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ABSTRACT

We compare and contrast the expected duration and number of infections and deaths averted 
among several designs for clinical trials of COVID-19 vaccine candidates, including traditional 
randomized clinical trials and adaptive and human challenge trials. Using epidemiological models 
calibrated to the current pandemic, we simulate the time course of each clinical trial design for 
504 unique combinations of parameters, allowing us to determine which trial design is most 
effective for a given scenario. A human challenge trial provides maximal net benefits—averting 
an additional 1.1M infections and 8,000 deaths in the U.S. compared to the next best clinical trial 
design—if its set-up time is short or the pandemic spreads slowly. In most of the other cases, an 
adaptive trial provides greater net benefits.
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1 Introduction

The COVID-19 pandemic has caused the deaths of hundreds of thousands, upended the

lives of billions, and caused trillions of dollars in economic loss, and life is unlikely to return

to normal until a vaccine is found [1]. Despite the many candidates undergoing testing, an

approved vaccine is not expected until 2021, even with substantially compressed development

timelines [2], smooth proceeding of clinical trials, and not accounting for possible failures

[3]. It is possible—though considered highly unlikely at the present time—that, like many

non-influenza epidemics, the crisis may be over before a successful vaccine is developed [4].

Unlike typical therapeutics that are administered to sick patients, vaccines are intended

for the healthy. Therefore, confirming the safety and effectiveness of a vaccine is of critical

importance [5]. The two primary methods for demonstrating vaccine safety and efficacy are

through either a vaccine efficacy randomized clinical trial (RCT) or a vaccine immunogenicity

RCT. In the former, large numbers of recruited healthy volunteers are randomly selected to

receive either the vaccine or a placebo/active control and then monitored for a period of time.

At the end of the surveillance period, the difference in the proportion of infections between

the treatment and control arms is computed to demonstrate the ability of the vaccine to

prevent infection or disease. A phase 3 vaccine efficacy RCT typically takes five to ten years

to complete [6].

In a vaccine immunogenicity RCT, the primary endpoint is an immunity measurement or

surrogate marker which is known to correlate with protection against infection or a disease.

This type of trial involves a smaller number of volunteers and requires a shorter follow-up

period, and as a result, is quicker and less costly [7]. Given that SARS-CoV-2 is a novel

pathogen for which we do not yet know how to determine whether a subject is protected,

vaccine efficacy must be confirmed using the longer and more costly vaccine efficacy RCT.1

The U.S. Food and Drug Administration (FDA) has also issued a guidance stating that “the

goal of development programs should be to pursue traditional approval via direct evidence

of vaccine efficacy” [8].

A human challenge trial (HCT), in which volunteers are randomized into either the vac-

cine or placebo arm and then infected deliberately with live virus in a controlled setting, has

been proposed as an alternative to accelerate the vaccine development process. Upon chal-

1While there exists the possibility of an expedited (conditional) licensure based on immunogenicity results
with post-approval commitments, we find it unlikely to occur given the latest information.
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lenge, HCTs can quickly demonstrate safety and efficacy of candidate vaccines in preventing

infection or disease. Depending on sample size, HCTs could also help to establish functional

immune correlates of protection to inform the design of future vaccines. Since an HCT al-

lows comparison of immune responses in vaccinated and unvaccinated individuals, precise

measurements of post-vaccination viral loads, characterization of immune responses (innate,

adaptive, cell-mediated) and antibody titers, and close monitoring and care of patients, it

can help establish the correlates of protection and prove vaccine efficacy concurrently. More-

over, a properly designed HCT can determine transmission risk of the infected in a controlled

setting with minimal exposure to investigators and the public. While concerns have been

raised regarding the ethics and morality of HCTs, it is generally accepted that HCTs are

ethically permissible when the benefits to society outweigh acknowledged risks [9], and they

have been deemed acceptable for developing vaccines for multiple infectious diseases such

as influenza [10], malaria [11], typhoid [12], cholera [13], and dengue fever [14]. To the best

of our knowledge, there have been no published studies of a quantitative analysis of the

potential societal value of a COVID-19 HCT.

In this paper, we compare the costs and benefits—as measured by the number of deaths

and infections avoided—of confirming the safety and efficacy of a COVID-19 vaccine using

four clinical trial designs: a traditional vaccine efficacy RCT, a vaccine efficacy RCT with an

optimized surveillance period that maximizes the benefits of the trial (ORCT), an adaptive

vaccine efficacy RCT (ARCT), and an HCT. Although our framework applies more broadly

to any vaccine candidate for any infectious disease, we calibrate our simulations using a set

of estimated epidemiological models for the SARS-CoV-2 virus (one for each of the 50 states

and Washington, D.C.) to determine attack rates2 and cumulative numbers of infections and

deaths in the U.S under various scenarios.

A summary of our simulation framework is displayed in Fig. 1. We first estimate baseline

models from data and make assumptions for the evolution of the epidemic in order to predict

the attack rates over the course of the clinical trials. We then combine the attack rates

with the assumptions for the vaccine trial design to simulate the outcomes for the clinical

trials. Conditioned on the vaccine being approved, we make assumptions on the vaccination

schedule and simulate the path of the epidemic in order to compute the net infections and

deaths prevented.

2The attack rate is the proportion of the susceptible population infected with a disease.
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Figure 1: Simulation framework. For each Monte Carlo simulation path, we simulate patient-
level infections data based on input trial design assumptions and attack rates from the
population epidemiological model (for an RCT, ORCT, and ARCT). At the end of the trial
(or, at each interim analysis for an ARCT), we determine if the vaccine candidate is approved
under superiority or superiority-by-margin testing. Finally, we compute the expected net
value of the trial design over 100,000 simulation paths using Eq. 1.
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Assuming that a clinical trial testing a vaccine with a true efficacy of 50%3 and using

superiority tests starts on August 1, 2020, we estimate the date of licensure of the hypo-

thetical vaccine candidate to be some time in November 2021 with a traditional RCT (476

days), between June and August 2021 with an ORCT (326 to 380 days), between April and

June 2021 with an ARCT (246 to 306 days), and between March and June 2021 with an

HCT (221 to 311 days).4 The ARCT provides the greatest expected net benefit among the

three RCT designs in almost all scenarios. The utility of an HCT versus the RCTs, however,

depends critically on the HCT set-up time and the course of the epidemic. The benefits

of HCTs are greatest when trials are initiated as early in an epidemic as possible, and/or

if the rate of infection is relatively low. Assuming a 30-day set-up time, a vaccine efficacy

of 50%, a behavioral epidemiological model, and a population vaccination schedule of 10M

doses per day, an HCT can reduce the time to licensure by one month, thus preventing

approximately 1.1M incremental infections and 8,000 incremental deaths compared to the

best performing alternative clinical trial design, the ARCT. We observe similar results when

superiority-by-margin tests are used instead.

We review the designs and assumptions for the four vaccine trials considered in Section 2

and explain our cost/benefit calculations in Section 4.1. We present the epidemiological

model used in our forecasts in Section 3 and report our simulation results in Section 4. We

discuss our findings and some broader issues of COVID-19 clinical trials in Section 5 and

conclude in Section 6.

2 Vaccine Trial Design

We begin by describing the assumptions and calibrations used in each of the four vaccine

trial designs we considered in our simulations.

3The true efficacy is distinct from the realized efficacy of the outcome of a given trial, which is unknown
in advance (see footnote 12 for details).

4For specificity, we report estimated times to licensure using calendar dates and provide the corresponding
number of days in parentheses. However, our simulations do depend on calendar dates in one respect: the
epidemiological model used to estimate the attack rates depends on current data. Therefore, the estimates
reported in this paper are all based on extrapolated conditions as of August 1, 2020, and may need to be
revised for other start dates.
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2.1 Traditional Vaccine Efficacy RCT

First, we consider a traditional double-blind vaccine efficacy trial design. We assume that a

closed cohort of 30,000 infection-free but at-risk healthy U.S. adults aged between 18 and 50

years will be enrolled for the study, similar to the phase 3 studies planned or underway for

the COVID-19 vaccines developed by Moderna [15], AstraZeneca [16], Pfizer/BioNTech [17],

and others. The participants will be randomized equally between the treatment and con-

trol arms, receiving either the vaccine candidate or an active control vaccine5 (e.g., vaccine

against meningococcal bacteria), respectively. Unlike clinical trials for cancer therapeutics

where patient accrual can be a challenge due to the small pool of afflicted patients and strict

inclusion/exclusion criteria, subject enrollment for vaccine efficacy studies are often acceler-

ated because there is a large pool of healthy adult volunteers to recruit from. Therefore, we

assume an accrual rate of 250 patients per day in our simulations.

Similar to the design of study protocols adopted for phase 3 clinical trials of current lead-

ing SARS-CoV-2 vaccine candidates, we assume a hypothetical COVID-19 vaccine candidate

that will be administered to subjects in two doses, 28 days apart, i.e., the prime-boost regi-

men [18, 19]. Furthermore, we assume that it takes approximately 28 days after the booster

dose for antibodies to develop (i.e., seroconversion) before surveillance can begin.

We consider efficacy in the prevention of infection by SARS-CoV-2 as the primary end-

point in our study.6 To draw meaningful conclusions from the trial results, volunteers must

be monitored long enough for a sufficient number of infections to occur. Here, we assume

a fixed post-vaccination surveillance period of 180 days for all subjects in the cohort, after

which a single safety and primary efficacy analysis will be performed to determine licensure

(see Appendix A.1).

