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1 Introduction

One necessary input for pricing a risky asset is an estimate of expected future cash flows to

which the asset owner would be entitled. Commonly used cash flow proxies include the most

recent realized earnings, simple linear forecasts, or analysts’ forecasts. However, a significant

strain of literature documents these forecasts can be biased or predict poorly out-of-sample,

thereby limiting their practical usefulness.1 In this study, we propose a novel approach

for constructing a statistically optimal and unbiased benchmark for earnings expectations,

which uses machine learning. We demonstrate that, in contrast to linear forecasts, our new

benchmark is effective out-of-sample.

To provide conditional expectations available in real-time, we use the cross-sectional infor-

mation of firms’ balance sheets, macroeconomic variables, and analysts’ predictions. Due to

analysts’ forecasts belonging to the public information set, the question arises whether these

forecasts can be used to improve upon predictions obtained from other publicly available data

sources. For example, analysts’ forecasts could become redundant if other publicly available

variables are included in the analysis. Alternatively, analysts may collect valuable private

information that is subsequently reflected in their forecasts. We find evidence consistent

with the latter: analysts’ forecasts are not redundant relative to our algorithm’s extensive

set of publicly available variables. As such, these forecasts are a crucial input to our machine

learning approach.2 That said, analyst forecasts, which are often biased, can be improved

upon by optimally combining them with publicly available information sources.

We use random forest regression for our primary analysis. Random forest regression has

two significant advantages. First, it naturally allows nonlinear relationships. Second, it is

designed for high-dimensional data and is therefore robust to overfitting.3 We construct

one-year and two-year forecasts for annual earnings. For quarterly forecasts, we use the

1See Kothari et al. (2016) for an extensive review. We also document in appendix A12 that the linear
forecasts do not have return predictability out-of-sample, consistent with their limited prediction power.

2Using mixed data sampling regression, Ball and Ghysels (2018) find that analysts’ forecasts provide
complementary information to the time-series forecasts of corporate earnings at short horizons of one quarter
or less.

3See Gu et al. (2020) for an excellent overview of this and other well-known predictive algorithms in the
context of cross-sectional returns. See Bryzgalova et al. (2020) for a novel application of tree-based methods
to form portfolios.
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one-quarter, two-quarter, and three-quarter horizons. We focus on these particular horizons

as analysts’ forecasts for other horizons have significantly fewer observations. Given the

benchmark expectation provided by our machine learning algorithm, we then calculate the

bias in expectations as the difference between the analysts’ forecasts and the machine learning

forecasts.

We show that analysts’ biases induce negative cross-sectional stock return predictability:

stocks with overly optimistic expectations earn lower subsequent returns and vice versa.

Notably, the short legs of common anomalies consist of firms for which the analysts’ forecasts

are excessively optimistic relative to our benchmark. Finally, we show that managers of those

companies with the largest biases seem to take advantage of the overly optimistic expectations

by issuing stocks.4

Although previous research uses realized earnings to evaluate the bias and efficiency of

analyst forecasts, these extant studies do not use a time series or cross-section of real-time

earnings forecasts as a benchmark.5 Without such forecasts, it is difficult to assess and

correct the conditional dynamics of forecast biases before the actual value is realized. Hence,

such studies only document an unconditional bias over time and in the cross-section. That

is, we cannot know whether the given forecasts are conditionally biased, nor do we observe

the variation of these biases across stocks and time and their impact on asset returns.

We fill this void by constructing a statistically optimal time-series and cross-section of

earnings forecasts. To the best of our knowledge, we are the first to use machine learning to

create a real-time proxy for firms earnings’ conditional expectations. The resulting estimates

enable us to compute real-time implied analyst biases, which can be used in cross-sectional

stock-pricing sorts and to study managers’ issuance behavior. Therefore, our benchmark

expectation diverges from the conventional approach, which uses either the raw analysts’

expectations, the past realized earnings value, or a simple linear model to form the conditional

4We are agnostic on the source of the biases for analysts’ forecasts. Scherbina (2004) and Scherbina
(2007) show that the proportion of analysts who stop revising their annual earnings forecasts is associated
with negative earning surprises and abnormal returns, suggesting that analysts withhold negative information
from their projections.

5See for example Kozak et al. (2018) and Engelberg et al. (2018).
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forecast.6

Another strain of the relevant literature sorts stocks cross-sectionally using long-term

earnings growth forecasts, without comparing these values to a benchmark (e.g., La Porta

(1996), Bordalo et al. (2019)). This approach implicitly assumes that the cross-sectional

median (or average) is sufficient as a counterfactual. However, given the large cross-sectional

variation in earnings, it remains challenging to determine whether beliefs are biased or exag-

gerated without a fully specified benchmark model (Zhou (2018)).

Finally, studies have posited linear forecasting rules as a solution to the analysts’ bias

problem. An important contribution to this line of research is So (2013). Using a linear

regression framework with variables that have been shown to provide effective forecasting

power (as in Fama and French (2006), Hou et al. (2012)), So (2013) provides a linear forecast

and studies the predictable components of analysts’ errors and their impact on asset prices.

Similarly, Frankel and Lee (1998) suggests a linear model using a few selected variables. We

differ from So (2013) and Frankel and Lee (1998) in three important ways.

First, because linear regressions do not efficiently handle high-dimensional data, a variable

selection step is necessary. Often, variables that have been documented ex-post as effective

predictors are selected in this step, rendering the linear forecast not entirely out-of-sample.

We demonstrate in appendix A11 that the variable selection step is not innocuous, and

most (if not all) of the return predictability examined in So (2013) using linear forecasts

disappears after the 2000s. In contrast, our machine learning approach considers a broad

set of macroeconomic and firm-specific signals at every point in time. We, therefore, do not

incur any data leakage. As a consequence, the out-of-sample predictability of our machine

learning forecasts remains relatively stable throughout the sample.

Second, the linear forecasts in So (2013) are not designed to be statistically optimal.

In fact, analysts’ forecasts are a better proxy for the conditional expectations than linear

forecasts are, as measured by the mean squared error, even after the variable selection step.

6The limitations of a simple linear model to forecast earnings have drawn academics’ attention recently.
See Babii et al. (2020), for example, who use the sparse-group LASSO panel-data regression to circumvent
the issue of using mixed-frequency data (such as macroeconomic, financial, and news time series) and apply
their new technique to forecast price-earnings ratios.
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In contrast, our machine learning forecasts are a better proxy out-of-sample.

Third and finally, there is no reason to impose the linearity of the conditional expectation

function. Indeed, we find that allowing for nonlinear effects improves the forecasts, consistent

with previous studies using machine learning (Gu et al. (2020)).

Armed with a statistically optimal and unbiased benchmark for firms’ earnings expec-

tations and the implied real-time measure for firm-level conditional forecast biases across

multiple horizons, we exemplify its usefulness by focusing on two applications.

First, we study the impact of expectations and biases on stock market returns. Second,

we evaluate the effect of biases on managers’ actions. Concerning the first application, we

find significant return predictability associated with our measure of conditional biases and a

high correlation with return anomalies. Regarding the second, we find that managers tend

to issue more stocks when their firms are subject to more optimistic forecasts relative to our

benchmark.

While these two applications are illustrative of the usefulness of our approach, we also

note that part of our contribution is the expectation measure itself, which we make available

in the posted data section.

Finally, before explaining the economic and statistical theory and the empirical results,

we describe our contribution to the existing literature in the next section.

Related literature

Regarding the relationship between anomalies and conditional biases, Engelberg et al. (2020)

document that analysts’ price targets and buy/sell recommendations contradict stock return

anomaly variables. In contrast, our paper focuses on a different set of analysts that provide

earnings forecasts. We find that biases in these cash flow predictions correlate with anomaly

returns, suggesting an expectational error component in cash flows driving anomalies.

Previous work also exists on the relationship between analysts’ expectations and the stock

issuance behavior of firms. Given that this earlier work does not use a real-time conditional

benchmark for earnings that the analysts’ expectations can be compared to, the conclusions
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drawn are different from ours. Particularly, Richardson et al. (2004) argue that firms and

managers communicate with each other. Analysts start with optimistic forecasts, gradually

lower those forecasts as the earnings announcement approaches, undershoot the earnings

forecast just before the announcement, allowing firms to outperform the forecast and issue

stock shortly after this positive news.

In contrast, our findings are consistent with a different economic mechanism. We use a

real-time bias measure and find that firms issue more stocks when the real-time bias is higher,

which happens long before the end-of-period earnings announcement. Our explanation for

this phenomenon is that managers understand when analysts are overly optimistic because

managers have private information. Therefore, they take advantage of this optimism in the

market and issue stock before earnings are realized, even up to two years before.

We also contribute to the growing literature that documents analysts are skillful and

exert effort (for example Grennan and Michaely (2020)) by providing evidence that despite

analysts being conditionally biased, they provide unique information above and beyond what

can be found in standard accounting and macroeconomic variables. Furthermore, we show

how this information can be incorporated efficiently to form better forecasts.

Our work also relates to recent work by Hirshleifer and Jiang (2010) and Baker and

Wurgler (2013) who argue that managers can take advantage of overpricing on their firms’

valuation by issuing stocks. Hirshleifer and Jiang (2010) use firms’ stock issuances and

repurchases to construct a misvaluation factor, and Stambaugh and Yuan (2017) construct

a mispricing-factor based on the net stock issuances. We contribute to this literature by

providing direct and novel evidence relating to conditional biases and stock issuances. Since

we show that it is feasible to have better forecasts than analysts’ forecasts using public

information, it seems plausible that managers can construct superior forecasts exploiting

their private information.

Finally, there is an extensive literature documenting biases and the importance of ex-

pectations for macroeconomic variables using the Survey of Professional Forecasters (SPF)

(see Bordalo et al. (2018), Coibion and Gorodnichenko (2015), and Bianchi et al. (2020) for
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recent expositions).7 We complement this literature by (1) providing direct evidence of the

existence of systematic biases in analysts’ earnings forecasts, (2) constructing a more efficient

forecast using publicly available information in each period, and (3) documenting that these

biases relate to outcomes in financial markets and corporate policies.

2 Model

This section presents a condensed version of a tractable non-linear model of earnings and earn-

ings expectations that illustrates some reasons linear forecasts are inferior to those provided

by machine learning techniques and analysts. In particular, high variance of the relevant

non-linear effects causes the linear models to underperform machine learning techniques.

The complete model also features asset prices so that it can be used to understand further

why our approach produces stable return predictability out-of-sample while linear forecasts

do not. This complete model is presented in Appendix A1.

Model

Consider the following setup. There are two periods in the economy. First, there are a

measure 1 of assets to be priced, indexed by i. Second, the payoff y of asset i is a random

variable forecastable by a combination of linear and non-linear effects. In particular, the

actual payoff distribution follows:

ỹi = f(xi) + g(vi) + zi + wi + ε̃i. (1)

Where vi, wi, xi, zi are variables measurable in the first period and distributed in the cross-

section as independent standard normal. f and g are non-linear functions, orthogonal to the

space of linear functions in xi and vi respectively (E[xf(x)] = E[vg(v)] = 0). We assume

that analysts use f(xi) and wi in their forecasts. However, we assume that they miss out on

7In particular, Bianchi et al. (2020) characterizes the time-varying systematic expectation errors embedded
in survey responses using machine-learning techniques. See also Bordalo et al. (2019) and Bordalo et al. (2020)
who provide evidence of systematic biases in analysts’ forecasts of earnings growth.
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the effects of zi (which will deliver return predictability) as well as g(vi). The latter can be

motivated either because analysts are not aware of the forecasting power of transformations

of vi or because they only use linear transformations of vi. ỹ and ε̃i are random variables

measurable in the second period. ε̃i is distributed as an independent standard normal. We

assume that the agents have a large enough sample of these variables from past observations

so that there is no estimation error of the coefficients. Notice that (due to the orthogonality

assumption above) in a linear regression, the true coefficients associated with xi and vi are

zero. For tractability, the shock to earnings is not priced, and the risk-free rate equals zero.

Our theoretical model includes non-linear effects because, in our empirical specification,

we document substantial non-linearities in the earnings process as a function of the explana-

tory variables. For example, analysts’ forecasts are amongst the most important predictors,

and Figure 1 shows that EPS is a non-linear function of analysts’ forecasts. Hence, using the

linear prediction produces substantial errors as shown in Figure 2. Figures 3 and 4 show the

same problem arises when using past EPS which is a key ingredient of linear forecasts such

as in Frankel and Lee (1998) or So (2013).

[Insert Figure 1 and 2 about here]

[Insert Figure 3 and 4 about here]

We show in the appendix that the earnings forecasting error is weakly decreasing in

the number of explanatory variables used, since an ideal conditional expectation function

can always disregard useless information. For our application, random forest regression

automatically discards useless forecasting variables and incorporates useful ones. Given its

flexibility and robustness, it will (asymptotically) always benefit from adding information.

Hence, if we include analysts’ expectations (which are in the public information set),

any optimal estimator will achieve an error no higher than analysts make. In practice,

we find that random forest succeeds when adding analysts’ expectations to the information

set, while linear models are no better than analysts’ forecasts. Because of their flexibility,
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random forests can approximate any functional form, and (asymptotically) random forests

are a consistent estimator of the conditional mean.8

We also show in the appendix that under general conditions, as expected, stocks with

pessimistic (lower than optimal) predictions should have higher (realized) returns and vice-

versa.

Spurious in-sample linear predictability

In the appendix, we also show that even though analysts’ forecasts dominate the linear fore-

casts, return predictability may still arise from the conditional bias measured by the difference

between the analysts’ forecasts and the linear forecasts. It occurs when a variable in which

the analyst forecast and the linear forecast differ is associated with return predictability. To

make matters worse, if the variable driving the return predictability only works in-sample,

the linear model’s return predictability will decrease substantially or disappear altogether

out-of-sample. In our empirical specification, the linear model return predictability indeed

disappears after the 2000s. In contrast, for the machine learning model, the return pre-

dictability remains relatively stable.

