20)
Unconditional: Sy1+51¥e45-1) (A-21)

Note that the unconditional distribution, expression (A-21) may be derived by integrating the state out
of the likelihood. In general, the likelihood itself is difficult to evaluate. Recall that the data, y, is
uncorrelated except for the state and that the state is generated by a first order Markov proces. This

implies that

Sy jiSiajor = Gogy o0 Sty = 0, 8e = Lyg500)
j

(A-22)
= flyr4ilSeaj-1 = 15-1),
for i = 0,1. We can then obtain the likelihood using the rule of elimination,
flyesi1Se=Lyjq) =
! ) ) (A-23)
N flyailSeajo1 = 1-1)P(Sejm1 = 4511180 = Ly )
5, o1=0

The expression P(Se-j—1 = ij-1181 = 1,¥,,;_1): for i = 0,1 is readily evaluated using Bayes theorem.
All we need do is follow the algorithm for updating the probability P(S, 4 = Hy, ), for k=1,2,...,j -1,
conditional on Sy = 1. That is,

P(Sepr = 1St = Lyi) =

P(Sepe = 1St = Ly, 1) X f(9561Sc = 1, S04 = Lypa) (A-24)
Fyr+lSe = 1»Y¢+k)

Each component on the right hand side of equation (A-24) may be easily evaluated. The likelihood is

F@eklSe =1, Sk = LY i4j-2) = Hergi/on). (A-25)

The “unconditional” density of the new datum, y. 44 is
1

fyeslSe= Ly 1) = ZP(SH-A-ISt =1L, yppk—1)b(€igen/oi)- (A-26)
=0



Finally. the prior probability of the state, Sy, ¢ - 1, conditional ou S; and the data, i.e. the expression

l)(fﬂ', [ I

S Ly ) is simply

PPIS e = S = Ly ) - (T @POGe a0 08 Ly o) (A-27)

Applying equation {A-21), Bayes theorem for making inference on the state repeatedly allows us to
evaluate equation (A 22), and thus the likelihood. Ouce we have the likelihood it is easy to evaluate the

unconditional distribution of {he state. Evaluating Bayes theorem is then just a matter of substitution.

A.d The EM algorithm: Maximum likelihood estimates of the parameters when the distribntion of the

state Is unknown

So far we have derived a method of obtaining maximum likelihood estimates of the parameters of
the density function of each slate and transition probabilities given the probability distribution of the
.state. We have also found a method of obtaining the probability of each state yiwen the parameters of
density functions and ihe transition probabilities. Combining thesc two techniques and ilerating give us
the EM-algorithm.

The combined algorithm is as follows: (1) Nominate estimates of the parameters. Denote the nomi-

nated estimates, 81, In Model 1I this is

glol = (;1%0], ;:[10]. 03[0], U?[D]’p[o]’ q[O]); (A-28)

(2) Use Bayes theorem to derive the probability distribution of §;, ¢ = 1,2....,T conditional on the
parameter estimates ool (S, = i|9[°],yT), i = 0,1: (3) Set the weights employed in the weighted least
squares estimation, equalions (A-6) equal to the probabilities associated with the distribution derived
by Bayes theorem. Thus, we are asserting that the known prior distribution of the state in equation
(A-2) is P(S; = i|y1+.rY1—1.Y241, - y7). Thus. the posterior distribution of equation (A-4) is simply
P(S; = ilyy). This is presented formally in Hamilton (1988). (4) Use the two-step estimation technique
discussed in Section 3.4.1 to obtain new estimates of the parameters. Set 8] equal to the resulting estimates
of the parameters,

o = (a5, 7. 3%, 5105, ) (A-29)

~li . . . . ot
Where ;1};], elc... represent the maximum likelihood estimates of the parameters of Model 11 conditional

on the posterior distribution P(5; = 7166, 7 = 0,1: (5) Herate steps (2) through (4) until an appropriate
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convergence criteria is met. ln our implementation of the algorithm the stopping condition was et wlen
e - 6t < 0,001, {A-30)

This technique not only yields maximum likelihood estimates of the parameters but application of
Bayes theorem gives us the posterior distribution P(S; = t]yz), ¢ = 0, 1. This allows us to make inferences

concerning the state of the system, and to evaluate agents’ prior distribution of the state.