Finally, we assume an interval of 120 days after surveillance for the preparation of a

biologics license application (BLA) submission to the FDA, including an analysis and publi-

cation of safety, immunogenicity, and efficacy results; collection of chemistry, manufacturing,

and controls (CMC) data; the writing of a clinical study report; and subsequent review by

the FDA. Under these assumptions, we estimate the time to licensure of our hypothetical

candidate under a traditional RCT to be approximately 476 days. This is the baseline value

5The use of an active vaccine (e.g., vaccine against meningococcal bacteria) as control provides some
benefit to the participants, making it more ethical. It also serves to ensure that the participants are unable
to tell whether they received the COVID-19 vaccine based on side effects such as soreness at the injection
site, reducing the possibility of behavioral changes that can bias the results of the study.

6We note that secondary endpoints include the prevention of COVID-19.
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against which we will compare the other three trial designs.

2.2 Optimized Vaccine Efficacy RCT

Depending on the transmission rate of COVID-19 during the trial and the assumed efficacy

of the hypothetical candidate, a shorter surveillance period might be sufficient to observe

significant results.7 Therefore, we consider an optimized version of the traditional vaccine

efficacy RCT design (ORCT) in which the surveillance period is optimized between 30 to 180

days based on different epidemiological scenarios and vaccine efficacies to maximize the ex-

pected number of incremental infections and deaths prevented.8 Apart from the surveillance

period, we assume that the ORCT is identical to the RCT in all other aspects.

2.3 Adaptive Vaccine Efficacy RCT

An adaptive version of the traditional vaccine efficacy RCT design (ARCT) is based on group

sequential methods [20]. Instead of a fixed study duration with a single final analysis at the

end, we allow for early stopping for efficacy via periodic interim analyses of accumulating trial

data (see Appendix A.2). While this reduces the expected duration of the trial, we note that

adaptive trials typically require more complex study protocols which can be operationally

challenging to implement for test sites unfamiliar with this framework. In our simulations,

we assume a maximum of six interim analyses spaced 30 days apart, with the first analysis

performed when the first 10,000 subjects have been monitored for at least 30 days.9

2.4 HCT

Unlike traditional vaccine efficacy field trials which require large sample sizes to observe

significant results, we assume that the HCT requires only 250 volunteers, randomized 4:1

between the treatment and control arms. Furthermore, to minimize the risk to participants,

7In general, the higher the transmission rate, the shorter the surveillance period required to observe a
statistically significant difference in infection risk between the treatment arm and the control arm (or the
lack of thereof) at the same level of significance and power, assuming a constant sample size and vaccine
efficacy.

8There is a trade-off between time and power: A shorter surveillance period will, ceteris paribus, reduce
the power of the RCT. However, it will also reduce the time to licensure of the vaccine (if approved), which
can potentially prevent more infections and save more lives. Conversely, a longer surveillance period will
increase the power of the RCT and prolong the time it takes for the vaccine to be approved. See Fig. A.4
for an illustration.

9While we have assumed interim analyses at periodic calendar time points here, we note that most vaccine
efficacy trials are event based, e.g., performing interim analyses when pre-specified numbers of events occur.
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we assume that this study will recruit only young and healthy adults aged between 18 and

25 years without any underlying chronic conditions because this group of individuals has the

lowest risk of mortality and complications after recovering from the infection [21, 22, 23].

It is clear that extensive preparations are required to set up an HCT: selecting, devel-

oping, testing an appropriate challenge virus strain;10 manufacturing a batch of the selected

challenge strain under good manufacturing practices (GMP); and identifying the dose level

required to achieve satisfactory attack risk of non-severe clinical illness [23]. From discus-

sions with challenge trial experts, there seems to be a lack of consensus on the appropriate

set-up time for HCTs. We reflect this uncertainty in our simulations by incorporating a lag

time for HCTs (“set-up time”) that ranges between 30 to 120 days.

In the challenge study, volunteers are deliberately exposed to the SARS-CoV-2 virus,

reducing post-vaccination monitoring times because investigators do not need to wait for in-

fections to occur naturally as with non-challenge RCTs. Therefore, we assume a surveillance

period of only 14 days (the incubation period for COVID-19 [24, 25, 26]) for the challenge

study. Moreover, the attack rate in the control arm will be independent of the population

epidemiological model since the study will be conducted in isolated facilities. In our sim-

ulations, we assume that 90% of the subjects in the control arm will be infected after the

challenge.11

We note that the FDA is unlikely to approve an experimental vaccine tested in only 200

subjects (versus thousands in non-challenge RCTs), hence we assume that a large-scale safety

study will be performed immediately after the conclusion of the challenge study—conditional

on positive efficacy results—to evaluate the safety of the hypothetical vaccine candidate in a

broader population. Assuming a single-arm study with 5,000 subjects followed for 30 days,

we expect the process to be completed in 106 days. To accelerate licensure, we assume that

the collection of safety data will be performed in parallel with BLA submission and FDA

review. Since the latter is assumed to take 120 days, the additional safety study does not

actually add to the time to licensure of the vaccine candidate. It does, however, add to the

financial costs of the HCT (see Appendix A.4).

Apart from the sample size, randomization ratio, set-up time, surveillance period, and

10There are multiple lineages of SARS-CoV-2 to choose from. In addition, a decision must be made
between using a fully virulent or an attenuated strain of the SARS-CoV-2 virus.

11We do not assume a 100% attack rate since the challenge strain used is likely weakened to reduce risk
to volunteers, and some individuals might have innately stronger immune systems that can counteract the
virus.
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safety data requirement, we assume that the HCT is identical to the RCT in all other

respects. See Appendix A.3 for a summary of our assumptions.

We anticipate similar post-marketing commitments for both the HCT and the RCTs, in

terms of the collection of additional safety and effectiveness data, and supplementary studies

to support the effectiveness of the vaccine in populations not included in the initial efficacy

study, e.g., infants. However, we do not model them here because they do not affect our

cost/benefit computations.

3 Epidemiological Model

To estimate the attack rate encountered by subjects in a given clinical trial—a key component

for our cost/benefit calculations—we require information about the spread of the COVID-19

epidemic in the U.S. We use the Susceptible-Infected-Resolving-Dead-ReCovered with social

distancing (SIRDC-SD) model proposed by Fernandez-Villaverde and Jones [27], chosen

because it is able to fit both the cumulative and daily number of deaths in all the states well

despite being a simple model, to establish a baseline for the epidemic. The details of the

model are described in Appendix A.5.

We estimate the model for each of the 50 states in the U.S. and Washington, D.C., using

the time series of deaths in the U.S. obtained from the John Hopkins Center for Systems Sci-

ence and Engineering (CSSE) COVID-19 repository [28]. Our data was downloaded on June

16, 2020. We do not scale the number of deaths but continue to perform a centered moving

average smoothing on the daily number of deaths, as described in Fernandez-Villaverde and

Jones [27]. Our estimation method is detailed in Appendix A.6 and the estimated parameters

are reported in Table A.3.

The estimated models show how the epidemic has played out thus far but we will need

to predict how it will evolve in the future after the lockdowns are relaxed and/or vaccines

are developed. To do so, we extend the SIRDC-SD model to take into account semi-effective

vaccination. The new model, which we shall name Susceptible-Infected-Resolving-Dead-

ReCovered-Vaccinated with social distancing (SIRDCV), is explained in Appendix A.8.

3.1 Evolution of Epidemic with Reopening

We consider three different scenarios for the evolution of the epidemic over time. In the first,

we assume that the current situation will continue indefinitely until the end of the epidemic

8



(“status quo”). That is, stay-home orders and bans on social gatherings will be extended

until there are no new infections. We simply forecast ahead of time using the estimated

parameters in this scenario.

In the second, we consider that there will be a partial reopening with strict monitoring

across all states starting from June 15, 2020 (“ramp”). To model this, we assume a ramp

function for β(t) that will increase to 0.22 over 90 days and maintain at that level until the

end of the epidemic. The parameters are chosen to imply a final R0 of 1.1, which reflects

close monitoring and contact tracing, and if needed, temporary quarantines to arrest clusters

of infections that may pop up. The contact rate parameter, β, in this scenario is described

by Eq. A.39.

In the third, we consider the behavioral-based response proposed by John Cochrane

(“behavioral”), whereby people voluntarily reduce social contact when they perceive danger

(e.g., when they observe that there is an uptick in the daily number of deaths) and increase

social contact when they observe that there is a decrease in risk (e.g., when they observe a

reduction in the daily number of deaths) [29]. The functional form of β is given by Eq. A.42.

We give an example of how the basic reproduction number, or R0, may look for each of

the scenarios in Fig. A.3.

3.2 Population Vaccination Schedule

We assume that vaccines will be immediately available for distribution and inoculation upon

licensure. This reflects how the leading vaccine companies have been scaling up their manu-

facturing capabilities and started producing millions of doses at industrial scale in parallel to

the clinical trials [30, 31] and well before the demonstration of vaccine efficacy and safety. We

model three ways that the susceptible population will be vaccinated upon vaccine licensure:

1M, 10M, and infinite doses administered per day. In the last case, the entire U.S. population

is assumed to be vaccinated the day after licensure. While unrealistic, this gives an upper

bound on the potential benefit of vaccine development. We assume that the vaccines are

distributed proportionally to states according to their relative population at the start of the

epidemic.
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3.3 Forecasting Infections and Deaths

We forecast the cumulative number of infections and deaths in each state between February

29, 2020, and December 31, 2022, using the SIRDCV described by Eq. A.32 to Eq. A.38

before summing over all states in order to produce estimates for the entire U.S. The attack

rate at time t is the ratio of the number of new infections at time t to the number of

susceptible persons at time t− 1.

4 Results

Given the parameters for each trial design and an epidemiological model, we simulate the

outcome of hypothetical clinical trials for all four designs and measure their incremental dif-

ferences. Our cost/benefit methodology is described in Section 4.1, we report the numerical

results in Section 4.2, and discuss them in Section 5.