3 Methodology and Data

In this section, we describe how we apply random forest techniques to earnings. We also

describe the data sources that we input to this machine learning algorithm.

3.1 Random forest and earnings forecasts

In this study, we use random forest regressions to forecast future earnings. Random forest re-

gression is a non-linear and non-parametric ensemble method that averages multiple forecasts

from (potentially) weak predictors and is asymptotically unbiased and can approximate any

function. The ultimate forecast is superior to a prediction following from any individual pre-

8The property is commonly referred to in the literature as random forests being universal approximators.
We confirm in simulations that it applies in our setup.
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dictor (Breiman 2001). We train the algorithm using rolling windows analogous to a rolling

regression forecast. The hyper-parameters are chosen using cross-validation: a data-driven

method that does not have look-ahead bias by design. We summarize the key parameters of

our implementation in Table 1 and discuss the cross-validation method in detail in Appendix

A4. We explain the algorithm itself thoroughly in this subsection.

[Insert Table 1 about here]

The building blocks for random forest regression are decision trees with a flowchart struc-

ture in which the data are recursively split into non-intersecting regions. At each step, the

algorithm splits the data choosing the variable and threshold that best minimizes the mean

squared error when the average value of the variable to be forecasted is used as the prediction.

Decision trees contain two fundamental substructures: decision nodes by which the data are

split, and leaves that represent the outcomes. At the leaves, the forecast is a constant local

model equal to the average for that region.

The decision tree in Figure 7 provides an illustration. The variable we wish to forecast

is the earnings-per-share (eps hereafter) for a cross-section of firms. At the first step, the

selected explanatory variable is the past earnings per share (denoted by past eps std), and

the threshold (or cutoff) value is 0.051. Naturally, the whole sample (100%) is used at this

first step. Were we to end at this step, the forecast eps-value is .06 when past eps std is less

than or equal to 0.051 (which corresponds to 57% of the sample), and 0.73 when past eps std

is more than or equal to 0.051 (43% of the sample). In the next step, the algorithm splits

each of the previous two sub-spaces in two again. The first subspace (past earnings per share

less than 0.051) is split in two using past earnings per share as an explanatory variable.

The threshold value is −0.66. The second subspace (past earnings per share greater than or

equal to 0.051) uses the price per share lower than 1.1. We then continue for the predefined

number of splits until we arrive at the final nodes. In the final nodes, the prediction is the

historical local average of that subspace. Figures 8 and 9 show the resulting predictive surface.
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[Insert Figures 7, 8 and 9 about here]

A decision tree model’s goal is to partition the data to make optimal constant predictions

in each partition (or subspace). Consequently, decision trees are fully non-parametric and

allow for arbitrary non-linear interactions. The only parameter for training a decision tree

model is the depth, i.e., the maximum path length from a root node to leaves. The larger

the depth, the more complex the tree, and the more likely it will overfit the data.9

More formally, the decision tree model forecast (ŷ) is constant over a disjoint number of

regions Rm:

ŷ = f(x) =
∑
m

cmI{x∈Rm}, (2)

where the constants are given by:

cm =
1

Nm

∑
{yi:xi∈Rm}

yi, (3)

and each region is chosen by forming rectangular hyper-regions in the space of the predictors:

Rm = {xi ∈×
i∈I

Xi : kmi,l < xi ≤ kmi,h}, (4)

where×denotes a Cartesian product, I is the number of predictors, and each predictor xi

can take values in the set Xi.

The algorithm minimizes the mean squared error numerically to best approximate the

conditional expectation by choosing the variables and thresholds, and hence the regions Rm

in a greedy fashion. Because of their non-parametric nature and flexibility, decision tree

models are prone to overfitting when the depth is large. The most common solution is to

use an ensemble of decision trees with shorter depth, specifically random forest regression

models.

9The standard approach to decrease the risk of overfitting is to stop the algorithm whenever the next
split would result in a sample size smaller than a predetermined size, usually five observations for regression
(Hastie et al. (2001))). This sample threshold is called the minimum node size.
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Random forest regression models are an ensemble of decision trees that bootstrap the

predictions of different decision trees. Each tree is trained on a random sample, usually

drawn with replacement. Instead of considering all predictors, decision trees are modified

so that they use a strict random subset of features at each node to render the individual

decision trees’ predictions less correlated.10 The final prediction of a random forest model is

obtained by averaging each decision tree’s predictions.

Random forest regressions provide a natural measure of the importance of each variable,

the so-called impurity importance (Ishwaran 2015). The impurity importance for variable Xi

is the sum of all mean squared error decreases of all nodes in the forest at which a split on

Xi has been used, normalized by the number of trees. The impurity importance measure can

be biased, and we use the correction of Nembrini et al. (2018) to address this well-known

concern. Finally, we normalize the features’ importance of each variable as percentages for

ease of interpretation.

There are three main parameters in the random forest algorithm: (1) the number of

decision trees; (2) the depth of the decision trees; and (3) the fraction of the sample used in

each split.11

Since the random forest is a bootstrapping procedure, a high number of decision trees

is optimal. Notwithstanding computational time, there is no theoretical downside for using

more trees. That said, performance tends to plateau following a large number of trees. Figure

10 and 11 confirm that this indeed holds in our setup: The performance is increasing in the

number of trees but reaches a plateau.12

[Insert Figure 10 and 11 about here]

10The algorithm allows a fixed set of variables always to be considered at each split. More generally, the
algorithm enables us to specify the probability for each predictor to be considered at each partition.

11There is an additional parameter: the percentage of the predictors considered in each splitting step. The
random forest algorithm is not sensitive to its value in our specification.

12In the cross-validation step, we measure the performance using the out-of-sample R2 of the year 1986:

R2
oos = 1−

∑
(MLFi−EPSi)

2∑
(EPSi−EPS)2

. MLFi and EPSi denote the machine learning forecast and actual realized earn-

ings respectively for firm i. EPS represents the cross-sectional average of firm earnings. The denominator,∑
(EPSi − EPS)2, is constant across different specifications.
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The depth of each decision tree determines the overall complexity of the model. Thus,

more complex models are more likely to overfit. Nevertheless, because of the inherent ran-

domization, random forests are resilient to over-fitting in a wide variety of circumstances.

Figures 12 and 13 show that the performance of the model is increasing in model complexity

up until a depth of 7.

[Insert Figure 12 and 13 about here]

The last hyper-parameter we have to choose is the fraction of the sample used to train

each tree. For example, if that fraction is set to 1%, we would first take a 1% random sub-

sample without replacement as the training sample for each decision tree. We then repeat

the process for each remaining tree. Figures 14 and 15 show the relationship between the

fraction of the sample used to train each tree and the out-of-sample R2 in 1986, the year

we use for cross-validation. The performance is first increasing in the fraction size and then

decreasing.

[Insert Figures 14 and 15 about here]

While random forest regressions are non-parametric, we can interpret them using partial

dependence plots (PDPs). PDPs explain how features influence the predictions. They display

the average marginal effect on the forecast for each value of variable xi. PDPs show the value

the model predicts on average when each data instance has a fixed value for that feature.

While a disadvantage is that the averages calculated for the partial dependence plot may

include very unlikely data points, we include confidence intervals in the figures to address

the uncertainty. Formally PDPs are defined as:

f̂xs(xs) =
1

n

n∑
i=1

f̂(xs, x
(i)
c ) ≈ Exc

[
f̂(xs, xc)

]
, (5)

where xs is the variable of interest, and xic is a vector representing realizations of the other

variables. We show examples of PDPs in Figures 1 and 2. The technique can also be applied

to explain the joint effect of variables, as illustrated in Figure 16.
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[Insert Figure 16 about here]

We train the random forest model using data from the most recent year for the quarterly

earnings forecasts and one-year ahead forecast. We forecast earnings in the following periods

using only the information available at the current time. For the two-year-ahead predictions,

we train the model using data from the two most recent years because we do not have enough

observations when using a 12-month window to train the model.13 The forecasts are therefore

out-of-sample by design. The resulting forecasting regression is:

Et[epsi,t+τ ] = RF [Fundamentalsi,t,Macrot, AFi,t].

RF denotes the random forest model using data from the most recent periods. Fundamentalsi,t,

Macrot, and AFi,t denote firm i’s fundamental variables, macroeconomic variables, and an-

alysts’ earnings forecasts respectively. The earnings per share of firm i in quarter t+ τ (τ=1

to 3) or year t+τ (τ=1 to 2) is epsi,t+τ . We focus on five forecast horizons, including one

quarter, two quarters, three quarters, one year, and two years, because analysts’ forecasts

for other horizons have significantly fewer observations. As analysts make earnings forecasts

every month, we construct our statistically optimal benchmark monthly.14

3.2 Variables used for earnings forecasts

We consider an extensive collection of public signals available at each point in time, sum-

marized into three categories: firm-specific variables, macroeconomic variables, and analysts’

earnings forecasts.

3.2.1 Firm fundamentals

We consider firm fundamental variables related to future earnings.

1. Realized earnings from the last period. Earnings data are obtained from /I/B/E/S

13Our results remain similar when using longer windows to train the models.
14To minimize the impact of outliers within the model, we winsorize the forecasting variables at the 1%

level and standardize them following the recommended guidelines in the literature (Hastie et al. (2001)).
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2. Monthly stock prices and returns from CRSP

3. Sixty-seven financial ratios such as the book-to-market ratio and dividend yields obtained from the

Financial Ratios Suite by Wharton Research Data Services15

3.2.2 Macroeconomic variables

We consider several macroeconomic variables that can affect firms’ earnings. We obtain these

from the real-time data set provided by the Federal Reserve Bank of Philadelphia.

1. Consumption growth, defined as the log difference of consumption in goods and services

2. GDP growth, defined as the log difference of real GDP

3. Growth of industrial production, defined as the log difference of Industrial Production Index (IPT)

4. Unemployment rate

3.2.3 Analyst forecasts

Analysts’ forecasts at time t for firm i’s earnings at fiscal end period t+1 can be decomposed

into public and private signals:16

AF t+1
i,t =

J∑
j=1

βjXj,i,t +
K∑
k=1

γkPk,i,t +Bi,t, (6)

where Xj,i,t, with j ∈ 1, ..., J , represent the J public signals known at time t about firm

i; Pk,i,t, with k ∈ 1, ..., K are K private signals about firm i at time t; and Bi,t represents

the analysts’ bias generated by expectation errors or incentive problems for firm i at time t.

Our machine learning algorithm is designed to use the private signals optimally in analyst

forecasts while correcting for their biases.

As pointed out by Diether et al. (2002), mistakes occur when matching the I/B/E/S

unadjusted actual file (actual realized earnings) with the I/B/E/S unadjusted summary file

(analysts’ forecasts) because stock splits may occur between the earnings forecast day and

the actual earnings announcement day. In these cases, the estimates and the realized EPS

value are based on different numbers of shares outstanding. To address this issue, we use the

15See Appendix A3 for details of these variables’ definitions.
16See Hughes et al. (2008) and So (2013) among others.

14

https://www.philadelphiafed.org


cumulative adjustment factors from the CRSP monthly stock file to adjust the forecast and

the actual EPS on the same share basis.17

3.3 Measuring the term structure of real-time biases in analysts’

expectations

The I/B/E/S database provides different forecast periods indicated by FPI for analysts’

earnings forecasts.18 The span of the earnings forecast periods is one quarter to five years.

The I/B/E/S database also provides forecasts of long-term earnings growth, defined as the

expected annual increase in operating earnings over the company’s next cycle ranging from

three to five years (Bordalo et al.; 2019). At each month t, we measure the biases in investor

expectations as the differences between the analysts’ forecast and the machine learning fore-

cast, scaled by the closing stock price from the most recent month:

Biased Expectationt+hi,t =
Analyst Forecastst+hi,t −ML Forecastt+hi,t

Pricei,t−1

(7)

in which subscript i denotes firm, and t indicates the date when earnings forecasts are made.

The superscript t+ h represents the forecasting period.

4 Hypotheses

In this section we lay out our main hypotheses.

4.1 Biased expectations and the cross-section of stock returns

If indeed, our machine learning forecasts provide the statistically optimal unbiased benchmark

for earnings expectations, but investors are affected by (biased) analysts’ forecasts, we should

observe that the stocks with optimistic earnings forecasts will earn low future returns. That is,

17We do not use the adjusted summary files, because there are rounding errors when I/B/E/S adjusts the
share splits for forecasts and actual earnings (Diether et al. (2002)).

18For example, the FPI of 1 corresponds to the one-year-ahead earnings forecasts.
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overly optimistic earnings forecasts are associated with stock overpricing. Our first hypothesis

is, therefore:

Hypothesis 1: Stocks with more optimistic earning forecasts earn lower returns

in the subsequent periods.

4.2 Biased expectations and market timing

Bordalo et al. (2019), and Bouchaud et al. (2019) show that investors exhibit biases when

using current and past earnings information to issue forecasts for the future. In addition,

Baker and Wurgler (2013) argue that corporate managers have more information about their

firms than investors have and can use that informational advantage. Hence, managers could

take advantage of investors’ expectation biases.

We, therefore, conjecture that managers can identify when investors overestimate or un-

derestimate firms’ future cash flows and that managers’ expectations will align more closely

to our statistically optimal benchmark.19 For example, managers may issue more stock when

investors’ expectations are higher than their own, i.e., engage in market timing (Baker and

Wurgler; 2002). Therefore, our second hypothesis is:

Hypothesis 2: Firms with more optimistic analysts’ forecasts relative to the

statistically optimal benchmark issue more stocks in the subsequent periods.

