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1 Introduction

Damage to the economy from a pandemic depends on the arrival of a vaccine and other forms

of costly mitigation in the interim. In the vast epidemiology literature, optimal mitigation

typically entails quickly implementing vaccination programs (Anderson and May (1992),

Bailey et al. (1975)). To the extent that vaccination takes time or is uncertain, other types

of costly mitigation such as quarantines or social distancing are used (Wickwire (1977),

Behncke (2000)). This perspective is also adopted in recent models of economic damage

from COVID-19 (Kruse and Strack (2020), Alvarez, Argente, and Lippi (2020), Acemoglu,

Chernozhukov, Werning, and Whinston (2020)).

While this recent work captures more richness in terms of externalities and markets,

their economic damage functions are similar to earlier epidemic models. For instance, a

social planner (Eichenbaum, Rebelo, and Trabandt (2020)) or firms (Hong, Wang, and Yang

(2020)) take into account when a vaccine will arrive in deciding optimal mitigation that

comes at the expense of earnings in the interim.1 When the vaccine arrives, these costs no

longer need to be paid and there is an upward jump in earnings.

However, estimating this damage function is challenging for a few reasons. First, it can

involve many parameters. Second, it is inherently nonlinear in key parameters such as the

expected vaccine arrival. Third, estimating nonlinear models requires more and timelier data

of expectations regarding economic damages. That is, estimation using ex-post outcomes on

GDP observed annually will be challenging from a power perspective.

To address these issues, we develop a parsimonious continuous-time regime-switching

model of firm earnings with the following three key parameters: vaccine arrival rate, jump

in earnings (both on pandemic impact and reflation upon vaccine arrival), and the ratio

of growth rates across normal (or non-pandemic) versus pandemic regimes. Firm earnings

are assumed to follow a log-normal process in the absence of jumps (Black and Scholes

(1973), Merton (1974), Leland (1994)), and the arrival of vaccines is assumed to follow a

1Andersen, Hansen, Johannesen, and Sheridan (2020) and Farboodi, Jarosch, and Shimer (2020) also
point to the importance of voluntary mitigation by households who stop consuming even in advance of
government-imposed lockdowns.
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time-homogeneous Poisson process.2

We derive a tractable expectations formula that relates earnings forecast revisions from

just before the pandemic arrival to just after its arrival to these underlying parameters and

several independent variables (i.e., a closed-form damage function). Broadly, the vaccine

arrival rate moderates the persistence of the COVID-19 shock to earnings. To the extent an

effective vaccine is expected to arrive quickly, the shock should be mostly felt in short-term

as opposed to medium-term or long-term earnings forecasts. Hence, we can infer from the

revision of forecasts of different horizons the parameters of the earnings process taking into

account the effects of COVID-19.

We fit our nonlinear model to timely measures of expected damage for firm earnings using

revisions of industry-level consensus earnings forecasts made by security analysts. Security

analyst forecasts should integrate not only scientific evidence on the development of effective

vaccines but also logistical issues surrounding their distribution as well as macroeconomic

consequences to consumers and firms. Plentiful timely data on these forecasts allow for

precise estimates of these parameters.

The structure of our model points to a natural set of identifying restrictions related to

forecast rationality that allow for estimation using nonlinear least squares (NLS). If forecasts

are rational, i.e., they take into consideration the key variables of our analysis in their infor-

mation set (Nordhaus (1987), Keane and Runkle (1998)), then NLS can retrieve consistent

parameter estimates. To the extent forecasts are boundedly rational for different reasons

(Coibion and Gorodnichenko (2012), Laster, Bennett, and Geoum (1999), Hong and Kubik

(2003)), consistent parameter estimates can still be retrieved using NLS as long as the ra-

tio of biases across forecast horizons is uncorrelated with our independent variables. This

exclusion restriction is plausible as industry-level forecast revisions following COVID-19 are

highly correlated with cross-sectional industry stock price reactions (Landier and Thesmar

(2020)) and also vaccine news as we demonstrate below.

2A Poisson process is the usual starting point in modeling vaccines in epidemiology or medical literatures
(see, e.g., Arnold, Galloway, McNicholas, and O’Hallahan (2011), Lee, Norman, Assi, Chen, Bailey, Rajgopal,
Brown, Wiringa, and Burke (2010), Ball and Sirl (2018))
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In our empirical work, our main dependent variable is the revision of earnings forecasts

after the arrival date of COVID-19 in the US, which we take to be February 20, 2020.

To reduce measurement error, we work with industry portfolios by value-weighing median

forecasts for stocks at the GICS 8-digit industry classification. To be conservative and to

allow forecasts to be fully revised, we use May 2020 as our forecast date.3

The main independent variables from our theory are the horizon of the earnings forecasts

and the earnings growth rates in the non-pandemic and pandemic regimes. The horizon

of earnings forecasts is straightforward to measure. For our baseline specifications, we pool

together both industry FY1 (nearest next fiscal year-end), FY2, FY3, FY4 and FY5 (farthest

fiscal year-end) forecasts made in May of 2020. We measure the growth rate in the non-

pandemic regime using analysts’ growth rate forecasts on January of 2020 and also aggregate

these to the industry level. That is, our specification assumes that growth rates return to

non-pandemic levels after the arrival of a vaccine.

Our model allows us to simultaneously infer not just the vaccine arrival rate but also

disentangle jumps in earnings due to mitigation from the growth rate effects in a pandemic

regime. We have the following estimates using forecast revisions in May 2020. The vaccine

arrival rate λ is 0.674 with a 95% bootstrap confidence interval of [0.17, 1.65]. This implies

that a vaccine is expected in 1/λ = 1.48 years as of mid-May 2020, with a confidence

interval of [0.61 years, 5.88 years]. These estimates are retrieved by value-weighting the NLS

regression to further minimize the impact of outliers.

The initial jump in earnings following the arrival of COVID-19 corresponds to costly

mitigation measures (e.g. social distancing) meant to keep the virus at bay and is given

by e−n. The coefficient n is 0.603 with a 95% bootstrap confidence interval of [0.31, 1.48].

This statistically significant estimate of n implies around a negative 45.3% jump in earnings

level. We estimate that the proportion of the mean growth rates of the pandemic versus the

non-pandemic regime is 0.827, which is a deterioration in growth during the pandemic.

Using likelihood ratio tests, we reject the constrained model where λ = 0 (i.e., there is

3There is naturally a lag in analyst revisions and we only begin to see some revisions starting in April
and then most of the forecasts have been revised by May of 2020.
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no vaccine or a vaccine is expected to arrive in an infinite number of years) in favor of the

unconstrained model. Our model assumes that earnings revert to normal when the vaccine

arrives. If analysts expect long-run growth rates are damaged, i.e. post-pandemic growth

rates are lower than pre-pandemic growth rates, then it would imply counterfactually that

we retrieve a small vaccine arrival rate λ. Our empirical findings in this regard are consistent

with households surveys from Giglio, Maggiori, Stroebel, and Utkus (2020) indicating dam-

age to short-run earnings growth but not necessarily long-run damage. We can also reject

the constrained model where there is no damage to growth rates during a pandemic in favor

of our unconstrained model. Our findings here are consistent with macroeconomic damage

documented in Ludvigson, Ma, and Ng (2020) using vector auto-regressions and Gormsen

and Koijen (2020) using stock price and dividend futures.

The stock prices of face-to-face (Montenovo, Jiang, Rojas, Schmutte, Simon, Weinberg,

andWing (2020)) industries are particularly hit by COVID-19 (Pagano, Wagner, and Zechner

(2020), Favilukis, Lin, Sharifkhani, and Zhao (2020)). To this end, we re-estimate our model

using this subsample of industries. The initial jump for this subsample of industries is

n = 2.678, implying a much larger initial jump for this set of industries than for all the

overall sample. This 2.678 point estimate lies well outside the confidence interval of the

estimate for the overall sample. The vaccine arrival rate is also higher for these hardest

hit industries compared to the overall sample, consistent with speculation that the rollout

of the vaccine might be preferentially based on business interest groups that were the most

hit.4 But the point estimate of around one year lies well within the confidence interval of

the mid-May 2020 estimate for the overall sample.

We then consider how robust our estimates are to model mis-specifications regarding

the vaccine arrival process. The vaccine arrival rate can be time-varying depending on

news regarding intermediate stages of development, such as clinical trials, FDA approval,

and distribution logistics. Such a time-varying vaccine arrival process involves many more

parameters than a simple Poisson arrival process. We simulate earnings data based on such a

4J. David Goodman and Luis Ferre-Sadurni, “Big fight breaks out over which interest groups get vaccine
first,” NYTIMES, December 20, 2020.
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process for different assumptions regarding the arrival rate of news and how this news changes

the ultimate overall vaccine arrival rate. Then we estimate our parsimonious model using

this simulated data and find that the expected arrival rate retrieved from our parsimonious

model to be close to the true one time implied by time-varying vaccine arrival process.

Finally, we use our parsimonious model to test for time-varying vaccine arrival rates in

our data. To implement this test, we estimate vaccine arrival rates for June, July, and August

(which is the latest available) forecasts, while holding fixed the mid-May 2020 estimates of the

initial jump in earnings and pandemic growth rate estimate. To the extent the vaccine arrival

estimates are the same across the months, it would be consistent with a time-homogenous

Poisson arrival model. But if they differ, we can reject a time-homogenous Poisson model.