4.1 Cost/Benefit Analysis

We apply cost benefit analysis to quantify and compare the net value of each trial design.

We focus on public health outcomes—that is, the risks of mortality and morbidity—and

provide a qualitative discussion of the societal and financial impact in Section 5.

As shown by Montazerhodjat et al. [32], Isakov et al. [33], and Chaudhuri et al. [34], the

value associated with a pathway is computed as the difference between the post-trial benefit

and the in-trial cost (Eq. 1). The former estimates the net benefit of the trial to society at

large while the latter measures the cost of conducting the study to volunteers in the trial.

Net Value = Post-trial Benefit− In-trial Cost (1)

We quantify the cost of a trial design in terms of the number of COVID-19 infections

and deaths observed in the clinical study. For post-trial benefit, we first consider a baseline

scenario in which a vaccine is never developed and the epidemic is allowed to run its course.

Next, we simulate the case where a vaccine is approved at some point in time depending

on the duration of the trial design. The post-trial benefit is then the difference in the

cumulative number of infections and deaths in the population between the two scenarios,

i.e., the incremental number of infections and deaths prevented with a vaccine licensure. In
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cases where the vaccine candidate is rejected,12 net value will be negative since post-trial

benefit is zero but cost has been incurred for conducting the clinical trial. Lastly, we assume

that the hypothetical vaccine candidate is generally well tolerated and any vaccine-related

adverse reactions are mild and negligible with respect to in-trial costs and post-trial benefits

[35].

4.2 Simulation Results

We compute the expected net value of different trial designs using Monte Carlo simulations

and asymptotic distributions of the efficacy test statistics (see Appendix A.1). Fig. 1 illus-

trates the inputs, computations, and outputs of our simulation framework. We assume that

all trials start on August 1, 2020, and simulate the epidemiological models until December

31, 2022. We perform sensitivity analysis over a wide range of trial design, epidemiological

model, and population vaccination schedule assumptions (see Table 1), covering 504 differ-

ent scenarios. We summarize our results in Table 2 and Appendix A.11. In addition to our

results, we release an open-source version of our simulation software, and encourage readers

to rerun our simulations with their own preferred set of assumptions and inputs.

Assuming superiority testing and a vaccine efficacy of 50%, we estimate the date of

licensure of the hypothetical vaccine candidate to be some time in November 2021 under

an RCT (476 days), between June and August 2021 under an ORCT (326 to 380 days),

between April and June 2021 under an ARCT (246 to 306 days), and between March and

June 2021 under an HCT (221 to 311 days). Apart from an RCT which has a fixed trial

duration, the dates of licensure from the ORCT and ARCT depend largely on the status of

the epidemic during the clinical trial. If the transmission rate of the disease is low (e.g., due to

social distancing or other non-pharmaceutical interventions), an extended surveillance period

is required to accrue enough natural infections in order to observe a statistically significant

difference in infection risk between the treatment arm and the control arm. Conversely, when

the transmission rate is high, a short surveillance period is sufficient to observe significant

results. We note that an HCT, on the other hand, does not depend on the epidemic situation

but is instead limited by the time required to set up the challenge model. In general, we

12In our simulations, we consider a vaccine candidate with some efficacy ε and assume that infections in
the clinical study follow a stochastic process (e.g., binomial distribution). Due to this randomness, false
rejections of the efficacious vaccine might occur. This is also known as type II error. The false negative rate
depends on the trial design (e.g., sample size, surveillance period, maximum type I error, superiority testing)
and the epidemiological model (e.g., attack rate in the clinical study).
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Table 1: Sensitivity analysis with respect to trial design, epidemiological model, and popu-
lation vaccination schedule assumptions.

Parameter Values

Trial design RCT, ORCT, ARCT, HCT
Vaccine efficacy of
hypothetical candidate (%)

30, 50, 70, 90

Set-up time for HCT (days) 30, 60, 90, 120
Efficacy requirement Superiority, superiority by margin of 50% [5]
Epidemiological scenario Status quo, ramp, behavioral
Population vaccination
schedule (doses/day)

1M, 10M, infinite

find that the time to licensure under ORCT and ARCT decreases with increasing vaccine

efficacy: the greater the efficacy, the easier it is to observe a significant treatment effect.

We find that the ARCT provides the greatest expected net benefit among the three RCT

designs in almost all scenarios. The utility of an HCT versus the RCTs, however, depends

critically on the set-up time and the dynamics of the epidemic. For example, assuming

superiority testing, a vaccine efficacy of 50%, the behavioral epidemiological model, and a

population vaccination schedule of 10M doses per day, we estimate that the ARCT can help

accelerate licensure by almost 8 months versus the RCT, thus preventing approximately 2.9M

incremental infections and 23,000 incremental deaths from COVID-19 in the U.S. versus the

latter.

Under the same set of assumptions, an HCT that requires 30 days to set up can further

reduce the time to licensure by a month, thus preventing approximately 1.1M more infections

and 8,000 more deaths versus the ARCT. However, the advantage of the HCT vanishes when

its set-up time is long: an HCT that requires 90 days to set up takes about one month longer

to reach licensure as compared to the ARCT, leading to around 1.0M more infections and

8,000 more deaths versus the latter (see Fig. 2a). Under such circumstances, the use of an

HCT is worthwhile only when the prevalent transmission rate is low. If we consider the

status quo scenario instead of the behavioral epidemiological model, the time to licensure

is about one month shorter under the HCT than under the ARCT even with a 90 day set-

up period (see Fig. 2b). In this case, the HCT prevents approximately 60,000 incremental

infections and 500 incremental deaths versus the ARCT. We observe similar trends under

superiority-by-margin testing at a threshold of 50%.
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Table 2: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority testing, and 10M doses of a vaccine per day are available after
licensure, compared to the baseline case in which no vaccine is ever approved.

Vaccine Efficacy (%)

30 50 70 90

E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths]

Status Quo
RCT 3,914 31 11,539 92 19,130 151 21,557 170
ORCT 5,589 45 16,802 134 33,757 269 50,288 401
ARCT 9,596 76 31,473 250 66,641 531 83,522 665
HCT (30-day set-up) 140,731 1,124 152,263 1,216 156,885 1,254 159,876 1,277
HCT (60-day set-up) 110,046 879 118,937 950 122,482 979 124,777 997
HCT (90-day set-up) 86,466 690 93,370 745 96,111 768 97,886 782
HCT (120-day set-up) 68,213 544 73,611 587 75,747 605 77,132 615

Behavioral
RCT 363,382 2,845 386,081 3,026 397,396 3,117 404,562 3,174
ORCT 1,139,585 9,061 1,377,157 10,955 1,426,014 11,345 1,457,500 11,598
ARCT 2,588,881 20,647 3,248,449 25,924 3,389,541 27,052 3,473,035 27,720
HCT (30-day set-up) 3,903,566 31,167 4,309,316 34,411 4,481,448 35,789 4,591,750 36,671
HCT (60-day set-up) 2,795,316 22,301 3,082,676 24,598 3,205,159 25,579 3,283,975 26,209
HCT (90-day set-up) 2,011,244 16,028 2,211,985 17,633 2,297,350 18,316 2,352,436 18,757
HCT (120-day set-up) 1,466,239 11,668 1,605,833 12,784 1,664,613 13,255 1,702,601 13,558

Ramp
RCT 1,075,634 8,316 1,131,531 8,764 1,160,564 8,996 1,179,234 9,145
ORCT 2,853,202 22,569 3,839,945 30,432 3,973,769 31,501 4,050,013 32,111
ARCT 5,711,310 45,401 7,442,922 59,253 7,924,650 63,107 8,071,866 64,285
HCT (30-day set-up) 8,744,377 69,672 9,452,413 75,330 9,725,022 77,511 9,897,591 78,892
HCT (60-day set-up) 6,814,762 54,235 7,381,425 58,762 7,602,878 60,534 7,743,514 61,659
HCT (90-day set-up) 5,266,925 41,851 5,711,663 45,404 5,887,421 46,811 5,999,381 47,706
HCT (120-day set-up) 4,053,134 32,141 4,396,033 34,879 4,532,400 35,970 4,619,521 36,667
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Figure 2: Dates of licensure under RCT, ORCT, ARCT, HCT (30-day set-up time), and
HCT (90-day set-up time), assuming superiority testing, a vaccine efficacy of 50%, and a
population vaccination schedule of 10M doses per day.

14



5 Discussion

There has been a plethora of papers highlighting various ethical considerations for conducting

HCTs [36, 37], some specifically for COVID-19 [9, 38, 39, 40, 41, 42]. Some of the main ethical

concerns are: (1) what is the explicit scientific rationale for, and societal value of, an HCT;

(2) whether the risks of harm to the subjects and the public at large are understood by

the scientists and have been minimized; (3) whether informed consents have been obtained

from subjects after they are given full disclosures of the risks involved; and (4) whether the

subjects have been selected fairly and given appropriate compensation for both the risk and

actual harm brought on by HCTs. Most bioethicists generally accept that these concerns

can be addressed within the existing ethical framework for human medical research.

Our paper addresses the first and second of these ethical concerns. We provide scientific

justifications for COVID-19 HCTs by considering how conducting them can allow companies

to learn about the protection curves and accelerate the development of vaccines against

SARS-CoV-2.

However, our analysis does not address the latter two ethical considerations as they con-

cern the execution of HCTs, which is beyond the scope of this paper. Nonetheless, companies

and scientists seeking to perform HCTs, and especially regulators, will have to address those

concerns to preserve public trust and avoid a public backlash that could jeopardize other

important medical research critical to addressing the current epidemic.