5 Empirical Findings

5.1 Earnings forecasts via machine learning

Table 2 compares the properties of analysts’ earnings forecasts with the statistically optimal

forecasts estimated using our machine learning algorithm (Random Forests).

[Insert Table 2 about here]

19Baker and Wurgler (2013) provide a comprehensive review of how rational managers make firm policies
in response to mispricing caused by irrational investors.
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We find that for forecasts at all horizons, analysts make over-optimistic forecasts on

average. The realized analysts’ forecasts errors, defined as the difference between the analysts’

forecasts and the realized value, increase in the forecast horizon, ranging from 0.028 to 0.384

on average. All of these are statistically significantly different from zero. In sharp contrast,

the time-series averages of the differences between the machine-learning forecast and realized

earnings are statistically indistinguishable from zero, with an average absolute value of around

0.001 for the quarterly earnings forecasts, 0.027 for the one-year- ahead forecast, and -0.004

for the two-years-ahead forecast.

The mean squared errors of the machine-learning forecast are smaller than the analysts’

mean squared errors, demonstrating that our forecasts are more accurate than the forecasts

provided by analysts.

Figure 17 and 18 report the feature importance for the one-year-ahead and one-quarter-

ahead earnings forecasts, respectively. The feature importance results are similar for other

forecast horizons, and we report those in the appendix. Analysts’ forecasts, past realized

earnings, and stock price are the most important variables, and their normalized importance

roughly equals 0.20, 0.15, and 0.10, respectively. Other variables such as return on capital

employed (ROCE), return on equity (ROE), and pre-tax profit margin (PTPM) also contain

useful information for future earnings.

[Insert Figure 17 and 18 about here]

We define the conditional expectation bias for every stock as the difference between the

analysts’ forecast and the machine-learning forecast, scaled by the closing stock price in

the most recent month, as consistent with the previous literature (Engelberg et al. (2018)).

The second-to-last column of Table 2 reports the time-series average of the real-time biased

expectations. The average conditional bias is statistically different from zero for all horizons.

Furthermore, we find that analysts are more biased at longer horizons.

Figure 6 shows the conditional aggregate bias, defined as the average of the individual

stocks’ expectations. We consider five different forecast horizons and consider the possibility
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that the aggregate bias is higher during historical bubbles. We find clear spikes during the

Internet bubble of the early 2000s (Griffin et al. (2011)) and in the financial crisis.

[Insert Figure 6 about here]

5.2 Conditional bias and the cross-section of stock returns

We have demonstrated above that analysts are, on average, over-optimistic relative to the

machine-learning benchmark and their estimates get more precise when predicting at shorter

horizons. If market participants’ beliefs align closely with analysts’ expectations, then we

should observe negative return predictability. Stocks with a high conditional bias should earn

lower returns than stocks with a lower conditional bias.20

We conduct monthly cross-sectional predictive regressions (following Fama and MacBeth)

of stock returns on the conditional bias from the previous month, and we report the time-series

average of the slope coefficients. Analysts make forecasts on firms’ cash flows at multiple

horizons; hence we have many conditional biases at every point in time for each firm. For

each firm, we use the average of the conditional biases across the multiple horizons as the

predictor. For a robustness check, we define the bias score as the arithmetic average of the

percentile rankings on each of the five conditional bias measures. We then run a separate

predictive regression for this bias score.

Table 3 shows the regression results. The first column in each panel of Table 3 reports

the regression without control variables. We find that both the conditional bias and the bias

score are associated with negative cross-sectional stock return predictability. The coefficient

on the conditional bias is −0.054 with a t-statistic of −3.94. The coefficient on the bias score

is also significantly negative with a t-statistic of −4.47. The R2s for both regressions have

values around 0.01.

20We note that, if market participants are using the statistically optimal benchmark and do not follow
analyst expectations, we should not find cross-sectional predictability. We document the predictability.

18



[Insert Table 3 about here]

The second column in each panel of Table 3 reports the regressions with control variables,

including size, book-to-market ratio, short-term reversal, medium-term momentum, return

volatility, share turnover, idiosyncratic volatility, and investment. These variables have been

shown to predict stock returns with significant efficacy (Green et al. (2017), Freyberger et al.

(2020), and Gu et al. (2020)). We find that the coefficients on both the conditional bias and

the bias score remain statistically significant after controlling for those variables. We report

the individual conditional bias results in the Appendix: the two-quarters, three-quarters, and

two-years ahead forecast biases generate significant negative return predictability.21 More-

over, conditional biases’ return predictability remains consistent when we either scale con-

ditional biases with total assets per share from the most recent fiscal period or drop stocks

whose prices are lower than $5. We report these and further robustness checks in the Ap-

pendix.

Table 4 reports the correlations between the bias measures and the control variables. We

find that the conditional bias and the bias score are highly positively correlated. Moreover,

the conditional bias is negatively correlated with size and momentum. Further, the con-

ditional bias is positively correlated with the book-to-market ratio, idiosyncratic volatility,

and return volatility. Accordingly, stocks with a smaller size, lower past cumulative returns,

and a higher book-to-market ratio, idiosyncratic volatility, and return volatility, tend to have

more over-optimistic expectations. In the appendix, we report the summary statistics of

these variables.

[Insert Table 4 about here]

Additionally, we show that the results from the cross-sectional return regressions also

hold in time-series regressions. We sort stocks into five quintile portfolios based on the con-

21We find that the forecast bias at the one-quarter and one-year-horizon does not predict stock returns
significantly. The lack of return predictability is consistent with analysts predicting better for those horizons
and arguably with analysts exercising more effort towards generating the one-quarter and one-year-ahead
forecasts.
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ditional bias. Table 5 reports the portfolio sorts. Two interesting patterns emerge. First, the

value-weighted returns decrease in the conditional bias. A long-short portfolio of the extreme

quintiles results in a return spread of −1.46% per month (t-statistic −5.11) for the average

bias and −1.16% per month (t-statistic −3.83) for the bias score. Second, the CAPM betas

of these portfolios tend to increase with higher biased expectations, which is consistent with

the results of Antoniou et al. (2015) and Hong and Sraer (2016), who show that high-beta

stocks are more susceptible to speculative overpricing.

[Insert Table 5 about here]

We further examine whether returns on this long-short strategy can be explained by lead-

ing asset pricing models. Table 6 Panel A reports the results of using the average conditional

bias as the portfolio sorting variable. We find that the long-short strategy has a signifi-

cant CAPM alpha of −1.85% per month, with a significantly positive market beta of 0.56.

Columns four to seven show the regression results with the Fama-French three-factor (Fama

and French (1993)) and five-factor models (Fama and French (2015)). Neither model can

explain the documented return spread. The alpha in the three-factor model is −1.96% with

a t-statistic of −8.64; the alpha in the five-factor model is −1.54% with a t-statistic of −5.84.

Table 6 Panel B reports the long-short strategy using the bias score as the sorting variable,

and we find consistent results.22 Overall, we conclude that the return predictability of the

conditional bias appears in cross-sectional regressions and time-series tests against common

multi-factor representations.

[Insert Table 6 about here]

Since the magnitude and significance of the results seem large by usual standards, we

conduct a placebo test in the appendix to shed further light on these results and place them

in context. In particular, we replace the machine learning forecast with the future realized

22We report the results of the long-short strategy based on individual conditional bias in the Appendix.
All strategies but for the one using the one-year-ahead bias exhibit significant alpha.
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value and then compute the conditional bias. The implied returns of these forward-looking

(and thus non-tradable) strategies are many times largerin magnitude than the ones implied

by our (tradable) machine-learning forecasts.

5.3 Conditional bias and market anomalies

In two recent studies, Engelberg et al. (2018) and Kozak et al. (2018) compare analysts’

earnings forecasts to the realized values. Both studies find that analysts tend to have over-

optimistic expectations for stocks in the short side of anomalies, which earn lower returns.

However, as previously mentioned, the realized earnings value cannot be combined in real-

time with analyst forecasts to construct a real-time bias measure that in turn is used to sort

portfolios on. To shed light on this issue, we use our conditional bias measure to examine

whether analysts have more conditional over-optimistic expectations on anomaly shorts.

We focus on the 27 significant and robust anomalies considered in Hou et al. (2015).

We examine these anomalies for two reasons: i) they cover the most prevalent anomalies,

including momentum, value, investment, profitability, intangibles, as well as trading frictions;

and ii) they have been widely used to test leading asset pricing models (Hou et al. (2015),

Stambaugh and Yuan (2017), and Daniel et al. (2017)).23 We follow the literature and sort

stocks into ten portfolios based on the decile of each anomaly variable. We use the extreme

deciles as the long and the short leg of the anomaly strategies.

Having obtained ranks of stocks based on each anomaly variable, we then combine these

ranks to construct an anomaly score defined as the equal-weighted average of the rank scores

of the 27 anomaly variables. To calculate the score, for each month, we assign decile ranks to

each stock based on the 27 anomaly variables.24 The anomaly score for an individual stock

is calculated as the arithmetic average of its ranking on each of the 27 anomalies. Next, we

break stocks into 10 decile portfolios based on this anomaly score. The long (short) leg is

23Table A12 in Appendix lists the anomalies associated with their academic publications. The sample
period spans July 1965 to December 2019, depending on the data availability. We follow the descriptions
detailed in Hou et al. (2015) to construct the anomaly variables. The last column in Table A12 reports the
monthly average returns (in percent) of the long-short anomaly portfolios.

24We exclude stocks for which we have fewer than rank scores, which occurs when not all the data inputs
on the characteristics are available.

21



defined as the stocks in the top (bottom) decile portfolio.

[Insert Table 7 about here]

Table 7 Panel A presents the average anomaly score for portfolios sorted independently

on the conditional bias and the anomaly score.25 For each anomaly decile portfolio, the

anomaly score ranges from 3.31 to 6.82, with the highest (lowest) score indicating the long

(short) leg of the anomaly strategy. Table 7 Panel B reports the average number of stocks

in each of the 10×5 portfolios. On average, we have around 50 stocks every month in each

portfolio. Moreover, the average number of stocks per month for the portfolio with the

highest conditional biases and the lowest anomaly score is 97, which is more than double the

average number of stocks per month for the portfolio with both the lowest conditional biases

and the lowest anomaly score (37 stocks). This implies that stocks with higher conditional

biases tend to be anomaly shorts, that is, overpriced stocks.

Table 8 presents the value-weighted returns of the portfolios formed by sorting indepen-

dently on the conditional bias and the anomaly score. The long-short portfolio using the

anomaly score earns 1.36% per month (the t-statistic is 5.74). While the long-short anomaly

strategy in each quintile sort on the conditional bias has a similar anomaly score (around

3.60), we find that anomalies’ payoffs increase when the conditional bias increases. In the

quintile group with the greatest conditional bias, the long-short strategy based on anomaly

score earns the highest returns (2.13% per month with a t-statistic of 6.37). In contrast, the

anomaly spread equals 0.60% (with a t-statistic of 1.82) in the quintile group with the small-

est conditional bias. The difference in average returns between these two quintile portfolios

is significantly positive (1.52% per month with a t-statistic of 3.81). Further, we find that the

short leg portfolio return decreases from 1.06% per month to −1.29% when we move from

the first quintile of the conditional bias to the fifth quintile. These findings are consistent

with anomaly payoffs arising from the overpricing of stocks with the most over-optimistic

25For the results shown in Tables 7 and 8, we use the average of the conditional biases at different forecast
horizons to sort the portfolios. The results remain robust when we use the arithmetic average of the percentile
rankings on each of the five conditional bias measures.
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earnings expectations.

[Insert Table 8 about here]

The last two rows in Table 8 report the conditional biases for each of the 10 decile

portfolios sorted on the anomaly score. We find that the short-leg portfolio is comprised

of stocks with more over-optimistic expectations, suggestive of overpricing. Moreover, the

difference in conditional biases between the anomaly-short and anomaly-long portfolio is

0.005 and significant at the 1% level (with a t-statistic of 4.81).

5.4 Conditional bias and firm’s financing decisions

Managers have more information about their firm than most investors have, due to the access

managers have to private information as well as available public signals. Baker and Wurgler

(2013) argue that managers use their additional information to the advantage of existing

shareholders and engage in market timing (Baker and Wurgler; 2002). Following Hypothesis

2, we conjecture that managers issue more equity whenever analysts’ expectations are more

optimistic than the statistically optimal machine learning benchmark.

We follow Fama and French (2008) to measure firm i’s net stock issuances at the fiscal

year end t as the natural logarithm of the ratio of the split-adjusted shares outstanding at

the fiscal year end t to the split-adjusted shares outstanding at the fiscal year end t− 1,

NSIi,t = log(
Split adjusted sharesi,t

Split adjusted sharesi,t−1

) (8)

Because the net stock issuances are measured annually, we match the average of the

conditional bias in the past 12 months to the fiscal year ending at time t.26 Table 9 Panel A

reports the value-weighted average net stock issuance for stocks sorted in portfolios according

to the conditional bias of analysts’ forecasts as measured relative to our machine-learning

forecast.

26Our results remain robust when matching the average of the conditional bias from the past 24-12 months
to the net stock issuances of the fiscal year ending at time t. We report this robustness check in the appendix.
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The net stock issuances increase monotonically in the conditional bias. Importantly, we

find that firms in the quintile portfolio with the most optimistic earnings expectations is-

sue significantly more stocks than firms with the least optimistic expectations. Managers of

firms whose earnings forecasts are more optimistic issue on average 6% more of total shares

outstanding. The difference is statistically significant at the 1% level.

[Insert Table 9 about here]

Table 9 Panel B reports the Fama-MacBeth regressions of firms’ net stock issuances on

the conditional bias. As in Baker and Wurgler (2002) and Pontiff and Woodgate (2008), we

control for variables such as firm size, the book-to-market ratio, and earnings before interest,

taxes, and depreciation divided by total assets. Overall, our findings are consistent with the

previous portfolio sorts: managers of firms with larger conditional bias issue more stocks. We

also find that firms with smaller size, lower book-to-market ratios, and lower profitabilities

tend to issue more stocks, consistent with the results in Baker and Wurgler (2002) and Pontiff

and Woodgate (2008).