Whereas the estimate arrival rate for mid-May 2020 is 0.674, the estimates are 0.741,

0.815, and 1.636 for June, July and August, respectively. The 1.636 estimate for August

stands out and its 95% bootstrap confidence interval for this estimate is [0.94, 2.83]. This

translates to an expected arrival time of 0.61 years, which is significantly quicker than 1.48

years. The arrival rate estimate for August of 1.636 essentially lies outside the confidence

intervals for May [0.17, 1.65], June [0.45, 1.23], and July [0.5, 1.35] (1.636 is just inside of

1.65). Moreover the estimates for May, June and July also lie outside the confidence interval

for August.

Importantly, there is little fiscal or monetary news in July and August of 2020. However,

there were two key pieces of news regarding the clinical trials of Moderna and Pfizer that

came up in late July and early August of 2020. Our estimates line up with Good Judgment’s

survey of experts on when the US would vaccinate 25 million people. Their May 2020 forecast

was 23 months, while their August forecast was 11 months. Ours are a bit more optimistic

(and ex-post more accurate) than these survey forecasts. Hence, this analysis alleviates

the concern that our vaccine arrival estimates might be picking up other mitigating factors,

particularly expectations regarding fiscal or monetary interventions (Elenev, Landvoigt, and

Van Nieuwerburgh (2020)).

We associate a medical intervention that returns the economy to normal as being a

vaccine since the bulk of the government funding in the US and Europe have been for its
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development. For instance, Warp Speed was established in March-April and contributed

to the high number of vaccine candidates that came online by May 2020.5 In other words,

whereas vaccine development has previously taken years, the unprecedented government

support and new technology such as genetic sequencing were clearly factored into vaccine

forecasts by May 2020. Nonetheless, our regime-switching model can be applied to other

countries where it might be the arrival of therapeutics or testing that returns these countries

to normal. For instance, rigorous testing has played a bigger role in Asian countries.6

Our paper proceeds as follows. We present our model of earnings damage function

and estimation strategy in Section 2. Section 3 describes the dataset and main variables.

Estimates of our model are presented in Section 4. We extend the model to account for

vaccine news in Section 5. We conclude in Section 6.

2 Model

We assume that the economy can be in one of the two regimes: the normal (or non-pandemic)

and pandemic regimes. The economy starts in the normal regime. At stochastic time t0, it

unexpectedly enters into the pandemic regime. Afterwards, the pandemic becomes extinct

and the economy returns back to the normal regime when a successful vaccine is developed

at time τ , which occurs with probability λ per unit of time.

5According to Bloomberg News article “Trump administration dips into protective gear, CDC funds to
fund vaccine push” (September 23, 2020), the Warp Speed budget is as large as $18 billion and almost all of
it allocated to vaccine developments (Moderna, Sanofi, GSK, Pfizer, Novavax, J&J and AstraZeneca) and
only a small amount toward therapeutics (Regeneron’s antibody cocktail).

6Another medical scenario that returns the economy to normal is herd immunity. But this possibility
does not seem likely given limited evidence on the length of individual immunity.
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2.1 Normal Regime

We let Ŷt denote the earnings (EBITDA) process of the asset in the normal regime. We

assume that Ŷt follows a commonly used geometric Brownian motion (GBM) process:7

dŶt

Ŷt−

= ĝdt+ ρφ dBt +
√
1− ρ2 φ dWt , (1)

where Bt is the standard Brownian motion driving the “business-as-usual” aggregate risk and

Wt is the standard Brownian motion driving the idiosyncratic earnings risk. By construction,

Bt and Wt are orthogonal. In Equation (1), ĝ is the expected earnings growth (drift) and

φ is the volatility of earnings growth, which includes the aggregate component ρφ and the

idiosyncratic component
√
1− ρ2 φ. That is, ρ is the correlation coefficient between the

aggregate shock Bt and the asset’s earnings. For simplicity, we let ĝ, φ, and ρ all be constant.

2.2 Pandemic Regime

Next, we specify the impact of the unexpected pandemic arrival and the anticipated stochastic

vaccine arrival. Let Yt denote the asset’s earnings process during the pandemic regime. Once

in the pandemic regime (t0 < t < τ), the asset’s earnings process Yt follows:

dYt

Yt−

= gdt+ v dZt + ρφ dBt +
√

1− ρ2 φ dWt + (en − 1) dJt , (2)

where Jt is a pure jump process and dJt = 1 if and only if the vaccine arrives.

There are four terms in equation (2). First, earnings will jump discretely by a fraction

(en − 1) at the moment of the vaccine arrival, i.e., when dJt = 1. This is to capture earnings

reflation once the vaccine returns the economy to normal. (Absent vaccine arrival, dJt = 0).

Second, the pandemic arrival changes the expected earnings growth rate from ĝ to g (leaving

aside the effect of vaccine arrival.) Third, the pandemic shock dZt directly causes additional

earnings growth volatility, v. Finally, as in the normal regime, earnings is subject to the

7The GBM process is widely used in asset pricing and corporate finance to model corporate earnings,
e.g., Gordon growth model, capital structure models in the tradition of Black and Scholes (1973) and Merton
(1974) and Leland (1994) models. While earnings is always positive in this formulation, we can generalize
this model to allow for negative earnings. By assuming that a firm’s earnings at the enterprise level (after
we unlever the firm) follows a GBM earnings process, earnings for equity holders can be negative even when
earnings for the enterprise is positive.
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business-as-usual aggregate shock dBt and idiosyncratic shock dWt with volatility ρφ and
√

1− ρ2 φ, respectively. All shocks are orthogonal to each other.8 For simplicity, we let n

be constant and keep ĝ, φ, and ρ the same as in the normal regime.

More generally, the growth rate g and earnings volatility v in the pandemic regime de-

pend on the optimally mitigated infections in the economy. For simplicity, we model these

parameters as constants with particular emphasis that g is expected to be less than ĝ due

to the adverse direct effect of the pandemic.

2.3 Transition from Normal to Pandemic Regime

The arrival of COVID-19 triggers optimal mitigation in the form of foregone earnings. There

is both a fixed and variable cost to mitigation that have to be paid out of earnings each period

there is a pandemic. This unexpected but optimal corporate mitigation spending decreases

its earnings. That is, as the COVID-19 shock unexpectedly hits at t0, the earnings drops by

a fixed fraction δ:

Yt0 = Yt0−e
−δ. (3)

And at the moment of vaccine arrival, the earnings instantaneously increases by a fraction

n from the pre-arrival time since mitigation costs no longer need to be paid as shown in

Equation (2):

Yτ = enYτ− . (4)

We further set δ = n. That is, the percentage of earnings increase at the moment of vaccine

arrival τ is equal to the percentage of earnings decrease at the moment of pandemic arrival

time t0. Consider the counter-factual case that helps us understand the mechanism: If

λ → ∞, we have τ− = t0. For this case, earnings is not impacted at all by the jumps as

Yτ = enYτ− = enYt0 = ene−nYt0− = Yt0−.

8The vaccine arrival process Jt is independent of [Wt,Bt,Zt]
⊤, which is a 3×1 standard Brownian motion.
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2.4 Linking Earnings Forecasts to Pandemics Damage Model

We can now relate earnings forecasts to our model. Recall that τ denotes the stochastic

vaccine arrival time. Assuming that the consensus analyst forecast is being generated by our

model, we have for t in the pandemic regime:

1

Yt

Et[Ys] =

∫ s

t

λe−λ(τ−t)eg(τ−t)eneĝ(s−τ)dτ + e−λ(s−t)eg(s−t) (5)

=
λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
en + e(g−λ)(s−t) . (6)

Recall that ĝ is the pre-COVID long-term growth (LTG) rate and g is the constant growth

conditional on being in the COVID-19 regime. As we assume that there are only two

regimes, normal and pandemic, the non-pandemic regime growth rate is the same as the

post-pandemic regime growth rate. In a later section, we extend this formula to allow for

these two rates to differ.

The first term of Equation (5) is conditioned on a vaccine arriving in the interval between

t and s. Inside the first term, the density of the stochastic vaccine arrival time τ is λe−λ(τ−t).

Before the vaccine arrives (from t to τ) the cumulative (gross) growth is eg(τ−t). After the

vaccine arrives at τ in this interval (t, s), there is reflation of earnings by a multiple of en,

i.e., Yτ = enYτ−, and during the subsequent sub-period (τ, s), earnings growth reverts to the

pre-COVID LTG rate ĝ, which gives the cumulative (gross) growth is eĝ(s−τ) from τ to s.

As a result, for a given τ ∈ (t, s), Et[Ys] = Yte
g(τ−t)eneĝ(s−τ), which explains why the

first term is the contribution to Et[Ys]/Yt conditional on τ ∈ (t, s). The probability that a

vaccine does not arrive in (t, s) is e−λ(s−t). If this is the case, the growth rate in (t, s) is g.

Therefore, the second term gives the contribution to Et[Ys]/Yt conditional on τ > s. Adding

the two terms together gives Et[Ys]/Yt for any t in the pandemic regime.

Below in Figure 1, we provide a simulated path of earnings going through the non-

pandemic, during-pandemic, and non-pandemic regimes. The plot starts with earnings at

1.22 at t = −2. The (continuously compounded) growth rate in the non-pandemic regime

is set at ĝ = 8% per annum. The pandemic unexpectedly arrives at time t = t0 = 0, at

which point earnings jumps downward from the magenta dot Yt0− = 1.82 to the red solid

9



Figure 1: Earnings Path and Expectation Calculations

The parameter values are: n = δ = 0.6, ĝ = 0.08, g = 0.064, and λ = 0.7. Parameter values are
annualized whenever applicable. Y−2 = 1.22. At time t = 0, earnings jumps from Yt− = 1.82 to
Yt = 1. And at time t = 1.5, earnings jumps from Yt− = 1.11 to Yt = 2.03.
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−2(Yt)

E0(Yt)
Eτ (Yt)

t

dot Yt0 = 1 — which we have parameterized as a δ = 60% drop. At t = τ = 1.5, the vaccine

arrives, earnings Yt jumps upward by n = δ = 60% from Yτ− = 1.11 (the red open dot) to

Yτ = 2.03 (the black solid dot).