Some scientists argue that “a single death or severe illness in an otherwise healthy vol-

unteer would be unconscionable” [42]. However, it can be argued that allowing tens of

thousands of individuals to die by denying the consent of an informed individual to take a

calculated risk is equally unconscionable. In this paper, we adopt the Benthamite approach

[43], where every individual’s utility is weighted equally in the aggregate utility function, as

is the common convention in public economics analyses. Within this ethical perspective, our

calculations show that an HCT can potentially provide substantial public health benefits in

terms of accelerating vaccine development and reducing the burden of coronavirus-related

mortality and morbidity in the U.S.—in some cases, by more than 1.1M infections and 8,000

deaths compared to the best performing RCT—when conducted early in the pandemic’s

life cycle and in cases where the spread of COVID-19 in the population is muted due to

non-pharmaceutical interventions.

We also expect the financial costs of an HCT—which includes the cost of liability
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protection—to be lower than those of a traditional vaccine efficacy RCT, adding further

support for a challenge design (see Appendix A.4 for further discussion). While we have

focused on public health outcomes here, it is clear that accelerated vaccine development

provides tremendous societal and economic benefits as well—e.g., savings in insured medi-

cal costs, direct medical expenditures, and hospitalization costs, and accelerated economic

recovery from an earlier reopening.

We emphasize that the expected costs and benefits of a clinical trial depend critically on

many assumptions about existing conditions. For example, recruiting subjects in sufficient

numbers and diversity can sometimes present a challenge for clinical trials involving experi-

mental vaccines (although, in the case of HCTs for COVID-19, the organization 1Day Sooner

reports over 32,000 registered volunteers as of July 27, 2020). Also, we do not include set-up

time for non-challenge RCTs because phase 3 vaccine efficacy trials are already imminent

as of now. Moreover, we assume a relatively short set-up time for HCTs because a chal-

lenge study can be set up relatively quickly using a wild-type strain [23], and the National

Institute of Allergy and Infectious Diseases (NIAID) appears to have already made some

headway in manufacturing challenge doses [44]. If, instead, we assume comparable set-up

times (e.g., two months) and start dates for both an HCT and non-challenge RCTs, we

expect that an HCT can accelerate licensure by two months when compared to an adaptive

RCT.13 Some have argued that at least one to two years is required to develop a robust

model from scratch [42]. In this case, our results indicate that an ARCT will almost always

be faster than an HCT. However, even if an HCT with a long set-up time does not lead to

faster vaccine licensures over an ARCT given current conditions, the creation of a standing

HCT agent and setting up an HCT now can provide a hedge against potential failures in the

current crop of vaccine candidates. By having an approved, ready-to-go challenge virus and

ready-to-go HCT sites that vaccine developers can access immediately, the approval process

for as-yet-untested SARS-CoV-2 vaccine candidates can be accelerated when required. For

a pandemic like COVID-19, such a hedge will almost always show substantial net benefits

relative to its costs.

HCTs have several other benefits that will be more obvious as the pandemic progresses.

They require many fewer eligible volunteers, whose numbers will dwindle as the pandemic

progresses. They do not depend on attack rates at clinical trial sites which are notori-

13Assuming superiority testing, a vaccine efficacy of 50%, and the behavioral epidemiological model.
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ously difficult to estimate and highly dependent on non-pharmaceutical interventions such

as lockdowns and other social-distancing policies. They also avoid logistical problems such as

identifying subjects, obtaining subjects’ consent, obtaining institutional review board’s ap-

proval or tracking subjects, particularly when attempting large-scale clinical trials in places

where contract research organizations (CROs) have little experience.

It is conceivable that multiple vaccines—instead of the single vaccine in our simulation

study—are tested concurrently in a single trial design [45]. For example, five vaccines, such as

those selected by Operation Warp Speed [46], could be tested concurrently in a six-arm trial

(five vaccine arms and a control arm), requiring 40% fewer test subjects, thereby reducing

in-trial expected morbidity and mortality costs by the same amount. The benefits can be

increased if an adaptive platform clinical trial—designed to eliminate ineffective vaccines at

the first signs of futility—is adopted. A clinical trial testing multiple vaccines can also reduce

competition for volunteers, a problem that continues to plague vaccine developers [47].

We choose to quantify the cost and benefits of the clinical trials by measuring the number

of infections and deaths avoided, and refrain from performing a traditional health technology

assessment, such as comparing the economic value of an HCT versus an RCT using quality-

adjusted life years measures or willingness to pay estimates such as the value of a statistical

life. Performing such computations is straightforward given the output of our simulations,

but we have refrained from doing so in deference to non-economist stakeholders who find it

offensive to use any pecuniary measures when discussing the loss of human life.

Finally, our analysis focuses mainly on the U.S. for practical reasons involving access

to data with which to calibrate our simulations and the broader goal of informing U.S.

public health officials and policymakers as the country enters the final stages of vaccine

development. However, a vaccine licensure may apply internationally. Given that the U.S.

currently comprises 25% of all confirmed COVID-19 cases (as of July 7, 2020) [28], if the

assumptions made in our study also hold internationally, the net benefits for all the clinical

trials will scale by a factor of 4, in which case HCTs can save an additional 4.4M infections

and 32,000 deaths compared to the best performing RCT in certain situations.

We highlight that these figures depend heavily on the development of the epidemic in

the U.S. moving forward. We have considered three simple scenarios, status quo, ramp, and

behavioral, corresponding to low transmission, moderate transmission, and behavioral-based

response, respectively. There are clearly many other sources of uncertainty that are not re-
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flected here. For example, non-adherence to social distancing advisories and/or resistance to

precaution recommendations such as wearing a mask in public will lead to an uncontrolled

outbreak, which will help to accelerate non-challenge RCTs, making them attractive even

when compared to an HCT with a short set-up time. We have found it difficult and imprac-

tical to incorporate these uncertainties in our assumptions due to the speed at which things

are evolving and the unpredictability of public reaction. In addition, studies that have at-

tempted to incorporate such uncertainties in their epidemic model report huge error bounds

in their projections [48]. The wide confidence intervals prevent us from drawing any useful

conclusions, which severely limit the usefulness of such models. Therefore, we recommend

readers not to take our results as final or definitive, but to re-run our simulations with their

own preferred set of assumptions, calibrated using the most current epidemiological data.

6 Conclusion

Our paper presents a systematic framework for quantitatively accessing the in-trial and

societal cost/benefit trade-offs of various clinical trial designs in terms of infections and

deaths averted. We hope that this framework will allow stakeholders to make more informed

practical and ethical decisions regarding accelerating COVID-19 vaccine development in the

ongoing pandemic.
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A Appendix

In this appendix, we include detailed results about clinical trial design (Sections A.1–A.4),
epidemiological models (Sections A.5–A.9), and additional simulation results (Section A.11).

A.1 Efficacy Analysis

The protective effect of a vaccine—that is, vaccine efficacy—is defined as [7]:

ε = 1− p1

p0

= 1− c1/n1

c0/n0

(A.1)

where ε refers to the vaccine efficacy, p1 and p0 are the attack rates observed in the treatment
arm and the control arm, respectively, n1 and n0 refer to the sample sizes of the treatment
arm and the control arm, respectively, and c1 and c0 refer to the number of infections observed
in the treatment arm and the control arm, respectively. The attack rate is defined as the
fraction of a cohort at risk that becomes infected during the surveillance period. There are
conflicting views on the possibility of human reinfections [49, 50]; for simplicity, we rule out
recurrent infections in our simulations.

Superiority Testing

First, we consider superiority testing to determine the licensure of a vaccine candidate at
the end of a clinical study, e.g., RCT, ORCT, or HCT. The aim is to demonstrate that
the efficacy of the candidate in the prevention of infections is greater than zero. Such a
criteria might be appropriate for emergency use authorization during a pandemic where no
alternative treatments are available. For this, we consider the following null and alternative
hypotheses:

H0 : p1 − p0 = 0 , H1 : p1 − p0 6= 0 (A.2)

The test statistic under the null hypothesis is given by:

z =
|p1 − p0| − a√

2p̄q̄a
, a =

r + 1

2rn0

, r =
n1

n0

(A.3)

p̄ =
c1 + c0

n0(r + 1)
=
rp1 + p0

r + 1
, q̄ = 1− p̄ (A.4)
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where z is the test statistic. For large samples, z is approximately the standard Normal
distribution.

The power of a vaccine efficacy study under superiority testing is given by [51, 52]:

zβ =
|P1 − P0|

√
rn0 − (r + 1)/|P1 − P0| − zα/2

√
(r + 1)P̄ Q̄√

P1Q1 + rP0Q0

(A.5)

P̄ =
rP1 + P0

r + 1
, Q̄ = 1− P̄ (A.6)

P1 = (1− ε)P0 , Qi = 1− Pi, i ∈ {0, 1} (A.7)

where α is the level of significance, β refers to the type II error under the alternative hy-
pothesis, za is the 100(1 − a) percentage points of the standard Normal distribution, P1

and P0 refer to the underlying (true) attack rate in the treatment arm and the control arm,
respectively, and ε refers to the true vaccine efficacy.

Superiority-by-Margin Testing

Next, we consider the case where superiority by margin (also known as super-superiority)—
that is, a vaccine efficacy that is greater than some minimum threshold—must be demon-
strated for full licensure:

H0 : ϑ− θ = 0 , H1 : ϑ− θ 6= 0 (A.8)

where ϑ = p1/p0, and θ is a specified minimum threshold larger than 0 and smaller than 1.

The test statistic under the null hypothesis is given by [51]:

χ2 =
(p1 − θp0)2

(p̃1q̃1 + rθ2p̃0q̃0)/rn0

, q̃i = 1− p̃i, i ∈ {0, 1} (A.9)

where χ2 is the test statistic, and p̃1 and p̃0 are the large sample approximations of the con-
strained maximum likelihood estimate of P1 and P0, respectively, under the null hypothesis
(see below for closed-form solutions). For large samples, χ2 is approximately the chi-square
distribution on one degree of freedom.