6 Conclusion

The pricing of assets relies significantly on the forecasts of associated cash flows. Analysts’

earnings forecasts are often used as a measure of expectations, despite the common knowl-

edge that these forecasts are on average biased upwards: a structural misalignment obtains

between these earnings forecasts and their subsequent lower realizations. In this paper, we

develop a novel machine learning forecast algorithm that is statistically optimal, unbiased,

and robust to variable selection bias. We demonstrate that, in contrast to linear forecasts,

our new benchmark is effective out-of-sample.

This new measure is useful not only as an input to asset-pricing applications but also as

an available real-time benchmark against which other forecasts can be compared. We can

therefore construct a real-time measure of analyst biases both in the time series and the cross-
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section. We find that these biases exhibit considerable variation in both dimensions. Further,

cross-sectional asset-pricing sorts based on this real-time measure of analyst biases show that

stocks for which the earnings forecasts are the most upward- (downward-) biased earn lower

(higher) average returns going forward. This finding indicates that analysts’ forecast errors

may have an effect on asset prices.

In addition to these asset-pricing results, our findings also have implications for corporate

finance. Managers of firms for which the earnings forecast is most upward-biased issue more

stocks. This finding indicates that managers are at least partially aware of analyst biases or

the associated influence on asset prices. While we apply our machine learning approach to

earnings, the approach can easily be extended to other variables, such as real investment and

dividends.
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Figure 1: EPS as a non-Linear function of analysts’ forecasts

Notes: The figure plots the partial dependence plot of one-quarter-ahead realized EPS on analysts’ fore-
casts. The partial dependence plot is calculated from a random forest regression of EPS on the variables
mentioned in Section 3.2. The random forest regression for the figure uses 2000 trees and a minimum node
size of 1. The data starts in 1986 and ends in 2019.
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Figure 2: Linear forecast error as a non-linear function of analysts’ forecasts

Notes: The figure plots the partial dependence plot of one-quarter-ahead realized linear errors on analysts’
forecasts. The linear errors are calculated as the difference between the linear forecast and the realized
EPS. The partial dependence plot is calculated from a random forest regression of the linear errors on
the variables mentioned in Section 3.2. The random forest regression for the figure uses 2000 trees and a
minimum node size of 1. The data starts in 1986 and ends in 2019.
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Figure 3: EPS as a non-linear function of past EPS

Notes: The figure plots the partial dependence plot of one-quarter-ahead realized EPS on past EPS. The
partial dependence plot is calculated from a random forest regression of EPS on the variables mentioned
in Section 3.2. The random forest regression for the figure uses 2000 trees and a minimum node size of 1.
The data starts in 1986 and ends in 2019.
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Figure 4: Linear forecast error as a non-Linear function of past EPS

Notes: The figure plots the partial dependence plot of one-quarter-ahead realized linear errors on past
EPS. The linear errors are calculated as the difference between the linear forecast and the realized EPS.
The partial dependence plot is calculated from a random forest regression of the linear errors on the
variables mentioned in Section 3.2. The random forest regression for the figure uses 2000 trees and a
minimum node size of 1. The data starts in 1986 and ends in 2019.
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Figure 5: Average realized bias of analysts’ earnings expectations

Notes: The figure plots the realized bias of analysts’ expectations, which is measured as the average of
the bias of expectations of individual firms. We trim the data at the 1% level each period before taking
the average. The bias is calculated as the difference between analysts’ earnings forecast and the realized
value, scaled by the stock price from the most recent period. To ensure the annual earnings forecasts have
the same scale as quarterly forecasts, we divide annual forecasts by four.
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Figure 6: Average bias of analysts’ earnings expectations relative to machine learning
forecasts

Notes: The figure plots the average conditional bias of analysts’ expectations, which is measured as the
average of the bias of expectations of individual firms. We trim the data at the 1% level each period before
taking the average. The bias is calculated as the difference between analysts’ earnings forecast and the
machine learning forecast, scaled by the stock price from the most recent period. To ensure the annual
earnings forecasts have the same scale as quarterly forecasts, we divide annual forecasts by four.
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Figure 7: Example decision tree

Notes: The figure shows an example decision tree. The variable we wish to forecast is the earnings-per-
share (eps hereafter) for a cross-section of firms. At the first step, the selected explanatory variable is the
past earnings per share (denoted by past eps std), and the threshold (or cutoff) value is at 0.051. Were
we to end at this step, the forecasted eps value is .06 when past eps std is less than 0.051, and 0.73 when
adj afeps is more than or equal to 0.051. In the next step, the algorithm splits each of the previous two
sub-spaces in two again. The first subspace (past earnings per share less than 0.051) is split in two using
again the past earnings per share as an explanatory variable. The threshold value is −0.66. The second
subspace (past earnings per share greater than 0.051) uses the price per share as the next conditioning
variable, and the subspace considered is price per share below the threshold value of 1.1. The percentages
show the proportion of the firms that fall in each of the splits. We then continue for the predefined number
of splits until we arrive at the final nodes. In the final nodes, the prediction is the historical local average
of that subspace.
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Figure 8: Decision tree predictions

Notes: The figure shows the forecast of the decision tree from Figure 7. The variable we wish to forecast
is the earnings-per-share for a cross-section of firms. The prediction is constant within each color box, and
corresponds to the historical mean for each sub-space.
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Figure 9: Decision tree predictions

Notes: The figure shows the forecast of the decision tree from Figure 7. The variable we wish to forecast
is the earnings-per-share for a cross-section of firms. The prediction is constant within each color box,
and corresponds to the historical mean for each sub-space. The realized values are shown with a different
color indicating a different value.
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Figure 10: Cross-validation results of the number of trees in the one-quarter-ahead forecast

Notes: The figure plots the relation between the number of decision trees used in the random forest for
training up to January 1986 and the out-of-sample R2 value for the one-quarter-ahead earnings forecasts
made in February 1986 for May 1986. The out-of-sample R2 is defined as 1 minus the mean squared error
implied by the machine learning forecast divided by the mean squared error of the realized average value
as a forecast. The random forest algorithm is random by design, so we take the average of 100 runs to
measure the out-of-sample R2.
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Figure 11: Cross-validation results of the number of trees in the one-year-ahead forecast

Notes: The figure plots the relation between the number of decision trees used in the random forest
for training up to 1986 January and the out-of-sample R2 for the one-year-ahead earnings forecasts in
1986 February. The out-of-sample R2 is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a
forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.
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Figure 12: Cross-validation results of the maximum depth of each tree in the
one-quarter-ahead forecast

Notes: The figure plots the relation between the depth of of decision trees used in the random forest
for training up to 1986 January and the out-of-sample R2 for the one-quarter-ahead earnings forecasts
in 1986 February. The out-of-sample R2 is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a
forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.
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Figure 13: Cross-validation results of the maximum depth of each tree in the
one-year-ahead forecast

Notes: The figure plots the relation between the depth of decision trees used in the random forest for
training up to 1986 January and the out-of-sample R2 for the one-year-ahead earnings forecasts in 1986
February. The out-of-sample R2 is defined as 1 minus the mean squared error implied by using the
machine learning forecast divided by the mean squared error of using the realized average value as a
forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.
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Figure 14: Cross-validation results of the fraction of the sample that is taken in each split
in the one-quarter-ahead forecast

Notes: The figure plots the relation between the fraction of the sample that is taken in each split used
in the random forest for training up to 1986 January and the out-of-sample R2 for the one-quarter-ahead
earnings forecasts in 1986 February. The out-of-sample R2 is defined as 1 minus the mean squared error
implied by using the machine learning forecast divided by the mean squared error of using the realized
average value as a forecast. The random forest algorithm is random by design, so we take the average of
100 runs to measure the out-of-sample R2.
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Figure 15: Cross-validation results of the fraction of the sample that is taken in each split
in the one-year-ahead forecast

Notes: The figure plots the relation between the fraction of the sample that is taken in each split used
in the random forest for training up to 1986 January and the out-of-sample R2 for the one-year-ahead
earnings forecasts in 1986 February. The out-of-sample R2 is defined as 1 minus the mean squared error
implied by using the machine learning forecast divided by the mean squared error of using the realized
average value as a forecast. The random forest algorithm is random by design, so we take the average of
100 runs to measure the out-of-sample R2.
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Figure 16: EPS as a non-linear function of stock price and past EPS

Notes: The figure plots the partial dependence plot of one-quarter-ahead realized EPS on past EPS and
stock price. The partial dependence plot is calculated from a random forest regression of EPS on the
variables mentioned in Section 3.2. The random forest regression for the figure uses 2000 trees and a
minimum node size of 1. The data starts in 1986 and ends in 2019.
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Figure 17: Feature importance of the one-quarter-ahead forecast

Notes: The figure plots the time-series average of feature importance of the 10 most important variables for
the one-quarter-ahead earnings forecasts. The feature importance for each variable is the normalized sum
of the reduced mean squared error decrease when splitting on that variable using the method in Nembrini
et al. (2018). The feature importance of each variable is normalized so that the features’ importance sums
up to one.
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Figure 18: Feature importance of the one-year-ahead forecast

Notes: The figure plots the time-series average of feature importance of the 10 most important variables
for the one-year-ahead earnings forecasts. The feature importance for each variable is the normalized sum
of the reduced mean squared error decrease when splitting on that variable using the method in Nembrini
et al. (2018). The feature importance of each variable is normalized so that the features’ importance sums
up to one.
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Table 1: Hyper-parameters for the random forest regression

Notes: This table reports the parameters chosen for the random forest regression. Number
of trees is the number of decision trees used. Maximum Depth is the maximum number
of splits that each decision tree can use. Sample Fraction is the fraction of observations
used to train each decision tree. The minimum node size is the threshold to stop the
decision tree whenever the split would result in a sample size smaller than the minimum
node size. The hyper-parameters are chosen using cross-validation over 1986 as detailed
in the appendix. The random forest regression is trained using rolling regressions keeping
the hyper-parameters fixed.

Number of Trees 2000
Maximum Depth 7
Sample Fraction 1%
Minimum Node Size 5
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Table 3: Fama-Macbeth regressions

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’ re-
turns on the conditional bias at each forecast horizon, including one-quarter-, two-quarters-, three-
quarters-, one-year-, and two-years-ahead. “Average BE” denotes the average of the conditional
biases, defined as the difference between analysts’ forecasts and the machine learning forecasts
scaled by the closing stock price from the most recent month, at different forecast horizons. “BE
Score” denotes the arithmetic average of the percentile rankings on each of the five conditional
biases at different forecast horizons. (1) and (2) report the regression results with and without
control variables, respectively. The control variables include the log of firm size (Lnsize), the log
of book-to-market ratio (Lnbeme), the short-term reversal (Ret 1), the medium-term momentum
(Ret12 7), the investment-to-asset (IA), the idiosyncratic volatility (IVOL), the return volatility
(Retvol), and the share turnover (Turnover). We report the time-series average of slope coefficients
associated with Fama-MacBeth t-statistics (in parentheses). The sample period is 1986 to 2019.

Ri,t+1 = αt+1 + β1BEi,t + γj

8∑
j=1

Controlj,i,t + εi,t+1

Panel A: Average BE Panel B: BE Score
(1) (2) (1) (2)

Bias -0.054 -0.064 -0.017 -0.028
t-stat -3.94 -5.08 -4.47 -11.27
LNsize -0.079 -0.215
t-stat -2.22 -6.42
LNbeme 0.091 0.178
t-stat 1.58 3.14
Ret1 -2.818 -2.987
t-stat -6.72 -7.12
Ret12 7 0.442 0.220
t-stat 2.88 1.52
IA -0.003 -0.003
t-stat -5.67 -5.88
IVOL -0.224 -0.198
t-stat -2.04 -1.80
Retvol 0.137 0.168
t-stat 1.19 1.47
Turnover -0.065 -0.046
t-stat -1.46 -1.03
Intercept 1.022 2.320 1.865 5.362
t-stat 3.64 4.41 7.89 11.35
R2 (%) 0.780 5.680 1.242 5.756
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Table 5: Portfolios sorted on conditional bias

Notes: This table reports the time series average of returns (in percent) on value-weighted portfolios
formed on the conditional bias at different forecast horizons. Panel A looks at “Average BE”,
defined as the average of conditional bias at different forecast horizons. Panel B presents the sorts
based on “BE Score”, defined as the arithmetic average of the percentile rankings on each of the
five conditional biases at different forecast horizons. The sample period is 1986 to 2019.

Quintile 1 2 3 4 5 5-1
Panel A: Average BE

Mean 1.32 0.98 0.79 0.47 -0.14 -1.46
t-stat 6.53 4.53 3.18 1.62 -0.35 -5.11

CAPM Beta 0.90 0.97 1.09 1.22 1.46 0.56

Panel B: BE Score

Mean 1.14 0.93 0.79 0.60 -0.02 -1.16
t-stat 5.66 4.22 3.18 2.06 -0.05 -3.83

CAPM Beta 0.90 0.99 1.10 1.21 1.51 0.61
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Table 6: Time series tests with common asset-pricing models

Notes: This table reports the regression of stock returns (in percent) on the long-short portfolio
sorted with the conditional bias, on the CAPM, the Fama-French three-factor model (FF3), and
the Fama-French five-factor model (FF5). Panel A looks at average conditional bias at different
forecast horizons. Panel B presents the sorts based on “BE score”, defined as the arithmetic average
of the percentile rankings on each of the five conditional biases at different forecast horizons. The
sample period is 1986 to 2019. The t-statistics are adjusted by the White’s heteroscedasticity
robust standard errors (White (1980)).