We set the vaccine arrival rate at λ = 0.7 per year (with an implied expected arrival

time of around 1/λ = 1.43 years, i.e., Et0(τ − t0) = 1.43) after the unexpected arrival of the

pandemic at t0. The (conditional) growth rate in the pandemic regime, g, is set to be 0.8

times that of the pandemic regime, ĝ, which means g = ĝ × 0.8 = 8%× 0.8 = 6.4%.

In addition to plotting a sample path, we also plot the expected earnings immediately

after the pandemic arrival, E0(Yt) given the value of Y0 = 1 at t = 0 (see the red dashed line).

In contrast, if investors were naive ignoring vaccine arrival and using a constant expected

earnings rate g forever, the expected earnings at t = 0 is then equal to Y0e
gt. The naive
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forecasts of Yt is lower than E0(Yt) due to the assumption that g ≤ ĝ and earnings will jump

by a fraction (en − 1) > 0 upon the vaccine arrival.

The magenta dotted line plots the expected earnings at t = −2 before the pandemic

arrival. As the pandemic is unexpected, we have E−2(Yt) = Y−2e
ĝ(t+2) = Y−2e

0.08×(t+2).

Similarly, the black dash dotted line plots expected earnings Yt immediately after the arrival

of the vaccine at time τ , which is given by Eτ (Yt) = Yτe
ĝ(t−τ). That is, the earnings processes

in the normal regimes (both before the pandemic arrival and after the vaccine arrival) are

the same. Notice that the growth rate in the non-pandemic regime (the dotted black line) is

equal to ĝ, which is larger than the growth rate for the dashed red line (the pandemic regime.)

Notice that the growth rate (anticipating stochastic vaccine arrival) in the pandemic regime

is time-varying and smaller than that in the non-pandemic regime.

Now we calculate the expected earnings from t0−, i.e., the moment that is just prior to

the unexpected COVID-19 arrival time t0. Substituting Equation (3), Yt0/Yt0− = e−δ, into

(6) and with δ = n, we obtain9

1

Yt0−

Et0 [Ys] =
Yt0

Yt0−

1

Yt0

Et0 [Ys] =
λ

λ− g + ĝ

[
eĝ(s−t0) − e(g−λ)(s−t0)

]
+ e−ne(g−λ)(s−t0) . (7)

Figure 2 provides another way to understand the evolution of expectations across the

normal and pandemic regimes. In this figure, we examine the effect of the vaccine arrival

rate λ on ln [E0(Yt)/Y0−], the log of forecast revisions between t = 0−, the moment just before

the pandemic arrives, and any time t subsequently. Compared with the counterfactual that

the pandemic did not arrive and the business is then as usual (which means earnings grow at

an expected rate of ĝ indefinitely, the earnings responses are naturally negative, meaning that

E0(Yt) < Y0− eĝ t. But because of the anticipated vaccine arrival and the economy eventually

reverts to normal, earnings increase over time and approaches the long-run cumulative growth

for logarithmic earnings, ĝ t = 0.08t (the magenta dash-dotted straight line). For all levels

of λ, the forecast ln [E0(Yt)/Y0−] starts at the initial drop −δ = −0.6 at t = 0 and then

increases over time due to anticipated vaccine arrival and eventually approaches the straight

line, ĝ t = 0.08t.

9As COVID-19 is unexpected, we calculate Et0
[Ys] from t0, but divide the forecast by Yt0− for empirical

measurement purposes.
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Figure 2: The Effect of the Vaccine Arrival Rate λ on ln [E0(Yt)/Y0−]

The forecast ln [E0(Yt)/Y0−] starts at −δ = −0.6 at t = 0 and eventually converges to the business-

as-usual scenario, depicted by the straight line, ĝ · t, as t → ∞. The higher the value of λ, the

faster the convergence. The parameter values are: n = δ = 0.6, ĝ = 0.08, and g = 0.064.
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Intuitively, if an effective vaccine is expected to arrive far out in the future (lower λ),

then forecast revisions will be large for both near term and longer term forecasts (the red

dashed line) — that is there is effectively a permanent downward jump in earnings followed

by a different pandemic regime growth rate than the one in the non-pandemic regime. In

contrast, if we expect a vaccine in a year, then the longer-term forecasts will be revised down

much less in comparison to the near-term forecasts.

Figure 3 examines the effect of the size of the jump n and pandemic growth rate g on the

term structure of the forecast revision ln [E0(Yt)/Y0−]. Take the blue line as the benchmark

case, we implement two experiments to investigate how the shape of the term structure

change with respect to different n and g.
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First, the size of the initial jump is determined by n. As we change n from 0.3 to 0.6

(from the blue line to the red dashed line), we see a larger drop in ln [E0(Yt)/Y0−] in lower

horizon compared to longer horizon. From an identification point of view, this observation

implies that data in the shorter horizon are driving the identifiability of n since they are

very informative about the initial jump in earnings.

Second, if we further change g/ĝ to 0, we see that there are sizable drops in the level

of the ln [E0(Yt)/Y0−] (black dotted line compared to the red dashed line) in all horizons.

Moreover, the drop is smaller in the short horizon compared to the median and longer

horizons. Therefore, the data with longer horizons can help us better identify g given the

larger difference generated by the g/ĝ parameter in the median and longer horizon.

2.5 Estimation

Using insights from Figure 2 and Figure 3, we take our model to data on analyst forecasts

in the following manner. In reality, we do not observe analyst forecasts at t0, which is the

immediate moment after the pandemic arrival time. Instead, we observe forecasts at a later

time, t. As such, we will employ the approximation Yt/Yt0−
≈ Yt0/Yt0−

= e−δ and assume

δ = n to obtain the following relation:

1

Yt0−

Et[Ys] =
Yt

Yt0−

1

Yt

Et[Ys] ≈ e−δ

[
λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
en + e(g−λ)(s−t)

]

=
λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
+ e−ne(g−λ)(s−t) . (8)

That is, we assume that the jump which in our model occurs over an instant takes place

over the period from the end of February 20 to May 14 of 2020.

Moreover, we aggregate corporate earnings forecasts at the firm level up to the industry

level, which we denote by j. The main dependent variable of interest given by the right

side of Equation (8) is constructed in the following manner. As Yj,t0− is not empirically

observable, we measure Yj,t0− by using the earnings forecast expression before the arrival

of COVID-19: Et0−
[Yj,s] = Yj,t0−e

ĝ(j)(s−t0), where ĝ(j) is the long-run growth rate in the

non-pandemic regime, which as we discuss below is observable. Equivalently, we have

Yj,t0− = exp
[
−ĝ(j) · (s− t0−)

]
· Et0−

[Yj,s] . (9)
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Figure 3: The Effect of n and g on ln [E0(Yt)/Y0−]

This figure presents the forecast ln [E0(Yt)/Y0−] based on four sets of parameter values to show the

sensitivity of the path to the jump parameter n and the pandemic growth rate parameter g. The

other parameter values are: λ = 0.7, ĝ = 0.08. The magenta dash-dotted line is the business-as-

usual scenario. The blue solid line shows the path when n = 0.3 and g/ĝ = 0.8. The red dashed

line shows the path when n = 0.6 and g/ĝ = 0.8. The black dotted line presents the path when

n = 0.6 and g/ĝ = 0.
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Using equations (8) and (9), and taking natural logs on both sides, we obtain the following

relation that we take to data:

ln

[
Et[Yj,s]

e−ĝ(j)(s−t0−)Et0−[Yj,s]

]
= ln

[
λ

λ− g(j) + ĝ(j)

(
eĝ

(j)(s−t) − e(g
(j)

−λ)(s−t)
)
+ e−n(j)

e(g
(j)

−λ)(s−t)

]
.(10)

We parameterize the earnings jump parameter n(j) for firms in industry j by

n(j) = n0, (11)

The growth rate g for firms in industry j in the pandemic regime, g(j), is parameterized as

g(j) = g0 · ĝ
(j) . (12)

That is, the growth rate in the pandemic regime g(j) is a multiple of ĝ(j), the growth rate in

the non-pandemic regime for firms in industry j. The ratio between the two growth rates,

g(j)/ĝ(j), captures the average difference in growth rates across the two regimes.

Finally to estimate our model, we need to specify analyst forecast errors. Denote the

earnings forecast of industry j at t of horizon s by f s
t,j. Suppose

f s
t,j = Et[Yj,s] · u

s
t,j , (13)

where us
t,j is a mean one random variable that is conditionally independent of Et[Yj,s]. Then,

taking logs on both sides of (13) and then using (10) for Et[Yj,s], we obtain

ln

[
f s
t,j

e−ĝ(j)(s−t0−)f s
0−,j

]
= ln

[
λ

λ− g(j) + ĝ(j)
(eĝ

(j)(s−t) − e(g
(j)

−λ)(s−t)) + e−n(j)

e(g
(j)

−λ)(s−t)

]

+ln

(
us
t,j

us
0−,j

)
(14)

Therefore, an identifying restriction allowing for estimation of Equation (14) using non-

linear least squares (NLS) (Cameron and Trivedi (2005)) is given by:

E

[
ln

(
us
t,j

us
0−,j

) ∣∣∣∣s− t, ĝ(j)
]
= 0 . (15)

Obviously, if forecasts are rational, i.e., forecast errors are white noise, then the exclusion

restriction is satisfied. More generally, as long as the log difference of these biases across
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forecast horizons is uncorrelated with our independent variables, then consistent parameter

estimates can still be retrieved using NLS.