The power of a vaccine efficacy study under superiority-by-margin testing is given by:

zβ =
(θP0 − P1)

√
rn0 − zα/2

√
p̃1q̃1 + rθ2p̃0q̃0√

P1Q1 + rθ2P0Q0

(A.10)
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Asymptotics for Superiority-by-Margin Testing

The constraint is:

p̂1 = θp̂0 (A.11)

where p̂1 and p̂0 are the constrained maximum likelihood estimates of P1 and P0, respectively,
under the null hypothesis.

The closed-form solution is given by:

p̂0 =
−B −

√
B2 − 4AC

2A
(A.12)

A = (r + 1)θn0 , B = −(θrn0 + c1 + n0 + θc0) , C = c1 + c0 (A.13)

The asymptotic approximation is:

p̃0 =
−B −

√
B2 − 4AC

2A
, p̃1 = θp̃0 (A.14)

A = (r + 1)θ , B = −(θr + rP1 + 1 + θP0) , C = rP1 + P0 (A.15)

A.2 Adaptive Vaccine Efficacy RCT

We propose an adaptive vaccine efficacy RCT design (ARCT) based on group sequential
methods. First, we consider an alternative definition of vaccine efficacy based on relative
force of infection, as opposed to relative risk of infection in Eq. A.1:

ε ≈ 1− Λ1

Λ0

, Λi =

∫ ts

0

λi(u) du, i ∈ {0, 1} (A.16)

where λ1 and λ0 refer to the force of infection in the treatment arm and the control arm,
respectively, and ts refers to the duration of the surveillance period. The force of infection of
an infectious disease is defined as the expected number of new cases of the disease per unit
person-time at risk. When the risk of infection is small, e.g., smaller than 0.10, the risk of
infection is approximately equal to the cumulative force of infection [7].

Next, we note that the force of infection and the hazard function in survival analysis
actually take the same functional form [7]. This suggests that infections can also be treated
as time-to-event data, in addition to binary variables as in Eq. A.1. By performing Cox
regression on the time-to-infections data of a clinical trial, we can estimate the efficacy of
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the vaccine candidate from the hazard ratio of the treatment arm versus the control arm:

ε ≈ 1− exp(β) , λ(t|z) = λbaseline(t) exp(βz) (A.17)

where z refers to the treatment variable, i.e., whether the patient is vaccinated or not, λbaseline

is the baseline hazard function, and β is the log hazard ratio. We note that the proportional
hazards assumption is not unreasonable if we assume that the proportion of cases prevented
by the vaccine is independent of the possibly non-homogeneous force of infection [7].

We consider the following null and alternative hypotheses based on the coefficient of the
treatment variable in the Cox model:

H0 : β − β0 = 0 , H1 : β − β0 6= 0 (A.18)

where β0 is 1 for superiority testing and smaller than 1 for superiority-by-margin testing.

The test statistic under the null hypothesis is given by:

z =
β̂ − β0

se(β̂)
(A.19)

where β̂ is the maximum partial likelihood estimate of β and se(β̂) is its standard error, and z
is asymptotically Normal. This is also known the Wald test. It turns out this statistic satisfies
the criteria for group sequential testing [20], allowing us to perform periodic interim analyses
of accumulating trial data, rather than just a single final analysis at the end of a traditional
vaccine efficacy RCT (see Fig. A.1). Under the group sequential testing framework, we
estimate a new Cox model at each interim calendar time point based on the infections data
that has accrued up to that point, over the course of the study surveillance period. At the
interim analyses, we decide whether to stop the study early by rejecting the null hypothesis,
i.e., approving the vaccine candidate, or to continue on to the next analysis by monitoring
the subjects for a longer period of time [20].

We adopt Pocock’s test for sequential testing [53]. It involves repeated testing at suc-
cessive interim analyses at some constant nominal significance level over the course of the
study (see Algorithm 1). The critical value is chosen to satisfy the maximum type I error
requirement, e.g., 5%.

In our simulations, we consider a maximum of six interim analyses spaced 30 days apart,
with the first analysis performed when the first 10,000 subjects enrolled have been monitored
for at least 30 days. To keep the type I error at 5%, we consider a nominal significance level
of 2.453 at each interim analyses [53].

For each of the epidemiological-model and population-vaccination schedule assumptions,
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Figure A.1: Infections as time-to-event data, measured from the start of surveillance. The
horizontal lines represent the time to infection of ten subjects enrolled at different times. We
monitor the subjects until an infection occurs or the end of study, whichever comes earlier. A
solid circle at the right end denotes an infection, whereas a hollow circle indicates censoring.
In the figure, we consider up to six analyses. At an interim analysis, subjects are considered
censored if they are known to be uninfected and at risk at that point in time. Information
on these subjects will continue to accrue through the surveillance period.

we compute the expected net value of ARCT over 100,000 Monte Carlo simulation paths.
For each path, we track the infections data of 30,000 patients for up to 180 days of surveil-
lance. In addition, we estimate up to six Cox proportional hazards models, one at each
interim analysis. The simulation process is computationally intensive despite parallelization,
requiring approximately 8 hours to complete on the MIT Sloan “Engaging” high-performance
computing cluster using over 400 processors.

While we have considered a simple adaptive design in this paper, we note that our
framework can be easily extended to other sequential boundaries such as the O’Brien &
Fleming’s Test, to two-sided tests that allow for early stopping under the null hypothesis,
i.e., early stopping for both futility and efficacy, and to flexible monitoring using the error
spending approach, instead of using a constant nominal significance level for all interim
analyses [20].

Algorithm 1 Pocock’s test. k refers to the kth interim analysis, K refers to the maximum
number of interim analyses planned, zk refers to the test statistic at the kth interim analysis,
and c(K,α) refers to the nominal significance level which is a function of K and α, the
maximum type I error allowed.

for k = 1, . . . , K do
if |zk| ≥ c(K,α) then

stop, reject H0

else
if k == K then

stop, accept H0

else
continue

end if
end if

end for
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A.3 Trial Design Assumptions

Table A.1: Trial design assumptions common across RCT, ORCT, ARCT, and HCT.

Parameter Value

Cohort Closed and fixed
Accrual rate (patients/day) 250
Control arm Vaccine for meningococcal bacteria
Treatment arm Vaccine candidate for COVID-19
Vaccination schedule Two doses administered 28 days apart
Vaccine efficacy (%) 30–90
Time for immune response (days) 28
Endpoint Infection by SARS-CoV-2
Time for safety data collection, data
analysis, and FDA review (days)

120

Type I error (%) 5

Table A.2: Trial design assumptions specific to RCT, ORCT, ARCT, and HCT.

Parameter RCT ORCT ARCT HCT

Set-up time (days) – – – 30–120
Sample size 30,000 30,000 30,000 250
Inclusion criteria Healthy adults

aged 18–50 years
Healthy adults

aged 18–50 years
Healthy adults

aged 18–50 years
Healthy adults

aged 18–25 years
Randomization
ratio
(treatment:control)

1:1 1:1 1:1 4:1

Time for
enrollment (days)

120 120 40–120 1

Surveillance period
(days)

Fixed and constant
for all subjects;

180

Fixed and constant
for all subjects;

30–180

Calendar time
interval

Fixed and constant
for all subjects; 14

Attack rate (%) Depends on
epidemiological

model

Depends on
epidemiological

model and
surveillance period

Depends on
epidemiological

model and
surveillance period

90

Efficacy analysis Single analysis at
end of study

Single analysis at
end of study

Up to 6 interim
analyses spaced 30

days apart

Single analysis at
end of study

Additional safety
study

– – – Single-arm with
5,000 subjects

Estimated time to
licensure (days)

476 326–476 246–396 221–311

30



A.4 Financial Cost of Vaccine Efficacy Studies

There are many sources of costs involved in a clinical trial, e.g., patient recruitment and
retention, medical and administrative staff, clinical procedures and central laboratory, site
management, and data collection and analysis. For a back-of-the-envelope calculation, we
assume that the cost per subject in a phase 3 vaccine efficacy trial is around US$5,000.
This suggests a cost of US$150M for a study with 30,000 subjects, close to that estimated
for rotavirus vaccines [54] in one of the very few studies that estimate the cost of vaccine
development [55]. The figure is very high as compared to the median expense of a phase
3 trial for novel therapeutic agents, estimated to be US$19M [56]. However, this is not
surprising because vaccine efficacy studies are notorious for being costly due to the large
sample sizes and lengthy follow-up durations. If we assume that challenge studies have a
cost per subject that is ten times higher, i.e., US$50,000 per volunteer, the estimated cost of
an HCT is approximately US$37.5M, where we have assumed a cost of US$5,000 per subject
for the follow-up single-arm safety study comprising of 5,000 subjects. This makes up just
25% of the cost of an RCT with 30,000 subjects.
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A.5 SIRDC with Social Distancing (SIRDC-SD) Model

We assume that there is a constant population of N people. The number of people who
are susceptible to infection, infected, resolving their infected status, dead, and recovered are
denoted as St, It, Rt, Dt, and Ct respectively.

N = St + It +Rt +Dt + Ct (A.20)

The dynamics of the epidemic are governed by the following differential equations:

dSt
dt

= −β(t)StIt
N

(A.21)

dIt
dt

=
β(t)StIt
N

− γIt (A.22)

dRt

dt
= γIt − θRt (A.23)

dDt

dt
= δθRt (A.24)

dCt
dt

= (1− δ)θRt (A.25)

Unlike most epidemiological models, the SIRDC-SD model assumes a contact rate pa-
rameter, β(t), that decreases exponentially over time at a rate of λ from an initial value of
β0 to β∗ instead of a static one.