LS Portt = α +
5∑
i=1

βiFi,t + εt

CAPM FF3 FF5
Coef (β) t-stat Coef (β) t-stat Coef (β) t-stat

Panel A: Average BE
Intercept -1.85 -7.18 -1.96 -8.64 -1.54 -5.84
Mkt RF 0.56 7.53 0.53 7.86 0.38 5.28
SMB 0.80 7.06 0.61 5.17
HML 0.58 5.25 0.95 7.12
RMW -0.68 -4.10
CMA -0.53 -1.93

Panel B: BE Score
Intercept -1.58 -5.76 -1.69 -6.91 -1.17 -4.49
Mkt RF 0.61 7.63 0.56 7.45 0.39 5.27
SMB 0.88 8.17 0.62 5.27
HML 0.56 4.29 0.97 7.05
RMW -0.91 -5.15
CMA -0.51 -1.90
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Table 9: Net stock sssuances and conditional biases

Notes: Panel A reports the time series average of net stock issuances of value-weighted portfolios
sorted on the conditional bias. “Average BE” denotes the average of the conditional bias at
different forecast horizons.“BE Score” denotes the arithmetic average of the percentile rankings
on each of the five conditional biases at different forecast horizons. Panel B reports the Fama-
MacBeth regressions of firms’ net stock issuances on the conditional bias and control variables
include the log of firm size (Lnsize), the log of book-to-market ratio (Lnbeme), and earnings
before interest, taxes, and depreciation divided by total assets (EBITDA). The sample period is
1986 to 2019. We report the time series average of slope coefficients associated with Newey-West
t-statistics.

NSIi,t+1 = αt+1 + β1BEi,t + γj

3∑
j=1

Controlj,i,t + εi,t+1

Panel A: Net Stock Issuances of Portfolios formed on BE
Quintile 1 2 3 4 5 5-1

Average BE 0.006 0.012 0.017 0.028 0.065 0.059
t-stat 1.16 1.54 2.52 4.13 4.86 4.24

BE score 0.006 0.011 0.018 0.030 0.063 0.057
t-stat 0.99 1.50 3.37 5.58 4.32 3.69

Panel B: Fama-MacBeth regressions

A: Average BE B: BE Score
(1) (2) (1) (2)

Bias 0.442 0.355 0.072 0.039
t-stat 2.24 1.94 4.57 2.14
LNsize -0.503 -0.484
t-stat -2.91 -2.26
LNbeme -2.042 -2.013
t-stat -7.00 -6.41
EBITDA -10.866 -10.949
t-stat -4.96 -4.91
Intercept 3.470 9.473 0.526 7.904
t-stat 8.52 3.43 0.57 1.97

R2 (%) 2.888 8.724 0.913 6.969
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Appendix

A1. Model

In this Appendix, we present a tractable non-linear model of earnings and earnings expecta-

tions that illustrates some reasons linear forecasts are inferior to those provided by machine

learning techniques and analysts. In particular, a high variance of the relevant non-linear

effects causes the linear models to behave poorly. The condensed version of this model is

presented in the main paper in Section 2. The model also features asset prices, so that it can

be used to further understand our return predictability results.

Economy

Consider the following setup. There are two periods in the economy. There is a measure 1

of assets to be priced, indexed by i. The payoff yi of asset i is a random variable that is

forecastable by a combination of linear and non-linear effects. In particular, the true payoff

distribution follows:

ỹi = f(xi) + g(vi) + zi + wi + ε̃i. (A1)

Where vi, wi, xi, zi are variables measurable in the first period and distributed in the

cross-section as independent standard normal. f and g are measurable non-linear functions,

orthogonal to the space of linear functions in xi and vi respectively. That is, f and g satisfy

E[xf(x)] = E[vg(v)] = 0. This implies that the best linear approximation of the functions

are constants given by E[f(x)] and E[g(v)] respectively.27 We assume E[(f(x)−E[f(x))2] =

var(f(x)) ≡ σ2
fx > 1 and var(g(v)) ≡ σ2

gv, and assume that all second moments exist.

We further assume that analysts use f(xi) and wi in their forecasts. However, they miss

out on the effects of zi as well as g(vi) either because they are not aware of the forecasting

power of transformations of vi, or alternatively, because they use linear transformations of vi

27Examples of functions that satisfy the conditions are f(x) = xp where p is an even positive integer or
any symmetric function around zero where f(x) = f(−x).
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only. Furthermore, we assume a high variance of f(xi), which will result in analyst forecasts

being more accurate than linear forecasts, despite the linear forecast using all variables.

ỹ and ε̃i are random variables measurable in the second period. ε̃i is distributed as an

independent standard normal. We assume that the agents have a large enough sample of these

variables from past observations so that there is no estimation error of the coefficients. Notice

that (due to the orthogonality assumption above) in a linear regression the true coefficients

associated with xi and vi are zero. For tractability, we assume that the shock to earnings is

not priced and the risk-free rate is equal to zero.

The reason why our theoretical model includes non-linear effects is that in our empirical

specification, we document substantial non-linearities in the earnings process as a function

of the explanatory variables. For example, analysts’ forecasts are amongst the most impor-

tant predictors, and Figure 1 shows that EPS is a non-linear function of analysts’ forecasts.

Hence, using the linear prediction produces substantial errors as shown in Figure 2. Figures

3 and 4 show the same problem arises when using past EPS, which is a key ingredient of

linear forecasts such as in Frankel and Lee (1998) or So (2013).

[Insert Figure 1 and 2 about here]

[Insert Figure 3 and 4 about here]

As stated above, we assume that the shock to earnings is not priced and the risk-free rate

is equal to zero. Let m̃ be the stochastic discount factor (SDF), then Cov(m̃, ε̃i) = 0 ∀i and

E[m̃] = 1.

Define µi,j = E[ỹi|Fi,j], that is, the conditional expectation of a representative agent when

using sigma algebra Fi,j to form the expectation. The following result is immediate from the

definition of conditional expectation:

Lemma 1 If Fi,j ⊆ Fi,k then E[(ỹi − µi,k)2] ≤ E[(ỹi − µi,j)2].

Lemma 1 has two important implications.
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First, including more variables in an ideal estimator will weakly decrease the error, since

the estimator can always disregard the useless variables. For our application, random forest

regression automatically discards useless variables and incorporates the information of useful

ones. Given its flexibility and robustness it will always benefit from adding information, at

least asymptotically.28

Second, if we include the conditional expectation, µi,j as a variable to use for prediction

(e.g. analyst forecasts), in an optimal estimator, the error of the estimator must be at least

as low as the error when using the conditional expectation µi,j as a forecast, since the optimal

estimator can always ignore all of the information except for µi,j.

Naturally, if we include the analysts expectation, which is in the public information set,

any optimal estimator will achieve an error no higher than analysts. Formally, any conditional

expectation is a function of observable variables, say E[ỹi|Fi,j] = Gi,j(x, z, w) in our setup,

and observing Gi,j(x, z, w) = µi,j provides additional information and Lemma 1 applies. In

practice, we find that when adding analysts’ expectations, the squared error of the random

forest prediction is lower than that of analysts, whereas the squared error of the linear model

is higher than that of analysts.

Third, a predictor that is unconditionally biased, if it is not the conditional expectation,

will be conditionally biased, since the conditional expectation and the predictor will differ in

some information sets.

If all agents in the economy form expectations using the information set Fi,j, then the

price of asset i is Pi = µi,j and the expected return from the point of view of the agents is

E[Ri|Fi,j] =
E[ỹi|Fi,j ]

µi,j
= 1.

The actual expectation of yi is given by µ∗i = E[ỹi|F ∗j ] = 1 + f(xi) + g(vi) + zi +wi. The

estimator may be unfeasible if the agents do not know the true functional form or cannot

process all the variables. The (actual) expected return is then given by:

28Unfortunately, the addition of useless variables is not free due to finite sample sizes. At every step
each decision tree chooses a finite number of variables, and if none of the variables provide information, the
decision tree will waste a split and predict the mean from the previous node. In practice, random forests
are very robust to adding useless features and can be modified to be more selective in the presence of very
high-dimensional data.
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E[Ri] =
µ∗i
µi,j

(A2)

Naturally, stocks with pessimistic (lower than optimal) predictions will have higher (re-

alized) returns and vice-versa.

We now consider three different ways of forming expectations. First, let us consider

linear forecasts: we assume that (1) agents have access to past realizations of the variables,

(2) estimate the linear model precisely, but (3) only include first order terms. That is, they

run a regression of the form:

y = a+ bxx+ bvv + bzz + bww + u, (A3)

and estimate a, bx, bv, bz, bw. For simplicity, we assume that they get accurate coefficients

(up to specification) due to a large enough sample size: a = 1 + E[f(x)] + E[g(v)], bx =

0, bv = 0, bz = 1, bw = 10. Hence they form expectations equal to µl = E[y|linear model] =

a+ z+w = 1 +E[f(x)] +E[g(v)] + z+w, where Ei[·] denotes a cross-sectional expectation.

Notice that the resulting conditional expectation is (cross-sectionally) unbiased:

Ei[µl] = Ei[a+ z + w] = Ei[E[ỹ]] = 1 + E[f(x)] + E[g(v)], (A4)

where Ei[·] denotes a cross-sectional expectation. The linear model compensates for the lack

of linearity in x and v by adding the unconditional expectation of f(x) and g(v) to the

intercept.

Second, let us consider analyst expectations: we assume that analysts form expectations

using x, v, and w, exclusively, for example because they can only process a certain amount of

information. They also have access to the correct functional form of x, but not v, to illustrate

specification uncertainty. Their resulting estimate is µa = E[y|analyst] = 1+E[g(v)]+f(x)+

w.

Third, we form expectations using a non-linear function estimated by applying ran-

dom forests to the past sample. Because of their flexibility, random forests can approx-
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imate any functional form, and (asymptotically) random forest are a consistent estima-

tor of the conditional mean.29 For simplicity, we consider the estimate to be: µML =

E[y|machine learning] = 1 + f(xi) + g(vi) + zi + wi, but notice that in practice there is

a finite (although large) sample size and the estimates are subject to sampling error.

The (asymptotic) mean squared error is σ2
fx + σ2

gv + var(ε) for the linear model, var(z) +

σ2
gv+var(ε) for analysts, and var(ε) for the machine learning forecast. We say that a forecast

dominates another forecast if the mean squared error of the first is smaller than the mean

squared error of the second. To match the empirical results, we assume σ2
fx > var(z) = 1.

Hence, within the model, as in our empirical findings, the machine learning forecast dominates

the analyst’s forecast, which in turn dominates the linear forecast.

We now assume that the economy-wide expectations of the agents coincide with the an-

alyst expectations. Generally, assets with high bias with respect to the machine learning

forecast will get lower returns. Since the machine learning is a better forecast, and approxi-

mates better the true conditional expectation, the returns will roughly follow:

E[Ri] =
E[yi|machine learning]

E[yi|analyst]
, (A5)

and firms with overly optimistic forecasts with respect to the machine learning forecast

will have lower average returns.

Spurious in-sample linear predictability

Even though analysts’ forecasts dominate the linear forecasts, return predictability may still

arise from the conditional bias measured by the difference between the analysts’ forecasts

and the linear forecasts, in two situations.

First consider the case where the linear forecast conditionally dominates the analysts’

forecast. For example, for assets with x = 0 and z 6= 0, the linear model will dominate the

analysts’ forecast, and stocks with optimistic expectations will have lower returns. This is a

consequence of Lemma 1, as non-optimal expectations can be conditionally biased.

29This is commonly referred to in the literature as random forest being universal approximators. We
confirm in simulations that it applies in our setup.
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Second, and more importantly, if the analysts’ forecast and the linear forecast have a

different loading on the variable z, and z induces a correlation between the payoff and the

SDF, return predictability may arise from the conditional bias measured by the difference

between the analysts’ forecasts and the linear forecasts.

To illustrate the latter point formally, assume now that the SDF, M̃ , has E[M̃ ] = 1,

E[M̃ ε̃] = 0 and V ar(M̃) = 1.

The payoff of asset i follows:

ỹi = 1 + f(xi) + g(vi) + zi + wi + h(zi)f̃ + ε̃i, (A6)

where h : R → (0, 1) is an increasing strictly positive function , E[f̃ ] = 0, V ar(f̃) = 1

and Corr(f̃ , M̃) = Cov(f̃ , M̃) = −a, a > 0.30

We assume that regardless of the way agents form expectations, they are aware of the

covariance with the SDF. The (conditional) covariance is then given by

Cov(ỹ, M̃) = h(zi)Cov(f̃ , M̃) = −h(zi)a. (A7)

Hence, firms with higher zi have higher returns, as the price is given by:

Price(yi|Fi,j) = E[M̃ỹ|Fi,j] = E[ỹ|Fi,j]− h(zi)a = µi,j − h(zi)a, (A8)

and the expected return is given by:

E[Ri] =
µ∗i

µi,j − h(zi)a
. (A9)

Notice that a simple portfolio sort using z will produce a spread in returns, since firms

with lower z have lower returns. Notice as well that the difference between the analysts’

forecast and the linear forecast is given by:

E[ỹ|analyst]− E[ỹ|linear model] =

30We assume a is small enough that none of the prices are zero.
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1 + E[g(v)] + f(x) + w − (1 + E[g(v)] + E[f(x)] + z + w) = f(x)− E[f(x)]− z (A10)

In the model (and in the empirical results) analyst earnings estimates are better than

linear forecasts. Nevertheless, the bias in the linear forecast appears to be correlated with

differences in expected returns. If expected returns and biases are both correlated with a

common variable z, then this return predictability can appear even when economically these

biases in and of themselves are not the driver of the return predictability.31

To make matters worse, if the variable that is driving the return predictability only works

in-sample then the out-of-sample linear model’s return predictability will decrease substan-

tially or disappear.32 In our empirical specification, the linear model return predictability

disappears after the 2000s.