This exclusion restriction is plausible. Intuitively, imagine if analyst forecasts were overly

optimistic at 5 years out and overly-pessimistic say at 2 years out, then this can bias estimates

of the vaccine arrival rate. We know of no obvious research to suggest that our exclusion

restriction is unlikely. At the same time, our setting is unique in that we can also compare

our estimates implied with forecast to subsequent actual outcomes. Presumably, biased

estimates will not be very predictive or subsequent outcomes. But we show below that

the vaccine arrival estimate is predictive. Moreover, corporate CEO revenue forecasts also

suggest a quick arriving vaccine (Barry, Campello, Graham, and Ma (2021)). While revenue

forecasts are not the same as earnings forecasts, they tend to be correlated and hence provide

another piece of evidence on the plausibility of our exclusion restriction.

2.6 Comments

The upside of our baseline set-up is parsimony. In practice, rather than assuming that a

successful vaccine is a silver bullet that instantly brings the economy back to normal upon its

arrival as in our baseline model, we may consider a more realistic setting where a successful

vaccine development brings the economy back to normal in several stages over time. These

stages might correspond to an increasing fraction of the population being vaccinated over

time. For example, consider the following setting withN sequentially ordered stages, denoted

by {S1, · · · , SN}, in addition to the pandemic regime, which we denote by S0. We assume

that as the stage transitions from stage Sm to stage Sm+1 at stochastic time τm, where

m = 0, · · · , N − 1, at a constant rate of λm per unit of time, earnings jumps upward by a

constant fraction δm > 0. That is, Yτm = Yτm− eδm . We can compute the earnings forecast

and other key objects in this more general model in closed form, but the model would be

less parsimonious.
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3 Data and Variables

3.1 Earnings Forecasts

We obtain the forecasts on earnings per share (EPS) and growth rate forecasts from the

monthly IBES summary history files from WRDS. Our data is from January 2020 to May

2020. We keep all stocks that are also in CRSP. We set the starting date of the pandemic

regime, t0, to be February 20, 2020. We take the median forecast for each firm in May

as the consensus forecast during the pandemic period. We treat the forecasts in January

as the most recent non-pandemic period forecast. That is, we link our model notations to

our empirical measurement as follows: January 2020 is our t0−, May 2020 is time t for our

forecast, and s is the fiscal year end date of the forecasts.

Using February and March of 2020 forecasts is problematic from the point of view of

identification since we want timely measures of analyst expectation revisions from just before

COVID-19 arrived to after its arrival. February 2020 may capture a bit of information

about the pandemic since some analysts might have started revising their forecasts based

on infections in other countries such as China. On the other hand, March 2020 might not

capture the full extent of the pandemic regime to the extent some analysts might have

been slow in revising. As such, we view using January 2020 forecasts as cleanly capturing

non-pandemic earnings expectations and either April or May 2020 forecasts as capturing

revisions accounting for the pandemic and hence embedding information regarding vaccines.

We prefer May 2020 to April 2020 since almost all the analysts have revised their forecasts

by then.10

We label the EPS annual forecasts based on the time gap between their forecast period

end date s (i.e. the fiscal end year end date of the company) and the forecast date t, i.e., the

gap (s − t). If the time gap is less than 365 days, we label the annual forecast as FY 1t. If

the time gap is between 366 days and 730 days, we label the annual forecast as FY 2t. We

also similarly collect FY3 and FY4 annual forecasts from IBES. In addition, we convert LTG

10Moreover, most of the government intervention programs have already been announced and hence ought
to be reflected in analyst forecasts as well by then.
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forecasts, which are defined as long-run growth rates from the previous announced earnings

out to 5 years, to FY5 forecasts.

We use this methodology to label annual forecasts instead of using the classification

provided by IBES because their classification is based on when the actual earnings is reported

not when the fiscal year ends. For example, IBES will label an April annual forecast of a

firm with a fiscal year that ended the previous month as FY1 if the firm has not yet reported

the actual earnings for that fiscal year. We want FY1 to reflect future earnings so we use

our methodology instead.

In our empirical analysis, FY1 forecasts need to be adjusted for the fact that a certain

fraction of the fiscal year has already been realized before the pandemic arrived at t0. Con-

sider a firm in our sample that has a fiscal year ending in October 2020 (time s in our

model). In this case, for FY 1t, the FY1 earnings forecast for the period from November

2019 to October 2020, made in May 2020 (our t), only the sub-period between February 20,

2020 (our t0) to October 2020 is exposed to COVID-19.

Therefore, we need to make adjustments to FY 1t forecasts (e.g. May as our t) considering

the differential impact of the pandemic on earnings resulting from heterogeneous fiscal year

end dates. What enters into our calculation of earnings forecast in Equation (10) at t (May

in our empirical analysis) is adjusted as follows:

FY 1adjt = FY 1t ·

(
1

s− t0

)
+ FY 1t0− ·

(
1−

1

s− t0

)
, (16)

where (s− t0) is the fraction of the fiscal year that is exposed to COVID-19.

For the preceding example, s − t0 = (10 − 2)/12 (the event time t0 is February 2020

and time s in Equation (16) is October 2020.) That is, 8/12 =2/3 of the annual earnings is

after the pandemic arrival and the other 4/12=1/3 is non-pandemic. Our adjusted earnings

forecast at t (in May for our empirical analysis) is then given by FY 1adjt = (3/2)FY 1t −

(1/2)FY 1t0− = FY 1t + 0.5 × (FY 1t − FY 1t0−). That is, the adjusted annual earnings

forecast FY 1adjt is equal to the unadjusted FY1 forecast FY 1t plus a term, which accounts for

the change of forecasts caused by the pandemic arrival. If pandemic is bad news for the firm,

i.e., FY 1t < FY 1t0−, this earnings forecast is adjusted downward by 0.5×(FY 1t − FY 1t0−),
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where the multiple 0.5 reflects the ratio between the non-pandemic 4- month duration and

pandemic 8-month duration. In our sample, the non-pandemic forecast FY 1t0− is the FY1

forecasts in January and FY 1t is the unadjusted FY1 forecasts in May.

We merge IBES forecasts with CRSP market capitalization data using historical 8-digit

CUSIP identifiers.11 We then merge in the 8-digit GICS code obtained from Compustat.

On each date in our IBES sample, we set the negative values in adjusted FY1 to the lowest

positive observation in adjusted FY1 on that date. We also set the negative values of FY2

on each date to the lowest positive FY2 observation on each date. We repeat the same

procedure for FY3, FY4 and FY5. We then aggregate the EPS forecasts, pre-pandemic

growth rate forecasts, non-pandemic earnings, and time until fiscal year end to the 8-digit

GICS industries using the end of 2019 market capitalization from CRSP as the weights. We

winsorize these industry
Et0 [Ys]

Yt0−
and ĝ at the 5% level.

The summary statistics for our dependent variables are presented in Table 1. In Panel

A, we report the distribution of
Et0 [Ys]

Yt0−
for the mid-May 2020 forecasts. The mean is 1.16

and the standard deviation is 0.54. The ln
(

Et0 [Ys]

Yt0−

)
has a mean of 0.01 with a large standard

deviation of 0.61. The mean (s− t) is 2.57 for the May 2020 forecasts.

In Figure 4, we take a closer look at the standard deviation of these forecasts by plotting

the industry forecast revisions separately for FY1 to FY5 forecasts. We can see that the

FY1 forecast within twelve months before forecast end are significantly revised down: 54%

on average for the May 2020 forecasts across the industries in our sample. This is consistent

with a significant negative jump on average in our model. But we can also see that the FY2

forecasts farther out are not nearly as impacted.

3.2 Leverage, Face-to-Face, and Customer Interaction Measures

We obtain the GICS code and calculate the market leverage of each firm using Compustat.

Market Leverage is calculated at the end of 2019 using the following formula: long-term debt

(dlttq) plus debt in current liabilities (dlcq) all divided by the sum of market capitalization

(prccq × cshoq) and total assets (atq) net common equity (ceqq).

11For the unmatched cases, we obtain additional matching using the official tickers and 6-digit CUSIP.

19



Table 1: Summary Statistics

This table summarizes the mean, standard deviation, and the quartiles of the key variables used
in our main analysis at 8-digit GICS industry level. Et[Ys]/Yt0− is the earnings forecasts in month
t divided by the non-pandemic earnings Yt0−, which is the FY1 forecasts in January 2020 dis-
counted by the I/B/E/S growth rate forecasts in January 2020. ln(Et[Ys]/Yt0−) is the natural log
of Et[Ys]/Yt0−. s − t is the horizon of the earnings forecasts in month t, which is the difference
between the date of the forecast period end and the I/B/E/S statistical period in month t. We
include the May sample of I/B/E/S summary statistics in 2020 in our analysis. The sample in-
cludes the earnings forecasts with horizons up to 5 years. Panel A presents the summary statistics
of Et[Ys]/Yt0−, ln(Et[Ys]/Yt0−) and s − t in May 2020. Panel B contains the summary statistics
of other key variables. Face-to-Face Score is first constructed at the occupation level using O*Net
Main database and then aggregated to industry level using the BLS Industry-occupation matrix
data (from 2018). Market Leverage is calculated at the end of 2019 using the following formula,
(long-term debt+ debt in current liabilities)/(fiscal year end market capitalization + total assets
- common equity). ĝ is the I/B/E/S forecasts of growth rates in January 2020. All the firm level
variables are aggregated to the industry level using 8-digit GICS code, weighted by the market val-
ues of the companies in each industry at the end of 2019. Et[Ys]/Yt0− is winsorized at 5% level on
each date within each horizon. Forecasts horizons are defined by the distance between the forecast
end date and the I/B/E/S statistical period. ĝ is also winsorized at 5% level.