β(t) = β0e
−λt + β∗(1− eλt) (A.26)

This dynamic β(t) incorporates the belief that social distancing over time will lead to a lower
contact rate. This is particularly true in the U.S., where many cities have issued stay-at-
home orders. Many people are also voluntarily wearing masks and are avoiding crowded
places, which serve to reduce the contact rate.

The model also assumes that infections resolve at a Poisson rate γ, which implies that a
person is infectious for a period of 1/γ on average. Thereafter, he will stop being infectious
and transition into the ‘resolving’ state. Resolving cases will clear up at a Poisson rate of θ.
There is an implicit assumption that people who recovered from the virus gain immunity to
the virus and cannot be reinfected.
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A.6 Parameter Estimation/Calibration for SIRDC-SD Model

Let Dt and dt be the cumulative and daily number of deaths from data at time t, respec-
tively. Let variables with hats denote the model’s estimated values. We use the following
optimization program to estimate the parameters of the model.

minimize
β0,β∗,λ,I0,η

ln

(∑
t

(Dt − D̂t)
2

)
+ ln

(∑
t

(dt − d̂t)2

)
(A.27)

subject to:

I0 < N , (A.28)

R0 = ηI0 , (A.29)

S0 = N −R0 − I0 , (A.30)

β0 > β∗ . (A.31)

Our loss function is given by Eq. A.27, which says that we minimize the sum of 1) the
natural logarithm of the sum of squared errors for the cumulative deaths, and 2) the natural
logarithm of the sum of squared errors for the daily deaths. The minimization program is
subjected to the four constraints. Eq. A.28 says that the initial number of infected must be
less than the entire population. Eq. A.29 imposes that the number of initial resolving cases
must be less than the number of initial infected cases. Eq. A.30 states that the conservation
of population must hold at time = 0 and Eq. A.31 constrains the initial contact rate to be
greater than the final contact rate.

We set γ, δ, and θ to 0.2, 0.008, and 0.1, respectively, as suggested by [27].

The optimization program is solved using the constrained Trust-Region algorithm as
implemented in the SciPy Optimize package for each of the 50 U.S. states and Washington,
D.C. Our estimated parameters for each state are reported in Table A.3.

Table A.3: Estimated parameters of the SIRDC model.

State N β0 β∗ η λ
Alabama 4,903,185 0.211 0.211 0.000 21.159
Alaska 731,545 0.799 0.000 0.947 0.430
Arizona 7,278,717 2.841 0.218 0.999 0.410
Arkansas 3,017,804 0.255 0.001 1.000 0.008
California 39,512,223 1.546 0.188 0.002 0.100
Colorado 5,758,736 1.961 0.188 0.511 0.149
Connecticut 3,565,287 3.006 0.177 0.006 0.169
Delaware 973,764 0.228 0.222 0.000 53.755

Continued on next page
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Table A.3 – continued from previous page

State N β0 β∗ η λ

District of Columbia 705,749 0.699 0.171 0.999 0.078
Florida 21,477,737 1.712 0.185 0.975 0.122
Georgia 10,617,423 3.491 0.191 0.824 0.223
Hawaii 1,415,872 3.621 0.110 0.006 0.404
Idaho 1,787,065 2.871 0.134 0.994 0.462
Illinois 12,671,821 3.895 0.208 0.275 0.238
Indiana 6,732,219 1.270 0.188 0.993 0.128
Iowa 3,155,070 3.813 0.223 0.507 0.332
Kansas 2,913,314 1.594 0.157 0.379 0.132
Kentucky 4,467,673 4.129 0.185 0.140 0.269
Louisiana 4,648,794 4.324 0.181 0.370 0.257
Maine 1,344,212 7.164 0.169 0.991 0.962
Maryland 6,045,680 1.976 0.183 0.369 0.138
Massachusetts 6,892,503 2.258 0.182 0.412 0.148
Michigan 9,986,857 4.154 0.163 0.547 0.246
Minnesota 5,639,632 0.829 0.184 0.999 0.089
Mississippi 2,976,149 3.150 0.217 0.988 0.343
Missouri 6,137,428 0.882 0.189 1.000 0.125
Montana 1,068,778 0.149 0.149 1.000 3.169
Nebraska 1,934,408 4.622 0.201 0.541 0.396
Nevada 3,080,156 3.501 0.189 0.810 0.292
New Hampshire 1,359,711 1.506 0.221 0.866 0.236
New Jersey 8,882,190 2.766 0.179 0.048 0.130
New Mexico 2,096,829 0.421 0.148 1.000 0.043
New York 26,161,672 6.095 0.148 0.461 0.229
North Carolina 10,488,084 3.224 0.194 0.997 0.324
North Dakota 762,062 1.789 0.213 0.984 0.391
Ohio 11,689,100 2.524 0.204 0.994 0.244
Oklahoma 3,956,971 3.219 0.168 0.867 0.316
Oregon 4,217,737 3.309 0.176 0.021 0.296
Pennsylvania 12,801,989 1.721 0.180 0.734 0.124
Rhode Island 1,059,361 3.872 0.214 1.000 0.499
South Carolina 5,148,714 2.219 0.192 0.488 0.180
South Dakota 884,659 0.587 0.000 0.999 0.021
Tennessee 6,829,174 0.198 0.196 0.000 84.504
Texas 28,995,881 5.141 0.200 0.279 0.311
Utah 3,205,958 1.390 0.212 0.999 0.447
Vermont 623,989 0.160 0.160 0.085 54.439
Virginia 8,535,519 6.097 0.216 0.000 0.315
Washington 7,614,893 1.490 0.175 0.968 0.138

Continued on next page
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Table A.3 – continued from previous page

State N β0 β∗ η λ

West Virginia 1,792,147 0.194 0.193 0.000 26.549
Wisconsin 5,822,434 9.799 0.188 0.618 0.556
Wyoming 578,759 0.160 0.160 1.000 6.478
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A.7 Infections and Deaths Across Scenarios

Fig. A.2 illustrates how the cumulative number of infections and deaths change over time
given the different evolution paths of the epidemic and vaccination schedules. We assume
that the epidemic evolves based on our scenarios after June 15, 2020, and that the vaccine
is approved on March 13, 2021. The vaccine efficacy assumed is 50%.
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Figure A.2: Illustration of how the cumulative number of infections and deaths change over
time given the different evolution paths of the epidemic and vaccination schedules.
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A.8 SIRDCV Model

We let V̄ and ε be the number of persons vaccinated at every time step and the effectiveness
of the vaccine, respectively. Effectiveness is defined as the performance of the vaccine under
real-world conditions in a general population whereas efficacy is defined as the ability to
protect against a virus under ideal conditions in a homogeneous population. The former is
usually is less than the latter due to several reasons, e.g., improper storage of vaccines leading
to loss of potency and non-compliance with the vaccine dosing schedule. For simplicity, we
assume that the effectiveness of the vaccine in the epidemiological model is identical to the
efficacy of the vaccine in the clinical trials. V r

t and V nr
t represent the stock of people who

are inoculated, and respond (r) and do not respond (nr) to the vaccine, respectively.

dSt
dt

= −β(t)StIt
N

− V̄ (A.32)

dIt
dt

=
β(t)(St + V nr

t )It
N

− γIt (A.33)

dV nr
t

dt
= (1− ε)V̄ − β(t)V nr

t It
N

(A.34)

dV r
t

dt
= εV̄ (A.35)

dRt

dt
= γIt − θRt (A.36)

dDt

dt
= δθRt (A.37)

dCt
dt

= (1− δ)θRt (A.38)

Eq. A.21 has been modified to remove vaccinated persons at every time step in Eq. A.32.
We also modify Eq. A.22 to allow people who are vaccinated but do not respond to the
inoculation to be infected in Eq. A.33. Eq. A.34 and Eq. A.35 keep track of the stock of
people who are vaccinated. With this specification, the virus is allowed to spread even when
the entire population is vaccinated because not everyone will respond to the mass inoculation.
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A.9 Evolution of the Epidemic

As mentioned in the main text, we model three different scenarios regarding the evolution
of the epidemic after lockdown is relaxed. We explain them here. Below, βss is defined to
be max(0.22, β(Tv)), where β(Tv) is the value of β when the lockdown is released.

Status Quo

For the ‘status quo’ scenario, we will use the estimated dynamic β(t) to perform our forecast.

Ramp Response

For the ‘ramp’ scenario, we model β(t) with Eq. A.39. We have explained our rationale for
this function in the main text (see Section 3.1).

β′(t) =


β(t) ∀t < Tv

β(Tv) +
βss − β(Tv)

90
t ∀Tv ≤ t ≤ Tv + 90

βss otherwise

(A.39)

Behavioral Response

The ‘behavioral’ scenario is modeled by making the percentage change in contact rate pa-
rameter negatively proportionate to the change in the observed death rate over an interval
of to. That is,

1

β

dβ

d(∆D
N

)
= −k (A.40)

Integrating Eq. A.40 will yield Eq. A.41.

ln β = c− k∆D

N
= c− kDt −Dt−to

N
(A.41)

The exponent of c is the long term steady-state value of β. k can be interpreted as the
percentage increase/decrease in β if there is a decrease/increase in the death rate. In our
simulations, t0, c, and k are set to 7, ln βss, and 50,000, respectively. The default scenario
of c = ln 0.2 will correspond to a R0 of 1 when approximately 16,000 deaths per week are
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observed in the U.S. This behavior will start immediately on June 15, 2020, to be consistent
with the second scenario.

The new contact rate parameter in this case is defined by Eq. A.42.