In contrast, for the machine learning model the results from the previous section apply

and assets with high bias with respect to the machine learning forecast get lower returns:

E[Ri] =
E[yi|machine learning]

E[yi|analyst]− h(zi)
. (A11)

And consistent with the empirical results, the machine-learning return predictability re-

mains stable.

A2. Sample selection and machine learning tests

In this section, we detail the sample selection and the procedures of machine learning earnings

forecasts.

Our first step is to obtain actual realized earnings and analysts’ earnings forecasts from the

I/B/E/S database.33 We keep firms that have both realized earnings and analysts forecasts.

We focus on one-year- and two-years-ahead forecasts for annual earnings (IBES FPI of 1 and

31In the model x and z are independent cross-sectionally, x is unrelated to returns but firms with higher
z will have higher returns, so a sort in z will produce differences in expected returns mechanically.

32In our model it would correspond to a change in the covariance with the SDF to zero. More generally, it
can be caused by changes in market efficiency.

33We do not obtain the actual earnings from Compustat, because I/B/E/S uses different accounting basis
from Compustat to measure actual earnings. Since our primary goal is to construct a statistically optimal
and unbiased benchmark for analysts’ earnings forecasts, we obtain the realized earnings from the /I/B/E/S
database.
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2), and one-quarter-, two-quarters-, and three-quarters-ahead forecasts for quarterly earnings

(IBES FPI of 6, 7, and 8), because analysts’ forecasts for other horizons have significantly

fewer observations.

We then match the IBES actual file (actual realized earnings) with the summary file

(analysts’ consensus forecasts) using Ticker and fiscal end date.34 As pointed out by Diether

et al. (2002) and Bouchaud et al. (2019), mistakes occur when matching I/B/E/S actual file

with I/B/E/S summary file, because stock splits may occur between the earnings forecast

day and the actual earnings announcement day. However, the I/B/E/S adjusted summary

files round the forecast and actual earnings to the nearest penny for adjusting the splits. To

circumvent these rounding errors, we obtain data from unadjusted actual and summary files.

We use the cumulative adjustment factors (CFACSHR) from the CRSP monthly stock file to

adjust the forecast and the actual EPS on the same share basis. For example, if forecasts are

made at t − 1 and the actual earnings are announced at t, we measure the adjusted actual

earning as,

AdjustActualt = Actualt ∗ CFACSHRt−1/CFACSHRt

For matching /I/B/E/S with CRSP, we use the link table provided by the Wharton

Research Data Service. We require firms’ historical CUSIP to be same in both /I/B/E/S

and CRSP. We keep common stocks (share code 10 and 11) in stock exchanges of NYSE,

AMEX, and NASDAQ (exchange code 1, 2, and 3).35.

Our sample is in monthly frequency, because analysts make earnings forecasts for firms’

earnings every month (I/B/E/S estimate date is STATPERS). We therefore provide our

statistically optimal forecast for every I/B/E/S estimate date (STATPERS). Specifically, we

assume that we are making forecasts at the same date as when analysts make forecasts. We

trained the random forest model using the information available at the current time, and then

forecast earnings for the same fiscal end periods as analysts do. When matching the forecasts

34PENDS denotes the fiscal end date in the actual file and FPEDATS denotes the fiscal end date in the
summary file.

35We do not delete the smallest firms, because the smallest firms are simply not covered in /I/B/E/S and
the intersection of /I/B/E/S and CRSP heavily tilts towards big stocks (Diether et al. (2002))
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variables such as firm characteristics and macroeconomic variables, we require announcement

dates of these information are before STATPERS. The forecasts are therefore out-of-sample

and are not based on any future information. The resulting forecasting regression is:

Et[epsi,t+τ ] = RF [Fundamentalsi,t,Macrot, AFi,t].

RF denotes the random forest model using data from the most recent periods. Fundamentalsi,t,

Macrot, and AFi,t denote firm i’s fundamental variables, macroeconomic variables, and an-

alysts’ earnings forecasts respectively. The earnings per share of firm i in quarter t+ τ (τ=1

to 3) or year t+τ (τ=1 to 2) is epsi,t+τ .

For the quarterly earnings forecasts and one-year ahead forecast, we train the random

forest model using the data from the most recent year and then forecast earnings in the

following periods using information available at the current time. For the two-year ahead

forecasts, we train the model using the data from the two most recent years rather than from

the most recent year, because we do not have enough observations when using a 12-month

window to train the model. Our forecasts remain consistent when using different windows to

train the model. Our training data starts in 1985 January, and our first forecast observations

are in 1986 January.

A3. WRDS financial ratios

In the random forest model, we use financial ratios obtained from the Financial Ratio Suit

by Wharton Research Data Service (WRDS) as forecasting variables. According to WRDS,

these variables are most commonly used financial ratios by academic researchers and avail-

able at both quarterly and annual frequency. The variables can be grouped into the following

seven categories: Capitalization, Efficiency, Financial Soundness/Solvency, Liquidity, Prof-

itability, Valuation and Others. Table A1 details the definitions of financial ratios.36 Since

our predicted variable is earnings per share, we also consider another twenty-six fundamental

values per share derived from these financial ratios such as book equity per share and current

36The formulas to calculate these financial ratios are available at the WRDS website.
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debt per share for improving the forecasts.

We exclude PEG 1yrforward, PEG ltgforward, pe op basic, pe op dil from our forecast

model, because these variables have too many missing observations. We replace the missing

values of other variables as the industry medians. The industries are defined as in Fama-

French 49 industry portfolios.

Table A1: WRDS financial ratios

Variable Definition Variable Definition

Accrual Accruals/Average Assets invt act Inventory/Current Assets
adv sale Avertising Expenses/Sales lt debt Long-term Debt/Total Liabilities
aftret eq After-tax Return on Average Common

Equity
lt ppent Total Liabilities/Total Tangible Assets

aftret equity After-tax Return on Total Stockhold-
ers Equity

npm Net Profit Margin

aftret invcapx After-tax Return on Invested Capital ocf lct Operating CF/Current Liabilities
at turn Asset Turnover opmad Operating Profit Margin After Depreciation
bm Book/Market opmbd Operating Profit Margin Before Depreciation
capei Shillers Cyclically Adjusted P/E Ratio pay turn Payables Turnover
capital ratio Capitalization Ratio pcf Price/Cash flow
cash conversion Cash Conversion Cycle (Days) pe exi P/E (Diluted, Excl. EI)
cash debt Cash Flow/Total Debt pe inc P/E (Diluted, Incl. EI)
cash lt Cash Balance/Total Liabilities pe op basic Price/Operating Earnings (Basic, Excl. EI)
cash ratio Cash Ratio pe op dil Price/Operating Earnings (Diluted, Excl. EI)
cfm Cash Flow Margin PEG 1yrforward Forward P/E to 1-year Growth (PEG) ratio
curr debt Current Liabilities/Total Liabilities PEG ltgforward Forward P/E to Long-term Growth (PEG) ratio
curr ratio Current Ratio PEG trailing Trailing P/E to Growth (PEG) ratio
de ratio Total Debt/Equity pretret earnat Pre-tax Return on Total Earning Assets
debt assets Total Debt/Total Assets pretret noa Pre-tax return on Net Operating Assets
debt at Total Debt/Total Assets profit lct Profit Before Depreciation/Current Liabilities
debt capital Total Debt/Capital ps Price/Sales
debt ebitda Total Debt/EBITDA ptb Price/Book
debt invcap Long-term Debt/Invested Capital ptpm Pre-tax Profit Margin
divyield Dividend Yield quick ratio Quick Ratio (Acid Test)
dltt be Long-term Debt/Book Equity RD SALE Research and Development/Sales
dpr Dividend Payout Ratio rect act Receivables/Current Assets
efftax Effective Tax Rate rect turn Receivables Turnover
equity invcap Common Equity/Invested Capital roa Return on Assets
evm Enterprise Value Multiple roce Return on Capital Employed
fcf ocf Free Cash Flow/Operating Cash Flow roe Return on Equity
gpm Gross Profit Margin sale equity Sales/Stockholders Equity
GProf Gross Profit/Total Assets sale invcap Sales/Invested Capital
int debt Interest/Average Long-term Debt sale nwc Sales/Working Capital
int totdebt Interest/Average Total Debt short debt Short-Term Debt/Total Debt
intcov After-tax Interest Coverage staff sale Labor Expenses/Sales
intcov ratio Interest Coverage Ratio totdebt invcap Total Debt/Invested Capital
inv turn Inventory Turnover

A4. Parameters in random forest

We choose the hyper-parameters in a purely data-driven way using cross-validation. We

use data up to (and including) 1986 by dividing the data into two partitions: training and
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testing (cross-validation). The training data contains the early part of the sample: from the

beginning of the sample until December 1985. The testing data contains a single month:

January 1986. The results are similar for other testing periods in 1986. We train the model

using the training data for different configurations of the hyper parameters. We evaluate

the results in the testing data and pick the parameters that result in the best performance.

Notice that the testing data is not using information from future periods. We maintain the

hyper parameters chosen in 1985 for the whole sample, and we start our forecasts in 1986.

The model is then trained using rolling windows keeping the hyper parameters fixed.

We choose 2000 trees from the cross-validation procedure but remark that there is little

difference after 500. We use the recommended minimum node size of 5. We find that there

are no significant differences in the out-of-sample R2 and even a slight reduction after a depth

of seven so we choose that parameter. The result is explained in the following way: we train

using a rolling window of 12 months for a total of around 10,000 observations. Since each split

divides the data into two and we use a minimum node of 5, the maximum number of splits is

10 since 103

210
= 9.77. Figure A1, Figure A2, and Figure A3 show the cross-validation results

for the first-period two-quarters-ahead, three-quarters-ahead, and two-years-ahead earnings

forecasts.

The standard algorithm allows for the specification of the probability of a predictor being

chosen at each step. We take advantage of that and implement a two step procedure. First,

we run a standard random forest regression, where every variable has the same probability

of being chosen, and obtain the variable importance for each of the features. We then run a

different random forest where at each split, besides considering the strict random subset, we

include the top n features from the first step up until that point in time for consideration

at each split. This gives the algorithm the option, but not the obligation, of considering the

best predictors from the first stage at each step. We find that adding this step increases the

accuracy of the algorithm significantly. We choose n = 5 based on cross-validation.
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Figure A1: Cross-validation results of the number of trees in the two-quarters-ahead
forecast

Notes: This figure plots the relation between the number of decision trees used in the random forest for
training up to 1986 January and the out-of-sample R2 for the two-quarters-ahead earnings forecasts in
1986 February. The out-of-sample R2 is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a
forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.
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Figure A2: Cross-validation results of the number of trees in the three-quarters-ahead
forecast

Notes: This figure plots the relation between the number of decision trees used in the random forest for
training up to 1986 January and the out-of-sample R2 for the three-quarters-ahead earnings forecasts in
1986 February. The out-of-sample R2 is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a
forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.
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Figure A3: Cross-validation results of the number of trees in the two-years-ahead forecast

Notes: This figure plots the relation between the number of decision trees used in the random forest
for training up to 1986 January and the out-of-sample R2 for the two-years-ahead earnings forecasts in
1986 February. The out-of-sample R2 is defined as 1 minus the mean squared error implied by using
the machine learning forecast divided by the mean squared error of using the realized average value as a
forecast. The random forest algorithm is random by design, so we take the average of 100 runs to measure
the out-of-sample R2.

A5. Summary statistics of variables in Fama-MacBeth return re-

gressions

Table A2 reports the summary statistics of conditional biases in analysts’ one-quarter-

(BE Q1), two-quaters- (BE Q2), three-quarters- (BE Q3), one-year- (BE A1), and two-years-

ahead (BE A2) earnings forecasts. “Average BE” denotes the average of these conditional

biases at multiple horizons. “BE Score” denotes the arithmetic average of the percentile rank-

ings on each of the five conditional biases at different forecast horizons. We also report the

summary statistics of control variables including the log of firm size (Lnsize), the log of book-
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to-market ratio (Lnbeme), short-term reversal (Ret 1), medium-term momentum (Ret12 7),

investment-to-asset (IA),idiosyncratic volatility (IVOL), return volatility (RetVol), and share

turnover (Turnover).

Table A2: Summary statistics

Variable N Mean Std P1 Q1 Median Q3 Q99

Average BE 1268964 0.0167 0.0983 -0.0268 0.0007 0.0042 0.0137 0.2274
BE Score 1268964 51.1431 23.2862 7.0000 33.2000 48.2000 68.6667 98.6667
BE Q1 1000603 0.0048 0.0384 -0.0076 -0.0003 0.0005 0.0027 0.0775
BE Q2 1104296 0.0062 0.0392 -0.0082 0.0002 0.0013 0.0045 0.0851
BE Q3 1015581 0.0068 0.0466 -0.0174 0.0003 0.0017 0.0056 0.0952
BE A1 1193713 0.0180 0.1271 -0.0206 0.0003 0.0033 0.0126 0.2625
BE A2 1081244 0.0339 0.2036 -0.1262 0.0010 0.0118 0.0374 0.4437
LNsize 1268633 13.1098 1.8849 9.3120 11.7508 12.9775 14.3328 17.9642
LNbeme 1153148 -0.7601 0.8561 -3.2706 -1.2255 -0.6680 -0.2000 1.0404
Ret12 7 1207915 0.0817 0.4535 -0.6842 -0.1329 0.0420 0.2228 1.5358
Ret1 1268389 0.0099 0.1574 -0.3819 -0.0625 0.0049 0.0731 0.4828
IA 1174640 0.3021 1.0069 -0.4184 0.0015 0.0893 0.2538 4.3283
IVOL 1268571 0.0247 0.0197 0.0049 0.0125 0.0195 0.0308 0.0954
RetVol 1268016 0.0297 0.0220 0.0067 0.0160 0.0240 0.0366 0.1094
Turnover 1266778 1.5416 12.7502 0.0748 0.4874 0.9836 1.8738 8.3893

A6. Fama-MacBeth regressions with conditional bias in each fore-

cast horizon

Table A3 reports the Fama-MacBeth of monthly stock returns on conditional bias at each

forecast horizon, including one-quarter-, two-quarters-, three-quarters-, one-year-, and two-

years-ahead. (1) and (2) report the regression results with and without control variables,

respectively. We find that the two-quarters, three-quarters, and two-years ahead forecast

bias negatively predict stock returns; the predictability remains robust after controlling for

other return predictors.