(a) Panel A: Distribution of Et[Ys]/Yt0− and s− t in May 2020

Mean SD P0 P25 P50 P75 P100

Et[Ys]/Yt0− 1.16 0.54 0.05 0.86 1.10 1.39 3.14
ln(Et[Ys]/Yt0−) 0.01 0.61 -3.07 -0.15 0.10 0.33 1.14

s− t 2.57 1.45 0.13 1.56 2.62 3.63 4.67

(b) Panel B: Distribution of other variables used in analysis

Mean SD P0 P25 P50 P75 P100

Market Leverage 0.20 0.10 0.03 0.13 0.19 0.25 0.72
Face-to-Face Score 3.94 0.14 3.59 3.85 3.90 4.01 4.33
Customer Score 3.45 0.45 2.54 3.09 3.44 3.80 4.48
Blinder Score 2.97 0.24 2.57 2.75 2.95 3.13 3.76

ĝ 0.10 0.09 -0.05 0.06 0.08 0.13 0.35
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Figure 4: ln(Et[Ys]/Yt0−) Over Forecast Horizons

This figure plots the natural log of the industry level I/B/E/S earnings forecasts divided by the

non-pandemic earnings, ln(Et[Ys]/Yt0−), against the horizons of the forecasts (s − t). Yt0−, the

non-pandemic earnings, is the FY1 forecasts in January 2020 discounted by the I/B/E/S growth

rate forecasts in January 2020. The May 2020 cross section is plotted. Forecast horizons are marked

with different colors. Forecast are defined by the distance between the forecast end date and the

I/B/E/S statistical period.
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We then use the O*Net Main database in the U.S. about occupational information to

construct the face-to-face exposures of different industries. O*Net collects information on

974 occupations. They are based on the Standard Occupational Classification (SOC), the

last update of which was done in 2010. O*Net surveys people in these occupations, asking

about the knowledge, skills, and abilities used to perform the activities and tasks of their

occupations. Our face-to-face measure is based on Montenovo, Jiang, Rojas, Schmutte,

Simon, Weinberg, and Wing (2020).

They use questions taken from the 2019 Work Context module. The questions used in

face-to-face measure are: (1) How often do you have face-to-face discussions with individuals

or teams in this job? And (2) To what extent does this job require the worker to perform

job tasks in close physical proximity to other people? These measures are typically provided

on a 1-5 scale, where 1 indicates that a task is performed rarely or is not important to the

job, and 5 indicates that the task is performed regularly or is important to the job.

There is also a direct question that asks people to rate how much they work with cus-

tomers in the O*Net survey. The question is: How important is it to work with external

customers or the public in this job? We take the average score for each occupation for this

alternative measure. One issue with this customer measure is that it does not necessarily

capture face-to-face contact. To this end, we have also constructed a customer measure from

Blinder (2009) based on the following questions: (1) establishing and maintaining personal

relationships, (2) assisting and caring for others, (3) performing for or working directly with

the public, (4) selling or influencing others, and (5) social perceptiveness.

The O*Net provides two ways that people weight how an occupation uses these char-

acteristics: Importance and Level. That is, people in an occupation are asked to rate how

important the characteristic is in their job and the level of use of the characteristic in their

job. We use the Importance score of each characteristic and take the simple average of the

Importance scores to make what we call the Blinder index for each occupation. The social

perceptiveness question is in the Social Skills part of the O*Net. The other four measures

are in the Work Activities part of the O*Net.

We have occupation-level measures of face-to-face and the two customer measures. We
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then convert them to an industry-level measure. To do this, we use the BLS Industry-

occupation matrix data (from 2018).12 In the BLS data, for every industry, they measure

what percentage of workers work in a given occupation. (They also use the SOC occupation

codes just like the O*Net). So we take the O*Net occupation measures and for each industry

weight them by the percentage of workers in that industry that work in the occupation. We

take a weighted-average to come up with the industry measures. One issue is that the BLS

uses NAICS codes for industries. We convert these to 8-digit GICs codes using a crosswalk.13

The summary statistics for leverage and these three face-to-face measures are provided

in Panel B of Table 1. The mean Market Leverage ratio is 0.2 with a standard deviation

of 0.1. The mean Face-to-Face Score is 3.94 with a standard deviation of 0.14. The mean

Customer Score is 3.45 with a standard deviation of 0.45, while the Blinder Score has a

mean of 2.97 and a standard deviation of 0.24. These measures are correlated (around 0.4

to 0.5 in pairwise correlations). The statistics for ĝ are also displayed — the mean (annual)

non-pandemic growth rate is 10% with a standard deviation of 9%.

In our empirical analysis, we will work with percentiles of these measures as opposed to

the values themselves. Figure 5 show the empirical cumulative distribution of our Face-to-

Face Score and Market Leverage measures, respectively. The correlation at the industry level

of face-to-face ranks and leverage ratio ranks is 0.4. There are a number of good economic

reasons why these two industry attributes are correlated. Airline and hotels for instance have

high Face-to-Face Scores and are also industries that have physical assets such as land or

planes that are used for collateralized borrowing. Our goal in this paper is not to disentangle

these two effects. Hence we will use both of these measures interchangeably to model latent

growth rates in our baseline specifications. We will consider the two customer measures in

our robustness exercises.

12See https://www.bls.gov/emp/tables/industry-occupation-matrix-industry.htm
13See https://sites.google.com/site/alisonweingarden/links/industries
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Figure 5: The Empirical Distributions of Face-to-Face Scores and Market Leverage

This figure plots the empirical cumulative distributions of Face-to-Face Scores and Market Lever-

age of industries defined by 8-digit GICS codes. Subfigure (a) is the cumulative distribution of

Face-to-Face Scores. Face-to-Face Score is first constructed at the occupation level using O*Net

Main database and then aggregated to the industry level using the BLS Industry-occupation ma-

trix data (from 2018). Subfigure (b) is the cumulative distribution of Market Leverage. Market

Leverage is calculated at the end of 2019 using the following formula, (long-term debt+ debt in

current liabilities)/(market capitalization + total assets - common equity). The variables are from

Compustat. In Compustat variable names, the formula is the following, Market Leverage = (dlttq

+ dlcq)/(atq - ceqq + prccq * cshoq).

(a) The Cumulative Distribution of Face-to-
Face Scores

(b) The Cumulative Distribution of Market
Leverage
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Table 2: NLS Results Using the I/B/E/S Sample in May 2020

This table presents the coefficients and bootstrap confidence intervals from non-linear least square
regressions of Equation (14). The regressions are run using I/B/E/S summary statistics in May
2020. Et[Ys]/Yt0− is the earnings forecasts divided by the non-pandemic earnings. The dependent
variable is the natural log of Et[Ys]/Yt0−. Yt0−, the non-pandemic earnings, is the FY1 forecasts in
January 2020 discounted by the I/B/E/S growth rate forecasts in January 2020. The explanatory
variables include the horizon of the earnings forecasts s− t and the non-pandemic (January 2020)
I/B/E/S forecasts of growth rates ĝ. λ is the vaccine arrival rate. g0 represents the proportional
change in the growth rate. n0 governs the size of the jump in earnings. Columns (1)-(3) present
the results from three different restrictions on the model parameters. Column (1) contains the
results of the unconstrained regression. Column (2) contains the results restricting λ = 0. Column
(3) contains the results restricting g0 = 1. We keep observations with non-missing Et[Ys]/Yt0−
and ĝ. The 95% bootstrap confidence intervals are reported in square brackets. We also present
the likelihood ratio test statistics for the restricted models. All regressions are run using industry
market capitalization as weights.

(1) (2) (3)

λ 0.674 0.577
[0.17,1.65] [0.2,1.24]

g/ĝ 0.827 1.223
[-0.61,1.42] [0.86,1.52]

n 0.603 0.234 0.573
[0.31,1.48] [0.12,0.35] [0.3,1.19]

Num.Obs. 677 677 677
LR. Stat. 13.54 4.16

4 Empirical Results

4.1 Baseline Specification

In Table 2, we present the coefficients and bootstrap confidence intervals from non-linear

least square regressions of Equation (14) using May 2020 earnings forecasts. The dependent

variable is the natural log of Et[Ys]/Yt0−, i.e., the revision of forecasts between January and

May 2020. The explanatory variables include the (remaining) duration of time-t earnings

forecasts (s− t) and the non-pandemic (January 2020) forecasts of the growth rate ĝ.

Column (1) contains the results for our baseline and unconstrained model. The estimate

of λ is 0.674 with 95% bootstrap confident interval of [0.17, 1.65]. So the vaccine that
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returns the earnings to normal is expected in 1/0.674 or 1.48 years.14 The estimate of g0

is 0.827, indicating that pandemic growth rates are lower than during the non-pandemic

periods. The confidence interval is [−0.61, 1.42]. Moreover, industries experience a large

downward jump in earnings level, captured by n0 = 0.603, which has a confidence interval of

[0.31, 1.48]. Notice that this parameter also captures the expected reflation in earnings for

these industries when the vaccine does arrive. The jump in earnings level is given by 1−e−n,

which means that there is around a 50% drop in earnings immediately following the arrival

of COVID-19.