β′(t) =

{
β(t) ∀t < Tv

ec−k
Dt−Dt−to

N otherwise
(A.42)

Illustration of the Evolution of Epidemic

We give an example of how R0 = β/γ may look for each of the scenario in Fig. A.3. The
actual evolution of R0 for a state may differ pending on estimated parameters.
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Figure A.3: An illustration of how the R0 = β/γ changes over time for each of the three
scenarios: status quo, a ramp increase, and behavioral-based response.
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A.10 Trade-off Between Time and Power

As mentioned in the main text, there is a trade-off between time and power. A shorter
surveillance period will, ceteris paribus, reduce the power of the RCT. However, it will also
reduce the time to licensure of the vaccine (if approved), which would prevent more infections
and save more lives. Conversely, a longer surveillance period would increase the power of
the RCT but also prolong the time it takes for the vaccine to be approved. We illustrate the
interaction between power and infections avoided over time in Fig. A.4.
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Figure A.4: An illustration of the interaction between power and infections avoided over
time. (Top left panel) The number of infections avoided decreases over time. (Top right
panel) The power under the superiority test expected from the clinical trial increases with
the surveillance time. (Bottom panel) The expected number of infections avoided—computed
as the product of the power and infections avoided—as a function of the surveillance period.
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A.11 Additional Simulation Results

Table A.4: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority testing, and 1M doses of a vaccine per day are available after
licensure, compared to the baseline case where no vaccine is ever approved.

Vaccine Efficacy (%)

30 50 70 90

E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths]

Status Quo
RCT 2,506 20 8,116 64 14,162 112 16,506 130
ORCT 3,654 29 11,947 95 25,167 200 38,663 308
ARCT 6,248 49 22,261 177 49,396 393 63,896 508
HCT (30-day set-up) 90,472 722 106,202 848 114,847 918 120,945 966
HCT (60-day set-up) 71,223 568 83,467 666 90,167 720 94,885 758
HCT (90-day set-up) 56,263 448 65,857 525 71,088 567 74,766 597
HCT (120-day set-up) 44,556 355 52,122 415 56,235 449 59,123 471

Behavioral
RCT 224,835 1,736 264,810 2,056 289,168 2,251 306,050 2,386
ORCT 705,881 5,591 925,920 7,344 1,007,301 7,995 1,065,183 8,459
ARCT 1,502,846 11,959 2,051,223 16,346 2,269,753 18,094 2,423,075 19,321
HCT (30-day set-up) 2,209,905 17,618 2,695,582 21,502 2,982,094 23,794 3,189,157 25,451
HCT (60-day set-up) 1,611,969 12,834 1,951,336 15,548 2,150,531 17,142 2,294,765 18,295
HCT (90-day set-up) 1,190,836 9,465 1,429,078 11,370 1,566,872 12,473 1,666,446 13,269
HCT (120-day set-up) 894,225 7,092 1,065,008 8,457 1,161,296 9,228 1,230,321 9,780

Ramp
RCT 756,692 5,764 845,731 6,477 899,765 6,909 937,666 7,212
ORCT 1,825,095 14,344 2,656,479 20,964 2,890,096 22,832 3,047,293 24,089
ARCT 3,594,521 28,466 5,131,954 40,766 5,768,903 45,861 6,091,608 48,443
HCT (30-day set-up) 5,526,735 43,930 6,565,535 52,235 7,130,975 56,759 7,523,068 59,896
HCT (60-day set-up) 4,282,314 33,975 5,086,688 40,404 5,528,656 43,941 5,837,268 46,409
HCT (90-day set-up) 3,311,292 26,206 3,926,171 31,120 4,265,392 33,834 4,503,392 35,738
HCT (120-day set-up) 2,564,645 20,233 3,031,075 23,959 3,288,349 26,018 3,469,234 27,465
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Table A.5: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority testing, and infinite doses of a vaccine per day are available
after licensure, compared to the baseline case where no vaccine is ever approved.

Vaccine Efficacy (%)

30 50 70 90

E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths]

Status Quo
RCT 4,343 35 12,691 101 20,900 165 23,426 185
ORCT 6,190 50 18,462 147 36,872 294 54,672 436
ARCT 10,655 84 34,672 276 72,976 581 90,989 725
HCT (30-day set-up) 157,044 1,255 168,612 1,347 172,598 1,380 174,917 1,398
HCT (60-day set-up) 122,531 978 131,429 1,049 134,478 1,075 136,254 1,088
HCT (90-day set-up) 96,093 767 102,986 822 105,338 841 106,709 852
HCT (120-day set-up) 75,691 604 81,068 647 82,896 662 83,965 670

Behavioral
RCT 401,196 3,147 422,644 3,318 432,235 3,396 437,725 3,439
ORCT 1,284,033 10,217 1,542,261 12,276 1,587,101 12,634 1,613,158 12,843
ARCT 2,957,024 23,592 3,683,384 29,403 3,813,885 30,447 3,881,898 30,991
HCT (30-day set-up) 4,466,352 35,669 4,884,898 39,016 5,039,465 40,253 5,128,348 40,964
HCT (60-day set-up) 3,196,408 25,510 3,494,817 27,895 3,605,985 28,786 3,670,305 29,300
HCT (90-day set-up) 2,291,219 18,268 2,500,498 19,941 2,578,527 20,566 2,623,871 20,928
HCT (120-day set-up) 1,659,356 13,214 1,805,003 14,377 1,858,914 14,809 1,890,330 15,060

Ramp
RCT 1,174,517 9,107 1,229,484 9,547 1,255,157 9,752 1,270,085 9,871
ORCT 3,172,803 25,126 4,242,057 33,649 4,362,661 34,612 4,422,914 35,094
ARCT 6,347,189 50,488 8,191,884 65,245 8,662,725 69,012 8,776,472 69,922
HCT (30-day set-up) 9,669,217 77,070 10,366,266 82,641 10,597,019 84,487 10,728,517 85,539
HCT (60-day set-up) 7,564,062 60,228 8,126,045 64,719 8,315,537 66,236 8,423,946 67,103
HCT (90-day set-up) 5,860,161 46,598 6,304,440 50,146 6,456,348 51,362 6,543,545 52,059
HCT (120-day set-up) 4,512,448 35,815 4,857,257 38,569 4,976,272 39,521 5,044,819 40,070
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Table A.6: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 50%, and 1M doses of a vaccine per day
are available after licensure, compared to the baseline case where no vaccine is ever approved.
We observe negative expected net values when vaccine efficacy is 30% because the candidate
is almost never approved under superiority-by-margin testing. While a cost from conducting
the trial is always incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50 70 90

E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths]

Status Quo
RCT −34 0 319 3 4,091 32 14,935 118
ORCT 239 2 1,149 9 6,123 49 26,189 208
ARCT −39 0 199 1 3,840 30 27,107 215
HCT (30-day set-up) −171 −1 2,523 20 113,800 910 120,945 966
HCT (60-day set-up) −171 −1 1,955 16 89,345 713 94,885 758
HCT (90-day set-up) −171 −1 1,515 12 70,439 562 74,766 597
HCT (120-day set-up) −171 −1 1,171 9 55,722 445 59,123 471

Behavioral
RCT −1,461 −11 2,242 17 289,168 2,251 306,050 2,386
ORCT −331 −2 21,526 171 955,088 7,581 1,065,183 8,459
ARCT −1,384 −11 29,583 235 2,043,288 16,282 2,423,068 19,321
HCT (30-day set-up) −171 −1 67,258 537 2,954,925 23,577 3,189,157 25,451
HCT (60-day set-up) −171 −1 48,652 388 2,130,938 16,986 2,294,765 18,295
HCT (90-day set-up) −171 −1 35,595 283 1,552,596 12,359 1,666,446 13,269
HCT (120-day set-up) −171 −1 26,494 210 1,150,715 9,144 1,230,321 9,780

Ramp
RCT −1,406 −11 10,693 82 899,765 6,909 937,666 7,212
ORCT −198 −1 64,285 508 2,467,656 19,477 3,047,293 24,089
ARCT −1,196 −9 82,127 649 4,714,327 37,425 6,088,218 48,416
HCT (30-day set-up) −171 −1 164,007 1,305 7,066,008 56,242 7,523,068 59,896
HCT (60-day set-up) −171 −1 127,036 1,009 5,478,287 43,541 5,837,268 46,409
HCT (90-day set-up) −171 −1 98,023 777 4,226,532 33,526 4,503,392 35,738
HCT (120-day set-up) −171 −1 75,645 598 3,258,390 25,781 3,469,234 27,465
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Table A.7: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 50%, and 10M doses of a vaccine per
day are available after licensure, compared to the baseline case where no vaccine is ever
approved. We observe negative expected net values when vaccine efficacy is 30% because
the candidate is almost never approved under superiority-by-margin testing. While a cost
from conducting the trial is always incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50 70 90

E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths]

Status Quo
RCT −25 0 471 4 5,536 44 19,507 154
ORCT 374 3 1,625 13 8,217 66 34,029 271
ARCT −33 0 298 2 5,170 41 35,268 280
HCT (30-day set-up) −171 −1 3,675 29 155,455 1,243 159,876 1,277
HCT (60-day set-up) −171 −1 2,842 23 121,365 970 124,777 997
HCT (90-day set-up) −171 −1 2,203 18 95,234 761 97,886 782
HCT (120-day set-up) −171 −1 1,709 14 75,056 599 77,132 615

Behavioral
RCT −1,461 −11 3,852 30 397,396 3,117 404,562 3,174
ORCT −331 −2 32,156 256 1,352,103 10,757 1,457,500 11,598
ARCT −1,384 −11 46,267 368 3,037,771 24,238 3,473,025 27,720
HCT (30-day set-up) −171 −1 107,601 859 4,440,619 35,463 4,591,750 36,671
HCT (60-day set-up) −171 −1 76,935 614 3,175,958 25,346 3,283,975 26,209
HCT (90-day set-up) −171 −1 55,168 440 2,276,419 18,149 2,352,436 18,757
HCT (120-day set-up) −171 −1 40,014 319 1,649,447 13,134 1,702,601 13,558