Table A4 reports the value-weighted portfolio sorts on conditional bias in each forecast

horizon. Overall, we find consistent evidence that stocks with more optimistic biases earn

lower future returns.

Table A5 shows that the return-predictability results from the cross-sectional regressions

and portfolio sorts also hold in the time series regressions against factor models such as the
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CAPM and the Fama-French five-factors model.
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Table A4: Portfolios sorted on conditional bias

This table reports the time series average of returns (in percent) on value-weighted portfolios
sorted on the conditional bias at different forecast horizons. Panel A looks at the one-quarter-
ahead conditional bias. Panel B looks at the two-quarters-ahead bias. Panel C looks at the
three-quarters-ahead bias. Panel D looks at the one-year-ahead bias. Panel E looks at the two-
years-ahead bias. The sample period is 1986 to 2019.

Quintile 1 2 3 4 5 5-1
Panel A: One-quarter-ahead BE

Mean 1.04 0.88 0.92 0.97 0.83 -0.21
t-stat 4.51 4.01 3.81 3.52 2.14 -0.79
CAPM Beta 1.00 0.99 1.06 1.14 1.44 0.44

Panel B: Two-quarters-ahead BE

Mean 1.14 0.91 0.92 0.61 0.21 -0.93
t-stat 5.29 4.26 3.92 2.19 0.52 -3.24
CAPM Beta 0.96 0.96 1.03 1.18 1.49 0.53

Panel C: Three-quarters-ahead BE

Mean 1.33 1.03 0.80 0.50 -0.03 -1.36
t-stat 6.15 4.86 3.45 1.77 -0.09 -5.21
CAPM Beta 0.95 0.94 1.02 1.20 1.45 0.50

Panel D: One-year-ahead BE

Mean 0.97 0.91 0.97 0.97 1.01 0.04
t-stat 4.61 4.18 3.96 3.47 2.73 0.14
CAPM Beta 0.94 0.98 1.08 1.18 1.40 0.46

Panel E: Two-years-ahead BE

Mean 1.39 1.01 0.85 0.64 -0.32 -1.71
t-stat 6.65 4.85 3.59 2.28 -0.88 -6.65
CAPM Beta 0.91 0.93 1.06 1.19 1.42 0.51
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Table A5: Time series tests with common asset-pricing models

This table reports the regression of stock returns (in percent) on the long-short portfolio sorted
with the conditional bias in different horizons, on the CAPM, the Fama-French three-factor model
(FF3), and the Fama-French five-factor model (FF5). Panel A looks at the one-quarter-ahead
conditional bias. Panel B looks at the two-quarters-ahead bias. Panel C looks at the three-quarters-
ahead bias. Panel D looks at the one-year-ahead bias. Panel E looks at the two-years-ahead bias.
The sample period is 1986 to 2019. The t-statistics are adjusted by the White’s heteroscedasticity
robust standard errors.

Panel A: CAPM Panel B: FF3 Panel C: FF5
Coeffi t-stat Coeffi t-stat Coeffi t-stat

Panel A: One-quarter-ahead BE
Intercept -0.52 -2.03 -0.61 -2.74 -0.11 -0.50
Mkt RF 0.44 5.75 0.40 5.70 0.22 3.55
SMB 0.78 8.56 0.57 5.61
HML 0.51 4.09 0.95 7.10
RMW -0.78 -5.43
CMA -0.66 -2.89

Panel B: Two-quarters-ahead BE
Intercept -1.30 -4.92 -1.43 -6.08 -1.00 -4.02
Mkt RF 0.53 6.38 0.51 6.70 0.36 4.94
SMB 0.76 7.48 0.56 4.86
HML 0.64 4.89 0.99 6.98
RMW -0.74 -4.35
CMA -0.46 -1.78

Panel C: Three-quarters-ahead BE
Intercept -1.71 -7.18 -1.78 -8.34 -1.36 -5.98
Mkt RF 0.50 7.26 0.46 7.21 0.32 5.06
SMB 0.67 6.78 0.46 4.23
HML 0.42 3.50 0.76 6.53
RMW -0.74 -4.70
CMA -0.43 -2.09

Panel D: One-year-ahead BE
Intercept -0.28 -1.23 -0.35 -1.64 0.05 0.20
Mkt RF 0.46 6.80 0.41 6.32 0.27 3.92
SMB 0.70 6.84 0.52 4.79
HML 0.38 3.35 0.72 5.24
RMW -0.64 -3.97
CMA -0.49 -1.83

Panel E: Two-years-ahead BE
Intercept -2.06 -8.85 -2.17 -10.29 -1.86 -7.93
Mkt RF 0.51 7.57 0.49 8.07 0.39 6.00
SMB 0.60 5.62 0.47 4.19
HML 0.51 4.71 0.78 5.99
RMW -0.49 -3.36
CMA -0.40 -1.65
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A7. Cross-sectional return predictability: realized biases

As a placebo tests, we use the realized forecasts biases, defined as the difference between

analysts’ forecasts and the machine learning forecasts scaled by the share price from the

most recent month, to “predict” stock returns, though realized earnings are not available

at time t. Table A6 reports the regressions with average realized biases, and Table A7 and

Table A8 report the mean return and alpha on the long-short portfolio strategy based on the

realized bias. Overall, we find very consistent results, stocks with more optimistic forecast

biases earn lower future returns.
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Table A6: Fama-Macbeth regressions: realized forecast bias

Notes: This table reports the unfeasible Fama-MacBeth cross-sectional regressions of
monthly stocks’ returns on the realized bias. We define the realized bias as the difference
between analysts’ earnings forecasts and actual realized values, scaled by the stock price
from the most recent month. “Average BE” denotes the average of the realized biases
at different forecast horizons including one-quarter-, two-quarters-, three-quarters-, one-
year-, and two-years-ahead. “BE Score” denotes the arithmetic average of the percentile
rankings on each of the five realized biases at different forecast horizons. (1) and (2) report
the regression results with and without control variables, respectively. The t-statistics are
reported in parentheses. The sample period is 1986 to 2019. It is important to remark
that the realized bias are not available at time t and the table is only presented for
bench-marking purposes.

Panel A: Average BE Panel B: BE Score
(1) (2) (1) (2)

Bias -0.108 -0.132 -0.098 -0.110
t-stat -14.92 -17.32 -38.37 -46.62
LNsize -0.109 -0.264
t-stat -2.99 -7.15
LNbeme 0.162 0.107
t-stat 2.80 1.89
Ret1 -3.215 -5.627
t-stat -7.72 -13.11
Ret12 7 0.289 -0.196
t-stat 1.87 -1.31
IA -0.003 -0.002
t-stat -5.33 -3.47
IVOL -0.177 -0.138
t-stat -1.61 -1.26
Retvol 0.156 0.133
t-stat 1.35 1.16
Turnover -0.056 -0.001
t-stat -1.24 -0.03
Intercept 1.137 2.705 5.777 9.747
t-stat 3.98 5.05 20.73 17.48
R2 (%) 0.988 6.133 3.368 8.770
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Table A7: Portfolios sorted on realized bias

This table reports the time series average of returns (in percent) on value-weighted portfolios
formed on the realized analyst’ forecast bias. We define the realized bias as the difference between
analysts’ earnings forecasts and actual realized values, scaled by the stock price from the most
recent month. Panel A looks at average conditional bias at different forecast horizons including
one-quarter-, two-quarters-, three-quarters-, one-year-, and two-years-ahead. Panel B presents the
sorts based on “BE Score”, defined as the arithmetic average of the percentile rankings on each of
the five reazlied biases at different forecast horizons. The sample period is 1986 to 2019.

Quintile 1 2 3 4 5 1-5
Panel A: Average BE

Mean 3.21 1.59 0.24 -0.69 -1.73 -4.94
t-stat 13.01 7.53 1.13 -2.58 -5.04 -23.06

CAPM Beta 1.03 0.94 0.96 1.15 1.35 0.32

Panel B: BE Score

Mean 3.18 1.69 0.41 -0.73 -2.26 -5.44
t-stat 13.06 7.94 1.93 -2.94 -7.01 -26.36

CAPM Beta 1.03 0.94 0.95 1.08 1.29 0.26
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Table A8: Time series tests of long-short portfolios sorted on realized bias

This table reports the regression of stock returns (in percent) on the long-short portfolio sorted with
the realized bias, on the CAPM, the Fama-French three-factor model (FF3), and the Fama-French
five-factor model (FF5). We define the realized bias as the difference between analysts’ earnings
forecasts and actual realized values, scaled by the stock price from the most recent month. Panel A
looks at average conditional bias at different forecast horizons including one-quarter, two-quarters,
three-quarters, one-year, and two-years-ahead. Panel B presents the sorts based on “BE score”,
defined as the arithmetic average of the percentile rankings on each of the five conditional biases
at different forecast horizons. The sample period is 1986 to 2019. The t-statistics are adjusted by
the White’s heteroscedasticity robust standard errors.

CAPM FF3 FF5
Coeffi t-stat Coeffi t-stat Coeffi t-stat

Panel A: Average BE
Intercept -5.17 -24.66 -5.21 -25.40 -4.88 -21.93
Mkt RF 0.32 5.82 0.30 5.23 0.18 3.13
SMB 0.40 4.85 0.27 3.16
HML 0.23 2.13 0.53 4.68
RMW -0.47 -3.86
CMA -0.49 -2.27

Panel B: BE Score
Intercept -5.62 -27.44 -5.64 -28.41 -5.42 -25.18
Mkt RF 0.26 4.58 0.22 3.78 0.14 2.43
SMB 0.44 5.32 0.36 3.90
HML 0.16 1.49 0.36 3.23
RMW -0.30 -2.76
CMA -0.32 -1.69

17



A8. Cross-sectional return predictability: other robustness checks

In this section, we check the robustness of Fama-MacBeth regression results in Table 3 by

omitting stocks whose prices are lower than $5 and also by scaling the conditional biases with

total asset (per share) from the last fiscal year. Total assets are obtained from Compustat

(Item AT) Table A9 and A10 report the two robustness checks results, respectively. Overall,

we find robust return predictability of conditional biases.

Table A9: Fama-Macbeth regressions: omitting stocks with price lower than $5

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’ returns on the conditional
bias. “Average BE” denotes the average of the conditional biases at different forecast horizons including one-quarter-
, two-quarters-, three-quarters-, one-year-, and two-years-ahead. “BE Score” denotes the arithmetic average of the
percentile rankings on each of the five conditional biases at different forecast horizons. (1) and (2) report the
regression results with and without control variables, respectively. The t-statistics are reported in parentheses. The
sample period is 1986 to 2019. We omit stocks whose closing prices in the previous month are smaller than $5.

Panel A: Average BE Panel B: BE Score
(1) (2) (1) (2)

Bias -0.383 -0.451 -0.027 -0.033
t-stat -10.94 -14.46 -8.86 -13.57
LNsize -0.112 -0.180
t-stat -3.67 -6.00
LNbeme 0.153 0.193
t-stat 2.85 3.60
Ret1 -2.087 -2.163
t-stat -5.29 -5.51
Ret12 7 0.416 0.328
t-stat 2.89 2.38
IA -0.002 -0.002
t-stat -4.35 -4.42
IVOL -0.254 -0.228
t-stat -2.32 -2.09
Retvol 0.159 0.153
t-stat 1.33 1.30
Turnover -0.042 -0.025
t-stat -0.99 -0.61
Intercept 1.197 3.004 2.208 5.099
t-stat 4.69 6.53 9.87 11.52
R2 (%) 0.794 6.248 1.151 6.320
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Table A10: Fama-Macbeth regressions: scaling conditional biases by total assets per share

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’returns
on the conditional bias, which is defined as the difference between analysts’ earnings forecasts and
machine learning forecasts, scaled by the total asset (per share) from the most recent fiscal period.
“Average BE” denotes the average of the conditional biases at different forecast horizons including
one-quarter-, two-quarters-, three-quarters-, one-year-, and two-years-ahead. “BE Score” denotes
the arithmetic average of the percentile rankings on each of the five conditional biases at different
forecast horizons. (1) and (2) report the regression results with and without control variables,
respectively. The t-statistics are reported in parentheses. The sample period is 1986 to 2019.

Panel A: Average BE Panel B: BE Score
(1) (2) (1) (2)

Bias -0.062 -0.079 -0.019 -0.025
t-stat -4.15 -8.24 -4.36 -10.66
LNsize -0.093 -0.178
t-stat -2.63 -5.32
LNbeme 0.009 -0.050
t-stat 0.15 -0.90
Ret1 -2.860 -2.964
t-stat -6.82 -7.13
Ret12 7 0.509 0.412
t-stat 3.25 2.68
IA -0.003 -0.003
t-stat -5.52 -5.79
IVOL -0.219 -0.209
t-stat -1.99 -1.91
Retvol 0.136 0.170
t-stat 1.18 1.49
Turnover -0.056 -0.035
t-stat -1.25 -0.79
Intercept 1.062 2.455 1.930 4.565
t-stat 3.85 4.67 8.73 9.29
R2 (%) 0.539 5.448 1.473 5.697
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A9. Net stock issuances: robustness check

We check the robustness of results in Table 9 by matching average of conditional bias from

the past 24-12 months to net stock issuances of the fiscal year ending in t. Table A11 reports

this robustness check. Overall, we find consistent results that managers of those companies

for which analysts’ upward biases are greatest take apparent advantage of these biases by

issuing stocks.