Recall that the average earnings FY1 forecast revision in the summary statistics is nearly

50% with a fat left-tail. The nonlinear least squares model, which is value weighted, will fit

this tail, giving a sizable estimate for the downward jump in earnings g0. There is also a

fat-left tail in further out forecasts, which will then impart an attribution of low of negative

growth rates in the pandemic regime compared to the non-pandemic regime. Finally, the

high λ estimate comes from the intuition discussed earlier that there is a sizable disconnect

between downward revisions in FY1 forecasts compared to subsequent ones.

In Column (2), we present the estimates for the constrained model where we set λ = 0, i.e.

assuming there is no vaccine. The estimate for g0 is 1.223 with a 95% bootstrap confidence

interval of [0.86, 1.52]. When λ is forced to be zero, the constrained model has to compensate

with a positive g0 to account for the higher levels of FY2-FY5 earnings forecasts compared

to FY1. Moreover, the initial jump in earnings is n0 = 0.234 with a confidence interval of

[0.12, 0.35]. This implies a downward jump of 1− e−n0 = 0.21 or 21%.

The estimates of the constrained model are nonsensical because they imply higher pan-

demic growth rates and a small initial jump. Of course, we know from the summary statistics

that the FY1 forecast revision for the median industry is nearly 50%. These nonsensical esti-

mates are of course coming from constraining λ, which is equivalent to an omitted variables

14There has been significant attention to the question of when vaccines will arrive and if they will return
the economy to normal. For instance, see the McKinsey Report (July 29, 2020) “On pins and needles: Will
COVID-19 vaccines save the world”, and an article in the Washington Post (August 2, 2020), entitled “A
coronavirus vaccine won’t change the world right away”. Our estimate of the vaccine arrival rate λ as far as
we know is the first systematic attempt to speak to this question.
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bias where expectations of an imminent vaccine are ignored in estimating damage functions.

This lack of fit is reflected in the likelihood ratio test statistic of 13.54 clearly rejecting the

constrained model in Column (2) in favor of the unconstrained model in Column (1).

In Column (3), we present the estimates for the constrained model where we set g0 = 1;

i.e. there was no damage to growth rates. λ is now estimated to be 0.577 with a 95%

confidence interval of [0.2, 1.24], and n0 is 0.573 with a 95% confidence interval of [0.3, 1.19].

Notice that since we are assuming there is no growth impairment, there is a lower estimated

λ because the higher growth rate will explain more of the difference between revisions of

long-horizon forecasts to short-horizon forecasts. The likelihood ratio statistic comparing

Column (1) to (3) is 4.16, rejecting at the 5% level the constrained model in Column (3) in

favor of the unconstrained model.

Another way to see that the unconstrained model fits the data is to compare the predicted

values as a function of our two main independent variables the forecast horizon (s− t) and

non-pandemic industry growth rate ĝ
(j)
0 . These plots are in Figure 6. Panel (a) shows the

fitted values for the unconstrained model from Column (1), while panels (b) and (c) show

the fitted values from the constrained models in columns (2) and (3), respectively. It is clear

from these 3-D plots that only the unconstrained model can fit the data. The constrained

models generate poor fits of the data.

4.2 Subsamples

Since earlier work suggests that levered or face-to-face industries are particularly hit by

COVID-19 and should be the most informative regarding the damage function, we re-run

our model using observations from just these industries. The results are presented in Table

3. In Panel A, we present the results for high face-to-face industries based on our main

face-to-face measure. An industry is categorized in the high group if its face-to-face score

is in the top tercile of the cross-sectional distribution. λ is estimated to be 1.086, higher

than our estimate from Column (1) of Table 2. g0 is estimated to be 0.704, which is smaller

than the figure from Column (1) of Table 2. However, its confidence interval of [−1.09, 2.29]

is quite wide. Hence, there is not a statistical difference across the two sets of estimates.
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Figure 6: The Surfaces of the Estimated Models

This figure plots the observations and fitted value of ln(Et[Ys]/Yt0−) using the parameter estimates

of Equation (14) on the I/B/E/S sample from May of 2020. All the subfigures plot ln(Et[Ys]/Yt0−)

and the fitted surface against the pre-pandemic growth rate and the horizons of forecasts. Subfigure

(a) uses estimates from Column (1) in Table 2. Subfigure (b) uses estimates from Column (2) in

Table 2. Subfigure (c) uses estimates from Column (3) in Table 2. The ln(Et[Ys]/Yt0−) observations

are the blue dots. The size of the dot indicates the industry market capitalization.

(a) Unconstrained (b) Constraint: λ = 0

(c) Constraint: g0 = 1
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Similarly, the coefficient for n0 is 2.678 which is larger than the figure from Table 2. But

again, they are not statistically different. In other words, the damage function estimated off

of this subsample of firms is quite similar to the overall sample. The same can be said for

the constrained models in columns (2) and (3). So overall, our earlier conclusions based on

the overall sample continues to hold for this subsample.

In Panel B, we present the results for high leverage industries based on our main leverage

measure. An industry is categorized in the high group if its leverage score is in the top

tercile of the cross-sectional distribution. Our qualitative conclusions are quite similar to

those from Panel A. We have also repeated these exercises by using a net market leverage

measure where we deduct corporate cash and short-term investments and by replacing our

baseline face-to-face measure with our two customer interaction measures. The conclusions

are similar, pointing to the robustness of our damage function estimates.

4.3 Placebo Analysis

In Table 4, we then consider a placebo exercise. We run exactly the same empirical procedure

but using the forecasts in 2019 far before COVID-19. We report in Table 4 the regressions

results with the constraint that λ ≥ 0. Our estimates are zero for both the placebo full

sample and the placebo subsamples of high face-to-face and high leverage industries. g0 is

0.746 for the full sample with a tight 95% bootstrap confidence interval of [0.44, 0.83]. The

point estimates are similar to the placebo subsample of high face-to-face and high leverage

industries, though the confidence interval for the placebo high leverage subsample estimate is

quite wide. n0 is -0.064 with a tight confidence interval of [−0.18,−0.02] for the full placebo

sample. This is quite small in comparison to our earlier estimates. the same conclusions

hold for the placebo subsamples. These exercises indicate that our model estimates using

the COVID-19 sample are informative.

In Figure 7, we plot the dependent variables, i.e., the forecasts revisions, for the placebo

full sample that are analogous to those shown in Figure 4. We can see that the big difference

between the COVID-19 period and the other placebo period is that one does not typically

see such a large divergence in revisions across FY1 and FY2 forecasts. Understandably, in
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Table 3: NLS Results Using Subsamples

This table presents the coefficients and bootstrap confidence intervals from non-linear least square
regressions of Equation (14) on subsamples of industries split by the terciles of Face-to-Face Scores
and Market Leverage. The top tercile of the Face-to-Face Scores are classified as High Face-to-Face.
The top tercile of the Market Leverage are classified as High Market Leverage. The regressions are
run using I/B/E/S summary statistics in May 2020. Et[Ys]/Yt0− is the earnings forecasts divided
by the non-pandemic earnings. The dependent variable is the natural log of Et[Ys]/Yt0−. Yt0−, the
non-pandemic earnings, is the FY1 forecasts in January 2020 discounted by the I/B/E/S growth
rate forecasts in January 2020. The explanatory variables include the horizon of the earnings
forecasts s− t and the non-pandemic (January 2020) I/B/E/S forecasts of growth rates ĝ. λ is the
vaccine arrival rate. g0 represents the proportional change in the growth rate. n0 governs the size
of the jump in earnings. Panel A and B contain the results using the High Face-to-Face subsample
and High Market Leverage subsample correspondingly. In each panel, Columns (1)-(3) present the
results from three different restrictions on the model parameters. Column (1) contains the results
of the unconstrained regression. Column (2) contains the results restricting λ = 0. Column (3)
contains the results restricting g0 = 1. We keep observations with non-missing Et[Ys]/Yt0−, ĝ,
Face-to-Face Score, and Market Leverage. The 95% bootstrap confidence intervals are reported in
square brackets. We also present the likelihood ratio test statistics for the restricted models. All
regressions are run using industry market capitalization as weights.

(a) Panel A: NLS Results Using the High Face-to-Face Subsample

(1) (2) (3)

λ 1.086 0.993
[0.08,1.38] [0.11,1.43]

g0 0.704 1.308
[-1.09,2.29] [0.18,1.95]

n0 2.678 0.319 2.260
[0.51,4.41] [0,0.58] [0.47,4.53]

Num.Obs. 201 201 201
LR.Stat. 60.19 1.80

(b) Panel B: NLS Results Using the High Leverage Subsample

(1) (2) (3)

λ 1.246 0.600
[0.01,2.31] [-0.02,1.6]

g0 -0.222 1.018
[-3.1,1.56] [0.27,1.55]

n0 1.167 0.194 0.672
[0.23,3.56] [0,0.41] [0.2,3.32]

Num.Obs. 201 201 201
LR.Stat. 4.03 5.93

30



Table 4: Placebo Results Using the I/B/E/S Sample in May 2019

This table presents the coefficients and bootstrap confidence intervals from the placebo non-linear
least square regressions of Equation (14) with the constraint that λ ≥ 0. The regressions are
run using I/B/E/S summary statistics in May of 2019. The dependent variable is the natural
log of Et[Ys]/Yt0−, where Et[Ys]/Yt0− is the earnings forecasts in May divided by the pseudo non-
pandemic earnings. Yt0−, the pseudo non-pandemic earnings, are the FY1 forecasts in January 2019
discounted by the I/B/E/S growth rate forecasts in the same month. The explanatory variables
include the horizon of the earnings forecasts s − t and the January I/B/E/S forecasts of growth
rate ĝ in 2019. λ is the vaccine arrival rate. g0 represents the proportional change in the growth
rate. n0 governs the size of the jump in earnings. The first column contains the results using the
full sample. The second column (“High Face-to-Face”) shows the results using the subsample of
industries with Face-to-Face Scores in the top tercile. The last column (“High Leverage”) shows the
results using the subsample of industries with Market Leverage in the top tercile at the end of 2018.
We keep observations with non-missing Et[Ys]/Yt0− and ĝ. The 95% bootstrap confidence intervals
are reported in square brackets. All regressions are run using industry market capitalization as
weights.