Ramp
RCT −1,406 −11 14,720 115 1,160,564 8,996 1,179,234 9,145
ORCT −183 −1 93,009 738 3,387,704 26,840 4,050,013 32,111
ARCT −1,142 −9 119,304 947 6,492,110 51,647 8,067,450 64,250
HCT (30-day set-up) −171 −1 236,179 1,882 9,636,422 76,805 9,897,591 78,892
HCT (60-day set-up) −171 −1 184,404 1,468 7,533,612 59,983 7,743,514 61,659
HCT (90-day set-up) −171 −1 142,660 1,134 5,833,783 46,385 5,999,381 47,706
HCT (120-day set-up) −171 −1 109,769 871 4,491,107 35,642 4,619,521 36,667
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Table A.8: Expected number of incremental infections and deaths avoided in the U.S. under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 50%, and infinite doses of a vaccine
per day are available after licensure, compared to the baseline case where no vaccine is ever
approved. We observe negative expected net values when vaccine efficacy is 30% because
the candidate is almost never approved under superiority-by-margin testing. While a cost
from conducting the trial is always incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50 70 90

E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths] E[∆Infections] E[∆Deaths]

Status Quo
RCT −22 0 523 4 6,050 48 21,198 168
ORCT 416 3 1,789 14 8,976 72 36,974 295
ARCT −31 0 332 2 5,655 45 38,342 305
HCT (30-day set-up) −171 −1 4,084 33 171,025 1,367 174,917 1,398
HCT (60-day set-up) −171 −1 3,154 25 133,252 1,065 136,254 1,088
HCT (90-day set-up) −171 −1 2,443 20 104,377 833 106,709 852
HCT (120-day set-up) −171 −1 1,895 15 82,140 656 83,965 670

Behavioral
RCT −1,461 −11 4,337 34 432,235 3,396 437,725 3,439
ORCT −331 −2 36,046 287 1,504,842 11,979 1,613,158 12,843
ARCT −1,384 −11 52,340 417 3,416,029 27,264 3,881,886 30,991
HCT (30-day set-up) −171 −1 121,991 974 4,993,552 39,886 5,128,348 40,964
HCT (60-day set-up) −171 −1 87,239 696 3,573,132 28,524 3,670,305 29,300
HCT (90-day set-up) −171 −1 62,381 498 2,555,035 20,379 2,623,871 20,928
HCT (120-day set-up) −171 −1 44,993 358 1,841,978 14,674 1,890,330 15,060

Ramp
RCT −1,406 −11 16,101 126 1,255,157 9,752 1,270,085 9,871
ORCT −178 −1 102,769 816 3,718,588 29,487 4,422,914 35,094
ARCT −1,126 −9 131,636 1,045 7,109,717 56,588 8,771,717 69,884
HCT (30-day set-up) −171 −1 259,025 2,065 10,500,475 83,717 10,728,517 85,539
HCT (60-day set-up) −171 −1 203,020 1,617 8,239,778 65,633 8,423,946 67,103
HCT (90-day set-up) −171 −1 157,479 1,253 6,397,527 50,894 6,543,545 52,059
HCT (120-day set-up) −171 −1 121,300 963 4,930,935 39,161 5,044,819 40,070

45



Table A.9: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority testing, and 1M doses of a vaccine per day are available after licensure. For
ARCT, we report the median date of licensure over all Monte Carlo simulations. DoL: date
of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 20.2 11/19/2021 55.9 11/19/2021 89.9 11/19/2021 99.6
ORCT 08/14/2021 13.6 08/15/2021 38.9 07/30/2021 67.2 07/10/2021 84.3
ARCT 07/02/2021 14.5 06/02/2021 44.2 06/02/2021 83.8 06/02/2021 99.6
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Behavioral
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 06/24/2021 90.5 06/22/2021 100.0 06/22/2021 100.0 06/22/2021 100.0
ARCT 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Ramp
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 07/06/2021 88.9 06/22/2021 99.6 06/22/2021 100.0 06/22/2021 100.0
ARCT 05/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0
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Table A.10: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority testing, and 10M doses of a vaccine per day are available after licensure.
For ARCT, we report the median date of licensure over all Monte Carlo simulations. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 20.2 11/19/2021 55.9 11/19/2021 89.9 11/19/2021 99.6
ORCT 08/15/2021 13.8 08/15/2021 38.9 07/30/2021 67.2 07/10/2021 84.3
ARCT 07/02/2021 14.5 06/02/2021 44.2 06/02/2021 83.8 06/02/2021 99.6
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Behavioral
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 06/23/2021 89.6 06/22/2021 100.0 06/22/2021 100.0 06/22/2021 100.0
ARCT 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Ramp
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 07/06/2021 88.9 06/22/2021 99.6 06/22/2021 100.0 06/22/2021 100.0
ARCT 05/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0
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Table A.11: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority testing, and infinite doses of a vaccine per day are available after licensure.
For ARCT, we report the median date of licensure over all Monte Carlo simulations. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 20.2 11/19/2021 55.9 11/19/2021 89.9 11/19/2021 99.6
ORCT 08/14/2021 13.6 08/14/2021 38.6 07/30/2021 67.2 07/10/2021 84.3
ARCT 07/02/2021 14.5 06/02/2021 44.2 06/02/2021 83.8 06/02/2021 99.6
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Behavioral
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 06/23/2021 89.6 06/22/2021 100.0 06/22/2021 100.0 06/22/2021 100.0
ARCT 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0

Ramp
RCT 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0 11/19/2021 100.0
ORCT 07/06/2021 88.9 06/22/2021 99.6 06/22/2021 100.0 06/22/2021 100.0
ARCT 05/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 03/09/2021 98.1 03/09/2021 100.0 03/09/2021 100.0 03/09/2021 100.0
HCT (60-day set-up) 04/08/2021 98.1 04/08/2021 100.0 04/08/2021 100.0 04/08/2021 100.0
HCT (90-day set-up) 05/08/2021 98.1 05/08/2021 100.0 05/08/2021 100.0 05/08/2021 100.0
HCT (120-day set-up) 06/07/2021 98.1 06/07/2021 100.0 06/07/2021 100.0 06/07/2021 100.0
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Table A.12: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority-by-margin testing at 50%, and 1M doses of a vaccine per day are available
after licensure. For ARCT, we report the median date of licensure over all Monte Carlo
simulations. A blank entry indicates that the vaccine candidate is never approved. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 0.1 11/19/2021 2.5 11/19/2021 26.2 11/19/2021 90.1
ORCT 06/22/2021 0.3 06/22/2021 2.5 08/06/2021 16.3 07/31/2021 53.5
ARCT 0.0 07/02/2021 0.6 08/01/2021 9.3 08/01/2021 64.3
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Behavioral
RCT 0.0 11/19/2021 1.3 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/22/2021 94.8 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.4 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Ramp
RCT 0.0 11/19/2021 1.4 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/30/2021 83.2 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.5 05/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0
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Table A.13: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August 1,
2020, superiority-by-margin testing at 50%, and 10M doses of a vaccine per day are available
after licensure. For ARCT, we report the median date of licensure over all Monte Carlo
simulations. A blank entry indicates that the vaccine candidate is never approved. DoL:
date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 0.1 11/19/2021 2.5 11/19/2021 26.2 11/19/2021 90.1
ORCT 06/22/2021 0.3 06/22/2021 2.5 08/06/2021 16.3 07/31/2021 53.5
ARCT 0.0 07/02/2021 0.6 08/01/2021 9.3 08/01/2021 64.3
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Behavioral
RCT 0.0 11/19/2021 1.3 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/22/2021 94.8 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.4 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Ramp
RCT 0.0 11/19/2021 1.4 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/29/2021 83.2 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.5 05/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0
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Table A.14: Estimated date of licensure and probability of approval under different trial
designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on August
1, 2020, superiority-by-margin testing at 50%, and infinite doses of a vaccine per day are
available after licensure. For ARCT, we report the median date of licensure over all Monte
Carlo simulations. A blank entry indicates that the vaccine candidate is never approved.
DoL: date of licensure (month/day/year); PoA: probability of approval.

Vaccine Efficacy (%)

30 50 70 90

DoL PoA (%) DoL PoA (%) DoL PoA (%) DoL PoA (%)

Status Quo
RCT 11/19/2021 0.1 11/19/2021 2.5 11/19/2021 26.2 11/19/2021 90.1
ORCT 06/22/2021 0.3 06/22/2021 2.5 08/06/2021 16.3 07/31/2021 53.5
ARCT 0.0 07/02/2021 0.6 08/01/2021 9.3 08/01/2021 64.3
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Behavioral
RCT 0.0 11/19/2021 1.3 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/22/2021 94.8 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.4 04/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0

Ramp
RCT 0.0 11/19/2021 1.4 11/19/2021 100.0 11/19/2021 100.0
ORCT 0.0 06/22/2021 2.4 06/29/2021 83.2 06/22/2021 100.0
ARCT 0.0 06/02/2021 2.5 05/03/2021 100.0 04/03/2021 100.0
HCT (30-day set-up) 0.0 03/09/2021 2.5 03/09/2021 99.1 03/09/2021 100.0
HCT (60-day set-up) 0.0 04/08/2021 2.5 04/08/2021 99.1 04/08/2021 100.0
HCT (90-day set-up) 0.0 05/08/2021 2.5 05/08/2021 99.1 05/08/2021 100.0
HCT (120-day set-up) 0.0 06/07/2021 2.5 06/07/2021 99.1 06/07/2021 100.0
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