Table A11: Net stock sssuances and conditional bias

Panel A reports the time series average of net stock issuances of value-weighted portfolios sorted
on the conditional bias. “Average BE” denotes the average of the conditional bias at different
forecast horizons.“BE score” denotes the arithmetic average of the percentile rankings on each
of the five conditional biases at different forecast horizons. Panel B reports the Fama-MacBeth
regressions of firms’ net stock issuances on the conditional bias and control variables include
the log of firm size (Lnsize), the log of book-to-market ratio (Lnbeme), and earnings before
interest, taxes, and depreciation divided by total assets (EBITDA). The sample period is 1986
to 2019. We report the time-series average of slope coefficients associated with Newey-West
t-statistics.

Panel A: Net stock issuances of portfolios formed on BE
Quintile 1 2 3 4 5 5-1

Average BE 0.007 0.010 0.019 0.021 0.071 0.064
t-stat 1.26 1.56 2.33 3.18 4.96 4.67
BE score 0.005 0.013 0.015 0.033 0.065 0.060
t-stat 0.78 1.78 2.81 4.90 5.14 5.35

Panel B: Fama-MacBeth regressions

A: Average BE B: BE Score
(1) (2) (1) (2)

Bias 0.514 0.398 0.091 0.063
t-stat 4.11 3.96 8.10 4.60
LNsize -0.493 -0.307
t-stat -2.78 -1.42
LNbeme -1.689 -1.803
t-stat -5.32 -5.68
EBITDA -12.163 -12.093
t-stat -5.18 -5.04
Intercept 3.192 9.585 -0.656 4.485
t-stat 8.15 3.36 -1.01 1.17
R2 (%) 1.963 7.674 1.201 7.187
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A10. Anomalies

In this study, we follow Hou et al. (2015) as close as possible to define anomaly variables.

Table A12 lists the significant anomalies documented in Hou et al. (2015). L-S ret (%) denotes

the monthly average return (in percent) of each of the 27 long-short anomaly strategies. The

sample period is July 1972 to December 2019, depending on data availability.

Table A12: List of significant anomalies

Anomalies Descriptions Sample period L-S ret (%)

Sue-1 Earnings surprise (1-month holding pe-
riod), Foster et al. (1984)

01/1974−12/2019 0.42

Abr-1 Cumulative abnormal stock returns (1-
month holding period), Chan et al.
(1996)

07/1972−12/2019 0.89

R11-1 Price momentum (11-month prior re-
turns, 1-month holding period), Fama
and French (1996)

07/1972−12/2019 1.23

BM Book-to-market equity, Rosenberg
et al. (1985)

07/1972−12/2019 0.46

Dur Equity duration, Dechow et al. (2004) 07/1972−12/2019 1.27
E/P Earnings-to-price, Basu (1983) 07/1972−12/2019 0.39
CF/P Cash flow-to-price, Lakonishok et al.

(1994)
07/1972−12/2019 0.33

NO/P Net payout yield Boudoukh et al.
(2007)

07/1972−12/2019 0.30

I/A Investment-to-assets, Cooper et al.
(2008)

07/1972−12/2019 0.45

NOA Net operating assets, Hirshleifer et al.
(2004)

07/1972−12/2019 0.50

∆PI/A Changes in property, plant, and equip-
ment plus changes in inventory scaled
by assets Lyandres et al. (2007)

07/1972−12/2019 0.41

IG Investment growth, Xing (2007) 07/1972−12/2019 0.34
CEI Composite equity issues, Daniel and

Titman (2006)
07/1972−12/2019 0.40

NSI Net stock issues, Pontiff and Woodgate
(2008)

07/1972−12/2019 0.59

IvC Inventory changes, Thomas and Zhang
(2002)

07/1972−12/2019 0.51

IvG Inventory growth, Belo and Lin (2012) 07/1972−12/2019 0.34
OA Operating accruals, Sloan (1996) 07/1972−12/2019 0.26
POA Percent operating accruals, Hafzalla

et al. (2011)
07/1972−12/2019 0.33

PTA Percent total accruals, Hafzalla et al.
(2011)

07/1972−12/2019 0.30

GP/A Gross profits-to-assets, Novy-Marx
(2013)

07/1972−12/2019 0.21

ROE Return on equity, Haugen and Baker
(1996)

07/1972−12/2019 0.72

ROA Return on assets, Balakrishnan et al.
(2010)

07/1972−12/2019 0.57
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continued from previous page

NEI Number of consecutive quarters with
earnings increases, Barth et al. (1999)

07/1972−12/2019 0.30

OC/A Organizational capital-to-assets, Eis-
feldt and Papanikolaou (2013)

07/1972−12/2019 0.26

Ad/M Advertisement expense-to-market,
Chan et al. (2001)

07/1972−12/2019 0.46

RD/M R&D-to-market, Chan et al. (2001) 07/1972−12/2019 0.78
OL Operating leverage, Novy-Marx (2010) 07/1972−12/2019 0.23

Average 0.47
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A11. Out-of-sample linear return predictability in So (2013)

Table A13: Return predictability: linear forecasts pre- and post- 2000

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’ returns on the linear
conditional bias computed as in So (2013). The sample period is from 1986 to 2019. Pre-2000 covers the period
from 1986 to 2000. Post-2000 covers the period 2001-2019.

All Pre-2000 Post-2000
Intercept 0.012 0.013 0.010
t-stat 4.36 3.54 2.72
Linear conditional bias −0.015 −0.030 −0.002
t-stat −3.79 −3.92 −0.64
R2 0.004 0.005 0.002

A12. Return predictability: linear forecasts versus random forest

versus predicted forecast errors

In this section, we test the return predictability of analysts’ forecast bias by using OLS-

regression-based earnings forecasts as a benchmark. We also test the return predictability of

predicted forecast errors as Frankel and Lee (1998).37

Table A14 reports the earnings forecasts via linear regressions. In sharp contrast to the

Random Forests forecasts, linear forecasts have larger forecast errors, measured as the mean

of squared difference between linear forecasts and realized earnings, than analysts’.

Table A15 reports the return predictability of forecast bias in pre- and post-2000 periods.

Panel A and B look at the average forecast bias using random forest forecast and Linear

forecast as benchmarks, respectively. We find that the return predictability of random for-

est forecast bias remains robust when splitting the sample into pre-and post-2000 periods.

However, return predictability of linear forecast bias disappears after 2000. Panel C looks at

the return predictability of predicted forecast errors in Frankel and Lee (1998). We also find

that this return predictability does not work out-of-sample and disappears after 2000.

37We follow Frankel and Lee (1998) to predict forecast errors of analysts using the same variables including
sale growth, book-to-price ratio, long-term earnings growth forecasts, and an optimism measure. Analysts’
forecast errors are defined as the difference between analysts’ earnings forecasts and realized earnings scaled
by the closing stock price from most recent month. We apply these predicted errors to forecast monthly stock
returns.
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A13. The meaningful gains of machine learning forecasts

To test which firms that gains of ML forecasts relative to linear and/or analysts’forecasts

are more prominent, we consider the following regression of the ratio of the squared errors of

linear forecasts/analysts forecasts to the squared errors of random forests,

(LF/AF t+1
i,t − AEi,t+1)2

(RF t+1
i,t − AEi,t+1)2

= αt + βi

4∑
j=1

Characteristicsj,i,t + εi,t, (A12)

where LF t+1
i,t , AF t+1

i,t , RF t+1
i,t represent linear forecasts, analysts’ forecasts, and random forest

forecasts at time t for firm i’s earnings at fiscal end period t + 1, respectively. AEi,t+1

represents firm i’s realized earnings at fiscal end period t+ 1. Characteristicsi,t are the log

of firm size (LN size), the log of book-to-market ratio (LNbeme), the idiosyncratic volatility

(IVOL), and the gross profitability (GP) for firm i at time t. If, for example, the gains of

random forest forecasts relative to linear and analysts forecasts are from forecasts for growing

firms, then we should expect a negative coefficient on the book-to-market ratio.

Table A16 reports the results. We find that for firms with smaller size, lower book-to-

market ratio (growing firms), higher IVOL, and lower profitability, the linear forecasts and

analysts’ forecasts have larger forecast errors than random forests.
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Table A15: Return predictability: linear forecasts versus random forest versus predicted
forecast error

Notes: This table reports the Fama-MacBeth cross-sectional regressions of monthly stocks’ returns on the conditional
bias. Panel A and B look at the average of forecast bias at different horizons using random forest forecast and
linear forecast as benchmarks, respectively. Panel C looks at the return predictability of predicted forecast errors
as in Frankel and Lee (1998). The first and third rows of each panel report the regression results with and without
control variables, respectively. The sample period is 1986 to 2019.

Sample Period Full Sample Pre-2000 Post-2000

Panel A: Random Forest
FM without control -0.054 -0.075 -0.037
t-stat -3.94 -3.78 -1.99
FM with control -0.064 -0.086 -0.047
t-stat -5.08 -5.09 -2.58

Panel B: Linear Forecast

FM without control -0.029 -0.044 -0.017
t-stat -2.39 -2.39 -1.05
FM with control -0.021 -0.034 -0.011
t-stat -2.05 -2.33 -0.77

Panel C: Predicted Forecast Error

FM without control -0.040 -0.110 0.015
t-stat -0.75 -2.34 0.17
FM with control -0.058 -080 -0.40
t-stat -1.49 -2.35 -0.62
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Table A16: Fama-Macbeth regressions

Notes: This table reports the Fama-MacBeth cross-sectional regressions of the ratio of the squared errors of linear
forecasts/analysts forecasts to the squared errors of random forests. The regressions are:

(LF/AF t+1
i,t −AEi,t+1)2

(RF t+1
i,t −AEi,t+1)2

= αt + βi

4∑
j=1

Characteristicsj,i,t + εi,t,

where LF t+1
i,t , AF t+1

i,t , RF t+1
i,t represent linear forecasts, analysts’ forecasts, and random forest forecasts at time t for

firm i’s earnings at fiscal end period t+1, respectively. AEi,t+1 represents firm i’s realized earnings at fiscal end period
t+ 1. Characteristicsi,t are the log of firm size (LNsize), the log of book-to-market ratio (LNbeme), the idiosyncratic
volatility (IVOL), and the gross profitability (GP) for firm i at time t. Panel A and B look at the linear forecasts and
analysts’ forecasts, respectively The sample period is 1986 to 2019.

Panel A: Linear Regression VS Random Forest Panel B: Analysts VS Random Forest

Horizons One-quarter Two-quarters One-year Two-years One-quarter Two-quarters One-year Two-years

Intercept 24.55 434.16 42.86 98.69 4.93 12.12 7.79 28.95
t-stat 8.09 1.33 7.38 8.17 11.72 23.36 24.80 33.52

LNsize -0.43 -16.94 -0.81 -3.68 -0.02 -0.41 -0.22 -1.05
t-stat -2.96 -1.25 -2.68 -7.13 -0.68 -13.39 -11.28 -18.32

LNbeme -4.39 -11.49 -3.77 -9.77 -0.21 -0.30 -0.14 -1.85
t-stat -8.77 -3.88 -10.85 -7.99 -5.61 -4.86 -4.95 -14.53

IVOL -0.75 -5.81 -1.25 -0.71 0.13 0.21 0.13 0.22
t-stat -5.89 -1.42 -6.75 -2.56 5.68 6.31 7.28 3.88

GP -0.01 -0.24 -4.96 -15.10 -0.17 -0.28 -0.20 -1.41
t-stat -1.74 -1.24 -4.82 -8.06 -1.71 -1.88 -2.52 -4.39

R2 (%) 0.37 0.41 0.33 0.54 0.38 0.28 0.19 0.30
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A14. Downward revisions in analysts’ earnings forecasts

To explain the intuition regarding return predictability, we note analysts revise their earnings

forecasts every month. As the announcement dates approach, analysts should process new

information and update their estimates to make better forecasts. Table A17 demonstrates

that analysts revise their earnings forecasts.

[Insert Table A17 about here]

We find that the average forecast error, defined as the difference between analysts’ earn-

ings forecasts per share and the realized earnings per share, is consistently positive for all hori-

zons; the results suggest that analysts make over-optimistic forecasts. Further, the average

error decreases as the earnings announcement dates approach; i.e., on average, a downward

revision occurs in analysts’ forecasts. As expected, the mean squared error also decreases.

Analysts make more precise forecasts when the earning announcement dates approach.

For the one-year-ahead forecast, the average forecast error decreases from 0.215, when

analysts make the first forecast, to 0.081, when analysts make their last forecast for that

fiscal year. This last forecast is usually made about one month after the fiscal year has ended,

though precedes the earnings announcement date for that fiscal year. The mean squared error

declines from 1.197 (for the one-year-head forecast) to 0.365 for the last forecast the analysts

make.

A downward revision also occurs in the one-quarter-ahead, the two-quarters-ahead, the

three-quarters-ahead, and the two-years-ahead forecasts. To the extent that investors follow

analysts’ forecasts and analysts make optimistic expectations, these downward updates may

result in negative cross-sectional return predictability. Specifically, stocks with more opti-

mistic expectations should earn lower subsequent returns than stocks with less optimistic

expectations.

The realized values of earnings are not available when making the forecasts; therefore, the

ex-post establishment of biases and their importance is not conducive to forming portfolios

in real-time. We cannot know which stocks have biased expectations when using the realized
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value as a benchmark until that realized value is revealed. In contrast, our statistically

optimal benchmark allows us to study the effects of the bias before the earnings realization.
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