Pooled HiFF HiLeverage

λ 0.000 0.000 0.000
[0,0.78] [0,3.08] [0,10.31]

g0 0.746 0.785 0.871
[0.44,0.83] [-0.21,1.09] [-1.62,1.1]

n0 -0.064 -0.091 -0.015
[-0.18,-0.02] [-0.68,-0.01] [-3.66,0.14]

Num.Obs. 680 195 227

31



Figure 7: ln(Et[Ys]/Yt0−) Over Forecast Horizons of the Placebo Sample

This figure plots the natural log of the industry level I/B/E/S earnings forecasts divided by the

pseudo non-pandemic earnings, ln(Et[Ys]/Yt0−), against the horizons of the forecasts (s− t) using

I/B/E/S summary statistics in May 2019. The pseudo non-pandemic earnings are the FY1 forecasts

in January 2019 discounted by the I/B/E/S growth rate forecasts in the same month. Forecasts

horizons are marked with different colors. Forecasts horizons are defined by the distance between

the forecast end date and the I/B/E/S statistical period.

most periods, the relationship between FY1 and FY2 revisions should be more synchronized

with the growth rate.

But of course, the COVID-19 period data suggest instead that there is a regime switch

that might occur between the roughly 1 to 2 year period of forecast horizons. As we said,

the alternative is that the growth rates in the pandemic period are just much larger, which

is counterfactual. Importantly, this is not an artifact of slow revisions of FY2 since analysts

typically revise FY1 and FY2 at the same time and both sets of forecasts experienced

significant revisions downward with the arrival of COVID-19.
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5 Time-Varying Vaccine Arrival Rates

5.1 Robustness to vaccine model misspecification

While the earnings process in our model is well understood, the assumption that the vaccine

arrives at a constant rate per unit of time (Poisson process), despite its extensive use in

the epidemiological literature, needs to be examined further. In reality, the vaccine arrival

rate can be time-varying depending on news regarding intermediate stages of development:

clinical trials, FDA approval and rollout logistics. In this section, we analyze the implications

of model misspecification when it comes to the vaccine arrival process for our inferences.

To this end, we consider a model where an effective vaccine arrival comes after a sequence

of informative signals, which we refer to as a multi-signal model. We assume that there are

N sequentially ordered signals before the vaccine eventually arrives stochastically at time τ v.

Let τn denote the arrival time of the n-th signal, where n = 1, 2, · · · , N . The inter-arrival

time between the n-th and the (n+1)-th signals, (τn+1 − τn), is independently and identically

distributed.15 Let the distribution for the inter-arrival time (τn+1 − τn) be exponential with

a mean of 1/λη. That is, at any time t a new signal arrives at a constant rate of λη per unit

of time. Let λv(t) denote the time-t forecast of the vaccine arrival rate. After the arrival of

the last signal at τN , i.e., t > τ ηN , we assume that a successful and effectively implemented

vaccine will arrive at τ v at a constant rate of λv(t) ≡ λv
N for τN ≤ t < τ v.

What each signal does is to update the time-t perceived vaccine arrival rate λv(t); i.e.,

these signals map to news regarding clinical trials, FDA approval and rollout logistics. In

between signal arrivals, there is no change of λv(t). That is, λv(t) = λv(τn−1) for τn−1 ≤

t < τn. If news revealed at τn is good, investors increase the perceived vaccine arrival rate

from λv(τn−1) to λv(τn) = uλv(τn−1) where u > 1. If news is bad, investors decrease the

perceived vaccine arrival rate to λv(τn) = dλv(τn−1) where d < 1. We write the perceived

vaccine arrival rate at t = 0 as λv
0 ≡ λv(0). We assume that the likelihood of each signal to

be good or bad is independently and identically distributed. Let πG and πB = 1−πG denote

15We start with t = 0 and τ1 is thus the first signal arrive time.
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the corresponding likelihood for good (G) and bad (B) signals.16

Suppose that total n signals have arrived by time t. Let λv(t) = λv
n. Then, the expected

remaining time that it takes for a vaccine to arrive (including the time it takes to receive

the remaining N − n signals) is then given by

Et(τ
v − t) = Et(τN − t) + Et [EτN (τ

v − τN)]

=
N − n

λη
+

N−n∑

j=0

(N − n)!

j!(N − n− j)!

(
πG

u

)j (
πB

d

)N−n−j
1

λv
n

=
N − n

λη
+

(
πG

u
+

πB

d

)N−n
1

λv
n

. (17)

The first term in (17) is Et(τN − t), which is the time-t expected time to receive all remaining

N−n signals. The second term is the time-t conditional expected inter-arrival time between

the vaccine arrival time τ v and the moment that the last signal arrives at τN : Et(τ
v − τN).

We use this multi-signal model to generate simulated data that we can then use to check

the robustness of our parsimonious model estimates to potential vaccine model misspecifi-

cation. We assume that analysts understand that the world is described by the multi-signal

model while we as econometricians use the simpler baseline model (with constant arrival and

no signal). We then check how different our inferences based on the simple model are from

parameters of the true model.

We investigate how our estimation procedure performs for different news arrival rates,

λη. We consider four values of λη, {4, 12, 24, 48}, so that news arrives quarterly, monthly,

bi-weekly, and (roughly) weekly, respectively. We set N = 3 so that there will be three news

signals before the vaccine arrival; i.e., they correspond to the various stages of a vaccine

development process that we described above.

We choose our remaining parameter values so that the simulated earnings data correspond

to a set of arrival rates that span a large range that includes our mid-May 2020 estimate. We

set λv
0 = 0.8, which means that the time-0 estimate of the incremental time (from the arrival

of the last signal to the vaccine arrival time), E0(τ
v − τ3), is 1.25 years on average. We also

16Note that the preceding assumption (similar to those in the recombining binomial tree analysis) implies
that there are N + 1 possible values for the random vaccine arrival rates: λv

N
= umdN−mλv

0
, where m is the

number of good (G) signals and the remaining N −m signals are bad (B).
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set πG = πB = 0.5 so that good news and bad news are equally likely and let u = 1.05 and

d = 0.95 so that the vaccine arrival rate will be scaled up by 5% or down by 5% from the

previous level when good (bad) news arrives.

For a given value of λη (together with fixed values of λv
0 = 0.8, πG = πB = 0.5, u = 1.05

and d = 0.95), we randomly generate B = 100, 000 paths of our multi-signal model, which

includes the stochastic internal-arrive time for each signal (τ1, τ2 − τ1, τ3 − τ2) and the inter-

arrival time (τ v − τ3) between the vaccine arrival time (τ v) and the last signal arrival time

(τ3). We consider five earnings forecast horizons: s ∈ {0, 1, 2, 3, 4, 5}.

We simulate earnings for 140 industries, characterized by a grid of the pre-pandemic

growth rates ĝ(j) ∈ {0.0025, 0.005, · · · , 0.35} per annum based on the data. We set n =

n∗

0 = 0.6, which implies that earnings decrease by 45% upon the pandemic arrival, and

g(j) = g∗0 ĝ
(j) = 0.8 ĝ(j) close to our estimate in mid-May 2020. We set Yj,0 = 1 and then

calculate the expected earnings for each path conditional on whether s > τ v or s ≤ τ v.

Specifically, for a given path b, if the vaccine arrives after the forecast horizon, i.e.,

s < τ v, we have E0(Y
b
j,s|s < τ v) = Yj,0e

g(j)×s, where g(j) is the expected earnings growth rate

for industry j during the pandemic. If the vaccine arrives before the forecast horizon, i.e.,

s ≥ τ v, Y b
j,s, E0(Y

b
j,s|s ≥ τ v) = Yj,0e

g(j)×τv+n+ĝ(j)(s−τv), where ĝ(j) is the expected earnings

growth rate for industry j during the normal regime (after the pandemic.) For each industry

j, we estimate the rational earnings forecast (before any news arrival), E0[Yj,s], by using

the average of expected earnings at horizon s for this industry across the 100, 000 paths,

1
B

∑
b Y

b
j,s.

Using the preceding procedure, we obtain a set of 840 rational earnings forecasts (140

industries × 6 forecast horizons) under the multi-signal model. Using (8), we then estimate

E0[Yj,s]

Yj,0−
=

E0[Yj,s]

Yj,0
· e−n with

( 1
B

∑
b Y

b
j,s)

Yj,0
· e−n for each of the 840 earnings forecasts. Next,

we generate a data sample by taking the logarithm of
1
B

∑
b Y

b
j,s

Yj,0
· e−n and then adding an

independent random error term, ǫs0,j, drawn from a standard normal distribution. That is,

the earnings forecast of industry j at horizon s before any news arrival, φs
0,j, is equal to

φs
0,j = ln

( 1
B

∑
b Y

b
j,s

Yj,0
· e−n

)
+ ǫs0,j, which corresponds to the sample average of the left-side

variable in Equation (14). We then obtain a sample of 840 analyst forecast revisions and
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Table 5: Simulation on the Performance of Potentially Misspecified Econometric Model

This table reports the results of our estimation procedure applied to simulated earnings data.
The underlying vaccine arrival process follows our multi-signal model. We choose 4 values of λη,
{4, 12, 24, 48}, so that news arrives quarterly, monthly, bi-weekly, and weekly respectively. The first
column contains the four values of expected news arrival time (1/λη). The second column reports
the true vaccine arrival time (1/λ∗) from the multi-signal model. The third column reports the
sample mean of our estimates of the vaccine arrival time (1/λ) using Equation (14). The fourth
column reports the mean g0 of our estimates of g0 using equation (14). The last column reports
the mean of our estimates of n0. We set g∗0 = 0.8 and n∗

0 = 0.6 in our simulation.

1/λη 1/λ∗ 1/λ g0 n0

0.25 2.01 2.31 0.87 0.63
0.08 1.51 1.43 0.79 0.60
0.04 1.38 1.25 0.76 0.60
0.02 1.32 1.18 0.75 0.60

then repeat this sample generation 10,000 times. We then estimate Equation (14) using this

sample.

We report our estimation results in Table 5. The first column lists the four values of

the expected inter-arrival time between two signals, 1/λη. In the second column, we report

E0(τ
v) = 1/λ∗, which is the expected vaccine arrival time (including the time it takes for all

signals to arrive) in our multi-signal model:

E0(τ
v) = 1/λ∗ =

(
N − n

λη
+

(
πG

u
+

πB

d

)N−n
1

λv
n

)
. (18)

The value of E0(τ
v) decreases from 2.01 (when the news arrival rate is on average one per

quarter, 1/λη = 0.25) to 1.32 (when the news arrival rate is on average (slightly more than)

one per week, 1/λη = 1/48).

In the third column, we present the mean of the estimated expected vaccine arrival time,

1/λ, using the simulated data from the multi-signal model, e.g., Equation (14). Notice that

our estimate for our parsimonious model is not too far off from the true value of E0(τ
v). In

the first row, the true E0(τ
v) is 2.01 while the one estimated using the parsimonious model

is 2.31. This is a mild over-estimate. In row 2, the true E0(τ
v) is 1.51 years while the

one estimated using the parsimonious model is 1.43 years, which is a mild under-estimate.

Across all these four scenarios, our parsimonious model delivers an inference that is not too

36



far off from the actual vaccine arrival rate parameter.

The fourth column shows the mean of the estimated g0 from the parsimonious model. The

true underlying parameter is 0.8. We retrieve depending on the arrival rate of news estimates

that range from 0.75 to 0.87. The fifth column shows that the mean of the estimated jump

in earnings, n0, is also barely different from the true underlying parameter value of 0.6.

Overall, we conclude that our parsimonious model delivers valuable inference regarding the

underlying earnings damage function even with potential misspecification of the vaccine

arrival process.

5.2 Test of Time-Varying Arrival Rates

Our parsimonious model, in addition to being robust to potential model misspecification

of the vaccine arrival process, can also be used to conduct a test of time-varying arrival

rates. Using our May 2020 estimates for the jump in earnings and latent growth rates,

we re-estimate the vaccine arrival rate in June, July, and August with the latest earnings

forecasts. Differences in arrival rates from our baseline May 2020 estimates suggest positive

vaccine news.

More specifically, we take our model’s predictions for Yt at time t in the pandemic regime,

Y pred
t , by using the May 2020 estimates of n and g, which we denote by the subscript may

(i.e., nmay and gmay). Then, with June, July or August forecasts, we can estimate λ with

the same expectation formula as in our baseline model:

1

Y pred
j,t

Et[Ys] =

∫ s

t

λe−λ(τ−t)egmay(τ−t)enmayeĝ(s−τ)dτ + e−λ(s−t)egmay(s−t)

=
λ

λ− gmay + ĝ

[
eĝ(s−t) − e(gmay−λ)(s−t)

]
enmay + e(gmay−λ)(s−t) .

In the pandemic regime at time t, conditional on no news arrival, we expect our estimate of

λ using these other months to be the same as that obtained from the May 2020 forecasts.

We report the results of this estimation in Table 6, where we use the estimated values of

n0 and g0 from Column (1) of Table 2 and estimate λ using June, July and August forecasts.

First, we estimate λ to be 0.741 for the June forecasts and 0.815 for the July forecasts,
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Table 6: Updated Estimates of the Vaccine Arrival Rate

This table presents the updated estimates of the vaccine arrival rate λ using I/B/E/S summary

statistics in June, July, and August. The dependent variable is the natural log of Et[Ys]/Y
pred
t .

Y pred
t is the earnings predicted using the estimates in Column (1) of Table 2. The explanatory

variables include the horizons of the earnings forecasts s− t and the non-pandemic (January 2020)
I/B/E/S forecasts of growth rates ĝ. λ is the vaccine arrival rate.

June July August

λ 0.741 0.815 1.636
[0.45,1.23] [0.5,1.35] [0.94,2.83]

Num.Obs. 676 676 673

Table 7: The Estimates of the Average Time to a Vaccine by the ‘Superforecasters’

This table presents the average time to a vaccine implied by the forecasts of the ‘Superforecasters’
from Good Judgment at the beginning of the months from May 2020 to October 2020.

Date Implied Months

May 1, 2020 23
Jun 1, 2020 20
Jul 1, 2020 15
Aug 1, 2020 11
Sep 1, 2020 7
Oct 1, 2020 7

respectively. These estimates are close to the May estimates of 0.674. However, we find that

the estimated arrival rate significantly increased when using the August 2020 forecasts: The

estimated value of λ in August is 1.636 with a 95% confidence interval of [0.94, 2.83]. The

arrival rate estimate for August of of 1.636 essentially lies outside the confidence intervals for

May [0.17, 1.65], June [0.45,1.23], and July [0.5,1.35] (1.636 is just inside of 1.65). Moreover

the estimates for May, June and July also lie outside the confidence interval for August.

In summary, we find that the vaccine arrival rate is the same in June and July compared

to May but is higher in August. This is evidence of time-varying vaccine arrival rates and

hence a time-varying damage function.
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Figure 8: Timeline of Events Related to the COVID-19 Pandemic from Federal Reserve

(a) Timeline of Important Events Between January 2020 and February 2021

(b) List of Events During July and August 2020
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5.3 Vaccine News versus Fiscal or Monetary Policy News

This sequence of estimates alleviates the concern that our vaccine arrival estimate might also

be picking up other mitigating factors, particularly expectations regarding fiscal or monetary

interventions. To see why, first consider Figure 8. In Panel A of this figure, we report the

amount of fiscal and monetary policy news.17 Notice that most of the news is concentrated

in March and April. In Panel B, we report all the news in July and August. If one scans

through this list of news, there is no significant fiscal or monetary policy news in these two

months. Most of the news have to do with obvious extensions or expansions of existing

programs. In other words, there is little important fiscal or monetary news in July and

August of 2020.

In contrast, there were two key pieces of vaccine news in late July and early August of

2020. By mid-summer, Moderna and Pfizer established themselves as the leaders in the race

to develop a COVID-19 vaccine. Both companies were also the only to take the mRNA vac-

cine approach, publishing initial Phase I/II clinical trial data on July 14th for Moderna, and

on August 12th for Pfizer. Despite small sample sizes, the results demonstrated promising

safety measures and antibody production against the spike protein from those who got the

vaccine.

The July earnings forecasts were posted by analysts on July 15th and hence information

regarding Moderna was unlikely to be incorporated into them. However, the mid-August

forecast would have conditioned on the extremely good news from Moderna on July 14th.

Even the August 12th Pfizer news might have also been in the forecasts.

Our sequence of estimates also lines up with Good Judgment’s survey of experts (known

as ‘Superforecasters’) on when the US would vaccinate 25 million people, show in Table

7. We converted their survey questions into an expected arrival time. Their May 2020

forecast was 23 months, while their August forecast was 11 months. There is a monotonically

declining pattern through the time series, similar to our estimates. Overall, our inferred

expected arrival times are a bit more optimistic (and ex-post more accurate) than these

17This timeline is taken from the Federal Reserve. See https://fraser.stlouisfed.org/timeline/covid-19-
pandemic.
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survey forecasts but the two time series line up and are highly correlated. If anything, our

estimates have been more accurate ex post than these surveys since the US passed 50 million

vaccinated by the end of February 2021.

6 Conclusion

Despite a large theoretical literature on the inherent nonlinearity of pandemic damage func-

tions, there has been relatively little work in estimating them. To address this challenge,

we propose a parsimonious damage function that we take to the data using timely measures

of expected damage given by revisions of industry-level earnings forecasts. The structure

of our model suggests a natural set of identifying restrictions related to forecast rationality

that allow for estimation using nonlinear least squares.

We also extend our framework to account for time-varying arrival rates. Forecasts in

mid-May 2020 imply an earnings crash and lower earnings growth until a vaccine arrives in

1.48 years. Mid-August 2020 forecasts imply a much quicker vaccine arrival in 0.61 years,

which is due to positive vaccine news as opposed to fiscal or monetary policy news.

Our estimates have implications for a number of policy questions. Moreover, there are

several natural inquiries based on our model and estimates. One can consider the stock

pricing of vaccine risks, such as in Hong, Wang, and Yang (2020) and Acharya, Johnson,

Sundaresan, and Zheng (2020). It would also be valuable to combine these estimates with

an asset pricing model to assess the extent to which stock prices, particularly for distressed

industries such as airlines or hotels, are efficient. We leave these inquiries for future research.
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